]> git.uio.no Git - u/mrichter/AliRoot.git/blob - MUON/AliMUONv1.cxx
Error on AliMUONData and AliMUONv1
[u/mrichter/AliRoot.git] / MUON / AliMUONv1.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpeateose. It is      *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /* $Id$ */
17
18 /////////////////////////////////////////////////////////
19 //  Manager and hits classes for set:MUON version 0    //
20 /////////////////////////////////////////////////////////
21 #include <TRandom.h>
22 #include <TF1.h>
23 #include <Riostream.h>
24 #include <TClonesArray.h>
25 #include <TLorentzVector.h> 
26 #include <TNode.h> 
27 #include <TRandom.h> 
28 #include <TTUBE.h>
29 #include <TVirtualMC.h>
30
31 #include "AliCallf77.h"
32 #include "AliConst.h" 
33 #include "AliMUONChamber.h"
34 #include "AliMUONConstants.h"
35 #include "AliMUONFactory.h"
36 #include "AliMUONHit.h"
37 #include "AliMUONPadHit.h"
38 #include "AliMUONTriggerCircuit.h"
39 #include "AliMUONv1.h"
40 #include "AliMagF.h"
41 #include "AliRun.h"
42
43 ClassImp(AliMUONv1)
44  
45 //___________________________________________
46 AliMUONv1::AliMUONv1() : AliMUON()
47 {
48 // Constructor
49     fChambers = 0;
50     fStations = 0;
51     fStepManagerVersionOld = kFALSE;
52     fStepManagerVersionNew = kFALSE;
53     fStepManagerVersionTest = kFALSE;
54
55     fStepMaxInActiveGas = 2.0;
56 }
57
58  
59 //___________________________________________
60 AliMUONv1::AliMUONv1(const char *name, const char *title)
61        : AliMUON(name,title)
62 {
63 // Constructor
64     // By default include all stations
65     fStations = new Int_t[5];
66     for (Int_t i=0; i<5; i++) fStations[i] = 1;
67
68     AliMUONFactory factory;
69     factory.Build(this, title);
70
71     fStepManagerVersionOld = kFALSE;
72     fStepManagerVersionNew = kFALSE;
73     fStepManagerVersionTest = kFALSE;
74
75     fStepMaxInActiveGas = 2.0;
76 }
77
78 //___________________________________________
79 void AliMUONv1::CreateGeometry()
80 {
81 //
82 //   Note: all chambers have the same structure, which could be 
83 //   easily parameterised. This was intentionally not done in order
84 //   to give a starting point for the implementation of the actual 
85 //   design of each station. 
86   Int_t *idtmed = fIdtmed->GetArray()-1099;
87
88 //   Distance between Stations
89 //
90      Float_t bpar[3];
91      Float_t tpar[3];
92 //      Float_t pgpar[10];
93      Float_t zpos1, zpos2, zfpos;
94      // Outer excess and inner recess for mother volume radius
95      // with respect to ROuter and RInner
96      Float_t dframep=.001; // Value for station 3 should be 6 ...
97      // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm)
98 //      Float_t dframep1=.001;
99      Float_t dframep1 = 11.0;
100 //      Bool_t frameCrosses=kFALSE;     
101      Bool_t frameCrosses=kTRUE;     
102      Float_t *dum=0;
103      
104 //      Float_t dframez=0.9;
105      // Half of the total thickness of frame crosses (including DAlu)
106      // for each chamber in stations 1 and 2:
107      // 3% of X0 of composite material,
108      // but taken as Aluminium here, with same thickness in number of X0
109      Float_t dframez = 3. * 8.9 / 100;
110 //      Float_t dr;
111      Float_t dstation;
112
113 //
114 //   Rotation matrices in the x-y plane  
115      Int_t idrotm[1199];
116 //   phi=   0 deg
117      AliMatrix(idrotm[1100],  90.,   0., 90.,  90., 0., 0.);
118 //   phi=  90 deg
119      AliMatrix(idrotm[1101],  90.,  90., 90., 180., 0., 0.);
120 //   phi= 180 deg
121      AliMatrix(idrotm[1102],  90., 180., 90., 270., 0., 0.);
122 //   phi= 270 deg
123      AliMatrix(idrotm[1103],  90., 270., 90.,   0., 0., 0.);
124 //
125      Float_t phi=2*TMath::Pi()/12/2;
126
127 //
128 //   pointer to the current chamber
129 //   pointer to the current chamber
130      Int_t idAlu1=idtmed[1103]; // medium 4
131      Int_t idAlu2=idtmed[1104]; // medium 5
132 //     Int_t idAlu1=idtmed[1100];
133 //     Int_t idAlu2=idtmed[1100];
134      Int_t idAir=idtmed[1100]; // medium 1
135 //      Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas
136      Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%)
137      
138
139      AliMUONChamber *iChamber, *iChamber1, *iChamber2;
140
141      if (fStations[0]) {
142          
143 //********************************************************************
144 //                            Station 1                             **
145 //********************************************************************
146 //  CONCENTRIC
147      // indices 1 and 2 for first and second chambers in the station
148      // iChamber (first chamber) kept for other quanties than Z,
149      // assumed to be the same in both chambers
150      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0];
151      iChamber2 =(AliMUONChamber*) (*fChambers)[1];
152      zpos1=iChamber1->Z(); 
153      zpos2=iChamber2->Z();
154      dstation = zpos2 - zpos1;
155      // DGas decreased from standard one (0.5)
156      iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4);
157      // DAlu increased from standard one (3% of X0),
158      // because more electronics with smaller pads
159      iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.);
160      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
161      
162 //
163 //   Mother volume
164      tpar[0] = iChamber->RInner()-dframep; 
165      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
166      tpar[2] = dstation/5;
167
168      gMC->Gsvolu("S01M", "TUBE", idAir, tpar, 3);
169      gMC->Gsvolu("S02M", "TUBE", idAir, tpar, 3);
170      gMC->Gspos("S01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
171      gMC->Gspos("S02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");     
172 // // Aluminium frames
173 // // Outer frames
174 //      pgpar[0] = 360/12/2;
175 //      pgpar[1] = 360.;
176 //      pgpar[2] = 12.;
177 //      pgpar[3] =   2;
178 //      pgpar[4] = -dframez/2;
179 //      pgpar[5] = iChamber->ROuter();
180 //      pgpar[6] = pgpar[5]+dframep1;
181 //      pgpar[7] = +dframez/2;
182 //      pgpar[8] = pgpar[5];
183 //      pgpar[9] = pgpar[6];
184 //      gMC->Gsvolu("S01O", "PGON", idAlu1, pgpar, 10);
185 //      gMC->Gsvolu("S02O", "PGON", idAlu1, pgpar, 10);
186 //      gMC->Gspos("S01O",1,"S01M", 0.,0.,-zfpos,  0,"ONLY");
187 //      gMC->Gspos("S01O",2,"S01M", 0.,0.,+zfpos,  0,"ONLY");
188 //      gMC->Gspos("S02O",1,"S02M", 0.,0.,-zfpos,  0,"ONLY");
189 //      gMC->Gspos("S02O",2,"S02M", 0.,0.,+zfpos,  0,"ONLY");
190 // //
191 // // Inner frame
192 //      tpar[0]= iChamber->RInner()-dframep1;
193 //      tpar[1]= iChamber->RInner();
194 //      tpar[2]= dframez/2;
195 //      gMC->Gsvolu("S01I", "TUBE", idAlu1, tpar, 3);
196 //      gMC->Gsvolu("S02I", "TUBE", idAlu1, tpar, 3);
197
198 //      gMC->Gspos("S01I",1,"S01M", 0.,0.,-zfpos,  0,"ONLY");
199 //      gMC->Gspos("S01I",2,"S01M", 0.,0.,+zfpos,  0,"ONLY");
200 //      gMC->Gspos("S02I",1,"S02M", 0.,0.,-zfpos,  0,"ONLY");
201 //      gMC->Gspos("S02I",2,"S02M", 0.,0.,+zfpos,  0,"ONLY");
202 //
203 // Frame Crosses
204      if (frameCrosses) {
205          // outside gas
206          // security for inside mother volume
207          bpar[0] = (iChamber->ROuter() - iChamber->RInner())
208            * TMath::Cos(TMath::ASin(dframep1 /
209                                    (iChamber->ROuter() - iChamber->RInner())))
210            / 2.0;
211          bpar[1] = dframep1/2;
212          // total thickness will be (4 * bpar[2]) for each chamber,
213          // which has to be equal to (2 * dframez) - DAlu
214          bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
215          gMC->Gsvolu("S01B", "BOX", idAlu1, bpar, 3);
216          gMC->Gsvolu("S02B", "BOX", idAlu1, bpar, 3);
217          
218          gMC->Gspos("S01B",1,"S01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
219                     idrotm[1100],"ONLY");
220          gMC->Gspos("S01B",2,"S01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
221                     idrotm[1100],"ONLY");
222          gMC->Gspos("S01B",3,"S01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
223                     idrotm[1101],"ONLY");
224          gMC->Gspos("S01B",4,"S01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
225                     idrotm[1101],"ONLY");
226          gMC->Gspos("S01B",5,"S01M", +iChamber->RInner()+bpar[0] , 0,+zfpos, 
227                     idrotm[1100],"ONLY");
228          gMC->Gspos("S01B",6,"S01M", -iChamber->RInner()-bpar[0] , 0,+zfpos, 
229                     idrotm[1100],"ONLY");
230          gMC->Gspos("S01B",7,"S01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, 
231                     idrotm[1101],"ONLY");
232          gMC->Gspos("S01B",8,"S01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, 
233                     idrotm[1101],"ONLY");
234          
235          gMC->Gspos("S02B",1,"S02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
236                     idrotm[1100],"ONLY");
237          gMC->Gspos("S02B",2,"S02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
238                     idrotm[1100],"ONLY");
239          gMC->Gspos("S02B",3,"S02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
240                     idrotm[1101],"ONLY");
241          gMC->Gspos("S02B",4,"S02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
242                     idrotm[1101],"ONLY");
243          gMC->Gspos("S02B",5,"S02M", +iChamber->RInner()+bpar[0] , 0,+zfpos, 
