]> git.uio.no Git - u/mrichter/AliRoot.git/blob - ITS/AliITSClusterFinderSDD.cxx
Merging the VirtualMC branch to the main development branch (HEAD)
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15 /*
16   $Id$
17   $Log$
18   Revision 1.23.4.2  2002/10/14 13:14:07  hristov
19   Updating VirtualMC to v3-09-02
20
21   Revision 1.26  2002/09/09 17:23:28  nilsen
22   Minor changes in support of changes to AliITSdigitS?D class'.
23
24   Revision 1.25  2002/05/10 22:29:40  nilsen
25   Change my Massimo Masera in the default constructor to bring things into
26   compliance.
27
28   Revision 1.24  2002/04/24 22:02:31  nilsen
29   New SDigits and Digits routines, and related changes,  (including new
30   noise values).
31
32  */
33
34 #include <iostream.h>
35 #include <TFile.h>
36 #include <TMath.h>
37 #include <math.h>
38
39 #include "AliITSClusterFinderSDD.h"
40 #include "AliITSMapA1.h"
41 #include "AliITS.h"
42 #include "AliITSdigit.h"
43 #include "AliITSRawCluster.h"
44 #include "AliITSRecPoint.h"
45 #include "AliITSsegmentation.h"
46 #include "AliITSresponseSDD.h"
47 #include "AliRun.h"
48
49 ClassImp(AliITSClusterFinderSDD)
50
51 //______________________________________________________________________
52 AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
53                                                AliITSresponse *response,
54                                                TClonesArray *digits,
55                                                TClonesArray *recp){
56     // standard constructor
57
58     fSegmentation = seg;
59     fResponse     = response;
60     fDigits       = digits;
61     fClusters     = recp;
62     fNclusters    = fClusters->GetEntriesFast();
63     SetCutAmplitude();
64     SetDAnode();
65     SetDTime();
66     SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
67     //    SetMinPeak();
68     SetMinNCells();
69     SetMaxNCells();
70     SetTimeCorr();
71     SetMinCharge();
72     fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
73 }
74 //______________________________________________________________________
75 AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
76     // default constructor
77
78     fSegmentation = 0;
79     fResponse     = 0;
80     fDigits       = 0;
81     fClusters     = 0;
82     fNclusters    = 0;
83     fMap          = 0;
84     fCutAmplitude = 0;
85     fDAnode = 0;
86     fDTime = 0;
87     fMinPeak = 0;
88     fMinNCells = 0;
89     fMaxNCells = 0;
90     fTimeCorr = 0;
91     fMinCharge = 0;
92     /*
93     SetDAnode();
94     SetDTime();
95     SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
96     SetMinNCells();
97     SetMaxNCells();
98     SetTimeCorr();
99     SetMinCharge();
100     */
101 }
102 //____________________________________________________________________________
103 AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
104     // destructor
105
106     if(fMap) delete fMap;
107 }
108 //______________________________________________________________________
109 void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
110     // set the signal threshold for cluster finder
111     Float_t baseline,noise,noise_after_el;
112
113     fResponse->GetNoiseParam(noise,baseline);
114     noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
115     fCutAmplitude = (Int_t)((baseline + nsigma*noise_after_el));
116 }
117 //______________________________________________________________________
118 void AliITSClusterFinderSDD::Find1DClusters(){
119     // find 1D clusters
120     static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
121   
122     // retrieve the parameters 
123     Int_t fNofMaps       = fSegmentation->Npz();
124     Int_t fMaxNofSamples = fSegmentation->Npx();
125     Int_t fNofAnodes     = fNofMaps/2;
126     Int_t dummy          = 0;
127     Float_t fTimeStep    = fSegmentation->Dpx(dummy);
128     Float_t fSddLength   = fSegmentation->Dx();
129     Float_t fDriftSpeed  = fResponse->DriftSpeed();  
130     Float_t anodePitch   = fSegmentation->Dpz(dummy);
131
132     // map the signal
133     fMap->ClearMap();
134     fMap->SetThreshold(fCutAmplitude);
135     fMap->FillMap();
136   
137     Float_t noise;
138     Float_t baseline;
139     fResponse->GetNoiseParam(noise,baseline);
140   
141     Int_t nofFoundClusters = 0;
142     Int_t i;
143     Float_t **dfadc = new Float_t*[fNofAnodes];
144     for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
145     Float_t fadc  = 0.;
146     Float_t fadc1 = 0.;
147     Float_t fadc2 = 0.;
148     Int_t j,k,idx,l,m;
149     for(j=0;j<2;j++) {
150         for(k=0;k<fNofAnodes;k++) {
151             idx = j*fNofAnodes+k;
152             // signal (fadc) & derivative (dfadc)
153             dfadc[k][255]=0.;
154             for(l=0; l<fMaxNofSamples; l++) {
155                 fadc2=(Float_t)fMap->GetSignal(idx,l);
156                 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
157                 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
158             } // samples
159         } // anodes
160
161         for(k=0;k<fNofAnodes;k++) {
162         //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
163             idx = j*fNofAnodes+k;
164             Int_t imax  = 0;
165             Int_t imaxd = 0;
166             Int_t it    = 0;
167             while(it <= fMaxNofSamples-3) {
168                 imax  = it;
169                 imaxd = it;
170                 // maximum of signal          
171                 Float_t fadcmax  = 0.;
172                 Float_t dfadcmax = 0.;
173                 Int_t lthrmina   = 1;
174                 Int_t lthrmint   = 3;
175                 Int_t lthra      = 1;
176                 Int_t lthrt      = 0;
177                 for(m=0;m<20;m++) {
178                     Int_t id = it+m;
179                     if(id>=fMaxNofSamples) break;
180                     fadc=(float)fMap->GetSignal(idx,id);
181                     if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
182                     if(fadc > (float)fCutAmplitude) { 
183                         lthrt++; 
184                     } // end if
185                     if(dfadc[k][id] > dfadcmax) {
186                         dfadcmax = dfadc[k][id];
187                         imaxd    = id;
188                     } // end if
189                 } // end for m
190                 it = imaxd;
191                 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
192                 // cluster charge
193                 Int_t tstart = it-2;
194                 if(tstart < 0) tstart = 0;
195                 Bool_t ilcl = 0;
196                 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
197                 if(ilcl) {
198                     nofFoundClusters++;
199                     Int_t tstop      = tstart;
200                     Float_t dfadcmin = 10000.;
201                     Int_t ij;
202                     for(ij=0; ij<20; ij++) {
203                         if(tstart+ij > 255) { tstop = 255; break; }
204                         fadc=(float)fMap->GetSignal(idx,tstart+ij);
205                         if((dfadc[k][tstart+ij] < dfadcmin) && 
206                            (fadc > fCutAmplitude)) {
207                             tstop = tstart+ij+5;
208                             if(tstop > 255) tstop = 255;
209                             dfadcmin = dfadc[k][it+ij];
210                         } // end if
211                     } // end for ij
212
213                     Float_t clusterCharge = 0.;
214                     Float_t clusterAnode  = k+0.5;
215                     Float_t clusterTime   = 0.;
216                     Int_t   clusterMult   = 0;
217                     Float_t clusterPeakAmplitude = 0.;
218                     Int_t its,peakpos     = -1;
219                     Float_t n, baseline;
220                     fResponse->GetNoiseParam(n,baseline);
221                     for(its=tstart; its<=tstop; its++) {
222                         fadc=(float)fMap->GetSignal(idx,its);
223                         if(fadc>baseline) fadc -= baseline;
224                         else fadc = 0.;
225                         clusterCharge += fadc;
226                         // as a matter of fact we should take the peak
227                         // pos before FFT
228                         // to get the list of tracks !!!
