]> git.uio.no Git - u/mrichter/AliRoot.git/blob - ITS/AliITSClusterFinderSDD.cxx
Ctrl-M removed at the end of each line. Arrays with unknown size defined via new...
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15 #include <iostream.h>
16 #include <TFile.h>
17 #include <TMath.h>
18 #include <math.h>
19
20 #include "AliITSClusterFinderSDD.h"
21 #include "AliITSMapA1.h"
22 #include "AliITS.h"
23 #include "AliITSdigit.h"
24 #include "AliITSRawCluster.h"
25 #include "AliITSRecPoint.h"
26 #include "AliITSsegmentation.h"
27 #include "AliITSresponseSDD.h"
28 #include "AliRun.h"
29
30 ClassImp(AliITSClusterFinderSDD)
31
32 //______________________________________________________________________
33 AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
34                                                AliITSresponse *response,
35                                                TClonesArray *digits,
36                                                TClonesArray *recp){
37     // standard constructor
38
39     fSegmentation = seg;
40     fResponse     = response;
41     fDigits       = digits;
42     fClusters     = recp;
43     fNclusters    = fClusters->GetEntriesFast();
44     SetCutAmplitude();
45     SetDAnode();
46     SetDTime();
47     SetMinPeak();
48     SetMinNCells();
49     SetMaxNCells();
50     SetTimeCorr();
51     SetMinCharge();
52     fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
53 }
54 //______________________________________________________________________
55 AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
56     // default constructor
57
58     fSegmentation = 0;
59     fResponse     = 0;
60     fDigits       = 0;
61     fClusters     = 0;
62     fNclusters    = 0;
63     fMap          = 0;
64     fCutAmplitude = 0;
65     SetDAnode();
66     SetDTime();
67     SetMinPeak();
68     SetMinNCells();
69     SetMaxNCells();
70     SetTimeCorr();
71     SetMinCharge();
72 }
73 //____________________________________________________________________________
74 AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
75     // destructor
76
77     if(fMap) delete fMap;
78 }
79 //______________________________________________________________________
80 void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
81     // set the signal threshold for cluster finder
82     Float_t baseline,noise,noise_after_el;
83
84     fResponse->GetNoiseParam(noise,baseline);
85     noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
86     fCutAmplitude = (Int_t)((baseline + nsigma*noise_after_el));
87 }
88 //______________________________________________________________________
89 void AliITSClusterFinderSDD::Find1DClusters(){
90     // find 1D clusters
91     static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
92   
93     // retrieve the parameters 
94     Int_t fNofMaps       = fSegmentation->Npz();
95     Int_t fMaxNofSamples = fSegmentation->Npx();
96     Int_t fNofAnodes     = fNofMaps/2;
97     Int_t dummy          = 0;
98     Float_t fTimeStep    = fSegmentation->Dpx(dummy);
99     Float_t fSddLength   = fSegmentation->Dx();
100     Float_t fDriftSpeed  = fResponse->DriftSpeed();  
101     Float_t anodePitch   = fSegmentation->Dpz(dummy);
102
103     // map the signal
104     fMap->SetThreshold(fCutAmplitude);
105     fMap->FillMap();
106   
107     Float_t noise;
108     Float_t baseline;
109     fResponse->GetNoiseParam(noise,baseline);
110   
111     Int_t nofFoundClusters = 0;
112     Int_t i;
113     Float_t **dfadc = new Float_t*[fNofAnodes];
114     for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
115     Float_t fadc  = 0.;
116     Float_t fadc1 = 0.;
117     Float_t fadc2 = 0.;
118     Int_t j,k,idx,l,m;
119     for(j=0;j<2;j++) {
120         for(k=0;k<fNofAnodes;k++) {
121             idx = j*fNofAnodes+k;
122             // signal (fadc) & derivative (dfadc)
123             dfadc[k][255]=0.;
124             for(l=0; l<fMaxNofSamples; l++) {
125                 fadc2=(Float_t)fMap->GetSignal(idx,l);
126                 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
127                 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
128             } // samples
129         } // anodes
130
131         for(k=0;k<fNofAnodes;k++) {
132         //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
133             idx = j*fNofAnodes+k;
134             Int_t imax  = 0;
135             Int_t imaxd = 0;
136             Int_t it    = 0;
137             while(it <= fMaxNofSamples-3) {
138                 imax  = it;
139                 imaxd = it;
140                 // maximum of signal      
141                 Float_t fadcmax  = 0.;
142                 Float_t dfadcmax = 0.;
143                 Int_t lthrmina   = 1;
144                 Int_t lthrmint   = 3;
145                 Int_t lthra      = 1;
146                 Int_t lthrt      = 0;
147                 for(m=0;m<20;m++) {
148                     Int_t id = it+m;
149                     if(id>=fMaxNofSamples) break;
150                     fadc=(float)fMap->GetSignal(idx,id);
151                     if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
152                     if(fadc > (float)fCutAmplitude) { 
153                         lthrt++; 
154                     } // end if
155                     if(dfadc[k][id] > dfadcmax) {
156                         dfadcmax = dfadc[k][id];
157                         imaxd    = id;
158                     } // end if
159                 } // end for m
160                 it = imaxd;
161                 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
162                 // cluster charge
163                 Int_t tstart = it-2;
164                 if(tstart < 0) tstart = 0;
165                 Bool_t ilcl = 0;
166                 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
167                 if(ilcl) {
168                     nofFoundClusters++;
169                     Int_t tstop      = tstart;
170                     Float_t dfadcmin = 10000.;
171                     Int_t ij;
172                     for(ij=0; ij<20; ij++) {
173                         if(tstart+ij > 255) { tstop = 255; break; }
174                         fadc=(float)fMap->GetSignal(idx,tstart+ij);
175                         if((dfadc[k][tstart+ij] < dfadcmin) && 
176                            (fadc > fCutAmplitude)) {
177                             tstop = tstart+ij+5;
178                             if(tstop > 255) tstop = 255;
179                             dfadcmin = dfadc[k][it+ij];
180                         } // end if
181                     } // end for ij
182
183                     Float_t clusterCharge = 0.;
184                     Float_t clusterAnode  = k+0.5;
185                     Float_t clusterTime   = 0.;
186                     Int_t   clusterMult   = 0;
187                     Float_t clusterPeakAmplitude = 0.;
188                     Int_t its,peakpos     = -1;
189                     Float_t n, baseline;
190                     fResponse->GetNoiseParam(n,baseline);
191                     for(its=tstart; its<=tstop; its++) {
192                         fadc=(float)fMap->GetSignal(idx,its);
193                         if(fadc>baseline) fadc -= baseline;
194                         else fadc = 0.;
195                         clusterCharge += fadc;
196                         // as a matter of fact we should take the peak
197                         // pos before FFT
198                         // to get the list of tracks !!!