244                     idrotm[1100],"ONLY");
245          gMC->Gspos("S02B",6,"S02M", -iChamber->RInner()-bpar[0] , 0,+zfpos, 
246                     idrotm[1100],"ONLY");
247          gMC->Gspos("S02B",7,"S02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, 
248                     idrotm[1101],"ONLY");
249          gMC->Gspos("S02B",8,"S02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, 
250                     idrotm[1101],"ONLY");
251      }
252 //
253 //   Chamber Material represented by Alu sheet
254      tpar[0]= iChamber->RInner();
255      tpar[1]= iChamber->ROuter();
256      tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
257      gMC->Gsvolu("S01A", "TUBE",  idAlu2, tpar, 3);
258      gMC->Gsvolu("S02A", "TUBE",idAlu2, tpar, 3);
259      gMC->Gspos("S01A", 1, "S01M", 0., 0., 0.,  0, "ONLY");
260      gMC->Gspos("S02A", 1, "S02M", 0., 0., 0.,  0, "ONLY");
261 //     
262 //   Sensitive volumes
263      // tpar[2] = iChamber->DGas();
264      tpar[2] = iChamber->DGas()/2;
265      gMC->Gsvolu("S01G", "TUBE", idGas, tpar, 3);
266      gMC->Gsvolu("S02G", "TUBE", idGas, tpar, 3);
267      gMC->Gspos("S01G", 1, "S01A", 0., 0., 0.,  0, "ONLY");
268      gMC->Gspos("S02G", 1, "S02A", 0., 0., 0.,  0, "ONLY");
269 //
270 // Frame Crosses to be placed inside gas
271      // NONE: chambers are sensitive everywhere
272 //      if (frameCrosses) {
273
274 //       dr = (iChamber->ROuter() - iChamber->RInner());
275 //       bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
276 //       bpar[1] = dframep1/2;
277 //       bpar[2] = iChamber->DGas()/2;
278 //       gMC->Gsvolu("S01F", "BOX", idAlu1, bpar, 3);
279 //       gMC->Gsvolu("S02F", "BOX", idAlu1, bpar, 3);
280          
281 //       gMC->Gspos("S01F",1,"S01G", +iChamber->RInner()+bpar[0] , 0, 0, 
282 //                  idrotm[1100],"ONLY");
283 //       gMC->Gspos("S01F",2,"S01G", -iChamber->RInner()-bpar[0] , 0, 0, 
284 //                  idrotm[1100],"ONLY");
285 //       gMC->Gspos("S01F",3,"S01G", 0, +iChamber->RInner()+bpar[0] , 0, 
286 //                  idrotm[1101],"ONLY");
287 //       gMC->Gspos("S01F",4,"S01G", 0, -iChamber->RInner()-bpar[0] , 0, 
288 //                  idrotm[1101],"ONLY");
289          
290 //       gMC->Gspos("S02F",1,"S02G", +iChamber->RInner()+bpar[0] , 0, 0, 
291 //                  idrotm[1100],"ONLY");
292 //       gMC->Gspos("S02F",2,"S02G", -iChamber->RInner()-bpar[0] , 0, 0, 
293 //                  idrotm[1100],"ONLY");
294 //       gMC->Gspos("S02F",3,"S02G", 0, +iChamber->RInner()+bpar[0] , 0, 
295 //                  idrotm[1101],"ONLY");
296 //       gMC->Gspos("S02F",4,"S02G", 0, -iChamber->RInner()-bpar[0] , 0, 
297 //                  idrotm[1101],"ONLY");
298 //      }
299      }
300      if (fStations[1]) {
301          
302 //********************************************************************
303 //                            Station 2                             **
304 //********************************************************************
305      // indices 1 and 2 for first and second chambers in the station
306      // iChamber (first chamber) kept for other quanties than Z,
307      // assumed to be the same in both chambers
308      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2];
309      iChamber2 =(AliMUONChamber*) (*fChambers)[3];
310      zpos1=iChamber1->Z(); 
311      zpos2=iChamber2->Z();
312      dstation = zpos2 - zpos1;
313      // DGas and DAlu not changed from standard values
314      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
315      
316 //
317 //   Mother volume
318      tpar[0] = iChamber->RInner()-dframep; 
319      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
320      tpar[2] = dstation/5;
321
322      gMC->Gsvolu("S03M", "TUBE", idAir, tpar, 3);
323      gMC->Gsvolu("S04M", "TUBE", idAir, tpar, 3);
324      gMC->Gspos("S03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
325      gMC->Gspos("S04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
326      gMC->Gsbool("S03M", "L3DO");
327      gMC->Gsbool("S03M", "L3O1");
328      gMC->Gsbool("S03M", "L3O2");
329      gMC->Gsbool("S04M", "L3DO");
330      gMC->Gsbool("S04M", "L3O1");
331      gMC->Gsbool("S04M", "L3O2");
332
333 // // Aluminium frames
334 // // Outer frames
335 //      pgpar[0] = 360/12/2;
336 //      pgpar[1] = 360.;
337 //      pgpar[2] = 12.;
338 //      pgpar[3] =   2;
339 //      pgpar[4] = -dframez/2;
340 //      pgpar[5] = iChamber->ROuter();
341 //      pgpar[6] = pgpar[5]+dframep;
342 //      pgpar[7] = +dframez/2;
343 //      pgpar[8] = pgpar[5];
344 //      pgpar[9] = pgpar[6];
345 //      gMC->Gsvolu("S03O", "PGON", idAlu1, pgpar, 10);
346 //      gMC->Gsvolu("S04O", "PGON", idAlu1, pgpar, 10);
347 //      gMC->Gspos("S03O",1,"S03M", 0.,0.,-zfpos,  0,"ONLY");
348 //      gMC->Gspos("S03O",2,"S03M", 0.,0.,+zfpos,  0,"ONLY");
349 //      gMC->Gspos("S04O",1,"S04M", 0.,0.,-zfpos,  0,"ONLY");
350 //      gMC->Gspos("S04O",2,"S04M", 0.,0.,+zfpos,  0,"ONLY");
351 // //
352 // // Inner frame
353 //      tpar[0]= iChamber->RInner()-dframep;
354 //      tpar[1]= iChamber->RInner();
355 //      tpar[2]= dframez/2;
356 //      gMC->Gsvolu("S03I", "TUBE", idAlu1, tpar, 3);
357 //      gMC->Gsvolu("S04I", "TUBE", idAlu1, tpar, 3);
358
359 //      gMC->Gspos("S03I",1,"S03M", 0.,0.,-zfpos,  0,"ONLY");
360 //      gMC->Gspos("S03I",2,"S03M", 0.,0.,+zfpos,  0,"ONLY");
361 //      gMC->Gspos("S04I",1,"S04M", 0.,0.,-zfpos,  0,"ONLY");
362 //      gMC->Gspos("S04I",2,"S04M", 0.,0.,+zfpos,  0,"ONLY");
363 //
364 // Frame Crosses
365      if (frameCrosses) {
366          // outside gas
367          // security for inside mother volume
368          bpar[0] = (iChamber->ROuter() - iChamber->RInner())
369            * TMath::Cos(TMath::ASin(dframep1 /
370                                    (iChamber->ROuter() - iChamber->RInner())))
371            / 2.0;
372          bpar[1] = dframep1/2;
373          // total thickness will be (4 * bpar[2]) for each chamber,
374          // which has to be equal to (2 * dframez) - DAlu
375          bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
376          gMC->Gsvolu("S03B", "BOX", idAlu1, bpar, 3);
377          gMC->Gsvolu("S04B", "BOX", idAlu1, bpar, 3);
378          
379          gMC->Gspos("S03B",1,"S03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
380                     idrotm[1100],"ONLY");
381          gMC->Gspos("S03B",2,"S03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
382                     idrotm[1100],"ONLY");
383          gMC->Gspos("S03B",3,"S03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
384                     idrotm[1101],"ONLY");
385          gMC->Gspos("S03B",4,"S03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
386                     idrotm[1101],"ONLY");
387          gMC->Gspos("S03B",5,"S03M", +iChamber->RInner()+bpar[0] , 0,+zfpos, 
388                     idrotm[1100],"ONLY");
389          gMC->Gspos("S03B",6,"S03M", -iChamber->RInner()-bpar[0] , 0,+zfpos, 
390                     idrotm[1100],"ONLY");
391          gMC->Gspos("S03B",7,"S03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, 
392                     idrotm[1101],"ONLY");
393          gMC->Gspos("S03B",8,"S03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, 
394                     idrotm[1101],"ONLY");
395          
396          gMC->Gspos("S04B",1,"S04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
397                     idrotm[1100],"ONLY");
398          gMC->Gspos("S04B",2,"S04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
399                     idrotm[1100],"ONLY");
400          gMC->Gspos("S04B",3,"S04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
401                     idrotm[1101],"ONLY");
402          gMC->Gspos("S04B",4,"S04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
403                     idrotm[1101],"ONLY");
404          gMC->Gspos("S04B",5,"S04M", +iChamber->RInner()+bpar[0] , 0,+zfpos, 
405                     idrotm[1100],"ONLY");
406          gMC->Gspos("S04B",6,"S04M", -iChamber->RInner()-bpar[0] , 0,+zfpos, 
407                     idrotm[1100],"ONLY");
408          gMC->Gspos("S04B",7,"S04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, 
409                     idrotm[1101],"ONLY");
410          gMC->Gspos("S04B",8,"S04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, 
411                     idrotm[1101],"ONLY");
412      }
413 //
414 //   Chamber Material represented by Alu sheet
415      tpar[0]= iChamber->RInner();
416      tpar[1]= iChamber->ROuter();
417      tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
418      gMC->Gsvolu("S03A", "TUBE", idAlu2, tpar, 3);
419      gMC->Gsvolu("S04A", "TUBE", idAlu2, tpar, 3);
420      gMC->Gspos("S03A", 1, "S03M", 0., 0., 0.,  0, "ONLY");
421      gMC->Gspos("S04A", 1, "S04M", 0., 0., 0.,  0, "ONLY");
422 //     
423 //   Sensitive volumes
424      // tpar[2] = iChamber->DGas();
425      tpar[2] = iChamber->DGas()/2;
426      gMC->Gsvolu("S03G", "TUBE", idGas, tpar, 3);
427      gMC->Gsvolu("S04G", "TUBE", idGas, tpar, 3);
428      gMC->Gspos("S03G", 1, "S03A", 0., 0., 0.,  0, "ONLY");
429      gMC->Gspos("S04G", 1, "S04A", 0., 0., 0.,  0, "ONLY");
430 //
431 // Frame Crosses to be placed inside gas 
432      // NONE: chambers are sensitive everywhere
433 //      if (frameCrosses) {
434
435 //       dr = (iChamber->ROuter() - iChamber->RInner());
436 //       bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
437 //       bpar[1] = dframep1/2;