229                         if(fadc > clusterPeakAmplitude) {
230                             clusterPeakAmplitude = fadc;
231                             //peakpos=fMap->GetHitIndex(idx,its);
232                             Int_t shift = (int)(fTimeCorr/fTimeStep);
233                             if(its>shift && its<(fMaxNofSamples-shift))
234                                 peakpos  = fMap->GetHitIndex(idx,its+shift);
235                             else peakpos = fMap->GetHitIndex(idx,its);
236                             if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
237                         } // end if
238                         clusterTime += fadc*its;
239                         if(fadc > 0) clusterMult++;
240                         if(its == tstop) {
241                             clusterTime /= (clusterCharge/fTimeStep);   // ns
242                             if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
243                             //ns
244                         } // end if
245                     } // end for its
246
247                     Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
248                                                anodePitch;
249                     Float_t clusterDriftPath = clusterTime*fDriftSpeed;
250                     clusterDriftPath = fSddLength-clusterDriftPath;
251                     if(clusterCharge <= 0.) break;
252                     AliITSRawClusterSDD clust(j+1,//i
253                                               clusterAnode,clusterTime,//ff
254                                               clusterCharge, //f
255                                               clusterPeakAmplitude, //f
256                                               peakpos, //i
257                                               0.,0.,clusterDriftPath,//fff
258                                               clusteranodePath, //f
259                                               clusterMult, //i
260                                               0,0,0,0,0,0,0);//7*i
261                     iTS->AddCluster(1,&clust);
262                     it = tstop;
263                 } // ilcl
264                 it++;
265             } // while (samples)
266         } // anodes
267     } // detectors (2)
268
269     for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
270     delete [] dfadc;
271
272     return;
273 }
274
275
276
277 //______________________________________________________________________
278 void AliITSClusterFinderSDD::Find1DClustersE(){
279     // find 1D clusters
280     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
281     // retrieve the parameters 
282     Int_t fNofMaps = fSegmentation->Npz();
283     Int_t fMaxNofSamples = fSegmentation->Npx();
284     Int_t fNofAnodes = fNofMaps/2;
285     Int_t dummy=0;
286     Float_t fTimeStep = fSegmentation->Dpx( dummy );
287     Float_t fSddLength = fSegmentation->Dx();
288     Float_t fDriftSpeed = fResponse->DriftSpeed();
289     Float_t anodePitch = fSegmentation->Dpz( dummy );
290     Float_t n, baseline;
291     fResponse->GetNoiseParam( n, baseline );
292     // map the signal
293     fMap->ClearMap();
294     fMap->SetThreshold( fCutAmplitude );
295     fMap->FillMap();
296     
297     Int_t nClu = 0;
298     //        cout << "Search  cluster... "<< endl;
299     for( Int_t j=0; j<2; j++ ){
300         for( Int_t k=0; k<fNofAnodes; k++ ){
301             Int_t idx = j*fNofAnodes+k;
302             Bool_t on = kFALSE;
303             Int_t start = 0;
304             Int_t nTsteps = 0;
305             Float_t fmax = 0.;
306             Int_t lmax = 0;
307             Float_t charge = 0.;
308             Float_t time = 0.;
309             Float_t anode = k+0.5;
310             Int_t peakpos = -1;
311             for( Int_t l=0; l<fMaxNofSamples; l++ ){
312                 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
313                 if( fadc > 0.0 ){
314                     if( on == kFALSE && l<fMaxNofSamples-4){
315                         // star RawCluster (reset var.)
316                         Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
317                         if( fadc1 < fadc ) continue;
318                         start = l;
319                         fmax = 0.;
320                         lmax = 0;
321                         time = 0.;
322                         charge = 0.; 
323                         on = kTRUE; 
324                         nTsteps = 0;
325                     } // end if on...
326                     nTsteps++ ;
327                     if( fadc > baseline ) fadc -= baseline;
328                     else fadc=0.;
329                     charge += fadc;
330                     time += fadc*l;
331                     if( fadc > fmax ){ 
332                         fmax = fadc; 
333                         lmax = l; 
334                         Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
335                         if( l > shift && l < (fMaxNofSamples-shift) )  
336                             peakpos = fMap->GetHitIndex( idx, l+shift );
337                         else
338                             peakpos = fMap->GetHitIndex( idx, l );
339                         if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
340                     } // end if fadc
341                 }else{ // end fadc>0
342                     if( on == kTRUE ){        
343                         if( nTsteps > 2 ){
344                             //  min # of timesteps for a RawCluster
345                             // Found a RawCluster...
