TOF geometry description as installed (G. Cara Romeo, A. De Caro)
[u/mrichter/AliRoot.git] / TOF / AliTOFv6T0.cxx
CommitLineData
dfef1a15 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
18Revision 0.1 2007 March G. Cara Romeo and A. De Caro
19 Implemented a more realistic TOF geometry description,
20 in terms of:
21 - material badget,
22 - services and front end electronics description,
23 - TOF crate readout modules
24 (added volume FTOS in ALIC_1/BBMO_1/BBCE_%i -for i=1,...,18-,
25 and in ALIC_1/BFMO_%i -for i=19,...,36- volumes)
26 As the 5th version in terms of geometrical positioning of volumes.
27
28*/
29
30///////////////////////////////////////////////////////////////////////////////
31// //
32// This class contains the functions for version 6 of the Time Of Flight //
33// detector. //
34// //
35// VERSION WITH 6 MODULES AND TILTED STRIPS //
36// //
37// FULL COVERAGE VERSION + OPTION for PHOS holes //
38// //
39// //
40//Begin_Html //
41/* //
42<img src="picts/AliTOFv6T0Class.gif"> //
43*/ //
44//End_Html //
45// //
46///////////////////////////////////////////////////////////////////////////////
47
48#include "TBRIK.h"
49#include "TGeometry.h"
50#include "TLorentzVector.h"
51#include "TNode.h"
52#include "TVirtualMC.h"
53#include "TGeoManager.h"
54
55#include "AliConst.h"
56#include "AliLog.h"
57#include "AliMagF.h"
58#include "AliMC.h"
59#include "AliRun.h"
60
61#include "AliTOFGeometry.h"
62#include "AliTOFGeometryV5.h"
63#include "AliTOFv6T0.h"
64
65extern TDirectory *gDirectory;
66extern TVirtualMC *gMC;
67extern TGeoManager *gGeoManager;
68
69extern AliRun *gAlice;
70
71ClassImp(AliTOFv6T0)
72
73//_____________________________________________________________________________
74 AliTOFv6T0::AliTOFv6T0():
75 fIdFTOA(-1),
76 fIdFTOB(-1),
77 fIdFTOC(-1),
78 fIdFLTA(-1),
79 fIdFLTB(-1),
80 fIdFLTC(-1),
81 fTOFHoles(kFALSE)
82{
83 //
84 // Default constructor
85 //
86}
87
88//_____________________________________________________________________________
89AliTOFv6T0::AliTOFv6T0(const char *name, const char *title):
90 AliTOF(name,title,"tzero"),
91 fIdFTOA(-1),
92 fIdFTOB(-1),
93 fIdFTOC(-1),
94 fIdFLTA(-1),
95 fIdFLTB(-1),
96 fIdFLTC(-1),
97 fTOFHoles(kFALSE)
98{
99 //
100 // Standard constructor
101 //
102 //
103 // Check that FRAME is there otherwise we have no place where to
104 // put TOF
105
106
107 AliModule* frame = (AliModule*)gAlice->GetModule("FRAME");
108 if(!frame) {
109 AliFatal("TOF needs FRAME to be present");
110 } else{
111
112 if (fTOFGeometry) delete fTOFGeometry;
113 fTOFGeometry = new AliTOFGeometryV5();
114
115 if(frame->IsVersion()==1) {
116 AliDebug(1,Form("Frame version %d", frame->IsVersion()));
117 AliDebug(1,"Full Coverage for TOF");
118 fTOFHoles=false;}
119 else {
120 AliDebug(1,Form("Frame version %d", frame->IsVersion()));
121 AliDebug(1,"TOF with Holes for PHOS");
122 fTOFHoles=true;}
123 }
124 fTOFGeometry->SetHoles(fTOFHoles);
125
126 //AliTOF::fTOFGeometry = fTOFGeometry;
127
128 // Save the geometry
129 TDirectory* saveDir = gDirectory;
130 gAlice->GetRunLoader()->CdGAFile();
131 fTOFGeometry->Write("TOFgeometry");
132 saveDir->cd();
133
134}
135
136//_____________________________________________________________________________
137void AliTOFv6T0::AddAlignableVolumes() const
138{
139 //
140 // Create entries for alignable volumes associating the symbolic volume
141 // name with the corresponding volume path. Needs to be syncronized with
142 // eventual changes in the geometry.
143 //
144
145 TString volPath;
146 TString symName;
147
148 TString vpL0 = "ALIC_1/B077_1/BSEGMO";
149 TString vpL1 = "_1/BTOF";
150 TString vpL2 = "_1";
151 TString vpL3 = "/FTOA_0";
152 TString vpL4 = "/FLTA_0/FSTR_";
153
154 TString snSM = "TOF/sm";
155 TString snSTRIP = "/strip";
156
157 Int_t nSectors=fTOFGeometry->NSectors();
158 Int_t nStrips =fTOFGeometry->NStripA()+
159 2*fTOFGeometry->NStripB()+
160 2*fTOFGeometry->NStripC();
161
162 //
163 // The TOF MRPC Strips
164 // The symbolic names are: TOF/sm00/strip01
165 // ...
166 // TOF/sm17/strip91
167
168 Int_t imod=0;
169
170 for (Int_t isect = 0; isect < nSectors; isect++) {
171 for (Int_t istr = 1; istr <= nStrips; istr++) {
172
173 volPath = vpL0;
174 volPath += isect;
175 volPath += vpL1;
176 volPath += isect;
177 volPath += vpL2;
178 volPath += vpL3;
179 volPath += vpL4;
180 volPath += istr;
181
182
183 symName = snSM;
184 symName += Form("%02d",isect);
185 symName += snSTRIP;
186 symName += Form("%02d",istr);
187
188 AliDebug(2,"--------------------------------------------");
189 AliDebug(2,Form("Alignable object %d", imod));
190 AliDebug(2,Form("volPath=%s\n",volPath.Data()));
191 AliDebug(2,Form("symName=%s\n",symName.Data()));
192 AliDebug(2,"--------------------------------------------");
193
194 gGeoManager->SetAlignableEntry(symName.Data(),volPath.Data());
195 imod++;
196 }
197 }
198
199
200 //
201 // The TOF supermodules
202 // The symbolic names are: TOF/sm00
203 // ...
204 // TOF/sm17
205 //
206 for (Int_t isect = 0; isect < nSectors; isect++) {
207
208 volPath = vpL0;
209 volPath += isect;
210 volPath += vpL1;
211 volPath += isect;
212 volPath += vpL2;
213 volPath += vpL3;
214
215 symName = snSM;
216 symName += Form("%02d",isect);
217
218 AliDebug(2,"--------------------------------------------");
219 AliDebug(2,Form("Alignable object %d", isect+imod));
220 AliDebug(2,Form("volPath=%s\n",volPath.Data()));
221 AliDebug(2,Form("symName=%s\n",symName.Data()));
222 AliDebug(2,"--------------------------------------------");
223
224 gGeoManager->SetAlignableEntry(symName.Data(),volPath.Data());
225
226 }
227
228}
229//____________________________________________________________________________
230void AliTOFv6T0::BuildGeometry()
231{
232 //
233 // Build TOF ROOT geometry for the ALICE event display
234 //
235 TNode *node, *top;
236 const int kColorTOF = 27;
237
238 TGeometry *globalGeometry = (TGeometry*)gAlice->GetGeometry();
239
240 // Find top TNODE
241 top = globalGeometry->GetNode("alice");
242
243 // Position the different copies
244 const Float_t krTof =(fTOFGeometry->Rmax()+fTOFGeometry->Rmin())/2.;
245 const Float_t khTof = fTOFGeometry->Rmax()-fTOFGeometry->Rmin();
246 const Int_t kNTof = fTOFGeometry->NSectors();
247 const Float_t kangle = k2PI/kNTof;
248
249 const Float_t kInterCentrModBorder1 = 49.5;
250 const Float_t kInterCentrModBorder2 = 57.5;
251
252 Float_t ang;
253
254 // define offset for nodes
255 Float_t zOffsetB = (fTOFGeometry->ZlenA()*0.5 + (kInterCentrModBorder1+kInterCentrModBorder2)*0.5)*0.5;
256 Float_t zOffsetA = 0.;
257 // Define TOF basic volume
258
259 char nodeName0[16], nodeName1[16], nodeName2[16];
260 char nodeName3[16], nodeName4[16], rotMatNum[16];
261
262 if (fTOFHoles) {
263 new TBRIK("S_TOF_B","TOF box","void",
264 fTOFGeometry->StripLength()*0.5, khTof*0.5, fTOFGeometry->ZlenB()*0.5);