438 //       bpar[2] = iChamber->DGas()/2;
439 //       gMC->Gsvolu("S03F", "BOX", idAlu1, bpar, 3);
440 //       gMC->Gsvolu("S04F", "BOX", idAlu1, bpar, 3);
441          
442 //       gMC->Gspos("S03F",1,"S03G", +iChamber->RInner()+bpar[0] , 0, 0, 
443 //                  idrotm[1100],"ONLY");
444 //       gMC->Gspos("S03F",2,"S03G", -iChamber->RInner()-bpar[0] , 0, 0, 
445 //                  idrotm[1100],"ONLY");
446 //       gMC->Gspos("S03F",3,"S03G", 0, +iChamber->RInner()+bpar[0] , 0, 
447 //                  idrotm[1101],"ONLY");
448 //       gMC->Gspos("S03F",4,"S03G", 0, -iChamber->RInner()-bpar[0] , 0, 
449 //                  idrotm[1101],"ONLY");
450          
451 //       gMC->Gspos("S04F",1,"S04G", +iChamber->RInner()+bpar[0] , 0, 0, 
452 //                  idrotm[1100],"ONLY");
453 //       gMC->Gspos("S04F",2,"S04G", -iChamber->RInner()-bpar[0] , 0, 0, 
454 //                  idrotm[1100],"ONLY");
455 //       gMC->Gspos("S04F",3,"S04G", 0, +iChamber->RInner()+bpar[0] , 0, 
456 //                  idrotm[1101],"ONLY");
457 //       gMC->Gspos("S04F",4,"S04G", 0, -iChamber->RInner()-bpar[0] , 0, 
458 //                  idrotm[1101],"ONLY");
459 //      }
460      }
461      // define the id of tracking media:
462      Int_t idCopper = idtmed[1110];
463      Int_t idGlass  = idtmed[1111];
464      Int_t idCarbon = idtmed[1112];
465      Int_t idRoha   = idtmed[1113];
466
467       // sensitive area: 40*40 cm**2
468      const Float_t sensLength = 40.; 
469      const Float_t sensHeight = 40.; 
470      const Float_t sensWidth  = 0.5; // according to TDR fig 2.120 
471      const Int_t sensMaterial = idGas;
472      const Float_t yOverlap   = 1.5; 
473
474      // PCB dimensions in cm; width: 30 mum copper   
475      const Float_t pcbLength  = sensLength; 
476      const Float_t pcbHeight  = 60.; 
477      const Float_t pcbWidth   = 0.003;   
478      const Int_t pcbMaterial  = idCopper;
479
480      // Insulating material: 200 mum glass fiber glued to pcb  
481      const Float_t insuLength = pcbLength; 
482      const Float_t insuHeight = pcbHeight; 
483      const Float_t insuWidth  = 0.020;   
484      const Int_t insuMaterial = idGlass;
485
486      // Carbon fiber panels: 200mum carbon/epoxy skin   
487      const Float_t panelLength = sensLength; 
488      const Float_t panelHeight = sensHeight; 
489      const Float_t panelWidth  = 0.020;      
490      const Int_t panelMaterial = idCarbon;
491
492      // rohacell between the two carbon panels   
493      const Float_t rohaLength = sensLength; 
494      const Float_t rohaHeight = sensHeight; 
495      const Float_t rohaWidth  = 0.5;
496      const Int_t rohaMaterial = idRoha;
497
498      // Frame around the slat: 2 sticks along length,2 along height  
499      // H: the horizontal ones 
500      const Float_t hFrameLength = pcbLength; 
501      const Float_t hFrameHeight = 1.5; 
502      const Float_t hFrameWidth  = sensWidth; 
503      const Int_t hFrameMaterial = idGlass;
504
505      // V: the vertical ones 
506      const Float_t vFrameLength = 4.0; 
507      const Float_t vFrameHeight = sensHeight + hFrameHeight; 
508      const Float_t vFrameWidth  = sensWidth;
509      const Int_t vFrameMaterial = idGlass;
510
511      // B: the horizontal border filled with rohacell 
512      const Float_t bFrameLength = hFrameLength; 
513      const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; 
514      const Float_t bFrameWidth  = hFrameWidth;
515      const Int_t bFrameMaterial = idRoha;
516
517      // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper)
518      const Float_t nulocLength = 2.5; 
519      const Float_t nulocHeight = 7.5; 
520      const Float_t nulocWidth  = 0.0030 + 0.0014; // equivalent copper width of vetronite; 
521      const Int_t   nulocMaterial = idCopper;
522
523      const Float_t slatHeight = pcbHeight; 
524      const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + 
525                                                2.* panelWidth + rohaWidth);
526      const Int_t slatMaterial = idAir;
527      const Float_t dSlatLength = vFrameLength; // border on left and right 
528
529      Float_t spar[3];  
530      Int_t i, j;
531
532      // the panel volume contains the rohacell
533
534      Float_t twidth = 2 * panelWidth + rohaWidth; 
535      Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. }; 
536      Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; 
537
538      // insulating material contains PCB-> gas-> 2 borders filled with rohacell
539
540      twidth = 2*(insuWidth + pcbWidth) + sensWidth;  
541      Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. }; 
542      twidth -= 2 * insuWidth; 
543      Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. }; 
544      Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; 
545      Float_t theight = 2*hFrameHeight + sensHeight;
546      Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.}; 
547      Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; 
548      Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; 
549      Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; 
550      Float_t xx;
551      Float_t xxmax = (bFrameLength - nulocLength)/2.; 
552      Int_t index=0;
553      
554      if (fStations[2]) {
555          
556 //********************************************************************
557 //                            Station 3                             **
558 //********************************************************************
559      // indices 1 and 2 for first and second chambers in the station
560      // iChamber (first chamber) kept for other quanties than Z,
561      // assumed to be the same in both chambers
562      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4];
563      iChamber2 =(AliMUONChamber*) (*fChambers)[5];
564      zpos1=iChamber1->Z(); 
565      zpos2=iChamber2->Z();
566      dstation = zpos2 - zpos1;
567
568 //      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
569 //
570 //   Mother volume
571      tpar[0] = iChamber->RInner()-dframep; 
572      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
573      tpar[2] = dstation/5;
574
575      char *slats5Mother = "S05M";
576      char *slats6Mother = "S06M";
577      Float_t zoffs5 = 0;
578      Float_t zoffs6 = 0;
579
580      if (gAlice->GetModule("DIPO")) {
581        slats5Mother="DDIP";
582        slats6Mother="DDIP";
583
584        zoffs5 = zpos1;
585        zoffs6 = zpos2;
586      }
587      else {
588        gMC->Gsvolu("S05M", "TUBE", idAir, tpar, 3);
589        gMC->Gsvolu("S06M", "TUBE", idAir, tpar, 3);
590        gMC->Gspos("S05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
591        gMC->Gspos("S06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
592      }
593
594      // volumes for slat geometry (xx=5,..,10 chamber id): 
595      // Sxx0 Sxx1 Sxx2 Sxx3  -->   Slat Mother volumes 
596      // SxxG                          -->   Sensitive volume (gas)
597      // SxxP                          -->   PCB (copper) 
598      // SxxI                          -->   Insulator (vetronite) 
599      // SxxC                          -->   Carbon panel 
600      // SxxR                          -->   Rohacell
601      // SxxH, SxxV                    -->   Horizontal and Vertical frames (vetronite)
602      // SB5x                          -->   Volumes for the 35 cm long PCB
603      // slat dimensions: slat is a MOTHER volume!!! made of air
604
605      // only for chamber 5: slat 1 has a PCB shorter by 5cm!
606
607      Float_t tlength = 35.;
608      Float_t panelpar2[3]  = { tlength/2., panelpar[1],  panelpar[2]}; 
609      Float_t rohapar2[3]   = { tlength/2., rohapar[1],   rohapar[2]}; 
610      Float_t insupar2[3]   = { tlength/2., insupar[1],   insupar[2]}; 
611      Float_t pcbpar2[3]    = { tlength/2., pcbpar[1],    pcbpar[2]}; 
612      Float_t senspar2[3]   = { tlength/2., senspar[1],   senspar[2]}; 
613      Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]}; 
614      Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]}; 
615
616      const Int_t nSlats3 = 5;  // number of slats per quadrant
617      const Int_t nPCB3[nSlats3] = {3,3,4,3,2}; // n PCB per slat
618      const Float_t xpos3[nSlats3] = {31., 40., 0., 0., 0.};
619      Float_t slatLength3[nSlats3]; 
620
621      // create and position the slat (mother) volumes 
622
623      char volNam5[5];
624      char volNam6[5];
625      Float_t xSlat3;
626
627      Float_t spar2[3];
628      for (i = 0; i<nSlats3; i++){
629        slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength; 
630        xSlat3 = slatLength3[i]/2. - vFrameLength/2. + xpos3[i]; 
631        if (i==1 || i==0) slatLength3[i] -=  2. *dSlatLength; // frame out in PCB with circular border 
632        Float_t ySlat31 =  sensHeight * i - yOverlap * i; 
633        Float_t ySlat32 = -sensHeight * i + yOverlap * i; 
634        spar[0] = slatLength3[i]/2.; 
635        spar[1] = slatHeight/2.;
636        spar[2] = slatWidth/2. * 1.01; 
637        // take away 5 cm from the first slat in chamber 5
638        Float_t xSlat32 = 0;
639        if (i==1 || i==2) { // 1 pcb is shortened by 5cm
640          spar2[0] = spar[0]-5./2.;
641          xSlat32 = xSlat3 - 5/2.;
642        }
643        else {
644          spar2[0] = spar[0];
645          xSlat32 = xSlat3;
646        }
647        spar2[1] = spar[1];
648        spar2[2] = spar[2]; 
649        Float_t dzCh3=spar[2] * 1.01;
650        // zSlat to be checked (odd downstream or upstream?)