346                             Int_t stop = l-1;
347                             time /= (charge/fTimeStep);   // ns
348                                 // time = lmax*fTimeStep;   // ns
349                             if( time > fTimeCorr ) time -= fTimeCorr;   // ns
350                             Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
351                             Float_t driftPath = time*fDriftSpeed;
352                             driftPath = fSddLength-driftPath;
353                             AliITSRawClusterSDD clust(j+1,anode,time,charge,
354                                                       fmax, peakpos,0.,0.,
355                                                       driftPath,anodePath,
356                                                       nTsteps,start,stop,
357                                                       start, stop, 1, k, k );
358                             iTS->AddCluster( 1, &clust );
359                             //        clust.PrintInfo();
360                             nClu++;
361                         } // end if nTsteps
362                         on = kFALSE;
363                     } // end if on==kTRUE
364                 } // end if fadc>0
365             } // samples
366         } // anodes
367     } // wings
368     //        cout << "# Rawclusters " << nClu << endl;         
369     return; 
370 }
371 //_______________________________________________________________________
372 Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
373                                          Int_t *peakX, Int_t *peakZ, 
374                                          Float_t *peakAmp, Float_t minpeak ){
375     // search peaks on a 2D cluster
376     Int_t npeak = 0;    // # peaks
377     Int_t i,j;
378     // search peaks
379     for( Int_t z=1; z<zdim-1; z++ ){
380         for( Int_t x=1; x<xdim-2; x++ ){
381             Float_t sxz = spect[x*zdim+z];
382             Float_t sxz1 = spect[(x+1)*zdim+z];
383             Float_t sxz2 = spect[(x-1)*zdim+z];
384             // search a local max. in s[x,z]
385             if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
386             if( sxz >= spect[(x+1)*zdim+z  ] && sxz >= spect[(x-1)*zdim+z  ] &&
387                 sxz >= spect[x*zdim    +z+1] && sxz >= spect[x*zdim    +z-1] &&
388                 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
389                 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
390                 // peak found
391                 peakX[npeak] = x;
392                 peakZ[npeak] = z;
393                 peakAmp[npeak] = sxz;
394                 npeak++;
395             } // end if ....
396         } // end for x
397     } // end for z
398     // search groups of peaks with same amplitude.
399     Int_t *flag = new Int_t[npeak];
400     for( i=0; i<npeak; i++ ) flag[i] = 0;
401     for( i=0; i<npeak; i++ ){
402         for( j=0; j<npeak; j++ ){
403             if( i==j) continue;
404             if( flag[j] > 0 ) continue;
405             if( peakAmp[i] == peakAmp[j] && 
406                 TMath::Abs(peakX[i]-peakX[j])<=1 && 
407                 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
408                 if( flag[i] == 0) flag[i] = i+1;
409                 flag[j] = flag[i];
410             } // end if ...
411         } // end for j
412     } // end for i
413     // make average of peak groups        
414     for( i=0; i<npeak; i++ ){
415         Int_t nFlag = 1;
416         if( flag[i] <= 0 ) continue;
417         for( j=0; j<npeak; j++ ){
418             if( i==j ) continue;
419             if( flag[j] != flag[i] ) continue;
420             peakX[i] += peakX[j];
421             peakZ[i] += peakZ[j];
422             nFlag++;
423             npeak--;
424             for( Int_t k=j; k<npeak; k++ ){
425                 peakX[k] = peakX[k+1];
426                 peakZ[k] = peakZ[k+1];
427                 peakAmp[k] = peakAmp[k+1];
428                 flag[k] = flag[k+1];
429             } // end for k        
430             j--;
431         } // end for j
432         if( nFlag > 1 ){
433             peakX[i] /= nFlag;
434             peakZ[i] /= nFlag;
435         } // end fi nFlag
436     } // end for i
437     delete [] flag;
438     return( npeak );
439 }
440 //______________________________________________________________________
441 void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
442                                        Float_t *spe, Float_t *integral){
443     // function used to fit the clusters
444     // par -> parameters..
445     // par[0]  number of peaks.
446     // for each peak i=1, ..., par[0]
447     //                 par[i] = Ampl.
448     //                 par[i+1] = xpos
449     //                 par[i+2] = zpos
450     //                 par[i+3] = tau
451     //                 par[i+4] = sigma.
452     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
453     const Int_t knParam = 5;
454     Int_t npeak = (Int_t)par[0];
455
456     memset( spe, 0, sizeof( Float_t )*zdim*xdim );
457
458     Int_t k = 1;
459     for( Int_t i=0; i<npeak; i++ ){
460         if( integral != 0 ) integral[i] = 0.;
461         Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
462         Float_t T2 = par[k+3];   // PASCAL
463         if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
464         for( Int_t z=0; z<zdim; z++ ){
465             for( Int_t x=0; x<xdim; x++ ){
466                 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
467                 Float_t x2 = 0.;
468                 Float_t signal = 0.;
469                 if( electronics == 1 ){ // PASCAL
470                     x2 = (x-par[k+1]+T2)/T2;
471                     signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
472                 //  signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
473                 }else if( electronics == 2 ) { // OLA
474                     x2 = (x-par[k+1])*(x-par[k+1])/T2;
475                     signal = par[k]  * exp( -x2 - z2 );
476                 } else {
477                     cout << "Wrong SDD Electronics =" << electronics << endl;
478                     // exit( 1 );
479                 } // end if electronicx
480                 spe[x*zdim+z] += signal;
481                 if( integral != 0 ) integral[i] += signal;
482             } // end for x
483         } // end for z
484         k += knParam;
485     } // end for i
486     return;
487 }
488 //__________________________________________________________________________
489 Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
490                                         Float_t *speFit ){
491     // EVALUATES UNNORMALIZED CHI-SQUARED
492     Float_t chi2 = 0.;
493     for( Int_t z=0; z<zdim; z++ ){
494         for( Int_t x=1; x<xdim-1; x++ ){
495             Int_t index = x*zdim+z;
496             Float_t tmp = spe[index] - speFit[index];
497             chi2 += tmp*tmp;
498         } // end for x
499     } // end for z
500     return( chi2 );
501 }
502 //_______________________________________________________________________
503 void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
504                                     Float_t *prm0,Float_t *steprm,
505                                     Float_t *chisqr,Float_t *spe,
506                                     Float_t *speFit ){
507     // 
508     Int_t   k, nnn, mmm, i;