199                         if(fadc > clusterPeakAmplitude) {
200                             clusterPeakAmplitude = fadc;
201                             //peakpos=fMap->GetHitIndex(idx,its);
202                             Int_t shift = (int)(fTimeCorr/fTimeStep);
203                             if(its>shift && its<(fMaxNofSamples-shift))
204                                 peakpos  = fMap->GetHitIndex(idx,its+shift);
205                             else peakpos = fMap->GetHitIndex(idx,its);
206                             if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
207                         } // end if
208                         clusterTime += fadc*its;
209                         if(fadc > 0) clusterMult++;
210                         if(its == tstop) {
211                             clusterTime /= (clusterCharge/fTimeStep);   // ns
212                             if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
213                             //ns
214                         } // end if
215                     } // end for its
216
217                     Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
218                                                anodePitch;
219                     Float_t clusterDriftPath = clusterTime*fDriftSpeed;
220                     clusterDriftPath = fSddLength-clusterDriftPath;
221                     if(clusterCharge <= 0.) break;
222                     AliITSRawClusterSDD clust(j+1,//i
223                                               clusterAnode,clusterTime,//ff
224                                               clusterCharge, //f
225                                               clusterPeakAmplitude, //f
226                                               peakpos, //i
227                                               0.,0.,clusterDriftPath,//fff
228                                               clusteranodePath, //f
229                                               clusterMult, //i
230                                               0,0,0,0,0,0,0);//7*i
231                     iTS->AddCluster(1,&clust);
232                     it = tstop;
233                 } // ilcl
234                 it++;
235             } // while (samples)
236         } // anodes
237     } // detectors (2)
238     //fMap->ClearMap();
239
240     for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
241     delete [] dfadc;
242
243     return;
244 }
245 //______________________________________________________________________
246 void AliITSClusterFinderSDD::Find1DClustersE(){
247     // find 1D clusters
248     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
249     // retrieve the parameters 
250     Int_t fNofMaps = fSegmentation->Npz();
251     Int_t fMaxNofSamples = fSegmentation->Npx();
252     Int_t fNofAnodes = fNofMaps/2;
253     Int_t dummy=0;
254     Float_t fTimeStep = fSegmentation->Dpx( dummy );
255     Float_t fSddLength = fSegmentation->Dx();
256     Float_t fDriftSpeed = fResponse->DriftSpeed();
257     Float_t anodePitch = fSegmentation->Dpz( dummy );
258     Float_t n, baseline;
259     fResponse->GetNoiseParam( n, baseline );
260     // map the signal
261     fMap->SetThreshold( fCutAmplitude );
262     fMap->FillMap();
263     Int_t nClu = 0;
264     //  cout << "Search  cluster... "<< endl;
265     for( Int_t j=0; j<2; j++ ){
266         for( Int_t k=0; k<fNofAnodes; k++ ){
267             Int_t idx = j*fNofAnodes+k;
268             Bool_t on = kFALSE;
269             Int_t start = 0;
270             Int_t nTsteps = 0;
271             Float_t fmax = 0.;
272             Int_t lmax = 0;
273             Float_t charge = 0.;
274             Float_t time = 0.;
275             Float_t anode = k+0.5;
276             Int_t peakpos = -1;
277             for( Int_t l=0; l<fMaxNofSamples; l++ ){
278                 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
279                 if( fadc > 0.0 ){
280                     if( on == kFALSE && l<fMaxNofSamples-4){
281                         // star RawCluster (reset var.)
282                         Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
283                         if( fadc1 < fadc ) continue;
284                         start = l;
285                         fmax = 0.;
286                         lmax = 0;
287                         time = 0.;
288                         charge = 0.; 
289                         on = kTRUE; 
290                         nTsteps = 0;
291                     } // end if on...
292                     nTsteps++ ;
293                     if( fadc > baseline ) fadc -= baseline;
294                     else fadc=0.;
295                     charge += fadc;
296                     time += fadc*l;
297                     if( fadc > fmax ){ 
298                         fmax = fadc; 
299                         lmax = l; 
300                         Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
301                         if( l > shift && l < (fMaxNofSamples-shift) )  
302                             peakpos = fMap->GetHitIndex( idx, l+shift );
303                         else
304                             peakpos = fMap->GetHitIndex( idx, l );
305                         if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
306                     } // end if fadc
307                 }else{ // end fadc>0
308                     if( on == kTRUE ){  
309                         if( nTsteps > 2 ){
310                             //  min # of timesteps for a RawCluster
311                             // Found a RawCluster...