651        Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; 
652        sprintf(volNam5,"S05%d",i);
653        gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar2,3);
654        gMC->Gspos(volNam5, i*4+1,slats5Mother, xSlat32, ySlat31, zoffs5+zSlat+2.*dzCh3, 0, "ONLY");
655        gMC->Gspos(volNam5, i*4+2,slats5Mother,-xSlat32, ySlat31, zoffs5+zSlat-2.*dzCh3, 0, "ONLY");
656        
657        if (i>0) { 
658          gMC->Gspos(volNam5, i*4+3,slats5Mother, xSlat32, ySlat32, zoffs5+zSlat+2.*dzCh3, 0, "ONLY");
659          gMC->Gspos(volNam5, i*4+4,slats5Mother,-xSlat32, ySlat32, zoffs5+zSlat-2.*dzCh3, 0, "ONLY");
660        }
661        sprintf(volNam6,"S06%d",i);
662        gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3);
663        gMC->Gspos(volNam6, i*4+1,slats6Mother, xSlat3, ySlat31, zoffs6+zSlat+2.*dzCh3, 0, "ONLY");
664        gMC->Gspos(volNam6, i*4+2,slats6Mother,-xSlat3, ySlat31, zoffs6+zSlat-2.*dzCh3, 0, "ONLY");
665        if (i>0) { 
666          gMC->Gspos(volNam6, i*4+3,slats6Mother, xSlat3, ySlat32, zoffs6+zSlat+2.*dzCh3, 0, "ONLY");
667          gMC->Gspos(volNam6, i*4+4,slats6Mother,-xSlat3, ySlat32, zoffs6+zSlat-2.*dzCh3, 0, "ONLY");
668        }
669      }
670
671      // create the panel volume 
672  
673      gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3);
674      gMC->Gsvolu("SB5C","BOX",panelMaterial,panelpar2,3);
675      gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3);
676
677      // create the rohacell volume 
678
679      gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3);
680      gMC->Gsvolu("SB5R","BOX",rohaMaterial,rohapar2,3);
681      gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3);
682
683      // create the insulating material volume 
684
685      gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3);
686      gMC->Gsvolu("SB5I","BOX",insuMaterial,insupar2,3);
687      gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3);
688
689      // create the PCB volume 
690
691      gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3);
692      gMC->Gsvolu("SB5P","BOX",pcbMaterial,pcbpar2,3);
693      gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3);
694  
695      // create the sensitive volumes,
696      gMC->Gsvolu("S05G","BOX",sensMaterial,dum,0);
697      gMC->Gsvolu("S06G","BOX",sensMaterial,dum,0);
698
699
700      // create the vertical frame volume 
701
702      gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3);
703      gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3);
704
705      // create the horizontal frame volume 
706
707      gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3);
708      gMC->Gsvolu("SB5H","BOX",hFrameMaterial,hFramepar2,3);
709      gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3);
710
711      // create the horizontal border volume 
712
713      gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3);
714      gMC->Gsvolu("SB5B","BOX",bFrameMaterial,bFramepar2,3);
715      gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3);
716
717      index=0; 
718      for (i = 0; i<nSlats3; i++){
719        sprintf(volNam5,"S05%d",i);
720        sprintf(volNam6,"S06%d",i);
721        Float_t xvFrame  = (slatLength3[i] - vFrameLength)/2.;
722        Float_t xvFrame2  = xvFrame;
723        if ( i==1 || i ==2 ) xvFrame2 -= 5./2.;
724        // position the vertical frames 
725        if (i!=1 && i!=0) { 
726          gMC->Gspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY");
727          gMC->Gspos("S05V",2*i  ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY");
728          gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY");
729          gMC->Gspos("S06V",2*i  ,volNam6,-xvFrame, 0., 0. , 0, "ONLY");
730        }       
731        // position the panels and the insulating material 
732        for (j=0; j<nPCB3[i]; j++){
733          index++;
734          Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5); 
735          Float_t xx2 = xx + 5/2.; 
736          
737          Float_t zPanel = spar[2] - panelpar[2]; 
738          if ( (i==1 || i==2) && j == nPCB3[i]-1) { // 1 pcb is shortened by 5cm 
739            gMC->Gspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
740            gMC->Gspos("SB5C",2*index  ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
741            gMC->Gspos("SB5I",index    ,volNam5, xx, 0., 0      , 0, "ONLY");
742          }
743          else if ( (i==1 || i==2) && j < nPCB3[i]-1) {
744            gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY");
745            gMC->Gspos("S05C",2*index  ,volNam5, xx2, 0.,-zPanel , 0, "ONLY");
746            gMC->Gspos("S05I",index    ,volNam5, xx2, 0., 0 , 0, "ONLY");
747          }
748          else {
749            gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
750            gMC->Gspos("S05C",2*index  ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
751            gMC->Gspos("S05I",index    ,volNam5, xx, 0., 0 , 0, "ONLY");
752          }
753          gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY");
754          gMC->Gspos("S06C",2*index  ,volNam6, xx, 0.,-zPanel , 0, "ONLY");
755          gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY");
756        } 
757      }
758      
759      // position the rohacell volume inside the panel volume
760      gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY"); 
761      gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY"); 
762      gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY"); 
763
764      // position the PCB volume inside the insulating material volume
765      gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); 
766      gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY"); 
767      gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); 
768      // position the horizontal frame volume inside the PCB volume
769      gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); 
770      gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY"); 
771      gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); 
772      // position the sensitive volume inside the horizontal frame volume
773      gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); 
774      gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3); 
775      gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); 
776      // position the border volumes inside the PCB volume
777      Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; 
778      gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); 
779      gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); 
780      gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY"); 
781      gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY"); 
782      gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); 
783      gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); 
784
785      // create the NULOC volume and position it in the horizontal frame
786
787      gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3);
788      gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3);
789      index = 0;
790      Float_t xxmax2 = xxmax - 5./2.;
791      for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { 
792        index++; 
793        gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
794        gMC->Gspos("S05N",2*index  ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY");
795        if (xx > -xxmax2 && xx< xxmax2) {
796          gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
797          gMC->Gspos("S05N",2*index  ,"SB5B", xx, 0., bFrameWidth/4., 0, "ONLY");
798        }
799        gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
800        gMC->Gspos("S06N",2*index  ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY");
801      }
802      
803      // position the volumes approximating the circular section of the pipe
804      Float_t yoffs = sensHeight/2. - yOverlap; 
805      Float_t epsilon = 0.001; 
806      Int_t ndiv=6;
807      Float_t divpar[3];
808      Double_t dydiv= sensHeight/ndiv;
809      Double_t ydiv = yoffs -dydiv;
810      Int_t imax=0; 
811      imax = 1; 
812      Float_t rmin = 33.; 
813      Float_t z1 = spar[2], z2=2*spar[2]*1.01; 
814      for (Int_t idiv=0;idiv<ndiv; idiv++){ 
815        ydiv+= dydiv;
816        Float_t xdiv = 0.; 
817        if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
818        divpar[0] = (pcbLength-xdiv)/2.; 
819        divpar[1] = dydiv/2. - epsilon;
820        divpar[2] = sensWidth/2.; 
821        Float_t xvol=(pcbLength+xdiv)/2.+1.999;
822        Float_t yvol=ydiv + dydiv/2.; 
823        //printf ("y ll = %f y ur = %f \n",yvol - divpar[1], yvol + divpar[1]); 
824        gMC->Gsposp("S05G",imax+4*idiv+1,slats5Mother, xvol, yvol, zoffs5+z1+z2, 0, "ONLY",divpar,3);
825        gMC->Gsposp("S06G",imax+4*idiv+1,slats6Mother, xvol, yvol, zoffs6+z1+z2, 0, "ONLY",divpar,3);
826        gMC->Gsposp("S05G",imax+4*idiv+2,slats5Mother, xvol,-yvol, zoffs5+z1+z2, 0, "ONLY",divpar,3);
827        gMC->Gsposp("S06G",imax+4*idiv+2,slats6Mother, xvol,-yvol, zoffs6+z1+z2, 0, "ONLY",divpar,3);
828        gMC->Gsposp("S05G",imax+4*idiv+3,slats5Mother,-xvol, yvol, zoffs5+z1-z2, 0, "ONLY",divpar,3);
829        gMC->Gsposp("S06G",imax+4*idiv+3,slats6Mother,-xvol, yvol, zoffs6+z1-z2, 0, "ONLY",divpar,3);
830        gMC->Gsposp("S05G",imax+4*idiv+4,slats5Mother,-xvol,-yvol, zoffs5+z1-z2, 0, "ONLY",divpar,3);
831        gMC->Gsposp("S06G",imax+4*idiv+4,slats6Mother,-xvol,-yvol, zoffs6+z1-z2, 0, "ONLY",divpar,3);
832      }
833      }
834      
835  if (fStations[3]) {
836
837 //********************************************************************
838 //                            Station 4                             **
839 //********************************************************************
840      // indices 1 and 2 for first and second chambers in the station
841      // iChamber (first chamber) kept for other quanties than Z,
842      // assumed to be the same in both chambers
843      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6];
844      iChamber2 =(AliMUONChamber*) (*fChambers)[7];
845      zpos1=iChamber1->Z(); 
846      zpos2=iChamber2->Z();
847      dstation = zpos2 - zpos1;
848 //      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
849      
850 //
851 //   Mother volume
852      tpar[0] = iChamber->RInner()-dframep; 
853      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
854      tpar[2] = dstation/4;
855
856      gMC->Gsvolu("S07M", "TUBE", idAir, tpar, 3);
857      gMC->Gsvolu("S08M", "TUBE", idAir, tpar, 3);
858      gMC->Gspos("S07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
859      gMC->Gspos("S08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
860      
861
862      const Int_t nSlats4 = 6;  // number of slats per quadrant
863      const Int_t nPCB4[nSlats4] = {4,4,5,5,4,3}; // n PCB per slat
864      const Float_t xpos4[nSlats4] = {38.5, 40., 0., 0., 0., 0.};
865      Float_t slatLength4[nSlats4];     
866
867      // create and position the slat (mother) volumes 
868
869      char volNam7[5];
870      char volNam8[5];
871      Float_t xSlat4;
872      Float_t ySlat4;
873
874      for (i = 0; i<nSlats4; i++){
875        slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength; 
876        xSlat4 = slatLength4[i]/2. - vFrameLength/2. + xpos4[i]; 
877        if (i==1) slatLength4[i] -=  2. *dSlatLength; // frame out in PCB with circular border 
878        ySlat4 =  sensHeight * i - yOverlap *i;
879        
880        spar[0] = slatLength4[i]/2.; 
881        spar[1] = slatHeight/2.;
882        spar[2] = slatWidth/2.*1.01; 
883        Float_t dzCh4=spar[2]*1.01;
884        // zSlat to be checked (odd downstream or upstream?)