509     Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
510     const Int_t knParam = 5;
511     Int_t npeak = (Int_t)param[0];
512     for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
513     for( k=1; k<(npeak*knParam+1); k++ ){
514         p1 = param[k];
515         delta = steprm[k];
516         d1 = delta;
517         // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
518         if( fabs( p1 ) > 1.0E-6 ) 
519             if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
520             else  delta = (Float_t)1.0E-4;
521         //  EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
522         PeakFunc( xdim, zdim, param, speFit );
523         chisq1 = ChiSqr( xdim, zdim, spe, speFit );
524         p2 = p1+delta;
525         param[k] = p2;
526         PeakFunc( xdim, zdim, param, speFit );
527         chisq2 = ChiSqr( xdim, zdim, spe, speFit );
528         if( chisq1 < chisq2 ){
529             // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
530             delta = -delta;
531             t = p1;
532             p1 = p2;
533             p2 = t;
534             t = chisq1;
535             chisq1 = chisq2;
536             chisq2 = t;
537         } // end if
538         i = 1; nnn = 0;
539         do {   // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
540             nnn++;
541             p3 = p2 + delta;
542             mmm = nnn - (nnn/5)*5;  // multiplo de 5
543             if( mmm == 0 ){
544                 d1 = delta;
545                 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW 
546                 delta *= 5;
547             } // end if
548             param[k] = p3;
549             // Constrain paramiters
550             Int_t kpos = (k-1) % knParam;
551             switch( kpos ){
552             case 0 :
553                 if( param[k] <= 20 ) param[k] = fMinPeak;
554                 break;
555             case 1 :
556                 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
557                 break;
558             case 2 :
559                 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
560                 break;
561             case 3 :
562                 if( param[k] < .5 ) param[k] = .5;        
563                 break;
564             case 4 :
565                 if( param[k] < .288 ) param[k] = .288;        // 1/sqrt(12) = 0.288
566                 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
567                 break;
568             }; // end switch
569             PeakFunc( xdim, zdim, param, speFit );
570             chisq3 = ChiSqr( xdim, zdim, spe, speFit );
571             if( chisq3 < chisq2 && nnn < 50 ){
572                 p1 = p2;
573                 p2 = p3;
574                 chisq1 = chisq2;
575                 chisq2 = chisq3;
576             }else i=0;
577         } while( i );
578         // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
579         a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
580         b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
581         if( a!=0 ) p0 = (Float_t)(0.5*b/a);
582         else p0 = 10000;
583         //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
584         //   ERRONEOUS EVALUATION OF PARABOLA MINIMUM
585         //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
586         //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
587         //if( fabs( p2-p0 ) > dp ) p0 = p2;
588         param[k] = p0;
589         // Constrain paramiters
590         Int_t kpos = (k-1) % knParam;
591         switch( kpos ){
592         case 0 :
593             if( param[k] <= 20 ) param[k] = fMinPeak;   
594             break;
595         case 1 :
596             if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
597             break;
598         case 2 :
599             if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
600             break;
601         case 3 :
602             if( param[k] < .5 ) param[k] = .5;        
603             break;
604         case 4 :
605             if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
606             if( param[k] > zdim*.5 ) param[k] = zdim*.5;
607             break;
608         }; // end switch
609         PeakFunc( xdim, zdim, param, speFit );
610         chisqt = ChiSqr( xdim, zdim, spe, speFit );
611         // DO NOT ALLOW ERRONEOUS INTERPOLATION
612         if( chisqt <= *chisqr ) *chisqr = chisqt;
613         else param[k] = prm0[k];
614         // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
615         steprm[k] = (param[k]-prm0[k])/5;
616         if( steprm[k] >= d1 ) steprm[k] = d1/5;
617     } // end for k
618     // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
619     PeakFunc( xdim, zdim, param, speFit );
620     *chisqr = ChiSqr( xdim, zdim, spe, speFit );
621     return;
622 }
623 //_________________________________________________________________________
624 Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim, 
625                                            Float_t *param, Float_t *spe, 
626                                            Int_t *niter, Float_t *chir ){
627     // fit method from Comput. Phys. Commun 46(1987) 149
628     const Float_t kchilmt = 0.01;  //        relative accuracy           
629     const Int_t   knel = 3;        //        for parabolic minimization  
630     const Int_t   knstop = 50;     //        Max. iteration number          
631     const Int_t   knParam = 5;
632     Int_t npeak = (Int_t)param[0];
633     // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE 
634     if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
635     Float_t degFree = (xdim*zdim - npeak*knParam)-1;
636     Int_t   n, k, iterNum = 0;
637     Float_t *prm0 = new Float_t[npeak*knParam+1];
638     Float_t *step = new Float_t[npeak*knParam+1];
639     Float_t *schi = new Float_t[npeak*knParam+1]; 
640     Float_t *sprm[3];
641     sprm[0] = new Float_t[npeak*knParam+1];
642     sprm[1] = new Float_t[npeak*knParam+1];
643     sprm[2] = new Float_t[npeak*knParam+1];
644     Float_t  chi0, chi1, reldif, a, b, prmin, dp;
645     Float_t *speFit = new Float_t[ xdim*zdim ];
646     PeakFunc( xdim, zdim, param, speFit );
647     chi0 = ChiSqr( xdim, zdim, spe, speFit );
648     chi1 = chi0;
649     for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
650         for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
651             step[k] = param[k] / 20.0 ;
652             step[k+1] = param[k+1] / 50.0;
653             step[k+2] = param[k+2] / 50.0;                 
654             step[k+3] = param[k+3] / 20.0;                 
655             step[k+4] = param[k+4] / 20.0;                 
656         } // end for k
657     Int_t out = 0;
658     do{
659         iterNum++;
660             chi0 = chi1;
661             Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
662             reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
663         // EXIT conditions
664         if( reldif < (float) kchilmt ){
665             *chir  = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
666             *niter = iterNum;
667             out = 0;
668             break;
669         } // end if
670         if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
671             *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
672             *niter = iterNum;
673             out = 0;
674             break;