265 new TBRIK("S_TOF_C","TOF box","void",
266 fTOFGeometry->StripLength()*0.5, khTof*0.5, fTOFGeometry->ZlenB()*0.5);
267 }
268 new TBRIK("S_TOF_A","TOF box","void",
269 fTOFGeometry->StripLength()*0.5, khTof*0.5, fTOFGeometry->ZlenA()*0.5);
270
271 for (Int_t nodeNum=1;nodeNum<kNTof+1;nodeNum++){
272
273 if (nodeNum<10) {
274 sprintf(rotMatNum,"rot50%i",nodeNum);
275 sprintf(nodeName0,"FTO00%i",nodeNum);
276 sprintf(nodeName1,"FTO10%i",nodeNum);
277 sprintf(nodeName2,"FTO20%i",nodeNum);
278 sprintf(nodeName3,"FTO30%i",nodeNum);
279 sprintf(nodeName4,"FTO40%i",nodeNum);
280 }
281 if (nodeNum>9) {
282 sprintf(rotMatNum,"rot5%i",nodeNum);
283 sprintf(nodeName0,"FTO0%i",nodeNum);
284 sprintf(nodeName1,"FTO1%i",nodeNum);
285 sprintf(nodeName2,"FTO2%i",nodeNum);
286 sprintf(nodeName3,"FTO3%i",nodeNum);
287 sprintf(nodeName4,"FTO4%i",nodeNum);
288 }
289
290 new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0);
291 ang = (4.5-nodeNum) * kangle;
292
293 if (fTOFHoles) {
294 top->cd();
295 node = new TNode(nodeName2,nodeName2,"S_TOF_B", krTof*TMath::Cos(ang), krTof*TMath::Sin(ang), zOffsetB,rotMatNum);
296 node->SetLineColor(kColorTOF);
297 fNodes->Add(node);
298
299 top->cd();
300 node = new TNode(nodeName3,nodeName3,"S_TOF_C", krTof*TMath::Cos(ang), krTof*TMath::Sin(ang),-zOffsetB,rotMatNum);
301 node->SetLineColor(kColorTOF);
302 fNodes->Add(node);
303 }
304
305 top->cd();
306 node = new TNode(nodeName4,nodeName4,"S_TOF_A", krTof*TMath::Cos(ang), krTof*TMath::Sin(ang), zOffsetA,rotMatNum);
307 node->SetLineColor(kColorTOF);
308 fNodes->Add(node);
309 } // end loop on nodeNum
310
311}
312
313//_____________________________________________________________________________
314void AliTOFv6T0::CreateGeometry()
315{
316 //
317 // Create geometry for Time Of Flight version 0
318 //
319 //Begin_Html
320 /*
321 <img src="picts/AliTOFv6T0.gif">
322 */
323 //End_Html
324 //
325 // Creates common geometry
326 //
327 AliTOF::CreateGeometry();
328}
329
330
331//_____________________________________________________________________________
332void AliTOFv6T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenA)
333{
334 //
335 // Definition of the Time Of Fligh Resistive Plate Chambers
336 //
337
338 const Float_t kPi = TMath::Pi();
339
340 const Float_t kInterCentrModBorder1 = 49.5;
341 const Float_t kInterCentrModBorder2 = 57.5;
342 const Float_t kExterInterModBorder1 = 196.0;
343 const Float_t kExterInterModBorder2 = 203.5;
344
345 const Float_t kLengthExInModBorder = 4.7;
346 const Float_t kLengthInCeModBorder = 7.0;
347
348 // module wall thickness (cm)
349 const Float_t kModuleWallThickness = 0.33;
350
351 // honeycomb layer between strips and cards (cm)
352 const Float_t kHoneycombLayerThickness = 2.;
353
354 AliDebug(1, "************************* TOF geometry **************************");
355 AliDebug(1,Form(" xtof %d", xtof));
356 AliDebug(1,Form(" ytof %d", ytof));
357 AliDebug(1,Form(" zlenA %d", zlenA));
358 AliDebug(2,Form(" zlenA*0.5 = %d", zlenA*0.5));
359
360 // Definition of the of fibre glass modules (FTOA, FTOB and FTOC)
361
362 Float_t xcoor, ycoor, zcoor;
363 Float_t par[3];
364 Int_t *idtmed = fIdtmed->GetArray()-499;
365 Int_t idrotm[100];
366
367 par[0] = xtof * 0.5;
368 par[1] = ytof * 0.25;
369 par[2] = zlenA * 0.5;
370 gMC->Gsvolu("FTOA", "BOX ", idtmed[503], par, 3); // fibre glass
371
372 if (fTOFHoles) {
373 par[0] = xtof * 0.5;
374 par[1] = ytof * 0.25;
375 par[2] = (zlenA*0.5 - kInterCentrModBorder1)*0.5;
376 gMC->Gsvolu("FTOB", "BOX ", idtmed[503], par, 3); // fibre glass
377 gMC->Gsvolu("FTOC", "BOX ", idtmed[503], par, 3); // fibre glass
378 }
379
380 // New supermodule card section description
381 // 2 cm honeycomb layer between strips and cards
382 par[0] = xtof*0.5 + 2.;
383 par[1] = kHoneycombLayerThickness*0.5;
384 par[2] = zlenA*0.5 + 2.;
385 gMC->Gsvolu("FPEA", "BOX ", idtmed[506], par, 3); // Al + Cu honeycomb
386 if (fTOFHoles) {
387 //par[0] = xtof*0.5 + 2.;
388 //par[1] = kHoneycombLayerThickness*0.5;
389 par[2] = (zlenA*0.5 - kInterCentrModBorder1)*0.5 + 2.;
390 gMC->Gsvolu("FPEB", "BOX ", idtmed[506], par, 3); // Al + Cu honeycomb
391 }
392
393 // Definition of the air card containers (FAIA and FAIB)
394
395 par[0] = xtof*0.5;
396 par[1] = (ytof*0.5 - kHoneycombLayerThickness)*0.5;
397 par[2] = zlenA*0.5;
398 gMC->Gsvolu("FAIA", "BOX ", idtmed[500], par, 3); // Air
399 if (fTOFHoles) gMC->Gsvolu("FAIB", "BOX ", idtmed[500], par, 3); // Air
400
401 // Positioning of fibre glass modules (FTOA, FTOB and FTOC) and
402 // card containers (FPEA, FAIA and FAIB)
403
404 //AliMatrix(idrotm[0], 90., 0., 0., 0., 90.,-90.);
405 AliMatrix(idrotm[0], 90., 0., 0., 0., 90.,270.);
406
407 xcoor = 0.;
408 for(Int_t isec=0; isec<fTOFGeometry->NSectors(); isec++){
409 if(fTOFSectors[isec]==-1)continue;
410 char name[16];
411 sprintf(name, "BTOF%d",isec);
412 if (fTOFHoles && (isec==11||isec==12)) {
413 //if (fTOFHoles && (isec==16||isec==17)) { \\Old 6h convention
414 //xcoor = 0.;
415 ycoor = (zlenA*0.5 + kInterCentrModBorder1)*0.5;
416 zcoor = -ytof * 0.25;
417 gMC->Gspos("FTOB", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY");
418 gMC->Gspos("FTOC", 0, name, xcoor,-ycoor, zcoor, idrotm[0], "ONLY");
419 //xcoor = 0.;
420 //ycoor = (zlenA*0.5 + kInterCentrModBorder1)*0.5;
421 zcoor = kHoneycombLayerThickness*0.5;
422 gMC->Gspos("FPEB", 1, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY");
423 gMC->Gspos("FPEB", 2, name, xcoor,-ycoor, zcoor, idrotm[0], "ONLY");
424 //xcoor = 0.;
425 ycoor = 0.;
426 zcoor = kHoneycombLayerThickness + (ytof*0.5 - kHoneycombLayerThickness)*0.5;
427 gMC->Gspos("FAIB", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY");
428 }
429 else {
430 //xcoor = 0.;
431 ycoor = 0.;
432 zcoor = -ytof * 0.25;
433 gMC->Gspos("FTOA", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY");
434 //xcoor = 0.;
435 //ycoor = 0.;
436 zcoor = kHoneycombLayerThickness*0.5;
437 gMC->Gspos("FPEA", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY");
438 //xcoor = 0.;
439 //ycoor = 0.;
440 zcoor = kHoneycombLayerThickness + (ytof*0.5 - kHoneycombLayerThickness)*0.5;
441 gMC->Gspos("FAIA", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY");
442 }
443 }
444
445 // Definition and positioning
446 // of the not sensitive volumes with Insensitive Freon (FLTA, FLTB and FLTC)
447
448 Float_t xFLT, yFLT, zFLTA;
449
450 xFLT = xtof - kModuleWallThickness*2.;
451 yFLT = ytof*0.5 - kModuleWallThickness;
452 zFLTA = zlenA - kModuleWallThickness*2.;
453
454 par[0] = xFLT*0.5;
455 par[1] = yFLT*0.5;
456 par[2] = zFLTA*0.5;
457 gMC->Gsvolu("FLTA", "BOX ", idtmed[507], par, 3); // Freon mix
458
459 xcoor = 0.;
460 ycoor = kModuleWallThickness*0.5;
461 zcoor = 0.;
462 gMC->Gspos ("FLTA", 0, "FTOA", xcoor, ycoor, zcoor, 0, "ONLY");
463
464 if (fTOFHoles) {