885        Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2]; 
886        sprintf(volNam7,"S07%d",i);
887        gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3);
888        gMC->Gspos(volNam7, i*4+1,"S07M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
889        gMC->Gspos(volNam7, i*4+2,"S07M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
890        if (i>0) { 
891          gMC->Gspos(volNam7, i*4+3,"S07M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
892          gMC->Gspos(volNam7, i*4+4,"S07M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
893        }
894        sprintf(volNam8,"S08%d",i);
895        gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3);
896        gMC->Gspos(volNam8, i*4+1,"S08M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
897        gMC->Gspos(volNam8, i*4+2,"S08M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
898        if (i>0) { 
899          gMC->Gspos(volNam8, i*4+3,"S08M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
900          gMC->Gspos(volNam8, i*4+4,"S08M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
901        }
902      }
903      
904
905      // create the panel volume 
906  
907      gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3);
908      gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3);
909
910      // create the rohacell volume 
911
912      gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3);
913      gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3);
914
915      // create the insulating material volume 
916
917      gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3);
918      gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3);
919
920      // create the PCB volume 
921
922      gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3);
923      gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3);
924  
925      // create the sensitive volumes,
926
927      gMC->Gsvolu("S07G","BOX",sensMaterial,dum,0);
928      gMC->Gsvolu("S08G","BOX",sensMaterial,dum,0);
929
930      // create the vertical frame volume 
931
932      gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3);
933      gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3);
934
935      // create the horizontal frame volume 
936
937      gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3);
938      gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3);
939
940      // create the horizontal border volume 
941
942      gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3);
943      gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3);
944
945      index=0; 
946      for (i = 0; i<nSlats4; i++){
947        sprintf(volNam7,"S07%d",i);
948        sprintf(volNam8,"S08%d",i);
949        Float_t xvFrame  = (slatLength4[i] - vFrameLength)/2.;
950        // position the vertical frames 
951        if (i!=1 && i!=0) { 
952          gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY");
953          gMC->Gspos("S07V",2*i  ,volNam7,-xvFrame, 0., 0. , 0, "ONLY");
954          gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY");
955          gMC->Gspos("S08V",2*i  ,volNam8,-xvFrame, 0., 0. , 0, "ONLY");
956        }
957        // position the panels and the insulating material 
958        for (j=0; j<nPCB4[i]; j++){
959          index++;
960          Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5); 
961
962          Float_t zPanel = spar[2] - panelpar[2]; 
963          gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY");
964          gMC->Gspos("S07C",2*index  ,volNam7, xx, 0.,-zPanel , 0, "ONLY");
965          gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY");
966          gMC->Gspos("S08C",2*index  ,volNam8, xx, 0.,-zPanel , 0, "ONLY");
967
968          gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY");
969          gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY");
970        } 
971      }
972
973      // position the rohacell volume inside the panel volume
974      gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY"); 
975      gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY"); 
976
977      // position the PCB volume inside the insulating material volume
978      gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); 
979      gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); 
980      // position the horizontal frame volume inside the PCB volume
981      gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); 
982      gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); 
983      // position the sensitive volume inside the horizontal frame volume
984      gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); 
985      gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); 
986      // position the border volumes inside the PCB volume
987      Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; 
988      gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); 
989      gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); 
990      gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); 
991      gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); 
992
993      // create the NULOC volume and position it in the horizontal frame
994
995      gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3);
996      gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3);
997      index = 0;
998      for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { 
999        index++; 
1000        gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1001        gMC->Gspos("S07N",2*index  ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY");
1002        gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1003        gMC->Gspos("S08N",2*index  ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY");
1004      }
1005
1006      // position the volumes approximating the circular section of the pipe
1007      Float_t yoffs = sensHeight/2. - yOverlap; 
1008      Float_t epsilon = 0.001; 
1009      Int_t ndiv=6;
1010      Float_t divpar[3];
1011      Double_t dydiv= sensHeight/ndiv;
1012      Double_t ydiv = yoffs -dydiv;
1013      Int_t imax=0; 
1014      imax = 1; 
1015      Float_t rmin = 40.; 
1016      Float_t z1 = -spar[2], z2=2*spar[2]*1.01; 
1017      for (Int_t idiv=0;idiv<ndiv; idiv++){ 
1018        ydiv+= dydiv;
1019        Float_t xdiv = 0.; 
1020        if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1021        divpar[0] = (pcbLength-xdiv)/2.; 
1022        divpar[1] = dydiv/2. - epsilon;
1023        divpar[2] = sensWidth/2.; 
1024        Float_t xvol=(pcbLength+xdiv)/2.+1.999;
1025        Float_t yvol=ydiv + dydiv/2.;
1026        gMC->Gsposp("S07G",imax+4*idiv+1,"S07M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1027        gMC->Gsposp("S08G",imax+4*idiv+1,"S08M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1028        gMC->Gsposp("S07G",imax+4*idiv+2,"S07M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1029        gMC->Gsposp("S08G",imax+4*idiv+2,"S08M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1030        gMC->Gsposp("S07G",imax+4*idiv+3,"S07M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1031        gMC->Gsposp("S08G",imax+4*idiv+3,"S08M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1032        gMC->Gsposp("S07G",imax+4*idiv+4,"S07M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1033        gMC->Gsposp("S08G",imax+4*idiv+4,"S08M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1034      }
1035
1036
1037
1038
1039
1040  }
1041
1042  if (fStations[4]) {
1043      
1044
1045 //********************************************************************
1046 //                            Station 5                             **
1047 //********************************************************************
1048      // indices 1 and 2 for first and second chambers in the station
1049      // iChamber (first chamber) kept for other quanties than Z,
1050      // assumed to be the same in both chambers
1051      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8];
1052      iChamber2 =(AliMUONChamber*) (*fChambers)[9];
1053      zpos1=iChamber1->Z(); 
1054      zpos2=iChamber2->Z();
1055      dstation = zpos2 - zpos1;
1056 //      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
1057      
1058 //
1059 //   Mother volume
1060      tpar[0] = iChamber->RInner()-dframep; 
1061      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
1062      tpar[2] = dstation/5.;
1063
1064      gMC->Gsvolu("S09M", "TUBE", idAir, tpar, 3);
1065      gMC->Gsvolu("S10M", "TUBE", idAir, tpar, 3);
1066      gMC->Gspos("S09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1067      gMC->Gspos("S10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1068
1069
1070      const Int_t nSlats5 = 7;  // number of slats per quadrant
1071      const Int_t nPCB5[nSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat
1072      const Float_t xpos5[nSlats5] = {38.5, 40., 0., 0., 0., 0., 0.};
1073      Float_t slatLength5[nSlats5]; 
1074      char volNam9[5];
1075      char volNam10[5];
1076      Float_t xSlat5;
1077      Float_t ySlat5;
1078
1079      for (i = 0; i<nSlats5; i++){
1080        slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength; 
1081        xSlat5 = slatLength5[i]/2. - vFrameLength/2. +xpos5[i]; 
1082        if (i==1 || i==0) slatLength5[i] -=  2. *dSlatLength; // frame out in PCB with circular border 
1083        ySlat5 = sensHeight * i - yOverlap * i; 
1084        spar[0] = slatLength5[i]/2.; 
1085        spar[1] = slatHeight/2.;
1086        spar[2] = slatWidth/2. * 1.01; 
1087        Float_t dzCh5=spar[2]*1.01;
1088        // zSlat to be checked (odd downstream or upstream?)
1089        Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; 
1090        sprintf(volNam9,"S09%d",i);
1091        gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3);
1092        gMC->Gspos(volNam9, i*4+1,"S09M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1093        gMC->Gspos(volNam9, i*4+2,"S09M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
1094        if (i>0) { 
1095            gMC->Gspos(volNam9, i*4+3,"S09M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1096            gMC->Gspos(volNam9, i*4+4,"S09M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
1097        }
1098        sprintf(volNam10,"S10%d",i);
1099        gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3);
1100        gMC->Gspos(volNam10, i*4+1,"S10M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1101        gMC->Gspos(volNam10, i*4+2,"S10M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
1102        if (i>0) { 
1103            gMC->Gspos(volNam10, i*4+3,"S10M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1104            gMC->Gspos(volNam10, i*4+4,"S10M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
1105        }
1106      }
1107
1108      // create the panel volume 
1109  
1110      gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3);
1111      gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3);
1112
1113      // create the rohacell volume 
1114
1115      gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3);
1116      gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3);
1117
1118      // create the insulating material volume 
1119
1120      gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3);
1121      gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3);
1122
1123      // create the PCB volume 
1124
1125      gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3);
1126      gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3);
1127  
1128      // create the sensitive volumes,
1129
1130      gMC->Gsvolu("S09G","BOX",sensMaterial,dum,0);
1131      gMC->Gsvolu("S10G","BOX",sensMaterial,dum,0);
1132
1133      // create the vertical frame volume 
1134
1135      gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3);
1136      gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3);
1137
1138      // create the horizontal frame volume 