675         } // end if
676         if( iterNum > 5*knstop ){
677             *chir  = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
678             *niter = iterNum;
679             out = 1;
680             break;
681         } // end if
682         if( iterNum <= knel ) continue;
683         n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
684         if( n > 3 || n == 0 ) continue;
685         schi[n-1] = chi1;
686         for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
687         if( n != 3 ) continue;
688         // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
689         //    PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
690         for( k=1; k<(npeak*knParam+1); k++ ){
691             Float_t tmp0 = sprm[0][k];
692             Float_t tmp1 = sprm[1][k];
693             Float_t tmp2 = sprm[2][k];
694             a  = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
695             a += (schi[2]*(tmp0-tmp1));
696             b  = schi[0]*(tmp1*tmp1-tmp2*tmp2);
697             b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
698                                              (tmp0*tmp0-tmp1*tmp1)));
699             if ((double)a < 1.0E-6) prmin = 0;
700             else prmin = (float) (0.5*b/a);
701             dp = 5*(tmp2-tmp0);
702             if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
703             param[k] = prmin;
704             step[k]  = dp/10; // OPTIMIZE SEARCH STEP
705         } // end for k
706     } while( kTRUE );
707     delete [] prm0;
708     delete [] step;
709     delete [] schi; 
710     delete [] sprm[0];
711     delete [] sprm[1];
712     delete [] sprm[2];
713     delete [] speFit;
714     return( out );
715 }
716
717 //______________________________________________________________________
718 void AliITSClusterFinderSDD::ResolveClustersE(){
719     // The function to resolve clusters if the clusters overlapping exists
720     Int_t i;
721     static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
722     // get number of clusters for this module
723     Int_t nofClusters = fClusters->GetEntriesFast();
724     nofClusters -= fNclusters;
725     Int_t fNofMaps = fSegmentation->Npz();
726     Int_t fNofAnodes = fNofMaps/2;
727     Int_t fMaxNofSamples = fSegmentation->Npx();
728     Int_t dummy=0;
729     Double_t fTimeStep = fSegmentation->Dpx( dummy );
730     Double_t fSddLength = fSegmentation->Dx();
731     Double_t fDriftSpeed = fResponse->DriftSpeed();
732     Double_t anodePitch = fSegmentation->Dpz( dummy );
733     Float_t n, baseline;
734     fResponse->GetNoiseParam( n, baseline );
735     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
736
737     for( Int_t j=0; j<nofClusters; j++ ){ 
738         // get cluster information
739         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
740         Int_t astart = clusterJ->Astart();
741         Int_t astop = clusterJ->Astop();
742         Int_t tstart = clusterJ->Tstartf();
743         Int_t tstop = clusterJ->Tstopf();
744         Int_t wing = (Int_t)clusterJ->W();
745         if( wing == 2 ){
746             astart += fNofAnodes; 
747             astop  += fNofAnodes;
748         } // end if 
749         Int_t xdim = tstop-tstart+3;
750         Int_t zdim = astop-astart+3;
751         if(xdim > 50 || zdim > 30) { cout << "Warning: xdim: " << xdim << ", zdim: " << zdim << endl; continue; }
752         Float_t *sp = new Float_t[ xdim*zdim+1 ];
753         memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
754         
755         // make a local map from cluster region
756         for( Int_t ianode=astart; ianode<=astop; ianode++ ){
757             for( Int_t itime=tstart; itime<=tstop; itime++ ){
758                 Float_t fadc = fMap->GetSignal( ianode, itime );
759                 if( fadc > baseline ) fadc -= (Double_t)baseline;
760                 else fadc = 0.;
761                 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
762                 sp[index] = fadc;
763             } // time loop
764         } // anode loop
765         
766         // search peaks on cluster
767         const Int_t kNp = 150;
768         Int_t peakX1[kNp];
769         Int_t peakZ1[kNp];
770         Float_t peakAmp1[kNp];
771         Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
772
773         // if multiple peaks, split cluster
774         if( npeak >= 1 )
775         {
776             //        cout << "npeak " << npeak << endl;
777             //        clusterJ->PrintInfo();
778             Float_t *par = new Float_t[npeak*5+1];
779             par[0] = (Float_t)npeak;                
780             // Initial parameters in cell dimentions
781             Int_t k1 = 1;
782             for( i=0; i<npeak; i++ ){
783                 par[k1] = peakAmp1[i];
784                 par[k1+1] = peakX1[i]; // local time pos. [timebin]
785                 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
786                 if( electronics == 1 ) 
787                     par[k1+3] = 2.; // PASCAL
788                 else if( electronics == 2 ) 
789                     par[k1+3] = 0.7; // tau [timebin]  OLA 
790                 par[k1+4] = .4;    // sigma        [anodepich]
791                 k1+=5;
792             } // end for i                        
793             Int_t niter;
794             Float_t chir;                        
795             NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
796             Float_t peakX[kNp];
797             Float_t peakZ[kNp];
798             Float_t sigma[kNp];
799             Float_t tau[kNp];
800             Float_t peakAmp[kNp];
801             Float_t integral[kNp];
802             //get integrals => charge for each peak
803             PeakFunc( xdim, zdim, par, sp, integral );
804             k1 = 1;
805             for( i=0; i<npeak; i++ ){
806                 peakAmp[i] = par[k1];
807                 peakX[i] = par[k1+1];
808                 peakZ[i] = par[k1+2];
809                 tau[i] = par[k1+3];
810                 sigma[i] = par[k1+4];
811                 k1+=5;
812             } // end for i
813             // calculate parameter for new clusters
814             for( i=0; i<npeak; i++ ){
815                 AliITSRawClusterSDD clusterI( *clusterJ );
816                 Int_t newAnode = peakZ1[i]-1 + astart;
817                 Int_t newiTime = peakX1[i]-1 + tstart;
818                 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
819                 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) ) 
820                     shift = 0;
821                 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
822                 clusterI.SetPeakPos( peakpos );
823                 clusterI.SetPeakAmpl( peakAmp1[i] );
824                 Float_t newAnodef = peakZ[i] - 0.5 + astart;
825                 Float_t newiTimef = peakX[i] - 1 + tstart;
826                 if( wing == 2 ) newAnodef -= fNofAnodes; 
827                 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
828                 newiTimef *= fTimeStep;
829                 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
830                 if( electronics == 1 ){
831                 //    newiTimef *= 0.999438;    // PASCAL
832                 //    newiTimef += (6./fDriftSpeed - newiTimef/3000.);
833                 }else if( electronics == 2 )
834                     newiTimef *= 0.99714;    // OLA