465 par[2] = (zlenA*0.5 - kInterCentrModBorder1 - kModuleWallThickness)*0.5;
466 gMC->Gsvolu("FLTB", "BOX ", idtmed[507], par, 3); // Freon mix
467 gMC->Gsvolu("FLTC", "BOX ", idtmed[507], par, 3); // Freon mix
468
469 //xcoor = 0.;
470 //ycoor = kModuleWallThickness*0.5;
471 //zcoor = 0.;
472 gMC->Gspos ("FLTB", 0, "FTOB", xcoor, ycoor, zcoor, 0, "ONLY");
473 gMC->Gspos ("FLTC", 0, "FTOC", xcoor, ycoor, zcoor, 0, "ONLY");
474 }
475
476 Float_t alpha, tgal, beta, tgbe, trpa[11];
477
478 // Definition and positioning
479 // of the fibre glass walls between central and intermediate modules (FWZ1 and FWZ2)
480
481 tgal = (yFLT - 2.*kLengthInCeModBorder)/(kInterCentrModBorder2 - kInterCentrModBorder1);
482 alpha = TMath::ATan(tgal);
483 beta = (kPi*0.5 - alpha)*0.5;
484 tgbe = TMath::Tan(beta);
485 trpa[0] = xFLT*0.5;
486 trpa[1] = 0.;
487 trpa[2] = 0.;
488 trpa[3] = kModuleWallThickness;
489 trpa[4] = (kLengthInCeModBorder - kModuleWallThickness*tgbe)*0.5;
490 trpa[5] = (kLengthInCeModBorder + kModuleWallThickness*tgbe)*0.5;
491 trpa[6] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg;
492 trpa[7] = kModuleWallThickness;
493 trpa[8] = (kLengthInCeModBorder - kModuleWallThickness*tgbe)*0.5;
494 trpa[9] = (kLengthInCeModBorder + kModuleWallThickness*tgbe)*0.5;
495 trpa[10] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg;
496 gMC->Gsvolu("FWZ1","TRAP", idtmed[503], trpa, 11); // fibre glass
497
498 AliMatrix (idrotm[1],90., 90.,180.,0.,90.,180.);
499 AliMatrix (idrotm[4],90., 90., 0.,0.,90., 0.);
500
501 xcoor = 0.;
502 ycoor = -(yFLT - kLengthInCeModBorder)*0.5;
503 zcoor = kInterCentrModBorder1;
504 gMC->Gspos("FWZ1", 1,"FLTA", xcoor, ycoor, zcoor,idrotm[1],"ONLY");
505 gMC->Gspos("FWZ1", 2,"FLTA", xcoor, ycoor,-zcoor,idrotm[4],"ONLY");
506
507 AliMatrix (idrotm[2],90.,270., 0.,0.,90.,180.);
508 AliMatrix (idrotm[5],90.,270.,180.,0.,90., 0.);
509
510 xcoor = 0.;
511 ycoor = (yFLT - kLengthInCeModBorder)*0.5;
512 zcoor = kInterCentrModBorder2;
513 gMC->Gspos("FWZ1", 3,"FLTA", xcoor, ycoor, zcoor,idrotm[2],"ONLY");
514 gMC->Gspos("FWZ1", 4,"FLTA", xcoor, ycoor,-zcoor,idrotm[5],"ONLY");
515
516 trpa[0] = 0.5*(kInterCentrModBorder2 - kInterCentrModBorder1)/TMath::Cos(alpha);
517 trpa[1] = kModuleWallThickness;
518 trpa[2] = xFLT*0.5;
519 trpa[3] = -beta*kRaddeg;
520 trpa[4] = 0.;
521 trpa[5] = 0.;
522 gMC->Gsvolu("FWZ2","PARA", idtmed[503], trpa, 6); // fibre glass
523
524 AliMatrix (idrotm[3], alpha*kRaddeg,90.,90.+alpha*kRaddeg,90.,90.,180.);
525 AliMatrix (idrotm[6],180.-alpha*kRaddeg,90.,90.-alpha*kRaddeg,90.,90., 0.);
526
527 xcoor = 0.;
528 ycoor = 0.;
529 zcoor = (kInterCentrModBorder2 + kInterCentrModBorder1)*0.5;
530 gMC->Gspos("FWZ2", 1,"FLTA", xcoor, ycoor, zcoor,idrotm[3],"ONLY");
531 gMC->Gspos("FWZ2", 2,"FLTA", xcoor, ycoor,-zcoor,idrotm[6],"ONLY");
532
533 // Definition and positioning
534 // of the fibre glass walls between intermediate and lateral modules (FWZ3 and FWZ4)
535
536 tgal = (yFLT - 2.*kLengthExInModBorder)/(kExterInterModBorder2 - kExterInterModBorder1);
537 alpha = TMath::ATan(tgal);
538 beta = (kPi*0.5 - alpha)*0.5;
539 tgbe = TMath::Tan(beta);
540 trpa[0] = xFLT*0.5;
541 trpa[1] = 0.;
542 trpa[2] = 0.;
543 trpa[3] = kModuleWallThickness;
544 trpa[4] = (kLengthExInModBorder - kModuleWallThickness*tgbe)*0.5;
545 trpa[5] = (kLengthExInModBorder + kModuleWallThickness*tgbe)*0.5;
546 trpa[6] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg;
547 trpa[7] = kModuleWallThickness;
548 trpa[8] = (kLengthExInModBorder - kModuleWallThickness*tgbe)*0.5;
549 trpa[9] = (kLengthExInModBorder + kModuleWallThickness*tgbe)*0.5;
550 trpa[10] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg;
551 gMC->Gsvolu("FWZ3","TRAP", idtmed[503], trpa, 11); // fibre glass
552
553 xcoor = 0.;
554 ycoor = (yFLT - kLengthExInModBorder)*0.5;
555 zcoor = kExterInterModBorder1;
556 gMC->Gspos("FWZ3", 1,"FLTA", xcoor, ycoor, zcoor,idrotm[5],"ONLY");
557 gMC->Gspos("FWZ3", 2,"FLTA", xcoor, ycoor,-zcoor,idrotm[2],"ONLY");
558
559 if (fTOFHoles) {
560 //xcoor = 0.;
561 //ycoor = (yFLT - kLengthExInModBorder)*0.5;
562 zcoor = -kExterInterModBorder1 + (zlenA*0.5 + kInterCentrModBorder1 - kModuleWallThickness)*0.5;
563 gMC->Gspos("FWZ3", 5,"FLTB", xcoor, ycoor, zcoor,idrotm[2],"ONLY");
564 gMC->Gspos("FWZ3", 6,"FLTC", xcoor, ycoor,-zcoor,idrotm[5],"ONLY");
565 }
566
567 //xcoor = 0.;
568 ycoor = -(yFLT - kLengthExInModBorder)*0.5;
569 zcoor = kExterInterModBorder2;
570 gMC->Gspos("FWZ3", 3,"FLTA", xcoor, ycoor, zcoor,idrotm[4],"ONLY");
571 gMC->Gspos("FWZ3", 4,"FLTA", xcoor, ycoor,-zcoor,idrotm[1],"ONLY");
572
573 if (fTOFHoles) {
574 //xcoor = 0.;
575 //ycoor = -(yFLT - kLengthExInModBorder)*0.5;
576 zcoor = -kExterInterModBorder2 + (zlenA*0.5 + kInterCentrModBorder1 - kModuleWallThickness)*0.5;
577 gMC->Gspos("FWZ3", 7,"FLTB", xcoor, ycoor, zcoor,idrotm[1],"ONLY");
578 gMC->Gspos("FWZ3", 8,"FLTC", xcoor, ycoor,-zcoor,idrotm[4],"ONLY");
579 }
580
581 trpa[0] = 0.5*(kExterInterModBorder2 - kExterInterModBorder1)/TMath::Cos(alpha);
582 trpa[1] = kModuleWallThickness;
583 trpa[2] = xFLT*0.5;
584 trpa[3] = -beta*kRaddeg;
585 trpa[4] = 0.;
586 trpa[5] = 0.;
587 gMC->Gsvolu("FWZ4","PARA", idtmed[503], trpa, 6); // fibre glass
588
589 AliMatrix (idrotm[13],alpha*kRaddeg,90.,90.+alpha*kRaddeg,90.,90.,180.);
590 AliMatrix (idrotm[16],180.-alpha*kRaddeg,90.,90.-alpha*kRaddeg,90.,90.,0.);
591
592 //xcoor = 0.;
593 ycoor = 0.;
594 zcoor = (kExterInterModBorder2 + kExterInterModBorder1)*0.5;
595 gMC->Gspos("FWZ4", 1,"FLTA", xcoor, ycoor, zcoor,idrotm[16],"ONLY");
596 gMC->Gspos("FWZ4", 2,"FLTA", xcoor, ycoor,-zcoor,idrotm[13],"ONLY");
597
598 if (fTOFHoles) {
599 //xcoor = 0.;
600 //ycoor = 0.;
601 zcoor = -(kExterInterModBorder2 + kExterInterModBorder1)*0.5 +
602 (zlenA*0.5 + kInterCentrModBorder1 - kModuleWallThickness)*0.5;
603 gMC->Gspos("FWZ4", 3,"FLTB", xcoor, ycoor, zcoor,idrotm[13],"ONLY");
604 gMC->Gspos("FWZ4", 4,"FLTC", xcoor, ycoor,-zcoor,idrotm[16],"ONLY");
605 }
606
607
608 ///////////////// Detector itself //////////////////////
609
610 const Int_t knx = fTOFGeometry->NpadX(); // number of pads along x
611 const Int_t knz = fTOFGeometry->NpadZ(); // number of pads along z
612 const Float_t kPadX = fTOFGeometry->XPad(); // pad length along x
613 const Float_t kPadZ = fTOFGeometry->ZPad(); // pad length along z
614
615 // new description for strip volume -double stack strip-
616 // -- all constants are expressed in cm
617 // heigth of different layers
618 const Float_t khhony = 1.0; // heigth of HONY Layer
619 const Float_t khpcby = 0.08; // heigth of PCB Layer
620 const Float_t khrgly = 0.055; // heigth of RED GLASS Layer
621
622 const Float_t khfiliy = 0.125; // heigth of FISHLINE Layer
623 const Float_t khglassy = 0.160*0.5; // heigth of GLASS Layer
624 const Float_t khglfy = khfiliy+2.*khglassy; // heigth of GLASS+FISHLINE Layer
625