1139
1140      gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3);
1141      gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3);
1142
1143      // create the horizontal border volume 
1144
1145      gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3);
1146      gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3);
1147
1148      index=0; 
1149      for (i = 0; i<nSlats5; i++){
1150        sprintf(volNam9,"S09%d",i);
1151        sprintf(volNam10,"S10%d",i);
1152        Float_t xvFrame  = (slatLength5[i] - vFrameLength)/2.;
1153        // position the vertical frames 
1154        if (i!=1 && i!=0) { 
1155          gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY");
1156          gMC->Gspos("S09V",2*i  ,volNam9,-xvFrame, 0., 0. , 0, "ONLY");
1157          gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY");
1158          gMC->Gspos("S10V",2*i  ,volNam10,-xvFrame, 0., 0. , 0, "ONLY");
1159        }
1160        
1161        // position the panels and the insulating material 
1162        for (j=0; j<nPCB5[i]; j++){
1163          index++;
1164          Float_t xx = sensLength * (-nPCB5[i]/2.+j+.5); 
1165
1166          Float_t zPanel = spar[2] - panelpar[2]; 
1167          gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY");
1168          gMC->Gspos("S09C",2*index  ,volNam9, xx, 0.,-zPanel , 0, "ONLY");
1169          gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY");
1170          gMC->Gspos("S10C",2*index  ,volNam10, xx, 0.,-zPanel , 0, "ONLY");
1171
1172          gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY");
1173          gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY");
1174        } 
1175      }
1176
1177      // position the rohacell volume inside the panel volume
1178      gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY"); 
1179      gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY"); 
1180
1181      // position the PCB volume inside the insulating material volume
1182      gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); 
1183      gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); 
1184      // position the horizontal frame volume inside the PCB volume
1185      gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); 
1186      gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); 
1187      // position the sensitive volume inside the horizontal frame volume
1188      gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); 
1189      gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); 
1190      // position the border volumes inside the PCB volume
1191      Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; 
1192      gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); 
1193      gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); 
1194      gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); 
1195      gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); 
1196
1197      // create the NULOC volume and position it in the horizontal frame
1198
1199      gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3);
1200      gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3);
1201      index = 0;
1202      for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { 
1203        index++; 
1204        gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1205        gMC->Gspos("S09N",2*index  ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY");
1206        gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1207        gMC->Gspos("S10N",2*index  ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY");
1208      }
1209      // position the volumes approximating the circular section of the pipe
1210      Float_t yoffs = sensHeight/2. - yOverlap; 
1211      Float_t epsilon = 0.001; 
1212      Int_t ndiv=6;
1213      Float_t divpar[3];
1214      Double_t dydiv= sensHeight/ndiv;
1215      Double_t ydiv = yoffs -dydiv;
1216      Int_t imax=0; 
1217      //     for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat]; 
1218      imax = 1; 
1219      Float_t rmin = 40.; 
1220      Float_t z1 = spar[2], z2=2*spar[2]*1.01; 
1221      for (Int_t idiv=0;idiv<ndiv; idiv++){ 
1222        ydiv+= dydiv;
1223        Float_t xdiv = 0.; 
1224        if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1225        divpar[0] = (pcbLength-xdiv)/2.; 
1226        divpar[1] = dydiv/2. - epsilon;
1227        divpar[2] = sensWidth/2.; 
1228        Float_t xvol=(pcbLength+xdiv)/2. + 1.999;
1229        Float_t yvol=ydiv + dydiv/2.;
1230        gMC->Gsposp("S09G",imax+4*idiv+1,"S09M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1231        gMC->Gsposp("S10G",imax+4*idiv+1,"S10M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1232        gMC->Gsposp("S09G",imax+4*idiv+2,"S09M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1233        gMC->Gsposp("S10G",imax+4*idiv+2,"S10M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1234        gMC->Gsposp("S09G",imax+4*idiv+3,"S09M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1235        gMC->Gsposp("S10G",imax+4*idiv+3,"S10M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1236        gMC->Gsposp("S09G",imax+4*idiv+4,"S09M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1237        gMC->Gsposp("S10G",imax+4*idiv+4,"S10M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1238      }
1239
1240  }
1241  
1242
1243 //********************************************************************
1244 //                            Trigger                               **
1245 //******************************************************************** 
1246  /* 
1247     zpos1 and zpos2 are the middle of the first and second
1248     planes of station 1 (+1m for second station):
1249     zpos1=(zpos1m+zpos1p)/2=(15999+16071)/2=16035 mm, thick/2=40 mm
1250     zpos2=(zpos2m+zpos2p)/2=(16169+16241)/2=16205 mm, thick/2=40 mm
1251     zposxm and zposxp= middles of gaz gaps within a detection plane
1252     rem: the total thickness accounts for 1 mm of al on both
1253     side of the RPCs (see zpos1 and zpos2)
1254  */
1255
1256 // vertical gap between right and left chambers (kDXZERO*2=4cm)
1257  const Float_t kDXZERO=2.; 
1258 // main distances for chamber definition in first plane/first station
1259  const Float_t kXMIN=34.;       
1260  const Float_t kXMED=51.;                                
1261  const Float_t kXMAX=272.; 
1262 // kXMAX will become 255. in real life. segmentation to be updated accordingly
1263 // (see fig.2-4 & 2-5 of Local Trigger Board PRR)
1264  const Float_t kYMIN=34.;                              
1265  const Float_t kYMAX=51.;                              
1266 // inner/outer radius of flange between beam shield. and chambers (1/station)
1267  const Float_t kRMIN[2]={50.,50.};
1268  const Float_t kRMAX[2]={64.,68.};
1269 // z position of the middle of the gas gap in mother vol 
1270  const Float_t kZm=-3.6;
1271  const Float_t kZp=+3.6;     
1272  
1273  iChamber1 = (AliMUONChamber*) (*fChambers)[10];     
1274  zpos1 = iChamber1->Z();
1275
1276 // ratio of zpos1m/zpos1p and inverse for first plane
1277  Float_t zmp=(zpos1-3.6)/(zpos1+3.6);
1278  Float_t zpm=1./zmp;
1279  
1280  Int_t icount=0; // chamber counter (0 1 2 3)
1281  
1282  for (Int_t istation=0; istation<2; istation++) { // loop on stations    
1283      for (Int_t iplane=0; iplane<2; iplane++) {   // loop on detection planes
1284          
1285          Int_t iVolNum=1; // counter Volume Number
1286          icount = Int_t(iplane*TMath::Power(2,0))+
1287              Int_t(istation*TMath::Power(2,1));
1288          
1289          char volPlane[5]; 
1290          sprintf(volPlane,"SM%d%d",istation+1,iplane+1);
1291          
1292          iChamber = (AliMUONChamber*) (*fChambers)[10+icount];
1293          Float_t zpos = iChamber->Z();       
1294          
1295 // mother volume 
1296          tpar[0] = iChamber->RInner(); 
1297          tpar[1] = iChamber->ROuter(); 
1298          tpar[2] = 4.0;    
1299          gMC->Gsvolu(volPlane,"TUBE",idAir,tpar,3);
1300          
1301 // Flange between beam shielding and RPC 
1302          tpar[0]= kRMIN[istation];
1303          tpar[1]= kRMAX[istation];
1304          tpar[2]= 4.0;
1305          
1306          char volFlange[5];
1307          sprintf(volFlange,"SF%dA",icount+1);    
1308          gMC->Gsvolu(volFlange,"TUBE",idAlu1,tpar,3);     //Al
1309          gMC->Gspos(volFlange,1,volPlane,0.,0.,0.,0,"MANY");
1310          
1311 // scaling factor
1312          Float_t zRatio = zpos / zpos1;
1313          
1314 // chamber prototype
1315          tpar[0]= 0.;
1316          tpar[1]= 0.;
1317          tpar[2]= 0.;
1318          
1319          char volAlu[5]; // Alu
1320          char volBak[5]; // Bakelite
1321          char volGaz[5]; // Gas streamer
1322          
1323          sprintf(volAlu,"SC%dA",icount+1);
1324          sprintf(volBak,"SB%dA",icount+1);
1325          sprintf(volGaz,"SG%dA",icount+1);
1326          
1327          gMC->Gsvolu(volAlu,"BOX",idAlu1,tpar,0);           // Al
1328          gMC->Gsvolu(volBak,"BOX",idtmed[1107],tpar,0);     // Bakelite
1329          gMC->Gsvolu(volGaz,"BOX",idtmed[1106],tpar,0);     // Gas streamer
1330          
1331 // chamber type A
1332          tpar[0] = -1.;
1333          tpar[1] = -1.;
1334          
1335          Float_t xA=(kDXZERO+kXMED+(kXMAX-kXMED)/2.)*zRatio;
1336          Float_t yAm=0.;
1337          Float_t yAp=0.;
1338          
1339          tpar[2] = 0.1;    
1340          gMC->Gsposp(volGaz,1,volBak,0.,0.,0.,0,"ONLY",tpar,3);
1341          tpar[2] = 0.3;
1342          gMC->Gsposp(volBak,1,volAlu,0.,0.,0.,0,"ONLY",tpar,3);
1343          
1344          tpar[2] = 0.4;
1345          tpar[0] = ((kXMAX-kXMED)/2.)*zRatio;
1346          tpar[1] = kYMIN*zRatio;
1347          
1348          gMC->Gsposp(volAlu,iVolNum++,volPlane, xA,yAm,kZm,0,"ONLY",tpar,3);
1349          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xA,yAp,kZp,0,"ONLY",tpar,3);
1350          gMC->Gsbool(volAlu,volFlange);
1351          
1352 // chamber type B    
1353          Float_t tpar1save=tpar[1];
1354          Float_t y1msave=yAm;
1355          Float_t y1psave=yAp;
1356          
1357          tpar[0] = ((kXMAX-kXMIN)/2.) * zRatio;
1358          tpar[1] = ((kYMAX-kYMIN)/2.) * zRatio;
1359          
1360          Float_t xB=(kDXZERO+kXMIN)*zRatio+tpar[0];
1361          Float_t yBp=(y1msave+tpar1save)*zpm+tpar[1];
1362          Float_t yBm=(y1psave+tpar1save)*zmp+tpar[1];    
1363
1364          gMC->Gsposp(volAlu,iVolNum++,volPlane, xB, yBp,kZp,0,"ONLY",tpar,3);
1365          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xB, yBm,kZm,0,"ONLY",tpar,3);
1366          gMC->Gsposp(volAlu,iVolNum++,volPlane, xB,-yBp,kZp,0,"ONLY",tpar,3);
1367          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xB,-yBm,kZm,0,"ONLY",tpar,3);
1368          
1369 // chamber type C (note : same Z than type B)
1370          tpar1save=tpar[1];
1371          y1msave=yBm;
1372          y1psave=yBp;
1373          
1374          tpar[0] = (kXMAX/2)*zRatio;
1375          tpar[1] = (kYMAX/2)*zRatio;
1376          
1377          Float_t xC=kDXZERO*zRatio+tpar[0];
1378          Float_t yCp=(y1psave+tpar1save)*1.+tpar[1];
1379          Float_t yCm=(y1msave+tpar1save)*1.+tpar[1];
1380          
1381          gMC->Gsposp(volAlu,iVolNum++,volPlane, xC, yCp,kZp,0,"ONLY",tpar,3);
1382          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC, yCm,kZm,0,"ONLY",tpar,3);
1383          gMC->Gsposp(volAlu,iVolNum++,volPlane, xC,-yCp,kZp,0,"ONLY",tpar,3);
1384          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC,-yCm,kZm,0,"ONLY",tpar,3);
1385                  
1386 // chamber type D, E and F (same size)        
1387          tpar1save=tpar[1];
1388          y1msave=yCm;
1389          y1psave=yCp;
1390          
1391          tpar[0] = (kXMAX/2.)*zRatio;
1392          tpar[1] =  kYMIN*zRatio;
1393          
1394          Float_t xD=kDXZERO*zRatio+tpar[0];