835                 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
836                 Float_t sign = ( wing == 1 ) ? -1. : 1.;
837                 clusterI.SetX( driftPath*sign * 0.0001 );        
838                 clusterI.SetZ( anodePath * 0.0001 );
839                 clusterI.SetAnode( newAnodef );
840                 clusterI.SetTime( newiTimef );
841                 clusterI.SetAsigma( sigma[i]*anodePitch );
842                 clusterI.SetTsigma( tau[i]*fTimeStep );
843                 clusterI.SetQ( integral[i] );
844                 //    clusterI.PrintInfo();
845                 iTS->AddCluster( 1, &clusterI );
846             } // end for i
847             fClusters->RemoveAt( j );
848             delete [] par;
849         } else {  // something odd
850             cout << " --- Peak not found!!!!  minpeak=" << fMinPeak<< 
851                     " cluster peak=" << clusterJ->PeakAmpl() << 
852                     " module=" << fModule << endl; 
853             clusterJ->PrintInfo(); 
854             cout << " xdim=" << xdim-2 << " zdim=" << zdim-2 << endl << endl;
855         }
856         delete [] sp;
857     } // cluster loop
858     fClusters->Compress();
859 //    fMap->ClearMap(); 
860 }
861
862
863 //________________________________________________________________________
864 void  AliITSClusterFinderSDD::GroupClusters(){
865     // group clusters
866     Int_t dummy=0;
867     Float_t fTimeStep = fSegmentation->Dpx(dummy);
868     // get number of clusters for this module
869     Int_t nofClusters = fClusters->GetEntriesFast();
870     nofClusters -= fNclusters;
871     AliITSRawClusterSDD *clusterI;
872     AliITSRawClusterSDD *clusterJ;
873     Int_t *label = new Int_t [nofClusters];
874     Int_t i,j;
875     for(i=0; i<nofClusters; i++) label[i] = 0;
876     for(i=0; i<nofClusters; i++) { 
877         if(label[i] != 0) continue;
878         for(j=i+1; j<nofClusters; j++) { 
879             if(label[j] != 0) continue;
880             clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
881             clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
882             // 1.3 good
883             if(clusterI->T() < fTimeStep*60) fDAnode = 4.2;  // TB 3.2  
884             if(clusterI->T() < fTimeStep*10) fDAnode = 1.5;  // TB 1.
885             Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
886             if(!pair) continue;
887             //      clusterI->PrintInfo();
888             //      clusterJ->PrintInfo();
889             clusterI->Add(clusterJ);
890             label[j] = 1;
891             fClusters->RemoveAt(j);
892             j=i; // <- Ernesto
893         } // J clusters  
894         label[i] = 1;
895     } // I clusters
896     fClusters->Compress();
897
898     delete [] label;
899     return;
900 }
901 //________________________________________________________________________
902 void AliITSClusterFinderSDD::SelectClusters(){
903     // get number of clusters for this module
904     Int_t nofClusters = fClusters->GetEntriesFast();
905
906     nofClusters -= fNclusters;
907     Int_t i;
908     for(i=0; i<nofClusters; i++) { 
909         AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
910         Int_t rmflg = 0;
911         Float_t wy = 0.;
912         if(clusterI->Anodes() != 0.) {
913             wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
914         } // end if
915         Int_t amp = (Int_t) clusterI->PeakAmpl();
916         Int_t cha = (Int_t) clusterI->Q();
917         if(amp < fMinPeak) rmflg = 1;  
918         if(cha < fMinCharge) rmflg = 1;
919         if(wy < fMinNCells) rmflg = 1;
920         //if(wy > fMaxNCells) rmflg = 1;
921         if(rmflg) fClusters->RemoveAt(i);
922     } // I clusters
923     fClusters->Compress();
924     return;
925 }
926 //__________________________________________________________________________
927 void AliITSClusterFinderSDD::ResolveClusters(){
928     // The function to resolve clusters if the clusters overlapping exists
929 /*    AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
930     // get number of clusters for this module
931     Int_t nofClusters = fClusters->GetEntriesFast();
932     nofClusters -= fNclusters;
933     //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
934     // <<fNclusters<<endl;
935     Int_t fNofMaps = fSegmentation->Npz();
936     Int_t fNofAnodes = fNofMaps/2;
937     Int_t dummy=0;
938     Double_t fTimeStep = fSegmentation->Dpx(dummy);
939     Double_t fSddLength = fSegmentation->Dx();
940     Double_t fDriftSpeed = fResponse->DriftSpeed();
941     Double_t anodePitch = fSegmentation->Dpz(dummy);
942     Float_t n, baseline;
943     fResponse->GetNoiseParam(n,baseline);
944     Float_t dzz_1A = anodePitch * anodePitch / 12;
945     // fill Map of signals
946     fMap->FillMap(); 
947     Int_t j,i,ii,ianode,anode,itime;
948     Int_t wing,astart,astop,tstart,tstop,nanode;
949     Double_t fadc,ClusterTime;
950     Double_t q[400],x[400],z[400]; // digit charges and coordinates
951     for(j=0; j<nofClusters; j++) { 
952         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
953         Int_t ndigits = 0;
954         astart=clusterJ->Astart();
955         astop=clusterJ->Astop();
956         tstart=clusterJ->Tstartf();
957         tstop=clusterJ->Tstopf();
958         nanode=clusterJ->Anodes();  // <- Ernesto
959         wing=(Int_t)clusterJ->W();
960         if(wing == 2) {
961             astart += fNofAnodes; 
962             astop  += fNofAnodes;
963         }  // end if
964         // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
965         //      <<tstart<<","<<tstop<<endl;
966         // clear the digit arrays
967         for(ii=0; ii<400; ii++) { 
968             q[ii] = 0.; 
969             x[ii] = 0.;
970             z[ii] = 0.;
971         } // end for ii
972
973         for(ianode=astart; ianode<=astop; ianode++) { 
974             for(itime=tstart; itime<=tstop; itime++) { 
975                 fadc=fMap->GetSignal(ianode,itime);
976                 if(fadc>baseline) {
977                     fadc-=(Double_t)baseline;
978                     q[ndigits] = fadc*(fTimeStep/160);  // KeV
979                     anode = ianode;
980                     if(wing == 2) anode -= fNofAnodes;
981                     z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
982                     ClusterTime = itime*fTimeStep;
983                     if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
984                     x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
985                     if(wing == 1) x[ndigits] *= (-1);
986                     // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
987                     //     <<fadc<<endl;
988                     // cout<<"wing,anode,ndigits,charge ="<<wing<<","
989                     //      <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
990                     ndigits++;
991                     continue;
992                 } //  end if
993                 fadc=0;
994                 //              cout<<"fadc=0, ndigits ="<<ndigits<<endl;
995             } // time loop
996         } // anode loop
997         //     cout<<"for new cluster ndigits ="<<ndigits<<endl;
998         // Fit cluster to resolve for two separate ones --------------------
999         Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1000         Double_t dxx=0., dzz=0., dxz=0.;