312                             Int_t stop = l-1;
313                             time /= (charge/fTimeStep);   // ns
314                                 // time = lmax*fTimeStep;   // ns
315                             if( time > fTimeCorr ) time -= fTimeCorr;   // ns
316                             Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
317                             Float_t driftPath = time*fDriftSpeed;
318                             driftPath = fSddLength-driftPath;
319                             AliITSRawClusterSDD clust(j+1,anode,time,charge,
320                                                       fmax, peakpos,0.,0.,
321                                                       driftPath,anodePath,
322                                                       nTsteps,start,stop,
323                                                       start, stop, 1, k, k );
324                             iTS->AddCluster( 1, &clust );
325                             //  clust.PrintInfo();
326                             nClu++;
327                         } // end if nTsteps
328                         on = kFALSE;
329                     } // end if on==kTRUE
330                 } // end if fadc>0
331             } // samples
332         } // anodes
333     } // wings
334     //  cout << "# Rawclusters " << nClu << endl;       
335     return; 
336 }
337 //_______________________________________________________________________
338 Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
339                                          Int_t *peakX, Int_t *peakZ, 
340                                          Float_t *peakAmp, Float_t minpeak ){
341     // search peaks on a 2D cluster
342     Int_t npeak = 0;    // # peaks
343     Int_t i,j;
344     // search peaks
345     for( Int_t z=1; z<zdim-1; z++ ){
346         for( Int_t x=2; x<xdim-3; x++ ){
347             Float_t sxz = spect[x*zdim+z];
348             Float_t sxz1 = spect[(x+1)*zdim+z];
349             Float_t sxz2 = spect[(x-1)*zdim+z];
350             // search a local max. in s[x,z]
351             if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
352             if( sxz >= spect[(x+1)*zdim+z  ] && sxz >= spect[(x-1)*zdim+z  ] &&
353                 sxz >= spect[x*zdim    +z+1] && sxz >= spect[x*zdim    +z-1] &&
354                 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
355                 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
356                 // peak found
357                 peakX[npeak] = x;
358                 peakZ[npeak] = z;
359                 peakAmp[npeak] = sxz;
360                 npeak++;
361             } // end if ....
362         } // end for x
363     } // end for z
364     // search groups of peaks with same amplitude.
365     Int_t *flag = new Int_t[npeak];
366     for( i=0; i<npeak; i++ ) flag[i] = 0;
367     for( i=0; i<npeak; i++ ){
368         for( j=0; j<npeak; j++ ){
369             if( i==j) continue;
370             if( flag[j] > 0 ) continue;
371             if( peakAmp[i] == peakAmp[j] && 
372                 TMath::Abs(peakX[i]-peakX[j])<=1 && 
373                 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
374                 if( flag[i] == 0) flag[i] = i+1;
375                 flag[j] = flag[i];
376             } // end if ...
377         } // end for j
378     } // end for i
379     // make average of peak groups      
380     for( i=0; i<npeak; i++ ){
381         Int_t nFlag = 1;
382         if( flag[i] <= 0 ) continue;
383         for( j=0; j<npeak; j++ ){
384             if( i==j ) continue;
385             if( flag[j] != flag[i] ) continue;
386             peakX[i] += peakX[j];
387             peakZ[i] += peakZ[j];
388             nFlag++;
389             npeak--;
390             for( Int_t k=j; k<npeak; k++ ){
391                 peakX[k] = peakX[k+1];
392                 peakZ[k] = peakZ[k+1];
393                 peakAmp[k] = peakAmp[k+1];
394                 flag[k] = flag[k+1];
395             } // end for k      
396             j--;
397         } // end for j
398         if( nFlag > 1 ){
399             peakX[i] /= nFlag;
400             peakZ[i] /= nFlag;
401         } // end fi nFlag
402     } // end for i
403     delete [] flag;
404     return( npeak );
405 }
406 //______________________________________________________________________
407 void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
408                                        Float_t *spe, Float_t *integral){
409     // function used to fit the clusters
410     // par -> paramiters..
411     // par[0]  number of peaks.
412     // for each peak i=1, ..., par[0]
413     //          par[i] = Ampl.
414     //          par[i+1] = xpos
415     //          par[i+2] = zpos
416     //          par[i+3] = tau
417     //          par[i+4] = sigma.
418     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
419     const Int_t knParam = 5;
420     Int_t npeak = (Int_t)par[0];
421
422     memset( spe, 0, sizeof( Float_t )*zdim*xdim );
423
424     Int_t k = 1;
425     for( Int_t i=0; i<npeak; i++ ){
426         if( integral != 0 ) integral[i] = 0.;
427         Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
428         Float_t T2 = par[k+3];   // PASCAL
429         if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
430         for( Int_t z=0; z<zdim; z++ ){
431             for( Int_t x=0; x<xdim; x++ ){
432                 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
433                 Float_t x2 = 0.;
434                 Float_t signal = 0.;
435                 if( electronics == 1 ){ // PASCAL
436                     x2 = (x-par[k+1]+T2)/T2;
437                     signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
438                 //  signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
439                 }else if( electronics == 2 ) { // OLA
440                     x2 = (x-par[k+1])*(x-par[k+1])/T2;
441                     signal = par[k]  * exp( -x2 - z2 );
442                 } else {
443                     cout << "Wrong SDD Electronics =" << electronics << endl;
444                     // exit( 1 );
445                 } // end if electronicx
446                 spe[x*zdim+z] += signal;
447                 if( integral != 0 ) integral[i] += signal;
448             } // end for x
449         } // end for z
450         k += knParam;
451     } // end for i
452     return;
453 }
454 //__________________________________________________________________________
455 Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
456                                         Float_t *speFit ){
457     // EVALUATES UNNORMALIZED CHI-SQUARED
458     Float_t chi2 = 0.;
459     for( Int_t z=0; z<zdim; z++ ){
460         for( Int_t x=1; x<xdim-1; x++ ){
461             Int_t index = x*zdim+z;
462             Float_t tmp = spe[index] - speFit[index];
463             chi2 += tmp*tmp;
464         } // end for x
465     } // end for z
466     return( chi2 );
467 }
468 //_______________________________________________________________________
469 void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
470                                     Float_t *prm0,Float_t *steprm,
471                                     Float_t *chisqr,Float_t *spe,