1395          Float_t yDp=(y1msave+tpar1save)*zpm+tpar[1];
1396          Float_t yDm=(y1psave+tpar1save)*zmp+tpar[1];
1397          
1398          gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yDm,kZm,0,"ONLY",tpar,3);
1399          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xD, yDp,kZp,0,"ONLY",tpar,3);
1400          gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yDm,kZm,0,"ONLY",tpar,3);
1401          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xD,-yDp,kZp,0,"ONLY",tpar,3);
1402          
1403          tpar1save=tpar[1];
1404          y1msave=yDm;
1405          y1psave=yDp;
1406          Float_t yEp=(y1msave+tpar1save)*zpm+tpar[1];
1407          Float_t yEm=(y1psave+tpar1save)*zmp+tpar[1];
1408          
1409          gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yEp,kZp,0,"ONLY",tpar,3);
1410          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xD, yEm,kZm,0,"ONLY",tpar,3);
1411          gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yEp,kZp,0,"ONLY",tpar,3);
1412          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xD,-yEm,kZm,0,"ONLY",tpar,3);
1413          
1414          tpar1save=tpar[1];
1415          y1msave=yEm;
1416          y1psave=yEp;
1417          Float_t yFp=(y1msave+tpar1save)*zpm+tpar[1];
1418          Float_t yFm=(y1psave+tpar1save)*zmp+tpar[1];
1419          
1420          gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yFm,kZm,0,"ONLY",tpar,3);
1421          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xD, yFp,kZp,0,"ONLY",tpar,3);
1422          gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yFm,kZm,0,"ONLY",tpar,3);
1423          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xD,-yFp,kZp,0,"ONLY",tpar,3);
1424
1425 // Positioning plane in ALICE     
1426          gMC->Gspos(volPlane,1,"ALIC",0.,0.,zpos,0,"ONLY");
1427          
1428      } // end loop on detection planes
1429  } // end loop on stations
1430
1431 }
1432
1433  
1434 //___________________________________________
1435 void AliMUONv1::CreateMaterials()
1436 {
1437   // *** DEFINITION OF AVAILABLE MUON MATERIALS *** 
1438   //
1439   //     Ar-CO2 gas (80%+20%)
1440     Float_t ag1[3]   = { 39.95,12.01,16. };
1441     Float_t zg1[3]   = { 18.,6.,8. };
1442     Float_t wg1[3]   = { .8,.0667,.13333 };
1443     Float_t dg1      = .001821;
1444     //
1445     //     Ar-buthane-freon gas -- trigger chambers 
1446     Float_t atr1[4]  = { 39.95,12.01,1.01,19. };
1447     Float_t ztr1[4]  = { 18.,6.,1.,9. };
1448     Float_t wtr1[4]  = { .56,.1262857,.2857143,.028 };
1449     Float_t dtr1     = .002599;
1450     //
1451     //     Ar-CO2 gas 
1452     Float_t agas[3]  = { 39.95,12.01,16. };
1453     Float_t zgas[3]  = { 18.,6.,8. };
1454     Float_t wgas[3]  = { .74,.086684,.173316 };
1455     Float_t dgas     = .0018327;
1456     //
1457     //     Ar-Isobutane gas (80%+20%) -- tracking 
1458     Float_t ag[3]    = { 39.95,12.01,1.01 };
1459     Float_t zg[3]    = { 18.,6.,1. };
1460     Float_t wg[3]    = { .8,.057,.143 };
1461     Float_t dg       = .0019596;
1462     //
1463     //     Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger 
1464     Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
1465     Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
1466     Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
1467     Float_t dtrig    = .0031463;
1468     //
1469     //     bakelite 
1470
1471     Float_t abak[3] = {12.01 , 1.01 , 16.};
1472     Float_t zbak[3] = {6.     , 1.   , 8.};
1473     Float_t wbak[3] = {6.     , 6.   , 1.}; 
1474     Float_t dbak = 1.4;
1475
1476     Float_t epsil, stmin, deemax, tmaxfd, stemax;
1477
1478     Int_t iSXFLD   = gAlice->Field()->Integ();
1479     Float_t sXMGMX = gAlice->Field()->Max();
1480     //
1481     // --- Define the various materials for GEANT --- 
1482     AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1483     AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1484     AliMaterial(15, "AIR$      ", 14.61, 7.3, .001205, 30423.24, 67500);
1485     AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
1486     AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
1487     AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
1488     AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
1489     AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
1490     AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
1491     // materials for slat: 
1492     //     Sensitive area: gas (already defined) 
1493     //     PCB: copper 
1494     //     insulating material and frame: vetronite
1495     //     walls: carbon, rohacell, carbon 
1496   Float_t aglass[5]={12.01, 28.09, 16.,   10.8,  23.};
1497   Float_t zglass[5]={ 6.,   14.,    8.,    5.,   11.};
1498   Float_t wglass[5]={ 0.5,  0.105, 0.355, 0.03,  0.01};
1499   Float_t dglass=1.74;
1500
1501   // rohacell: C9 H13 N1 O2
1502   Float_t arohac[4] = {12.01,  1.01, 14.010, 16.};
1503   Float_t zrohac[4] = { 6.,    1.,    7.,     8.};
1504   Float_t wrohac[4] = { 9.,   13.,    1.,     2.};
1505   Float_t drohac    = 0.03;
1506
1507   AliMaterial(31, "COPPER$",   63.54,    29.,   8.96,  1.4, 0.);
1508   AliMixture(32, "Vetronite$",aglass, zglass, dglass,    5, wglass);
1509   AliMaterial(33, "Carbon$",   12.01,     6.,  2.265, 18.8, 49.9);
1510   AliMixture(34, "Rohacell$", arohac, zrohac, drohac,   -4, wrohac); 
1511
1512
1513     epsil  = .001; // Tracking precision, 
1514     stemax = -1.;  // Maximum displacement for multiple scat 
1515     tmaxfd = -20.; // Maximum angle due to field deflection 
1516     deemax = -.3;  // Maximum fractional energy loss, DLS 
1517     stmin  = -.8;
1518     //
1519     //    Air 
1520     AliMedium(1, "AIR_CH_US         ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1521     //
1522     //    Aluminum 
1523
1524     AliMedium(4, "ALU_CH_US          ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, 
1525             fMaxDestepAlu, epsil, stmin);
1526     AliMedium(5, "ALU_CH_US          ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, 
1527             fMaxDestepAlu, epsil, stmin);
1528     //
1529     //    Ar-isoC4H10 gas 
1530
1531     AliMedium(6, "AR_CH_US          ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, 
1532             fMaxDestepGas, epsil, stmin);
1533 //
1534     //    Ar-Isobuthane-Forane-SF6 gas 
1535
1536     AliMedium(7, "GAS_CH_TRIGGER    ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1537
1538     AliMedium(8, "BAKE_CH_TRIGGER   ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, 
1539             fMaxDestepAlu, epsil, stmin);
1540
1541     AliMedium(9, "ARG_CO2   ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, 
1542             fMaxDestepAlu, epsil, stmin);
1543     // tracking media for slats: check the parameters!! 
1544     AliMedium(11, "PCB_COPPER        ", 31, 0, iSXFLD, sXMGMX, tmaxfd, 
1545               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1546     AliMedium(12, "VETRONITE         ", 32, 0, iSXFLD, sXMGMX, tmaxfd, 
1547               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1548     AliMedium(13, "CARBON            ", 33, 0, iSXFLD, sXMGMX, tmaxfd, 
1549               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1550     AliMedium(14, "Rohacell          ", 34, 0, iSXFLD, sXMGMX, tmaxfd, 
1551               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1552 }
1553
1554 //___________________________________________
1555
1556 void AliMUONv1::Init()
1557 {
1558    // 
1559    // Initialize Tracking Chambers
1560    //
1561
1562    if(fDebug) printf("\n%s: Start Init for version 1 - CPC chamber type\n\n",ClassName());
1563    Int_t i;
1564    for (i=0; i<AliMUONConstants::NCh(); i++) {
1565        ( (AliMUONChamber*) (*fChambers)[i])->Init();
1566    }
1567    
1568    //
1569    // Set the chamber (sensitive region) GEANT identifier
1570    ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("S01G"));
1571    ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("S02G"));
1572
1573    ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("S03G"));
1574    ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("S04G"));
1575
1576    ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G"));
1577    ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G"));
1578
1579    ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G"));
1580    ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G"));
1581
1582    ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G"));
1583    ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G"));
1584
1585    ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("SG1A"));
1586    ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("SG2A"));
1587    ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("SG3A"));
1588    ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("SG4A"));
1589
1590    if(fDebug) printf("\n%s: Finished Init for version 1 - CPC chamber type\n",ClassName());
1591
1592    //cp 
1593    if(fDebug) printf("\n%s: Start Init for Trigger Circuits\n",ClassName());
1594    for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) {
1595      ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i);
1596    }
1597    if(fDebug) printf("%s: Finished Init for Trigger Circuits\n",ClassName());
1598    //cp
1599
1600 }
1601 //___________________________________________
1602 void AliMUONv1::StepManager()
1603 {
1604   if (fStepManagerVersionOld) {
1605     StepManagerOld();
1606     return;
1607   }
1608  if (fStepManagerVersionNew) {
1609     StepManagerNew();
1610     return;
1611   }
1612  
1613  if (fStepManagerVersionTest) {
1614     StepManagerTest();
1615     return;
1616   }
1617
1618
1619   // Volume id
1620   Int_t   copy, id;
1621   Int_t   idvol;
1622   Int_t   iChamber=0;
1623   // Particule id, pos and mom vectors, 
1624   // theta, phi angles with respect the normal of the chamber, 
1625   // spatial step, delta_energy and time of flight
1626   Int_t          ipart;
1627   TLorentzVector pos, mom;
1628   Float_t        theta, phi, tof;
1629   Float_t        destep, step;
1630   const  Float_t kBig = 1.e10;
1631
1632   // Only charged tracks
1633   if( !(gMC->TrackCharge()) ) return; 
1634
1635   // Only gas gap inside chamber
1636   // Tag chambers and record hits when track enters 
1637   idvol=-1;
1638   id=gMC->CurrentVolID(copy);
1639   for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) {
1640     if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) {
1641       iChamber = i;
1642       idvol  = i-1;
1643     }
1644   }
1645   if (idvol == -1) return;
1646
1647   //   printf(">>>> This Chamber %d\n",iChamber);
1648
1649   // record hits when track enters ...
1650   if( gMC->IsTrackEntering()) gMC->SetMaxStep(fStepMaxInActiveGas);  
1651
1652   if (gMC->TrackStep() > 0.) {
1653     // Get current particle id (ipart), track position (pos)  and momentum (mom)
1654     gMC->TrackPosition(pos);
1655     gMC->TrackMomentum(mom);
1656     ipart    = gMC->TrackPid();
1657     theta    = mom.Theta()*kRaddeg;     // theta of track
1658     phi      = mom.Phi()  *kRaddeg;     // phi of the track
1659     tof      = gMC->TrackTime();        // Time of flight
1660     //
1661     // momentum loss and steplength in last step
1662     destep = gMC->Edep();
1663     step   = gMC->TrackStep();
1664
1665     //new hit
1666     GetMUONData()->AddHit(fIshunt, gAlice->GetCurrentTrackNumber(), iChamber, ipart, 
1667                           pos.X(), pos.Y(), pos.Z(), tof, mom.P(), 
1668                           theta, phi, step, destep);
1669   }
1670   // Track left chamber ...
1671   if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1672     gMC->SetMaxStep(kBig);
1673   }
1674 }
1675
1676
1677 Int_t  AliMUONv1::GetChamberId(Int_t volId) const
1678 {
1679 // Check if the volume with specified  volId is a sensitive volume (gas) 
1680 // of some chamber and returns the chamber number;
1681 // if not sensitive volume - return 0.