626 const Float_t khcpcby = 0.16; // heigth of PCB Central Layer
627 const Float_t kwhonz = 8.1; // z dimension of HONEY Layer
628 const Float_t kwpcbz1 = 10.6; // z dimension of PCB Lower Layer
629 const Float_t kwpcbz2 = 11.6; // z dimension of PCB Upper Layer
630 const Float_t kwcpcbz = 13.; // z dimension of PCB Central Layer
631 const Float_t kwrglz = 8.; // z dimension of RED GLASS Layer
632 const Float_t kwglfz = 7.; // z dimension of GLASS+FISHLN Layer
633 const Float_t klsensmx = knx*kPadX; // length of Sensitive Layer
634 const Float_t khsensmy = 0.05; // heigth of Sensitive Layer
635 const Float_t kwsensmz = knz*kPadZ; // width of Sensitive Layer
636
637 // heigth of the FSTR Volume (the strip volume)
638 const Float_t khstripy = 2.*khhony+2.*khpcby+4.*khrgly+2.*khglfy+khcpcby;
639
640 // width of the FSTR Volume (the strip volume)
641 const Float_t kwstripz = kwcpcbz;
642 // length of the FSTR Volume (the strip volume)
643 const Float_t klstripx = fTOFGeometry->StripLength();
644
645 Float_t parfp[3]={klstripx*0.5, khstripy*0.5, kwstripz*0.5};
646 // Coordinates of the strip center in the strip reference frame;
647 // used for positioning internal strip volumes
648 Float_t posfp[3]={0.,0.,0.};
649
650 // FSTR volume definition-filling this volume with non sensitive Gas Mixture
651 gMC->Gsvolu("FSTR","BOX",idtmed[507],parfp,3); // Freon mix
652
653 //-- HONY Layer definition
654 //parfp[0] = klstripx*0.5;
655 parfp[1] = khhony*0.5;
656 parfp[2] = kwhonz*0.5;
657 gMC->Gsvolu("FHON","BOX",idtmed[501],parfp,3); // honeycomb (Nomex)
658 // positioning 2 HONY Layers on FSTR volume
659 //posfp[0] = 0.;
660 posfp[1] =-khstripy*0.5+parfp[1];
661 //posfp[2] = 0.;
662 gMC->Gspos("FHON",1,"FSTR",0., posfp[1],0.,0,"ONLY");
663 gMC->Gspos("FHON",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
664
665 //-- PCB Layer definition
666 //parfp[0] = klstripx*0.5;
667 parfp[1] = khpcby*0.5;
668 parfp[2] = kwpcbz1*0.5;
669 gMC->Gsvolu("FPC1","BOX",idtmed[502],parfp,3); // G10
670 //parfp[0] = klstripx*0.5;
671 //parfp[1] = khpcby*0.5;
672 parfp[2] = kwpcbz2*0.5;
673 gMC->Gsvolu("FPC2","BOX",idtmed[502],parfp,3); // G10
674 // positioning 2 PCB Layers on FSTR volume
675 //posfp[0] = 0.;
676 posfp[1] =-khstripy*0.5+khhony+parfp[1];
677 //posfp[2] = 0.;
678 gMC->Gspos("FPC1",1,"FSTR",0.,-posfp[1],0.,0,"ONLY");
679 gMC->Gspos("FPC2",1,"FSTR",0., posfp[1],0.,0,"ONLY");
680
681 //-- central PCB layer definition
682 //parfp[0] = klstripx*0.5;
683 parfp[1] = khcpcby*0.5;
684 parfp[2] = kwcpcbz*0.5;
685 gMC->Gsvolu("FPCB","BOX",idtmed[502],parfp,3); // G10
686 // positioning the central PCB layer
687 gMC->Gspos("FPCB",1,"FSTR",0.,0.,0.,0,"ONLY");
688
689 // Sensitive volume
690 Float_t parfs[3] = {klsensmx*0.5, khsensmy*0.5, kwsensmz*0.5};
691 gMC->Gsvolu("FSEN","BOX",idtmed[508],parfs,3); // sensitive
692 // dividing FSEN along z in knz=2 and along x in knx=48
693 gMC->Gsdvn("FSEZ","FSEN",knz,3);
694 gMC->Gsdvn("FPAD","FSEZ",knx,1);
695 // positioning a Sensitive layer inside FPCB
696 gMC->Gspos("FSEN",1,"FPCB",0.,0.,0.,0,"ONLY");
697
698 //-- RED GLASS Layer definition
699 //parfp[0] = klstripx*0.5;
700 parfp[1] = khrgly*0.5;
701 parfp[2] = kwrglz*0.5;
702 gMC->Gsvolu("FRGL","BOX",idtmed[509],parfp,3); // glass
703 // positioning 4 RED GLASS Layers on FSTR volume
704 //posfp[0] = 0.;
705 posfp[1] = -khstripy*0.5+khhony+khpcby+parfp[1];
706 //posfp[2] = 0.;
707 gMC->Gspos("FRGL",1,"FSTR",0., posfp[1],0.,0,"ONLY");
708 gMC->Gspos("FRGL",4,"FSTR",0.,-posfp[1],0.,0,"ONLY");
709 //posfp[0] = 0.;
710 posfp[1] = (khcpcby+khrgly)*0.5;
711 //posfp[2] = 0.;
712 gMC->Gspos("FRGL",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
713 gMC->Gspos("FRGL",3,"FSTR",0., posfp[1],0.,0,"ONLY");
714
715 //-- GLASS+FISHLINE Layer definition
716 //parfp[0] = klstripx*0.5;
717 parfp[1] = khglfy*0.5;
718 parfp[2] = kwglfz*0.5;
719 gMC->Gsvolu("FGLF","BOX",idtmed[504],parfp,3);
720
721 // positioning 2 GLASS+FISHLINE Layers on FSTR volume
722 //posfp[0] = 0.;
723 posfp[1] = (khcpcby + khglfy)*0.5 + khrgly;
724 //posfp[2] = 0.;
725 gMC->Gspos("FGLF",1,"FSTR",0.,-posfp[1],0.,0,"ONLY");
726 gMC->Gspos("FGLF",2,"FSTR",0., posfp[1],0.,0,"ONLY");
727
728 // Positioning the Strips (FSTR volumes) in the FLT volumes
729 Int_t maxStripNumbers [5] ={fTOFGeometry->NStripC(),
730 fTOFGeometry->NStripB(),
731 fTOFGeometry->NStripA(),
732 fTOFGeometry->NStripB(),
733 fTOFGeometry->NStripC()};
734
735 Int_t totalStrip = 0;
736 Float_t xpos, zpos, ypos, ang;
737 for(Int_t iplate = 0; iplate < fTOFGeometry->NPlates(); iplate++){
738 if (iplate>0) totalStrip += maxStripNumbers[iplate-1];
739 for(Int_t istrip = 0; istrip < maxStripNumbers[iplate]; istrip++){
740
741 ang = fTOFGeometry->GetAngles(iplate,istrip);
742 AliDebug(1, Form(" iplate = %1i, istrip = %2i ---> ang = %f", iplate, istrip, ang));
743
744 if (ang>0.) AliMatrix (idrotm[istrip+totalStrip+1],90.,0.,90.+ang,90., ang, 90.);
745 else if (ang==0.) AliMatrix (idrotm[istrip+totalStrip+1],90.,0.,90.,90., 0., 0.);
746 else if (ang<0.) AliMatrix (idrotm[istrip+totalStrip+1],90.,0.,90.+ang,90.,-ang,270.);
747
748 xpos = 0.;
749 zpos = fTOFGeometry->GetDistances(iplate,istrip);
750 ypos = fTOFGeometry->GetHeights(iplate,istrip) + yFLT*0.5;
751
752 gMC->Gspos("FSTR",istrip+totalStrip+1,"FLTA", xpos, ypos,-zpos,idrotm[istrip+totalStrip+1], "ONLY");
753
754 if (fTOFHoles) {
755 if (istrip+totalStrip+1>53)
756 gMC->Gspos("FSTR",istrip+totalStrip+1,"FLTC", xpos, ypos,-zpos-(zlenA*0.5 + kInterCentrModBorder1 - kModuleWallThickness)*0.5,idrotm[istrip+totalStrip+1],"ONLY");
757 if (istrip+totalStrip+1<39)
758 gMC->Gspos("FSTR",istrip+totalStrip+1,"FLTB", xpos, ypos,-zpos+(zlenA*0.5 + kInterCentrModBorder1 - kModuleWallThickness)*0.5,idrotm[istrip+totalStrip+1],"ONLY");
759 }
760 }
761 }
762
763 // Definition of the cards, cooling tubes and layer for thermal dispersion
764 // (3 volumes)
765
766 // card volume definition
767 Float_t carpar[3] = {9.5, 5.75, 0.5};
768 gMC->Gsvolu("FCA1", "BOX ", idtmed[514], carpar, 3); // PCB+Alu small Card
769 carpar[0] = 19.25;
770 //carpar[1] = 5.75;
771 //carpar[2] = 0.5;
772 gMC->Gsvolu("FCA2", "BOX ", idtmed[514], carpar, 3); // PCB+Alu long Card
773
774 // tube volume definition
775 Float_t tubepar[3] = {0., 0.4, xFLT*0.5-15.};
776 gMC->Gsvolu("FTUB", "TUBE", idtmed[513], tubepar, 3); // copper cooling tubes
777 //tubepar[0]= 0.;
778 tubepar[1]= 0.3;
779 //tubepar[2]= xFLT*0.5 - 15.;
780 gMC->Gsvolu("FITU", "TUBE", idtmed[510], tubepar, 3); // cooling water
781 // Positioning of the water tube into the steel one
782 gMC->Gspos("FITU",1,"FTUB",0.,0.,0.,0,"ONLY");
783
784 // cable
785 Float_t cbpar[3] = {0., 0.5, tubepar[2]};
786 gMC->Gsvolu("FCAB", "TUBE", idtmed[511], cbpar, 3); // copper+alu
787
788 // Alluminium components
789 Float_t lonpar[3] = {tubepar[2], 6.15, 0.7};