472                                     Float_t *speFit ){
473     // 
474     Int_t   k, nnn, mmm, i;
475     Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
476     const Int_t knParam = 5;
477     Int_t npeak = (Int_t)param[0];
478     for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
479     for( k=1; k<(npeak*knParam+1); k++ ){
480         p1 = param[k];
481         delta = steprm[k];
482         d1 = delta;
483         // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
484         if( fabs( p1 ) > 1.0E-6 ) 
485             if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
486             else  delta = (Float_t)1.0E-4;
487         //  EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
488         PeakFunc( xdim, zdim, param, speFit );
489         chisq1 = ChiSqr( xdim, zdim, spe, speFit );
490         p2 = p1+delta;
491         param[k] = p2;
492         PeakFunc( xdim, zdim, param, speFit );
493         chisq2 = ChiSqr( xdim, zdim, spe, speFit );
494         if( chisq1 < chisq2 ){
495             // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
496             delta = -delta;
497             t = p1;
498             p1 = p2;
499             p2 = t;
500             t = chisq1;
501             chisq1 = chisq2;
502             chisq2 = t;
503         } // end if
504         i = 1; nnn = 0;
505         do {   // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
506             nnn++;
507             p3 = p2 + delta;
508             mmm = nnn - (nnn/5)*5;  // multiplo de 5
509             if( mmm == 0 ){
510                 d1 = delta;
511                 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW 
512                 delta *= 5;
513             } // end if
514             param[k] = p3;
515             // Constrain paramiters
516             Int_t kpos = (k-1) % knParam;
517             switch( kpos ){
518             case 0 :
519                 if( param[k] <= 20 ) param[k] = fMinPeak;
520             case 1 :
521                 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
522             case 2 :
523                 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
524             case 3 :
525                 if( param[k] < .5 ) param[k] = .5;      
526             case 4 :
527                 if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
528             }; // end switch
529             PeakFunc( xdim, zdim, param, speFit );
530             chisq3 = ChiSqr( xdim, zdim, spe, speFit );
531             if( chisq3 < chisq2 && nnn < 50 ){
532                 p1 = p2;
533                 p2 = p3;
534                 chisq1 = chisq2;
535                 chisq2 = chisq3;
536             }else i=0;
537         } while( i );
538         // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
539         a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
540         b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
541         if( a!=0 ) p0 = (Float_t)(0.5*b/a);
542         else p0 = 10000;
543         //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
544         //   ERRONEOUS EVALUATION OF PARABOLA MINIMUM
545         //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
546         //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
547         //if( fabs( p2-p0 ) > dp ) p0 = p2;
548         param[k] = p0;
549         // Constrain paramiters
550         Int_t kpos = (k-1) % knParam;
551         switch( kpos ){
552         case 0 :
553             if( param[k] <= 20 ) param[k] = fMinPeak;   
554         case 1 :
555             if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
556         case 2 :
557             if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
558         case 3 :
559             if( param[k] < .5 ) param[k] = .5;  
560         case 4 :
561             if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
562         }; // end switch
563         PeakFunc( xdim, zdim, param, speFit );
564         chisqt = ChiSqr( xdim, zdim, spe, speFit );
565         // DO NOT ALLOW ERRONEOUS INTERPOLATION
566         if( chisqt <= *chisqr ) *chisqr = chisqt;
567         else param[k] = prm0[k];
568         // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
569         steprm[k] = (param[k]-prm0[k])/5;
570         if( steprm[k] >= d1 ) steprm[k] = d1/5;
571     } // end for k
572     // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
573     PeakFunc( xdim, zdim, param, speFit );
574     *chisqr = ChiSqr( xdim, zdim, spe, speFit );
575     return;
576 }
577 //_________________________________________________________________________
578 Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim, 
579                                            Float_t *param, Float_t *spe, 
580                                            Int_t *niter, Float_t *chir ){
581     // fit method from Comput. Phys. Commun 46(1987) 149
582     const Float_t kchilmt = 0.01;  //   relative accuracy         
583     const Int_t   knel = 3;        //   for parabolic minimization  
584     const Int_t   knstop = 50;     //   Max. iteration number     
585     const Int_t   knParam = 5;
586     Int_t npeak = (Int_t)param[0];
587     // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE 
588     if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
589     Float_t degFree = (xdim*zdim - npeak*knParam)-1;
590     Int_t   n, k, iterNum = 0;
591     Float_t *prm0 = new Float_t[npeak*knParam+1];
592     Float_t *step = new Float_t[npeak*knParam+1];
593     Float_t *schi = new Float_t[npeak*knParam+1]; 
594     Float_t *sprm[3];
595     sprm[0] = new Float_t[npeak*knParam+1];
596     sprm[1] = new Float_t[npeak*knParam+1];
597     sprm[2] = new Float_t[npeak*knParam+1];
598     Float_t  chi0, chi1, reldif, a, b, prmin, dp;
599     Float_t *speFit = new Float_t[ xdim*zdim ];
600     PeakFunc( xdim, zdim, param, speFit );
601     chi0 = ChiSqr( xdim, zdim, spe, speFit );
602     chi1 = chi0;
603     for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
604     for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
605         step[k] = param[k] / 20.0 ;
606         step[k+1] = param[k+1] / 50.0;
607         step[k+2] = param[k+2] / 50.0;           
608         step[k+3] = param[k+3] / 20.0;           
609         step[k+4] = param[k+4] / 20.0;           
610     } // end for k
611     Int_t out = 0;
612     do{
613         iterNum++;
614         chi0 = chi1;
615         Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
616         reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
617         // EXIT conditions
618         if( reldif < (float) kchilmt ){
619             *chir  = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
620             *niter = iterNum;
621             out = 0;
622             break;
623         } // end if
624         if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
625             *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
626             *niter = iterNum;
627             out = 0;
628             break;
629         } // end if
630         if( iterNum > 5*knstop ){
631             *chir  = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
632             *niter = iterNum;
633             out = 1;
634             break;