1001         Double_t scl = 0., tmp, tga, elps = -1.;
1002         Double_t xfit[2], zfit[2], qfit[2];
1003         Double_t pitchz = anodePitch*1.e-4;             // cm
1004         Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4;  // cm
1005         Double_t sigma2;
1006         Int_t nfhits;
1007         Int_t nbins = ndigits;
1008         Int_t separate = 0;
1009         // now, all lengths are in microns
1010         for (ii=0; ii<nbins; ii++) {
1011             qq += q[ii];
1012             xm += x[ii]*q[ii];
1013             zm += z[ii]*q[ii];
1014             xx += x[ii]*x[ii]*q[ii];
1015             zz += z[ii]*z[ii]*q[ii];
1016             xz += x[ii]*z[ii]*q[ii];
1017         } // end for ii
1018         xm /= qq;
1019         zm /= qq;
1020         xx /= qq;
1021         zz /= qq;
1022         xz /= qq;
1023         dxx = xx - xm*xm;
1024         dzz = zz - zm*zm;
1025         dxz = xz - xm*zm;
1026
1027         // shrink the cluster in the time direction proportionaly to the 
1028         // dxx/dzz, which lineary depends from the drift path
1029         // new  Ernesto........         
1030         if( nanode == 1 ){
1031             dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1032             scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1033         } // end if
1034         if( nanode == 2 ){
1035             scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1036         } // end if
1037         if( nanode == 3 ){
1038             scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1039         } // end if
1040         if( nanode > 3 ){
1041             scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1042         } // end if
1043         //   cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1044         //  <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1045         //  old Boris.........
1046         //  tmp=29730. - 585.*fabs(xm/1000.); 
1047         //  scl=TMath::Sqrt(tmp/130000.);
1048    
1049         xm *= scl;
1050         xx *= scl*scl;
1051         xz *= scl;
1052
1053         dxx = xx - xm*xm;
1054         //   dzz = zz - zm*zm;
1055         dxz = xz - xm*zm;
1056         //   cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1057         // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1058         // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
1059   
1060         if (dxx < 0.) dxx=0.;
1061         // the data if no cluster overlapping (the coordunates are in cm) 
1062         nfhits = 1;
1063         xfit[0] = xm*1.e-4;
1064         zfit[0] = zm*1.e-4;
1065         qfit[0] = qq;
1066         //   if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
1067   
1068         if (nbins >= 7) {
1069             if (dxz==0.) tga=0.;
1070             else {
1071                 tmp=0.5*(dzz-dxx)/dxz;
1072                 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) : 
1073                                                    tmp+TMath::Sqrt(tmp*tmp+1);
1074             } // end if dxz
1075             elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1076             // change from microns to cm
1077             xm *= 1.e-4; 
1078             zm *= 1.e-4; 
1079             zz *= 1.e-8;
1080             xx *= 1.e-8;
1081             xz *= 1.e-8;
1082             dxz *= 1.e-8;
1083             dxx *= 1.e-8;
1084             dzz *= 1.e-8;
1085             //   cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1086             //  <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1087             for (i=0; i<nbins; i++) {     
1088                 x[i] = x[i] *= scl;
1089                 x[i] = x[i] *= 1.e-4;
1090                 z[i] = z[i] *= 1.e-4;
1091             } // end for i
1092             //     cout<<"!!! elps ="<<elps<<endl;
1093             if (elps < 0.3) { // try to separate hits 
1094                 separate = 1;
1095                 tmp=atan(tga);
1096                 Double_t cosa=cos(tmp),sina=sin(tmp);
1097                 Double_t a1=0., x1=0., xxx=0.;
1098                 for (i=0; i<nbins; i++) {
1099                     tmp=x[i]*cosa + z[i]*sina;
1100                     if (q[i] > a1) {
1101                         a1=q[i];
1102                         x1=tmp;
1103                     } // end if
1104                     xxx += tmp*tmp*tmp*q[i];
1105                 } // end for i
1106                 xxx /= qq;
1107                 Double_t z12=-sina*xm + cosa*zm;
1108                 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1109                 xm=cosa*xm + sina*zm;
1110                 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1111                 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1112                 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1113                 for (i=0; i<33; i++) { // solve a system of equations
1114                     Double_t x1_old=x1, x2_old=x2, r_old=r;
1115                     Double_t c11=x1-x2;
1116                     Double_t c12=r;
1117                     Double_t c13=1-r;
1118                     Double_t c21=x1*x1 - x2*x2;
1119                     Double_t c22=2*r*x1;
1120                     Double_t c23=2*(1-r)*x2;
1121                     Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1122                     Double_t c32=3*r*(sigma2 + x1*x1);
1123                     Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1124                     Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1125                     Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1126                     Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1127                                                          (3*sigma2+x2*x2)-xxx);
1128                     Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1129                                        c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1130                     if (d==0.) {
1131                         cout<<"*********** d=0 ***********\n";
1132                         break;
1133                     } // end if
1134                     Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1135                         f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1136                     Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1137                         c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1138                     Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1139                         c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1140                     r  += dr/d;
1141                     x1 += d1/d;
1142                     x2 += d2/d;
1143                     if (fabs(x1-x1_old) > 0.0001) continue;
1144                     if (fabs(x2-x2_old) > 0.0001) continue;
1145                     if (fabs(r-r_old)/5 > 0.001) continue;
1146                     a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1147                     Double_t a2=a1*(1-r)/r;
1148                     qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina + 
1149                                                                 z12*cosa;
1150                     qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina + 
1151                                                                 z12*cosa;
1152                     nfhits=2;
1153                     break; // Ok !