790 gMC->Gsvolu("FTLN", "BOX ", idtmed[505], lonpar, 3); // alluminium
791 lonpar[0] = 2.;
792 lonpar[1] = 1.;
793 lonpar[2] = zlenA*0.5;
794 gMC->Gsvolu("FLON", "BOX ", idtmed[505], lonpar, 3); // alluminium
795
796 // rotation matrix
797 AliMatrix(idrotm[99], 180., 90., 90., 90., 90., 0.);
798
799 // cards, tubes, cables positioning
800 Float_t carpos[3], rowstep = 6.66, ytub= 3.65, ycab= ytub-3.;
801 Float_t rowgap[5] = {13.5, 22.9, 16.94, 23.8, 20.4};
802 Int_t row, rowb[5] = {6, 7, 6, 19, 7}, nrow;
803 carpos[0] = 25. - xtof*0.5;
804 carpos[1] = (11.5 - (ytof*0.5 - kHoneycombLayerThickness))*0.5;
805 row = 1;
806 for (Int_t sg= -1; sg< 2; sg+= 2) {
807 carpos[2] = sg*zlenA*0.5;
808 for (Int_t nb=0; nb<5; ++nb) {
809 carpos[2] = carpos[2] - sg*(rowgap[nb] - rowstep);
810 nrow = row + rowb[nb];
811 for ( ; row < nrow ; ++row) {
812 carpos[2] -= sg*rowstep;
813 gMC->Gspos("FCA1",2*row-1, "FAIA", carpos[0],carpos[1],carpos[2], 0,"ONLY");
814 gMC->Gspos("FCA1", 2*row, "FAIA",-carpos[0],carpos[1],carpos[2], 0,"ONLY");
815 gMC->Gspos("FCA2", row, "FAIA", 0., carpos[1], carpos[2], 0, "ONLY");
816 gMC->Gspos("FTUB", row, "FAIA", 0., ytub, carpos[2]-sg, idrotm[99], "ONLY");
817 gMC->Gspos("FCAB", row, "FAIA", 0., ycab, carpos[2]-sg, idrotm[99], "ONLY");
818 }
819 }
820 gMC->Gspos("FTLN", 5+4*sg, "FAIA", 0., -0.1, 369.9*sg, 0, "ONLY");
821 gMC->Gspos("FTLN", 5+3*sg, "FAIA", 0., -0.1, 366.9*sg, 0, "ONLY");
822 gMC->Gspos("FTLN", 5+2*sg, "FAIA", 0., -0.1, 198.8*sg, 0, "ONLY");
823 gMC->Gspos("FTLN", 5+sg, "FAIA", 0., -0.1, 56.82*sg, 0, "ONLY");
824 }
825 gMC->Gspos("FCA1", 181, "FAIA", carpos[0],carpos[1],0., 0,"ONLY");
826 gMC->Gspos("FCA1", 182, "FAIA",-carpos[0],carpos[1],0., 0,"ONLY");
827 gMC->Gspos("FCA2", 91, "FAIA", 0., carpos[1], 0., 0, "ONLY");
828 gMC->Gspos("FTUB", 91, "FAIA", 0., ytub, 1., idrotm[99], "ONLY");
829 gMC->Gspos("FCAB", 91, "FAIA", 0., ycab, 1., idrotm[99], "ONLY");
830 gMC->Gspos("FLON", 1, "FAIA",-24., ytub+1.4, 0., 0, "MANY");
831 gMC->Gspos("FLON", 2, "FAIA", 24., ytub+1.4, 0., 0, "MANY");
832 if (fTOFHoles) {
833 row = 1;
834 for (Int_t sg= -1; sg< 2; sg+= 2) {
835 carpos[2] = sg*zlenA*0.5;
836 for (Int_t nb=0; nb<4; ++nb) {
837 carpos[2] = carpos[2] - sg*(rowgap[nb] - rowstep);
838 nrow = row + rowb[nb];
839 for ( ; row < nrow ; ++row) {
840 carpos[2] -= sg*rowstep;
841 gMC->Gspos("FCA1",2*row-1, "FAIB", carpos[0],carpos[1],carpos[2], 0,"ONLY");
842 gMC->Gspos("FCA1", 2*row, "FAIB",-carpos[0],carpos[1],carpos[2], 0,"ONLY");
843 gMC->Gspos("FCA2", row, "FAIB", 0., carpos[1], carpos[2], 0, "ONLY");
844 gMC->Gspos("FTUB", row, "FAIB", 0., ytub,carpos[2]-sg, idrotm[99], "ONLY");
845 gMC->Gspos("FCAB", row, "FAIB", 0., ycab,carpos[2]-sg, idrotm[99], "ONLY");
846 }
847 }
848 gMC->Gspos("FTLN", 5+4*sg, "FAIB", 0., -0.1, 369.9*sg, 0, "ONLY");
849 gMC->Gspos("FTLN", 5+3*sg, "FAIB", 0., -0.1, 366.9*sg, 0, "ONLY");
850 gMC->Gspos("FTLN", 5+2*sg, "FAIB", 0., -0.1, 198.8*sg, 0, "ONLY");
851 gMC->Gspos("FTLN", 5+sg, "FAIB", 0., -0.1, 56.82*sg, 0, "ONLY");
852 }
853 gMC->Gspos("FLON", 1, "FAIB",-24., ytub+1.4, 0., 0, "MANY");
854 gMC->Gspos("FLON", 2, "FAIB", 24., ytub+1.4, 0., 0, "MANY");
855 }
856
857 // Cables and tubes on the side blocks
858 const Float_t kcbll = zlenA*0.5; // length of block
859 const Float_t kcbllh = zlenA*0.5 - kInterCentrModBorder2; // length of block in case of hole
860 const Float_t kcblw = 13.5; // width of block
861 const Float_t kcblh1 = 2.; // min. heigth of block
862 const Float_t kcblh2 = 12.3; // max. heigth of block
863 // volume definition
864 Float_t cblpar[11];
865 tgal = (kcblh2 - kcblh1)/(2.*kcbll);
866 cblpar[0] = kcblw *0.5;
867 cblpar[1] = 0.;
868 cblpar[2] = 0.;
869 cblpar[3] = kcbll *0.5;
870 cblpar[4] = kcblh1 *0.5;
871 cblpar[5] = kcblh2 *0.5;
872 cblpar[6] = TMath::ATan(tgal)*kRaddeg;
873 cblpar[7] = kcbll *0.5;
874 cblpar[8] = kcblh1 *0.5;
875 cblpar[9] = kcblh2 *0.5;
876 cblpar[10]= cblpar[6];
877 gMC->Gsvolu("FCBL", "TRAP", idtmed[512], cblpar, 11); // cables & tubes mix
878 Float_t sawpar[3] = {0.5, kcblh2*0.5, kcbll};
879 gMC->Gsvolu("FSAW", "BOX ", idtmed[505], sawpar, 3); // Side Al walls
880 // volume positioning
881 AliMatrix(idrotm[7], 90., 90., 180., 0., 90., 180.);
882 AliMatrix(idrotm[8], 90., 90., 0., 0., 90., 0.);
883 xcoor = (xtof-kcblw)*0.5 - 2.*sawpar[0];
884 ycoor = (kcblh1+kcblh2)*0.25 - (ytof*0.5 - kHoneycombLayerThickness)*0.5;
885 zcoor = kcbll*0.5;
886 gMC->Gspos("FCBL", 1, "FAIA", -xcoor, ycoor, -zcoor, idrotm[7], "ONLY");
887 gMC->Gspos("FCBL", 2, "FAIA", xcoor, ycoor, -zcoor, idrotm[7], "ONLY");
888 gMC->Gspos("FCBL", 3, "FAIA", -xcoor, ycoor, zcoor, idrotm[8], "ONLY");
889 gMC->Gspos("FCBL", 4, "FAIA", xcoor, ycoor, zcoor, idrotm[8], "ONLY");
890 xcoor = xtof*0.5-sawpar[0];
891 ycoor = (kcblh2 - ytof*0.5 + kHoneycombLayerThickness)*0.5;
892 gMC->Gspos("FSAW", 1, "FAIA", -xcoor, ycoor, 0., 0, "ONLY");
893 gMC->Gspos("FSAW", 2, "FAIA", xcoor, ycoor, 0., 0, "ONLY");
894 if (fTOFHoles) {
895 cblpar[3] = kcbllh *0.5;
896 cblpar[5] = kcblh1*0.5 + kcbllh*tgal;
897 cblpar[7] = kcbllh *0.5;
898 cblpar[9] = cblpar[5];
899 gMC->Gsvolu("FCBB", "TRAP", idtmed[512], cblpar, 11); // cables & tubes mix
900 xcoor = (xtof - kcblw)*0.5 - 2.*sawpar[0];
901 ycoor = (kcblh1 + 2.*cblpar[5])*0.25 - (ytof*0.5 - kHoneycombLayerThickness)*0.5;
902 zcoor = kcbll-kcbllh*0.5;
903 gMC->Gspos("FCBB", 1, "FAIB", -xcoor, ycoor, -zcoor, idrotm[7], "ONLY");
904 gMC->Gspos("FCBB", 2, "FAIB", xcoor, ycoor, -zcoor, idrotm[7], "ONLY");
905 gMC->Gspos("FCBB", 3, "FAIB", -xcoor, ycoor, zcoor, idrotm[8], "ONLY");
906 gMC->Gspos("FCBB", 4, "FAIB", xcoor, ycoor, zcoor, idrotm[8], "ONLY");
907 xcoor = xtof*0.5 - sawpar[0];
908 ycoor = (kcblh2 - ytof*0.5 + kHoneycombLayerThickness)*0.5;
909 gMC->Gspos("FSAW", 1, "FAIB", -xcoor, ycoor, 0., 0, "ONLY");
910 gMC->Gspos("FSAW", 2, "FAIB", xcoor, ycoor, 0., 0, "ONLY");
911 }
912
913 // TOF Supermodule cover definition and positioning
914 Float_t covpar[3] = {xtof*0.5, 0.1, zlenA*0.5};
915 gMC->Gsvolu("FCOV", "BOX ", idtmed[505], covpar, 3); // Al cover
916 xcoor = 0.;
917 ycoor = 12.5*0.5 - 0.1;
918 zcoor = 0.;
919 gMC->Gspos("FCOV", 0, "FAIA", xcoor, ycoor, zcoor, 0, "ONLY");
920 if (fTOFHoles) gMC->Gspos("FCOV", 0, "FAIB", xcoor, ycoor, zcoor, 0, "ONLY");
921
922 // Services Volumes
923
924 // Empty crate weight: 50 Kg, electronics cards + cables ~ 52 Kg.
925 // Per each side (A and C) the total weight is: 2x102 ~ 204 Kg.
926 // ... + weight of the connection pannel for the steel cooling system (Cr 18%, Ni 12%, Fe 70%)
927 // + other remaining elements + various supports
928
929 // Each FEA card weight + all supports
930 // (including all bolts and not including the cable connectors)
931 // 353.1 g.
932 // Per each strip there are 4 FEA cards, then
933 // the total weight of the front-end electonics section is: 353.1 g x 4 = 1412.4 g.