635         } // end if
636         if( iterNum <= knel ) continue;
637         n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
638         if( n > 3 || n == 0 ) continue;
639         schi[n-1] = chi1;
640         for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
641         if( n != 3 ) continue;
642         // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
643         //    PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
644         for( k=1; k<(npeak*knParam+1); k++ ){
645             Float_t tmp0 = sprm[0][k];
646             Float_t tmp1 = sprm[1][k];
647             Float_t tmp2 = sprm[2][k];
648             a  = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
649             a += (schi[2]*(tmp0-tmp1));
650             b  = schi[0]*(tmp1*tmp1-tmp2*tmp2);
651             b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
652                                                  (tmp0*tmp0-tmp1*tmp1)));
653             if ((double)a < 1.0E-6) prmin = 0;
654             else prmin = (float) (0.5*b/a);
655             dp = 5*(tmp2-tmp0);
656             if (fabs(prmin-tmp2) > fabs(dp)) prmin = tmp2+dp;
657             param[k] = prmin;
658             step[k]  = dp/10; // OPTIMIZE SEARCH STEP
659         } // end for k
660     } while( kTRUE );
661     delete [] prm0;
662     delete [] step;
663     delete [] schi; 
664     delete [] sprm[0];
665     delete [] sprm[1];
666     delete [] sprm[2];
667     delete [] speFit;
668     return( out );
669 }
670 //______________________________________________________________________
671 void AliITSClusterFinderSDD::ResolveClustersE(){
672     // The function to resolve clusters if the clusters overlapping exists
673     Int_t i;
674     static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
675     // get number of clusters for this module
676     Int_t nofClusters = fClusters->GetEntriesFast();
677     nofClusters -= fNclusters;
678     Int_t fNofMaps = fSegmentation->Npz();
679     Int_t fNofAnodes = fNofMaps/2;
680     Int_t fMaxNofSamples = fSegmentation->Npx();
681     Int_t dummy=0;
682     Double_t fTimeStep = fSegmentation->Dpx( dummy );
683     Double_t fSddLength = fSegmentation->Dx();
684     Double_t fDriftSpeed = fResponse->DriftSpeed();
685     Double_t anodePitch = fSegmentation->Dpz( dummy );
686     Float_t n, baseline;
687     fResponse->GetNoiseParam( n, baseline );
688     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
689     // fill Map of signals
690     fMap->FillMap(); 
691     for( Int_t j=0; j<nofClusters; j++ ){ 
692         // get cluster information
693         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
694         Int_t astart = clusterJ->Astart();
695         Int_t astop = clusterJ->Astop();
696         Int_t tstart = clusterJ->Tstartf();
697         Int_t tstop = clusterJ->Tstopf();
698         Int_t wing = (Int_t)clusterJ->W();
699         if( wing == 2 ){
700             astart += fNofAnodes; 
701             astop  += fNofAnodes;
702         } // end if 
703         Int_t xdim = tstop-tstart+3;
704         Int_t zdim = astop-astart+3;
705         if(xdim > 50 || zdim > 30) { cout << "Warning: xdim: " << xdim << ", zdim: " << zdim << endl; continue; }
706         Float_t *sp = new Float_t[ xdim*zdim+1 ];
707         memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
708         // make a local map from cluster region
709         for( Int_t ianode=astart; ianode<=astop; ianode++ ){
710             for( Int_t itime=tstart; itime<=tstop; itime++ ){
711                 Float_t fadc = fMap->GetSignal( ianode, itime );
712                 if( fadc > baseline ) fadc -= (Double_t)baseline;
713                 else fadc = 0.;
714                 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
715                 sp[index] = fadc;
716             } // time loop
717         } // anode loop
718         // search peaks on cluster
719         const Int_t kNp = 150;
720         Int_t peakX1[kNp];
721         Int_t peakZ1[kNp];
722         Float_t peakAmp1[kNp];
723         Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
724         // if multiple peaks, split cluster
725         if( npeak >= 1 ){
726             //  cout << "npeak " << npeak << endl;
727             //  clusterJ->PrintInfo();
728             Float_t *par = new Float_t[npeak*5+1];
729             par[0] = (Float_t)npeak;            
730             // Initial paramiters in cell dimentions
731             Int_t k1 = 1;
732             for( i=0; i<npeak; i++ ){
733                 par[k1] = peakAmp1[i];
734                 par[k1+1] = peakX1[i]; // local time pos. [timebin]
735                 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
736                 if( electronics == 1 ) 
737                     par[k1+3] = 2.; // PASCAL
738                 else if( electronics == 2 ) 
739                     par[k1+3] = 0.7; // tau [timebin]  OLA 
740                 par[k1+4] = .4;    // sigma     [anodepich]
741                 k1+=5;
742             } // end for i                      
743             Int_t niter;
744             Float_t chir;                       
745             NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
746             Float_t peakX[kNp];
747             Float_t peakZ[kNp];
748             Float_t sigma[kNp];
749             Float_t tau[kNp];
750             Float_t peakAmp[kNp];
751             Float_t integral[kNp];
752             //get integrals => charge for each peak
753             PeakFunc( xdim, zdim, par, sp, integral );
754             k1 = 1;
755             for( i=0; i<npeak; i++ ){
756                 peakAmp[i] = par[k1];
757                 peakX[i] = par[k1+1];
758                 peakZ[i] = par[k1+2];
759                 tau[i] = par[k1+3];
760                 sigma[i] = par[k1+4];
761                 k1+=5;
762             } // end for i
763             // calculate paramiter for new clusters
764             for( i=0; i<npeak; i++ ){
765                 AliITSRawClusterSDD clusterI( *clusterJ );
766                 Int_t newAnode = peakZ1[i]-1 + astart;
767                 Int_t newiTime = peakX1[i]-1 + tstart;
768                 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
769                 if(newiTime>shift&&newiTime<(fMaxNofSamples-shift)) shift = 0;
770                 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
771                 clusterI.SetPeakPos( peakpos );
772                 clusterI.SetPeakAmpl( peakAmp1[i] );
773                 Float_t newAnodef = peakZ[i] - 0.5 + astart;
774                 Float_t newiTimef = peakX[i] - 1 + tstart;
775                 if( wing == 2 ) newAnodef -= fNofAnodes; 
776                 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
777                 newiTimef *= fTimeStep;
778                 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
779                 if( electronics == 1 ){
780                     newiTimef *= 0.999438;    // PASCAL
781                     newiTimef += (6./fDriftSpeed - newiTimef/3000.);
782                 }else if( electronics == 2 )
783                     newiTimef *= 0.99714;    // OLA
784                 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