1154                 } // end for i
1155                 if (i==33) cerr<<"No more iterations ! "<<endl;
1156             } // end of attempt to separate overlapped clusters
1157         } // end of nbins cut 
1158         if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1159         if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1160                                                      <<elps<<","<<nfhits<<endl;
1161         if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1162         for (i=0; i<nfhits; i++) {
1163             xfit[i] *= (1.e+4/scl);
1164             if(wing == 1) xfit[i] *= (-1);
1165             zfit[i] *= 1.e+4;
1166             //       cout<<" ---------  i,xfiti,zfiti,qfiti ="<<i<<","
1167             // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1168         } // end for i
1169         Int_t ncl = nfhits;
1170         if(nfhits == 1 && separate == 1) {
1171             cout<<"!!!!! no separate"<<endl;
1172             ncl = -2;
1173         }  // end if
1174         if(nfhits == 2) {
1175             cout << "Split cluster: " << endl;
1176             clusterJ->PrintInfo();
1177             cout << " in: " << endl;
1178             for (i=0; i<nfhits; i++) {
1179                 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
1180                                                -1,-1,(Float_t)qfit[i],ncl,0,0,
1181                                                (Float_t)xfit[i],
1182                                                (Float_t)zfit[i],0,0,0,0,
1183                                                 tstart,tstop,astart,astop);
1184             //        AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1185             //                                 -1,(Float_t)qfit[i],0,0,0,
1186             //                                  (Float_t)xfit[i],
1187             //                                  (Float_t)zfit[i],0,0,0,0,
1188             //                                  tstart,tstop,astart,astop,ncl);
1189             // ???????????
1190             // if(wing == 1) xfit[i] *= (-1);
1191             Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1192             Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1193             Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1194             Float_t peakpos = clusterJ->PeakPos();
1195             Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1196             Float_t clusterDriftPath = Time*fDriftSpeed;
1197             clusterDriftPath = fSddLength-clusterDriftPath;
1198             AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1199                                                                  Time,qfit[i],
1200                                                clusterPeakAmplitude,peakpos,
1201                                                0.,0.,clusterDriftPath,
1202                                          clusteranodePath,clusterJ->Samples()/2
1203                                     ,tstart,tstop,0,0,0,astart,astop);
1204             clust->PrintInfo();
1205             iTS->AddCluster(1,clust);
1206             //        cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1207             // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1208             // <<","<<ncl<<endl;
1209             delete clust;
1210         }// nfhits loop
1211         fClusters->RemoveAt(j);
1212     } // if nfhits = 2
1213 } // cluster loop
1214 fClusters->Compress();
1215 fMap->ClearMap(); 
1216 */
1217     return;
1218 }
1219 //______________________________________________________________________
1220 void AliITSClusterFinderSDD::GetRecPoints(){
1221     // get rec points
1222     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1223     // get number of clusters for this module
1224     Int_t nofClusters = fClusters->GetEntriesFast();
1225     nofClusters -= fNclusters;
1226     const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1227     const Float_t kconv = 1.0e-4; 
1228     const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1229     const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1230     Int_t i,j;
1231     Int_t ix, iz, idx=-1;
1232     AliITSdigitSDD *dig=0;
1233     Int_t ndigits=fDigits->GetEntriesFast();
1234     for(i=0; i<nofClusters; i++) { 
1235         AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1236         if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1237         if(clusterI) idx=clusterI->PeakPos();
1238         if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1239         // try peak neighbours - to be done 
1240         if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1241         if(!dig) {
1242             // try cog
1243             fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1244             dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1245             // if null try neighbours
1246             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix); 
1247             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1); 
1248             if (!dig) printf("SDD: cannot assign the track number!\n");
1249         } //  end if !dig
1250         AliITSRecPoint rnew;
1251         rnew.SetX(clusterI->X());
1252         rnew.SetZ(clusterI->Z());
1253         rnew.SetQ(clusterI->Q());   // in KeV - should be ADC
1254         rnew.SetdEdX(kconvGeV*clusterI->Q());
1255         rnew.SetSigmaX2(kRMSx*kRMSx);
1256         rnew.SetSigmaZ2(kRMSz*kRMSz);
1257         if(dig){
1258             rnew.fTracks[0] = dig->fTracks[0];
1259             rnew.fTracks[1] = -3;
1260             rnew.fTracks[2] = -3;
1261             j=1;
1262             while(rnew.fTracks[0]==dig->fTracks[j] &&
1263                   j<dig->GetNTracks()) j++;
1264             if(j<dig->GetNTracks()){
1265                 rnew.fTracks[1] = dig->fTracks[j];
1266                 while(rnew.fTracks[1]==dig->fTracks[j] && 
1267                       j<dig->GetNTracks()) j++;
1268                 if(j<dig->GetNTracks()) rnew.fTracks[2] = dig->fTracks[j];
1269             } // end if
1270         } // end if
1271         //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1272         //         i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1273         //         lusterI->X(),clusterI->Z());
1274         iTS->AddRecPoint(rnew);
1275     } // I clusters
1276 //    fMap->ClearMap();
1277 }
1278 //______________________________________________________________________
1279 void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1280     // find raw clusters
1281     
1282     fModule = mod;
1283     
1284     Find1DClustersE();
1285     GroupClusters();
1286     SelectClusters();
1287     ResolveClustersE();
1288     GetRecPoints();
1289 }
1290 //_______________________________________________________________________
1291 void AliITSClusterFinderSDD::Print(){
1292     // Print SDD cluster finder Parameters
1293
1294     cout << "**************************************************" << endl;
1295     cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1296     cout << "**************************************************" << endl;
1297     cout << "Number of Clusters: " << fNclusters << endl;
1298     cout << "Anode Tolerance: " << fDAnode << endl;
1299     cout << "Time  Tolerance: " << fDTime << endl;
1300     cout << "Time  correction (electronics): " << fTimeCorr << endl;
1301     cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1302     cout << "Minimum Amplitude: " << fMinPeak << endl;
1303     cout << "Minimum Charge: " << fMinCharge << endl;
1304     cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1305     cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1306     cout << "**************************************************" << endl;
1307 }