934
935 Float_t serpar[3] = {29.*0.5, 121.*0.5, 90.*0.5};
936 gMC->Gsvolu("FTOS", "BOX ", idtmed[515], serpar, 3); // Al + Cu + steel
937 zcoor = (118.-90.)*0.5;
938 Float_t phi = -10., ra = fTOFGeometry->Rmin() + ytof*0.5;
939 for (Int_t i = 0; i < fTOFGeometry->NSectors(); i++) {
940 phi += 20.;
941 xcoor = ra * TMath::Cos(phi * kDegrad);
942 ycoor = ra * TMath::Sin(phi * kDegrad);
943 AliMatrix(idrotm[20+i], 90., phi, 90., phi + 270., 0., 0.);
944 gMC->Gspos("FTOS", i, "BFMO", xcoor, ycoor, zcoor, idrotm[20+i], "ONLY");
945 }
946 zcoor = (90. - 223.)*0.5;
947 gMC->Gspos("FTOS", 1, "BBCE", ra, 0., zcoor, 0, "ONLY");
948
949}
950//_____________________________________________________________________________
951void AliTOFv6T0::DrawModule() const
952{
953 //
954 // Draw a shaded view of the Time Of Flight version 5
955 //
956
957 // Set everything unseen
958 gMC->Gsatt("*", "seen", -1);
959
960 //
961 //Set volumes visible
962 //
963
964 //Set ALIC mother transparent
965 gMC->Gsatt("ALIC","SEEN", 0);
966
967//=====> Level 1
968 // Level 1 for TOF volumes
969 gMC->Gsatt("B077","seen", 0);
970
971//=====> Level 2
972 // Level 2 for TOF volumes
973 gMC->Gsatt("B071","seen", 0);
974 gMC->Gsatt("B074","seen", 0);
975 gMC->Gsatt("B075","seen", 0);
976 gMC->Gsatt("B076","seen",-1); // all B076 sub-levels skipped -
977 gMC->Gsatt("B080","seen", 0); // B080 does not has sub-level
978
979 // Level 2 of B071
980 gMC->Gsatt("B056","seen", 0); // B056 does not has sub-levels -
981 gMC->Gsatt("B063","seen",-1); // all B063 sub-levels skipped -
982 gMC->Gsatt("B065","seen",-1); // all B065 sub-levels skipped -
983 gMC->Gsatt("B067","seen",-1); // all B067 sub-levels skipped -
984 gMC->Gsatt("B072","seen",-1); // all B072 sub-levels skipped -
985
986 char name[16];
987 for (Int_t isec=0; isec<fTOFGeometry->NSectors(); isec++) {
988 sprintf(name, "BREF%d",isec);
989 gMC->Gsatt(name,"seen", 0); // all BREF%d sub-levels skipped -
990 sprintf(name, "BTRD%d",isec);
991 gMC->Gsatt(name,"seen", 0); // all BTRD%d sub-levels skipped -
992 sprintf(name, "BTOF%d",isec);
993 gMC->Gsatt(name,"seen",-2); // all BTOF%d sub-levels skipped -
994 }
995
996 gMC->Gdopt("hide", "on");
997 gMC->Gdopt("shad", "on");
998 gMC->Gsatt("*", "fill", 7);
999 gMC->SetClipBox(".");
1000 gMC->SetClipBox("*", 100, 1000, 100, 1000, 100, 1000);
1001 gMC->DefaultRange();
1002 gMC->Gdraw("alic", 40, 30, 0, 10, 9.5, .018, .018);
1003 gMC->Gdhead(1111, "Time Of Flight");
1004 gMC->Gdman(18, 3, "MAN");
1005 gMC->Gdopt("hide","off");
1006}
1007//_____________________________________________________________________________
1008void AliTOFv6T0::DrawDetectorModules() const
1009{
1010 //
1011 // Draw a shaded view of the TOF detector SuperModules version 5
1012 //
1013
1014 // Set everything unseen
1015 gMC->Gsatt("*", "seen", -1);
1016
1017 //
1018 //Set volumes visible
1019 //
1020
1021 //Set ALIC mother transparent
1022 gMC->Gsatt("ALIC","SEEN", 0);
1023
1024//=====> Level 1
1025 // Level 1 for TOF volumes
1026 gMC->Gsatt("B077","seen", 0);
1027
1028//=====> Level 2
1029 // Level 2 for TOF volumes
1030 gMC->Gsatt("B071","seen", 0);
1031 gMC->Gsatt("B074","seen", 0);
1032 gMC->Gsatt("B075","seen", 0);
1033 gMC->Gsatt("B076","seen",-1); // all B076 sub-levels skipped -
1034 gMC->Gsatt("B080","seen", 0); // B080 does not has sub-level
1035
1036 // Level 2 of B071
1037 gMC->Gsatt("B056","seen", 0); // B056 does not has sub-levels -
1038 gMC->Gsatt("B063","seen",-1); // all B063 sub-levels skipped -
1039 gMC->Gsatt("B065","seen",-1); // all B065 sub-levels skipped -
1040 gMC->Gsatt("B067","seen",-1); // all B067 sub-levels skipped -
1041 gMC->Gsatt("B072","seen",-1); // all B072 sub-levels skipped -
1042
1043 char name[16];
1044 for (Int_t isec=0; isec<fTOFGeometry->NSectors(); isec++) {
1045 sprintf(name, "BREF%d",isec);
1046 gMC->Gsatt(name,"seen", 0); // all BREF%d sub-levels skipped -
1047 sprintf(name, "BTRD%d",isec);
1048 gMC->Gsatt(name,"seen", 0); // all BTRD%d sub-levels skipped -
1049 sprintf(name, "BTOF%d",isec);
1050 gMC->Gsatt(name,"seen", 0); // all BTOF%d sub-levels skipped -
1051 }
1052
1053 // Level 3 of B071, B075 and B074
1054 gMC->Gsatt("FTOA","seen",-2); // all FTOA sub-levels skipped -
1055 if (fTOFHoles) gMC->Gsatt("FTOB","seen",-2); // all FTOB sub-levels skipped -
1056 if (fTOFHoles) gMC->Gsatt("FTOC","seen",-2); // all FTOC sub-levels skipped -
1057
1058 // Level 3 of B071, B075 and B074
1059 gMC->Gsatt("FAIA","seen",-1); // all FAIA sub-levels skipped -
1060 if (fTOFHoles) gMC->Gsatt("FAIB","seen",-1); // all FAIB sub-levels skipped -
1061
1062 // Level 3 of B071, B075 and B074
1063 gMC->Gsatt("FPEA","seen",1); // all FPEA sub-levels skipped -
1064 if (fTOFHoles) gMC->Gsatt("FPEB","seen",1); // all FPEB sub-levels skipped -
1065
1066 gMC->Gdopt("hide","on");
1067 gMC->Gdopt("shad","on");
1068 gMC->Gsatt("*", "fill", 5);
1069 gMC->SetClipBox(".");
1070 gMC->SetClipBox("*", 100, 1000, 100, 1000, 0, 1000);
1071 gMC->DefaultRange();
1072 gMC->Gdraw("alic", 40, 30, 0, 10, 9.5, .018, .018);
1073 gMC->Gdhead(1111,"TOF detector");
1074 gMC->Gdman(18, 3, "MAN");
1075 gMC->Gdopt("hide","off");
1076}
1077
1078//_____________________________________________________________________________
1079void AliTOFv6T0::DrawDetectorStrips() const
1080{
1081 //
1082 // Draw a shaded view of the TOF strips for version 5
1083 //
1084
1085 // Set everything unseen
1086 gMC->Gsatt("*", "seen", -1);
1087
1088 //
1089 //Set volumes visible
1090 //
1091
1092 //Set ALIC mother transparent
1093 gMC->Gsatt("ALIC","SEEN", 0);
1094
1095//=====> Level 1
1096 // Level 1 for TOF volumes
1097 gMC->Gsatt("B077","seen", 0);
1098
1099//=====> Level 2
1100 // Level 2 for TOF volumes
1101 gMC->Gsatt("B071","seen", 0);
1102 gMC->Gsatt("B074","seen", 0);
1103 gMC->Gsatt("B075","seen", 0);
1104 gMC->Gsatt("B076","seen",-1); // all B076 sub-levels skipped -
1105 gMC->Gsatt("B080","seen", 0); // B080 does not has sub-level
1106
1107 // Level 2 of B071
1108 gMC->Gsatt("B063","seen",-1); // all B063 sub-levels skipped -
1109 gMC->Gsatt("B065","seen",-1); // all B065 sub-levels skipped -
1110 gMC->Gsatt("B067","seen",-1); // all B067 sub-levels skipped -
1111 gMC->Gsatt("B056","seen", 0); // B056 does not has sub-levels -
1112 gMC->Gsatt("B072","seen",-1); // all B072 sub-levels skipped -
1113
1114 char name[16];
1115 for (Int_t isec=0; isec<fTOFGeometry->NSectors(); isec++) {
1116 sprintf(name, "BREF%d",isec);
1117 gMC->Gsatt(name,"seen", 0); // all BREF%d sub-levels skipped -
1118 sprintf(name, "BTRD%d",isec);
1119 gMC->Gsatt(name,"seen", 0); // all BTRD%d sub-levels skipped -
1120 sprintf(name, "BTOF%d",isec);
1121 gMC->Gsatt(name,"seen", 0); // all BTOF%d sub-levels skipped -
1122 }
1123
1124 // Level 3 of B071, B074 and B075
1125 gMC->Gsatt("FTOA","SEEN", 0);
1126 if (fTOFHoles) gMC->Gsatt("FTOB","SEEN", 0);
1127 if (fTOFHoles) gMC->Gsatt("FTOC","SEEN", 0);
1128
1129 // Level 4 of B071, B074 and B075
1130 gMC->Gsatt("FLTA","SEEN", 0);
1131 if (fTOFHoles) gMC->Gsatt("FLTB","SEEN", 0);