785                 Float_t sign = ( wing == 1 ) ? -1. : 1.;
786                 clusterI.SetX( driftPath*sign * 0.0001 );       
787                 clusterI.SetZ( anodePath * 0.0001 );
788                 clusterI.SetAnode( newAnodef );
789                 clusterI.SetTime( newiTimef );
790                 clusterI.SetAsigma( sigma[i]*anodePitch );
791                 clusterI.SetTsigma( tau[i]*fTimeStep );
792                 clusterI.SetQ( integral[i] );
793                 //      clusterI.PrintInfo();
794                 iTS->AddCluster( 1, &clusterI );
795             } // end for i
796             fClusters->RemoveAt( j );
797             delete [] par;
798         } else cout <<" --- Peak not found!!!!  minpeak=" << fMinPeak<< 
799                    " cluster peak=" << clusterJ->PeakAmpl() << 
800                    " npeak=" << npeak << endl << endl;
801         delete [] sp;
802     } // cluster loop
803     fClusters->Compress();
804     fMap->ClearMap(); 
805 }
806 //________________________________________________________________________
807 void  AliITSClusterFinderSDD::GroupClusters(){
808     // group clusters
809     Int_t dummy=0;
810     Float_t fTimeStep = fSegmentation->Dpx(dummy);
811     // get number of clusters for this module
812     Int_t nofClusters = fClusters->GetEntriesFast();
813     nofClusters -= fNclusters;
814     AliITSRawClusterSDD *clusterI;
815     AliITSRawClusterSDD *clusterJ;
816     Int_t *label = new Int_t [nofClusters];
817     Int_t i,j;
818     for(i=0; i<nofClusters; i++) label[i] = 0;
819     for(i=0; i<nofClusters; i++) { 
820         if(label[i] != 0) continue;
821         for(j=i+1; j<nofClusters; j++) { 
822             if(label[j] != 0) continue;
823             clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
824             clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
825             // 1.3 good
826             if(clusterI->T() < fTimeStep*60) fDAnode = 4.2;  // TB 3.2  
827             if(clusterI->T() < fTimeStep*10) fDAnode = 1.5;  // TB 1.
828             Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
829             if(!pair) continue;
830             //      clusterI->PrintInfo();
831             //      clusterJ->PrintInfo();
832             clusterI->Add(clusterJ);
833             label[j] = 1;
834             fClusters->RemoveAt(j);
835             j=i; // <- Ernesto
836         } // J clusters  
837         label[i] = 1;
838     } // I clusters
839     fClusters->Compress();
840
841     delete [] label;
842     return;
843 }
844 //________________________________________________________________________
845 void AliITSClusterFinderSDD::SelectClusters(){
846     // get number of clusters for this module
847     Int_t nofClusters = fClusters->GetEntriesFast();
848
849     nofClusters -= fNclusters;
850     Int_t i;
851     for(i=0; i<nofClusters; i++) { 
852         AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
853         Int_t rmflg = 0;
854         Float_t wy = 0.;
855         if(clusterI->Anodes() != 0.) {
856             wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
857         } // end if
858         Int_t amp = (Int_t) clusterI->PeakAmpl();
859         Int_t cha = (Int_t) clusterI->Q();
860         if(amp < fMinPeak) rmflg = 1;  
861         if(cha < fMinCharge) rmflg = 1;
862         if(wy < fMinNCells) rmflg = 1;
863         //if(wy > fMaxNCells) rmflg = 1;
864         if(rmflg) fClusters->RemoveAt(i);
865     } // I clusters
866     fClusters->Compress();
867     return;
868 }
869 //__________________________________________________________________________
870 void AliITSClusterFinderSDD::ResolveClusters(){
871     // The function to resolve clusters if the clusters overlapping exists
872 /*    AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
873     // get number of clusters for this module
874     Int_t nofClusters = fClusters->GetEntriesFast();
875     nofClusters -= fNclusters;
876     //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
877     // <<fNclusters<<endl;
878     Int_t fNofMaps = fSegmentation->Npz();
879     Int_t fNofAnodes = fNofMaps/2;
880     Int_t dummy=0;
881     Double_t fTimeStep = fSegmentation->Dpx(dummy);
882     Double_t fSddLength = fSegmentation->Dx();
883     Double_t fDriftSpeed = fResponse->DriftSpeed();
884     Double_t anodePitch = fSegmentation->Dpz(dummy);
885     Float_t n, baseline;
886     fResponse->GetNoiseParam(n,baseline);
887     Float_t dzz_1A = anodePitch * anodePitch / 12;
888     // fill Map of signals
889     fMap->FillMap(); 
890     Int_t j,i,ii,ianode,anode,itime;
891     Int_t wing,astart,astop,tstart,tstop,nanode;
892     Double_t fadc,ClusterTime;
893     Double_t q[400],x[400],z[400]; // digit charges and coordinates
894     for(j=0; j<nofClusters; j++) { 
895         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
896         Int_t ndigits = 0;
897         astart=clusterJ->Astart();
898         astop=clusterJ->Astop();
899         tstart=clusterJ->Tstartf();
900         tstop=clusterJ->Tstopf();
901         nanode=clusterJ->Anodes();  // <- Ernesto
902         wing=(Int_t)clusterJ->W();
903         if(wing == 2) {
904             astart += fNofAnodes; 
905             astop  += fNofAnodes;
906         }  // end if
907         // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
908         //      <<tstart<<","<<tstop<<endl;
909         // clear the digit arrays
910         for(ii=0; ii<400; ii++) { 
911             q[ii] = 0.; 
912             x[ii] = 0.;
913             z[ii] = 0.;
914         } // end for ii
915
916         for(ianode=astart; ianode<=astop; ianode++) { 
917             for(itime=tstart; itime<=tstop; itime++) { 
918                 fadc=fMap->GetSignal(ianode,itime);
919                 if(fadc>baseline) {
920                     fadc-=(Double_t)baseline;
921                     q[ndigits] = fadc*(fTimeStep/160);  // KeV
922                     anode = ianode;
923                     if(wing == 2) anode -= fNofAnodes;
924                     z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
925                     ClusterTime = itime*fTimeStep;
926                     if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
927                     x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
928                     if(wing == 1) x[ndigits] *= (-1);
929                     // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
930                     //     <<fadc<<endl;
931                     // cout<<"wing,anode,ndigits,charge ="<<wing<<","
932                     //      <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
933                     ndigits++;
934                     continue;
935                 } //  end if
936                 fadc=0;
937                 //            cout<<"fadc=0, ndigits ="<<ndigits<<endl;
938             } // time loop
939         } // anode loop
940         //     cout<<"for new cluster ndigits ="<<ndigits<<endl;
941         // Fit cluster to resolve for two separate ones --------------------
942         Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
943         Double_t dxx=0., dzz=0., dxz=0.;
944         Double_t scl = 0., tmp, tga, elps = -1.;
945         Double_t xfit[2], zfit[2], qfit[2];