1682 // ---
1683
1684   for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++)
1685     if (volId==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) return i;
1686
1687   return 0;
1688 }
1689 //__
1690
1691
1692
1693 void AliMUONv1::StepManagerTest()
1694 {
1695   return;
1696 }
1697 //________________________________________
1698 void AliMUONv1::StepManagerNew()
1699 {
1700
1701 //   // Volume id
1702 //   Int_t   copy, id;
1703 //   Int_t   idvol;
1704 //   Int_t   iChamber=0;
1705 //   // Particule id, pos and mom vectors, 
1706 //   // theta, phi angles with respect the normal of the chamber, 
1707 //   // spatial step, delta_energy and time of flight
1708 //   Int_t          ipart;
1709 //   TLorentzVector pos, mom;
1710 //   Float_t        theta, phi, tof;
1711 //   Float_t        destep, step;
1712 //   const  Float_t kBig = 1.e10;
1713
1714 //   // Only charged tracks
1715 //   if( !(gMC->TrackCharge()) ) return; 
1716
1717 //   // Only gas gap inside chamber
1718 //   // Tag chambers and record hits when track enters 
1719 //   idvol=-1;
1720 //   id=gMC->CurrentVolID(copy);
1721 //   for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) {
1722 //     if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) {
1723 //       iChamber = i;
1724 //       idvol  = i-1;
1725 //     }
1726 //   }
1727 //   static Float_t Sstep[20]; // Sum of steps per chamber
1728 //   // static Float_t Sdestep[20]; // Sum of eloss per chamber
1729 //   Float_t GAP;
1730 //   Float_t TEST; 
1731
1732 //   if (idvol == -1) return;
1733
1734 //   //  printf(">>>> This Chamber %d\n",iChamber);
1735
1736 //   // record hits when track enters ...
1737 //   //if( gMC->IsTrackEntering()) gMC->SetMaxStep(fStepMaxInActiveGas);  
1738
1739 //   if (gMC->TrackStep() > 0.) {
1740 //     // Get current particle id (ipart), track position (pos)  and momentum (mom)
1741 //     gMC->TrackPosition(pos);
1742 //     gMC->TrackMomentum(mom);
1743 //     ipart    = gMC->TrackPid();         // Particle
1744 //     theta    = mom.Theta()*kRaddeg;     // theta of track
1745 //     phi      = mom.Phi()  *kRaddeg;     // phi of the track
1746 //     tof      = gMC->TrackTime();        // Time of flight
1747 //     //
1748 //     // momentum loss and steplength in last step
1749 //     destep = gMC->Edep();
1750 //     step   = gMC->TrackStep();
1751
1752 //     Sstep[iChamber]+=step;
1753 //     // Sdestep[iChamber]+=destep;
1754
1755 //   }
1756   
1757 //   step   =  Sstep[iChamber]; // Total step >= gap
1758 //   //  destep   =  Sdestep[iChamber]; // Total eloss
1759
1760
1761 //   // Track left chamber ...
1762 //   if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1763 //     gMC->SetMaxStep(kBig);
1764
1765 //     Sstep[iChamber]=0; // Reset for the next event
1766 //     //Sdestep[iChamber]=0; // Reset for the next event
1767
1768 //     if (iChamber>=1 && iChamber<=2) GAP=0.4;
1769 //     if (iChamber>=11 && iChamber<=14) GAP=0.2;
1770 //     if (iChamber>=3 && iChamber<=10) GAP=0.5;
1771    
1772 //     TF1 *ELOSS1 = new TF1("Gauss1","exp(-((x-4.13727e+01)**2)/(2*1.42223e+01**2))",0,75);
1773 //     TF1 *ELOSS2 = new TF1("Gauss2","exp(-((x+6.83795e+02)**2)/(2*4.48415e+02**2))",75,350);
1774 //     TEST=gRandom->Rndm();
1775 //     if (TEST <=0.89) destep=ELOSS1->GetRandom();
1776 //     else destep=ELOSS2->GetRandom();
1777 //     destep*=pow(10,-6)*0.0274;
1778 //     destep*=GAP/0.5;
1779
1780 //     // One hit per chamber
1781 //     GetMUONData()->AddHit(fIshunt, gAlice->GetCurrentTrackNumber(), iChamber, ipart, 
1782 //         pos.X()-(step/2*sin(theta*kDegrad)*cos(phi*kDegrad)), pos.Y()-(step/2*sin(theta*kDegrad)*sin(phi*kDegrad)), pos.Z()-GAP/2, tof, mom.P(),theta, phi, step, destep);
1783
1784 //   }
1785 }
1786
1787 //___________________________________________
1788 void AliMUONv1::StepManagerOld()
1789 {
1790   Int_t          copy, id;
1791   static Int_t   idvol;
1792   static Int_t   vol[2];
1793   Int_t          ipart;
1794   TLorentzVector pos;
1795   TLorentzVector mom;
1796   Float_t        theta,phi;
1797   Float_t        destep, step;
1798   
1799   static Float_t Sstep;
1800   static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength;
1801   const  Float_t kBig = 1.e10;
1802   static Float_t hits[15];
1803
1804   TClonesArray &lhits = *fHits;
1805
1806   //
1807   //
1808   // Only charged tracks
1809   if( !(gMC->TrackCharge()) ) return; 
1810   //
1811   // Only gas gap inside chamber
1812   // Tag chambers and record hits when track enters 
1813   id=gMC->CurrentVolID(copy);
1814   vol[0] = GetChamberId(id);
1815   idvol = vol[0] -1;
1816
1817   if (idvol == -1) return;
1818
1819   //
1820   // Get current particle id (ipart), track position (pos)  and momentum (mom) 
1821   gMC->TrackPosition(pos);
1822   gMC->TrackMomentum(mom);
1823
1824   ipart  = gMC->TrackPid();
1825
1826   //
1827   // momentum loss and steplength in last step
1828   destep = gMC->Edep();
1829   step   = gMC->TrackStep();
1830   // cout<<"------------"<<step<<endl;
1831   //
1832   // record hits when track enters ...
1833   if( gMC->IsTrackEntering()) {
1834
1835       gMC->SetMaxStep(fMaxStepGas);
1836       Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
1837       Double_t rt = TMath::Sqrt(tc);
1838       Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]);
1839       Double_t tx = mom[0]/pmom;
1840       Double_t ty = mom[1]/pmom;
1841       Double_t tz = mom[2]/pmom;
1842       Double_t s  = ((AliMUONChamber*)(*fChambers)[idvol])
1843           ->ResponseModel()
1844           ->Pitch()/tz;
1845       theta   = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
1846       phi     = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
1847       hits[0] = Float_t(ipart);         // Geant3 particle type
1848       hits[1] = pos[0]+s*tx;            // X-position for hit
1849       hits[2] = pos[1]+s*ty;            // Y-position for hit
1850       hits[3] = pos[2]+s*tz;            // Z-position for hit
1851       hits[4] = theta;                  // theta angle of incidence
1852       hits[5] = phi;                    // phi angle of incidence 
1853       hits[8] = 0;//PadHits does not exist anymore  (Float_t) fNPadHits;    // first padhit
1854       hits[9] = -1;                     // last pad hit
1855       hits[10] = mom[3];                // hit momentum P
1856       hits[11] = mom[0];                // Px
1857       hits[12] = mom[1];                // Py
1858       hits[13] = mom[2];                // Pz
1859       tof=gMC->TrackTime();
1860       hits[14] = tof;                   // Time of flight
1861       tlength  = 0;
1862       eloss    = 0;
1863       eloss2   = 0;
1864       Sstep=0;
1865       xhit     = pos[0];
1866       yhit     = pos[1];      
1867       zhit     = pos[2];      
1868       Chamber(idvol).ChargeCorrelationInit();
1869       // Only if not trigger chamber
1870
1871 //       printf("---------------------------\n");
1872 //       printf(">>>> Y =  %f \n",hits[2]);
1873 //       printf("---------------------------\n");
1874     
1875       
1876
1877      //  if(idvol < AliMUONConstants::NTrackingCh()) {
1878 //        //
1879 //        //  Initialize hit position (cursor) in the segmentation model 
1880 //        ((AliMUONChamber*) (*fChambers)[idvol])
1881 //            ->SigGenInit(pos[0], pos[1], pos[2]);
1882 //       } else {
1883 //        //geant3->Gpcxyz();
1884 //        //printf("In the Trigger Chamber #%d\n",idvol-9);
1885 //       }
1886   }
1887   eloss2+=destep;
1888   Sstep+=step;
1889
1890   // cout<<Sstep<<endl;
1891
1892   // 
1893   // Calculate the charge induced on a pad (disintegration) in case 
1894   //
1895   // Mip left chamber ...
1896   if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1897       gMC->SetMaxStep(kBig);
1898       eloss   += destep;
1899       tlength += step;
1900       
1901       Float_t x0,y0,z0;
1902       Float_t localPos[3];
1903       Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1904       gMC->Gmtod(globalPos,localPos,1); 
1905
1906       if(idvol < AliMUONConstants::NTrackingCh()) {
1907 // tracking chambers
1908           x0 = 0.5*(xhit+pos[0]);
1909           y0 = 0.5*(yhit+pos[1]);
1910           z0 = 0.5*(zhit+pos[2]);
1911       } else {
1912 // trigger chambers
1913           x0 = xhit;
1914           y0 = yhit;
1915           z0 = 0.;
1916       }
1917       
1918
1919       //      if (eloss >0)  MakePadHits(x0,y0,z0,eloss,tof,idvol);
1920       
1921           
1922       hits[6] = tlength;   // track length
1923       hits[7] = eloss2;    // de/dx energy loss
1924
1925
1926       //      if (fNPadHits > (Int_t)hits[8]) {
1927       //          hits[8] = hits[8]+1;
1928       //          hits[9] = 0: // PadHits does not exist anymore (Float_t) fNPadHits;
1929       //}
1930 //
1931 //    new hit 
1932       
1933       new(lhits[fNhits++]) 
1934           AliMUONHit(fIshunt, gAlice->GetCurrentTrackNumber(), vol,hits);
1935       eloss = 0; 
1936       //
1937       // Check additional signal generation conditions 
1938       // defined by the segmentation
1939       // model (boundary crossing conditions)
1940       // only for tracking chambers
1941   } else if 
1942       ((idvol < AliMUONConstants::NTrackingCh()) &&
1943        ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2]))
1944   {
1945       ((AliMUONChamber*) (*fChambers)[idvol])
1946           ->SigGenInit(pos[0], pos[1], pos[2]);
1947       
1948       Float_t localPos[3];
1949       Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1950       gMC->Gmtod(globalPos,localPos,1); 
1951
1952       eloss    += destep;
1953
1954       // if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh())
1955       //        MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol);
1956       xhit     = pos[0];
1957       yhit     = pos[1]; 
1958       zhit     = pos[2];
1959       eloss = 0;
1960       tlength += step ;
1961       //
1962       // nothing special  happened, add up energy loss
1963   } else {        
1964       eloss   += destep;
1965       tlength += step ;
1966   }
1967 }
1968
1969