1132 if (fTOFHoles) gMC->Gsatt("FLTC","SEEN", 0);
1133
1134 // Level 5 of B071, B074 and B075
1135 gMC->Gsatt("FAIA","SEEN", 0);
1136 if (fTOFHoles) gMC->Gsatt("FAIB","SEEN", 0);
1137
1138 gMC->Gsatt("FPEA","SEEN", 1);
1139 if (fTOFHoles) gMC->Gsatt("FPEB","SEEN", 1);
1140
1141 gMC->Gsatt("FSTR","SEEN",-2); // all FSTR sub-levels skipped -
1142
1143 gMC->Gsatt("FWZ1","SEEN", 1);
1144 gMC->Gsatt("FWZ2","SEEN", 1);
1145 gMC->Gsatt("FWZ3","SEEN", 1);
1146 gMC->Gsatt("FWZ4","SEEN", 1);
1147
1148
1149 // Level 2 of FAIA
1150 // Level 2 of FAIB
1151 gMC->Gsatt("FCA1","SEEN", 0);
1152 gMC->Gsatt("FCA2","SEEN", 0);
1153 gMC->Gsatt("FCAB","SEEN", 0);
1154 gMC->Gsatt("FTUB","SEEN",-1); // all FTUB sub-levels skipped -
1155 gMC->Gsatt("FTLN","SEEN", 0);
1156 gMC->Gsatt("FLTN","SEEN", 0);
1157 gMC->Gsatt("FCBL","SEEN", 0);
1158 gMC->Gsatt("FSAW","SEEN", 0);
1159 gMC->Gsatt("FCOV","SEEN", 0);
1160 if (fTOFHoles) gMC->Gsatt("FCBB","SEEN", 0);
1161
1162 // Level 2 of FTUB
1163 gMC->Gsatt("FITU","SEEN", 0);
1164
1165 // Level 2 of FSTR
1166 gMC->Gsatt("FHON","SEEN", 1);
1167 gMC->Gsatt("FPC1","SEEN", 1);
1168 gMC->Gsatt("FPC2","SEEN", 1);
1169 gMC->Gsatt("FPCB","SEEN", 1);
1170 gMC->Gsatt("FRGL","SEEN", 1);
1171 gMC->Gsatt("FGLF","SEEN", 1);
1172
1173 // Level 2 of FPCB => Level 3 of FSTR
1174 gMC->Gsatt("FSEN","SEEN", 0);
1175 gMC->Gsatt("FSEZ","SEEN", 0);
1176 gMC->Gsatt("FPAD","SEEN", 1);
1177
1178 gMC->Gdopt("hide","on");
1179 gMC->Gdopt("shad","on");
1180 gMC->Gsatt("*", "fill", 5);
1181 gMC->SetClipBox(".");
1182 gMC->SetClipBox("*", 0, 1000, 0, 1000, 0, 1000);
1183 gMC->DefaultRange();
1184 gMC->Gdraw("alic", 40, 30, 0, 10, 9.5, .018, .018);
1185 gMC->Gdhead(1111,"TOF Strips");
1186 gMC->Gdman(18, 3, "MAN");
1187 gMC->Gdopt("hide","off");
1188}
1189
1190//_____________________________________________________________________________
1191void AliTOFv6T0::CreateMaterials()
1192{
1193 //
1194 // Define materials for the Time Of Flight
1195 //
1196
1197 //AliTOF::CreateMaterials();
1198
1199 AliMagF *magneticField = (AliMagF*)gAlice->Field();
1200
1201 Int_t isxfld = magneticField->Integ();
1202 Float_t sxmgmx = magneticField->Max();
1203
1204 Float_t we[7], na[7];
1205
1206 //--- Quartz (SiO2) to simulate float glass
1207 // density tuned to have correct float glass
1208 // radiation length
1209 Float_t aq[2] = { 28.09,16. };
1210 Float_t zq[2] = { 14.,8. };
1211 Float_t wq[2] = { 1.,2. };
1212 //Float_t dq = 2.55; // std value: 2.2
1213 Float_t dq = 2.7; // (+5.9%)
1214 Int_t nq = -2;
1215
1216 // --- Nomex
1217 Float_t anox[4] = {12.01,1.01,16.00,14.01};
1218 Float_t znox[4] = { 6., 1., 8., 7.};
1219 Float_t wnox[4] = {14., 22., 2., 2.};
1220 //Float_t dnox = 0.048; //old value
1221 Float_t dnox = 0.22; // (x 4.6)
1222 Int_t nnox = -4;
1223
1224 // --- glass+freon { Si, O, C, F, H, S }
1225 Float_t agfr[6]= {28.09,16.00,12.01,19.00,1.01,32.065};
1226 Float_t zgfr[6]= {14., 8., 6., 9., 1., 16.};
1227 Float_t wgfr[6]= {0.465, 0.530, 0.000484, 0.00383, 4.0e-05, 0.000646};
1228 Int_t ngfr = 6;
1229 AliDebug(1,Form("wgfr: %d %d %d %d %d %d", wgfr[0], wgfr[1], wgfr[2], wgfr[3], wgfr[4], wgfr[5]));
1230 //Float_t dgfr = 1.35; // + FISHLINE (old value)
1231 Float_t dgfr = 1.6; // + FISHLINE(+18.5 %)
1232
1233 // --- G10 {Si, O, C, H, O}
1234 Float_t ag10[5] = {28.09,16.00,12.01,1.01,16.00};
1235 Float_t zg10[5] = {14., 8., 6., 1., 8.};
1236 Float_t wmatg10[5];
1237 Int_t nlmatg10 = 5;
1238 na[0]= 1. , na[1]= 2. , na[2]= 0. , na[3]= 0. , na[4]= 0.;
1239 MaterialMixer(we,ag10,na,5);
1240 wmatg10[0]= we[0]*0.6;
1241 wmatg10[1]= we[1]*0.6;
1242 na[0]= 0. , na[1]= 0. , na[2]= 14. , na[3]= 20. , na[4]= 3.;
1243 MaterialMixer(we,ag10,na,5);
1244 wmatg10[2]= we[2]*0.4;
1245 wmatg10[3]= we[3]*0.4;
1246 wmatg10[4]= we[4]*0.4;
1247 AliDebug(1,Form("wg10 %d %d %d %d %d", wmatg10[0], wmatg10[1], wmatg10[2], wmatg10[3], wmatg10[4]));
1248 // Float_t densg10 = 1.7; //old value
1249 Float_t densg10 = 2.0; //prova peso (+17.8%)
1250
1251 // -- Water
1252 Float_t awa[2] = { 1., 16. };
1253 Float_t zwa[2] = { 1., 8. };
1254 Float_t wwa[2] = { 2., 1. };
1255 Float_t dwa = 1.0;
1256 Int_t nwa = -2;
1257
1258 // AIR
1259 Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
1260 Float_t zAir[4]={6.,7.,8.,18.};
1261 Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
1262 Float_t dAir = 1.20479E-3;
1263
1264 // --- fibre glass
1265 Float_t afg[4] = {28.09,16.00,12.01,1.01};
1266 Float_t zfg[4] = {14., 8., 6., 1.};
1267 Float_t wfg[4] = {0.12906,0.29405,0.51502,0.06187};
1268 //Float_t dfg = 1.111;
1269 Float_t dfg = 2.; // (+1.8%)
1270 Int_t nfg = 4;
1271
1272 // --- Freon C2F4H2 + SF6
1273 Float_t afre[4]= {12.01,1.01,19.00,32.07};
1274 Float_t zfre[4]= { 6., 1., 9., 16.};
1275 Float_t wfre[4]= {0.21250,0.01787,0.74827,0.021355};
1276 Float_t densfre= 0.00375;
1277 Int_t nfre = 4;
1278
1279 // --- Al + Cu + G10 {Al, Cu, Si, O, C, H, O}
1280 Float_t acar[7]= {26.98,63.55,28.09,16.00,12.01,1.01,16.00};
1281 Float_t zcar[7]= {13., 29., 14., 8., 6., 1., 8.};
1282 Float_t wcar[7];
1283 wcar[0]= 0.7;
1284 wcar[1]= 0.05;
1285 wcar[2]= 0.25*wmatg10[0];
1286 wcar[3]= 0.25*wmatg10[1];
1287 wcar[4]= 0.25*wmatg10[2];
1288 wcar[5]= 0.25*wmatg10[3];
1289 wcar[6]= 0.25*wmatg10[4];
1290 AliDebug(1,Form("wcar %d %d %d %d %d %d %d", wcar[0], wcar[1], wcar[2], wcar[3], wcar[4], wcar[5], wcar[6]));
1291 Float_t dcar= 1.9;
1292
1293 // --- Cables, tubes {Al, Cu} ---
1294 Float_t acbt[2]= {26.98,63.55};
1295 Float_t zcbt[2]= {13., 29.};
1296 //Float_t wcbt[2]= {0.541,0.459};
1297 Float_t wcbt[2]= {0.407,0.593};
1298 //Float_t decbt = 0.95;
1299 Float_t decbt = 0.68;
1300
1301 // --- Cable {Al, Cu}
1302 Float_t wcb[2] = {0.165,0.835};
1303 Float_t decb = 0.962;
1304
1305 // --- Honeycomb layer {Al, Cu}
1306 Float_t whon[2]= {0.9,0.1};
1307 //Float_t dhon = 0.44;
1308 Float_t dhon = 1.095; // (x 2.56)
1309
1310 // --- Crates boxes {Al, Cu, Fe, Cr, Ni}
1311 Float_t acra[5]= {26.98,63.55,55.845,52.00,58.69};
1312 Float_t zcra[5]= {13., 29., 26., 24., 28.};
1313 Float_t wcra[5]= {0.7,0.2,0.07,0.018,0.012};
1314 Float_t dcra = 0.77;
1315
1316 AliMixture ( 0, "Air$", aAir, zAir, dAir, 4, wAir);
1317 AliMixture ( 1, "Nomex$", anox, znox, dnox, nnox, wnox);
1318 AliMixture ( 2, "G10$", ag10, zg10, densg10, nlmatg10, wmatg10);
1319 AliMixture ( 3, "fibre glass$", afg, zfg, dfg, nfg, wfg);
1320 AliMaterial( 4, "Al $", 26.98, 13., 2.7, 8.9, 37.2);
1321 AliMixture ( 5, "Al+Cu honeycomb$", acbt, zcbt, dhon, 2, whon);
1322 AliMixture ( 6, "Freon$", afre, zfre, densfre, nfre, wfre);
1323 AliMixture ( 7, "Glass$", aq, zq, dq, nq, wq);
1324 AliMixture ( 8, "glass-freon$", agfr, zgfr, dgfr, ngfr, wgfr);
1325 AliMixture ( 9, "Water$", awa, zwa, dwa, nwa, wwa);
1326 AliMixture (10, "Al+Cu$", acbt, zcbt, decbt, 2, wcbt);
1327 AliMaterial(11, "Cu $", 63.54, 29., 3.392, 1.43, 10.);
1328 AliMixture (12, "Al+Cu (cable)$", acbt, zcbt, decb, 2, wcb);
1329 AliMixture (13, "Al+Cu+G10$", acar, zcar, dcar, 7, wcar);
1330 AliMixture (14, "Al+Cu+steel$", acra, zcra, dcra, 5, wcra);
1331
1332 Float_t epsil, stmin, deemax, stemax;