946         Double_t pitchz = anodePitch*1.e-4;             // cm
947         Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4;  // cm
948         Double_t sigma2;
949         Int_t nfhits;
950         Int_t nbins = ndigits;
951         Int_t separate = 0;
952         // now, all lengths are in microns
953         for (ii=0; ii<nbins; ii++) {
954             qq += q[ii];
955             xm += x[ii]*q[ii];
956             zm += z[ii]*q[ii];
957             xx += x[ii]*x[ii]*q[ii];
958             zz += z[ii]*z[ii]*q[ii];
959             xz += x[ii]*z[ii]*q[ii];
960         } // end for ii
961         xm /= qq;
962         zm /= qq;
963         xx /= qq;
964         zz /= qq;
965         xz /= qq;
966         dxx = xx - xm*xm;
967         dzz = zz - zm*zm;
968         dxz = xz - xm*zm;
969
970         // shrink the cluster in the time direction proportionaly to the 
971         // dxx/dzz, which lineary depends from the drift path
972         // new  Ernesto........  
973         if( nanode == 1 ){
974             dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
975             scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
976         } // end if
977         if( nanode == 2 ){
978             scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
979         } // end if
980         if( nanode == 3 ){
981             scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
982         } // end if
983         if( nanode > 3 ){
984             scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
985         } // end if
986         //   cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
987         //  <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
988         //  old Boris.........
989         //  tmp=29730. - 585.*fabs(xm/1000.); 
990         //  scl=TMath::Sqrt(tmp/130000.);
991    
992         xm *= scl;
993         xx *= scl*scl;
994         xz *= scl;
995
996         dxx = xx - xm*xm;
997         //   dzz = zz - zm*zm;
998         dxz = xz - xm*zm;
999         //   cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1000         // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1001         // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
1002   
1003         if (dxx < 0.) dxx=0.;
1004         // the data if no cluster overlapping (the coordunates are in cm) 
1005         nfhits = 1;
1006         xfit[0] = xm*1.e-4;
1007         zfit[0] = zm*1.e-4;
1008         qfit[0] = qq;
1009         //   if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
1010   
1011         if (nbins >= 7) {
1012             if (dxz==0.) tga=0.;
1013             else {
1014                 tmp=0.5*(dzz-dxx)/dxz;
1015                 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) : 
1016                                                    tmp+TMath::Sqrt(tmp*tmp+1);
1017             } // end if dxz
1018             elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1019             // change from microns to cm
1020             xm *= 1.e-4; 
1021             zm *= 1.e-4; 
1022             zz *= 1.e-8;
1023             xx *= 1.e-8;
1024             xz *= 1.e-8;
1025             dxz *= 1.e-8;
1026             dxx *= 1.e-8;
1027             dzz *= 1.e-8;
1028             //   cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1029             //  <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1030             for (i=0; i<nbins; i++) {     
1031                 x[i] = x[i] *= scl;
1032                 x[i] = x[i] *= 1.e-4;
1033                 z[i] = z[i] *= 1.e-4;
1034             } // end for i
1035             //     cout<<"!!! elps ="<<elps<<endl;
1036             if (elps < 0.3) { // try to separate hits 
1037                 separate = 1;
1038                 tmp=atan(tga);
1039                 Double_t cosa=cos(tmp),sina=sin(tmp);
1040                 Double_t a1=0., x1=0., xxx=0.;
1041                 for (i=0; i<nbins; i++) {
1042                     tmp=x[i]*cosa + z[i]*sina;
1043                     if (q[i] > a1) {
1044                         a1=q[i];
1045                         x1=tmp;
1046                     } // end if
1047                     xxx += tmp*tmp*tmp*q[i];
1048                 } // end for i
1049                 xxx /= qq;
1050                 Double_t z12=-sina*xm + cosa*zm;
1051                 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1052                 xm=cosa*xm + sina*zm;
1053                 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1054                 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1055                 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1056                 for (i=0; i<33; i++) { // solve a system of equations
1057                     Double_t x1_old=x1, x2_old=x2, r_old=r;
1058                     Double_t c11=x1-x2;
1059                     Double_t c12=r;
1060                     Double_t c13=1-r;
1061                     Double_t c21=x1*x1 - x2*x2;
1062                     Double_t c22=2*r*x1;
1063                     Double_t c23=2*(1-r)*x2;
1064                     Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1065                     Double_t c32=3*r*(sigma2 + x1*x1);
1066                     Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1067                     Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1068                     Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1069                     Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1070                                                          (3*sigma2+x2*x2)-xxx);
1071                     Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1072                                        c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1073                     if (d==0.) {
1074                         cout<<"*********** d=0 ***********\n";
1075                         break;
1076                     } // end if
1077                     Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1078                         f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1079                     Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1080                         c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1081                     Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1082                         c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1083                     r  += dr/d;
1084                     x1 += d1/d;
1085                     x2 += d2/d;
1086                     if (fabs(x1-x1_old) > 0.0001) continue;
1087                     if (fabs(x2-x2_old) > 0.0001) continue;
1088                     if (fabs(r-r_old)/5 > 0.001) continue;
1089                     a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1090                     Double_t a2=a1*(1-r)/r;
1091                     qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina + 
1092                                                                 z12*cosa;
1093                     qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina + 
1094                                                                 z12*cosa;
1095                     nfhits=2;
1096                     break; // Ok !
1097                 } // end for i
1098                 if (i==33) cerr<<"No more iterations ! "<<endl;
1099             } // end of attempt to separate overlapped clusters
1100         } // end of nbins cut 
1101         if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1102         if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1103                                                      <<elps<<","<<nfhits<<endl;
1104         if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1105         for (i=0; i<nfhits; i++) {
1106             xfit[i] *= (1.e+4/scl);
1107             if(wing == 1) xfit[i] *= (-1);
1108             zfit[i] *= 1.e+4;
1109             //       cout<<" ---------  i,xfiti,zfiti,qfiti ="<<i<<","
1110             // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1111         } // end for i
1112         Int_t ncl = nfhits;
1113         if(nfhits == 1 && separate == 1) {
1114             cout<<"!!!!! no separate"<<endl;
1115             ncl = -2;
1116         }  // end if
1117         if(nfhits == 2) {
1118             cout << "Split cluster: " << endl;
1119             clusterJ->PrintInfo();
1120             cout << " in: " << endl;
1121             for (i=0; i<nfhits; i++) {
1122                 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
1123                                                -1,-1,(Float_t)qfit[i],ncl,0,0,
1124                                                (Float_t)xfit[i],
1125                                                (Float_t)zfit[i],0,0,0,0,
1126                                                 tstart,tstop,astart,astop);
1127             //  AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1128             //                                 -1,(Float_t)qfit[i],0,0,0,
1129             //                                  (Float_t)xfit[i],
1130             //                                  (Float_t)zfit[i],0,0,0,0,
1131             //                                  tstart,tstop,astart,astop,ncl);
1132             // ???????????
1133             // if(wing == 1) xfit[i] *= (-1);
1134             Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1135             Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1136             Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1137             Float_t peakpos = clusterJ->PeakPos();
1138             Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1139             Float_t clusterDriftPath = Time*fDriftSpeed;
1140             clusterDriftPath = fSddLength-clusterDriftPath;
1141             AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1142                                                                  Time,qfit[i],
1143                                                clusterPeakAmplitude,peakpos,
1144                                                0.,0.,clusterDriftPath,
1145                                          clusteranodePath,clusterJ->Samples()/2
1146                                     ,tstart,tstop,0,0,0,astart,astop);
1147             clust->PrintInfo();
1148             iTS->AddCluster(1,clust);
1149             //  cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1150             // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1151             // <<","<<ncl<<endl;
1152             delete clust;
1153         }// nfhits loop
1154         fClusters->RemoveAt(j);
1155     } // if nfhits = 2
1156 } // cluster loop
1157 fClusters->Compress();
1158 fMap->ClearMap(); 
1159 */
1160     return;
1161 }
1162 //______________________________________________________________________
1163 void AliITSClusterFinderSDD::GetRecPoints(){
1164     // get rec points
1165     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1166     // get number of clusters for this module
1167     Int_t nofClusters = fClusters->GetEntriesFast();
1168     nofClusters -= fNclusters;
1169     const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1170     const Float_t kconv = 1.0e-4; 
1171     const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1172     const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1173     Int_t i;
1174     Int_t ix, iz, idx=-1;
1175     AliITSdigitSDD *dig=0;
1176     Int_t ndigits=fDigits->GetEntriesFast();
1177     for(i=0; i<nofClusters; i++) { 
1178         AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1179         if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1180         if(clusterI) idx=clusterI->PeakPos();
1181         if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1182         // try peak neighbours - to be done 
1183         if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1184         if(!dig) {
1185             // try cog
1186             fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1187             dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1188             // if null try neighbours
1189             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix); 
1190             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1); 
1191             if (!dig) printf("SDD: cannot assign the track number!\n");
1192         } //  end if !dig
1193         AliITSRecPoint rnew;
1194         rnew.SetX(clusterI->X());
1195         rnew.SetZ(clusterI->Z());
1196         rnew.SetQ(clusterI->Q());   // in KeV - should be ADC
1197         rnew.SetdEdX(kconvGeV*clusterI->Q());
1198         rnew.SetSigmaX2(kRMSx*kRMSx);
1199         rnew.SetSigmaZ2(kRMSz*kRMSz);
1200         if(dig) rnew.fTracks[0]=dig->fTracks[0];
1201         if(dig) rnew.fTracks[1]=dig->fTracks[1];
1202         if(dig) rnew.fTracks[2]=dig->fTracks[2];
1203         //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1204         //         i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1205         //         lusterI->X(),clusterI->Z());
1206         iTS->AddRecPoint(rnew);
1207     } // I clusters
1208     fMap->ClearMap();
1209 }
1210 //______________________________________________________________________
1211 void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1212     // find raw clusters
1213
1214     Find1DClustersE();
1215     GroupClusters();
1216     SelectClusters();
1217     ResolveClustersE();
1218     GetRecPoints();
1219 }
1220 //_______________________________________________________________________
1221 void AliITSClusterFinderSDD::Print(){
1222     // Print SDD cluster finder Parameters
1223
1224     cout << "**************************************************" << endl;
1225     cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1226     cout << "**************************************************" << endl;
1227     cout << "Number of Clusters: " << fNclusters << endl;
1228     cout << "Anode Tolerance: " << fDAnode << endl;
1229     cout << "Time  Tolerance: " << fDTime << endl;
1230     cout << "Time  correction (electronics): " << fTimeCorr << endl;
1231     cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1232     cout << "Minimum Amplitude: " << fMinPeak << endl;
1233     cout << "Minimum Charge: " << fMinCharge << endl;
1234     cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1235     cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1236     cout << "**************************************************" << endl;
1237 }