1333
1334 // STD data
1335 // EPSIL = 0.1 ! Tracking precision,
1336 // STEMAX = 0.1 ! Maximum displacement for multiple scattering
1337 // DEEMAX = 0.1 ! Maximum fractional energy loss, DLS
1338 // STMIN = 0.1
1339
1340 // TOF data
1341 epsil = .001; // Tracking precision,
1342 stemax = -1.; // Maximum displacement for multiple scattering
1343 deemax = -.3; // Maximum fractional energy loss, DLS
1344 stmin = -.8;
1345
1346 AliMedium( 1, "Air$", 0, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1347 AliMedium( 2,"Nomex$", 1, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1348 AliMedium( 3,"G10$", 2, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1349 AliMedium( 4,"fibre glass$", 3, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1350 AliMedium( 5,"glass-freon$", 8, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1351 AliMedium( 6,"Al Frame$", 4, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1352 AliMedium( 7,"honeycomb$", 5, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1353 AliMedium( 8,"Fre$", 6, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1354 AliMedium( 9,"Cu-S$", 11, 1, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); //prova peso
1355 AliMedium(10,"Glass$", 7, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1356 AliMedium(11,"Water$", 9, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1357 AliMedium(12,"Cable$", 12, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1358 AliMedium(13,"Al+Cables$", 10, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1359 AliMedium(14,"Copper$", 11, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1360 AliMedium(15,"Cards$", 13, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1361 AliMedium(16,"Crates$", 14, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin);
1362
1363}
1364//_____________________________________________________________________________
1365void AliTOFv6T0::Init()
1366{
1367 //
1368 // Initialise the detector after the geometry has been defined
1369 //
1370 AliDebug(1, "**************************************"
1371 " TOF "
1372 "**************************************");
1373 AliDebug(1, " Version 4 of TOF initialing, "
1374 "symmetric TOF - Full Coverage version");
1375
1376 AliTOF::Init();
1377
1378 fIdFTOA = gMC->VolId("FTOA");
1379 if (fTOFHoles) {
1380 fIdFTOB = gMC->VolId("FTOB");
1381 fIdFTOC = gMC->VolId("FTOC");
1382 }
1383 fIdFLTA = gMC->VolId("FLTA");
1384 if (fTOFHoles) {
1385 fIdFLTB = gMC->VolId("FLTB");
1386 fIdFLTC = gMC->VolId("FLTC");
1387 }
1388
1389 AliDebug(1, "**************************************"
1390 " TOF "
1391 "**************************************");
1392}
1393
1394//_____________________________________________________________________________
1395void AliTOFv6T0::StepManager()
1396{
1397
1398 //
1399 // Procedure called at each step in the Time Of Flight
1400 //
1401
1402 TLorentzVector mom, pos;
1403 Float_t xm[3],pm[3],xpad[3],ppad[3];
1404 Float_t hits[14];
1405 Int_t vol[5];
1406 Int_t sector, plate, padx, padz, strip;
1407 Int_t copy, padzid, padxid, stripid, i;
1408 Int_t *idtmed = fIdtmed->GetArray()-499;
1409 Float_t incidenceAngle;
1410
1411 const char* volpath;
1412
1413 Int_t index = 0;
1414
1415 if(
1416 gMC->IsTrackEntering()
1417 && gMC->TrackCharge()
1418 //&& gMC->GetMedium()==idtmed[508]
1419 && gMC->CurrentMedium()==idtmed[508]
1420 && gMC->CurrentVolID(copy)==fIdSens
1421 )
1422 {
1423
1424 AliMC *mcApplication = (AliMC*)gAlice->GetMCApp();
1425
1426 AddTrackReference(mcApplication->GetCurrentTrackNumber());
1427 //AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
1428
1429 // getting information about hit volumes
1430
1431 padzid=gMC->CurrentVolOffID(1,copy);
1432 padz=copy;
1433 padz--;
1434
1435 padxid=gMC->CurrentVolOffID(0,copy);
1436 padx=copy;
1437 padx--;
1438
1439 stripid=gMC->CurrentVolOffID(4,copy);
1440 strip=copy;
1441 strip--;
1442
1443 gMC->TrackPosition(pos);
1444 gMC->TrackMomentum(mom);
1445
1446 Double_t normMom=1./mom.Rho();
1447
1448 // getting the coordinates in pad ref system
1449
1450 xm[0] = (Float_t)pos.X();
1451 xm[1] = (Float_t)pos.Y();
1452 xm[2] = (Float_t)pos.Z();
1453
1454 pm[0] = (Float_t)mom.X()*normMom;
1455 pm[1] = (Float_t)mom.Y()*normMom;
1456 pm[2] = (Float_t)mom.Z()*normMom;
1457
1458 gMC->Gmtod(xm,xpad,1); // from MRS to DRS: coordinates convertion
1459 gMC->Gmtod(pm,ppad,2); // from MRS to DRS: direction cosinus convertion
1460
1461
1462 if (TMath::Abs(ppad[1])>1) {
1463 AliWarning("Abs(ppad) > 1");
1464 ppad[1]=TMath::Sign((Float_t)1,ppad[1]);
1465 }
1466 incidenceAngle = TMath::ACos(ppad[1])*kRaddeg;
1467
1468 plate = -1;
1469 if (strip < fTOFGeometry->NStripC()) {
1470 plate = 0;
1471 //strip = strip;
1472 }
1473 else if (strip >= fTOFGeometry->NStripC() &&
1474 strip < fTOFGeometry->NStripC() + fTOFGeometry->NStripB()) {
1475 plate = 1;
1476 strip = strip - fTOFGeometry->NStripC();
1477 }
1478 else if (strip >= fTOFGeometry->NStripC() + fTOFGeometry->NStripB() &&
1479 strip < fTOFGeometry->NStripC() + fTOFGeometry->NStripB() + fTOFGeometry->NStripA()) {
1480 plate = 2;
1481 strip = strip - fTOFGeometry->NStripC() - fTOFGeometry->NStripB();
1482 }
1483 else if (strip >= fTOFGeometry->NStripC() + fTOFGeometry->NStripB() + fTOFGeometry->NStripA() &&
1484 strip < fTOFGeometry->NStripC() + fTOFGeometry->NStripB() + fTOFGeometry->NStripA() + fTOFGeometry->NStripB()) {
1485 plate = 3;
1486 strip = strip - fTOFGeometry->NStripC() - fTOFGeometry->NStripB() - fTOFGeometry->NStripA();
1487 }
1488 else {
1489 plate = 4;
1490 strip = strip - fTOFGeometry->NStripC() - fTOFGeometry->NStripB() - fTOFGeometry->NStripA() - fTOFGeometry->NStripB();
1491 }
1492
1493 volpath=gMC->CurrentVolOffName(7);
1494 index=atoi(&volpath[4]);
1495 sector=-1;
1496 sector=index;
1497
1498 //Old 6h convention
1499 // if(index<5){
1500 // sector=index+13;
1501 // }
1502 // else{
1503 // sector=index-5;
1504 // }
1505
1506 for(i=0;i<3;++i) {
1507 hits[i] = pos[i];
1508 hits[i+3] = pm[i];
1509 }
1510
1511 hits[6] = mom.Rho();
1512 hits[7] = pos[3];
1513 hits[8] = xpad[0];
1514 hits[9] = xpad[1];
1515 hits[10]= xpad[2];
1516 hits[11]= incidenceAngle;
1517 hits[12]= gMC->Edep();
1518 hits[13]= gMC->TrackLength();
1519
1520 vol[0]= sector;
1521 vol[1]= plate;
1522 vol[2]= strip;
1523 vol[3]= padx;
1524 vol[4]= padz;
1525
1526 AddT0Hit(mcApplication->GetCurrentTrackNumber(),vol, hits);
1527 //AddT0Hit(gAlice->GetMCApp()->GetCurrentTrackNumber(),vol, hits);
1528 }
1529}
1530//-------------------------------------------------------------------
1531void AliTOFv6T0::MaterialMixer(Float_t* p,Float_t* a,Float_t* m,Int_t n) const
1532{
1533 // a[] atomic weights vector (in)
1534 // (atoms present in more compound appear separately)
1535 // m[] number of corresponding atoms in the compound (in)
1536 Float_t t = 0.;
1537 for (Int_t i = 0; i < n; ++i) {
1538 p[i] = a[i]*m[i];
1539 t += p[i];
1540 }
1541 for (Int_t i = 0; i < n; ++i) {
1542 p[i] = p[i]/t;
1543 //AliDebug(1,Form((\n weight[%i] = %f (,i,p[i]));
1544 }
1545}