]> git.uio.no Git - u/mrichter/AliRoot.git/blob - MUON/AliMUONv3.cxx
04-mar-2004 NvE Functionality of AliObjMatrix extended to provide the number of refer...
[u/mrichter/AliRoot.git] / MUON / AliMUONv3.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *      SigmaEffect_thetadegrees                                                                  *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpeateose. It is      *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /* $Id$ */
17
18 /////////////////////////////////////////////////////////
19 //  Manager and hits classes for set:MUON version 3    //
20 /////////////////////////////////////////////////////////
21
22 // Old MUONv1 class
23 // (AliMUONv1.h 1.11, AliMUONv1.cxx 1.60)
24 // - now replaced with a new one where geometry and materials
25 // are created using new geometry builders
26 // (See ALIMUON*GeometryBuilder classes)
27 // To be removed later
28
29 #include <TRandom.h>
30 #include <TF1.h>
31 #include <TClonesArray.h>
32 #include <TLorentzVector.h>   
33 #include <TVirtualMC.h>
34 #include <TParticle.h>
35
36 #include "AliConst.h" 
37 #include "AliMUONChamber.h"
38 #include "AliMUONConstants.h"
39 #include "AliMUONFactory.h"
40 #include "AliMUONHit.h"
41 #include "AliMUONTriggerCircuit.h"
42 #include "AliMUONChamberGeometry.h"
43 #include "AliMUONv3.h"
44 #include "AliMagF.h"
45 #include "AliRun.h"
46 #include "AliMC.h"
47
48 ClassImp(AliMUONv3)
49  
50 //___________________________________________
51 AliMUONv3::AliMUONv3() : AliMUON()
52   ,fTrackMomentum(), fTrackPosition()
53 {
54 // Constructor
55     fChambers   = 0;
56     fStations   = 0;
57     fStepManagerVersionOld  = kFALSE;
58     fAngleEffect = kTRUE;
59     fStepMaxInActiveGas     = 0.6;
60     fStepSum    =  0x0;
61     fDestepSum  =  0x0;
62     fElossRatio =  0x0;
63     fAngleEffect10   = 0x0;
64     fAngleEffectNorma= 0x0;
65
66 //___________________________________________
67 AliMUONv3::AliMUONv3(const char *name, const char *title)
68   : AliMUON(name,title), fTrackMomentum(), fTrackPosition()
69 {
70 // Constructor
71     // By default include all stations
72     fStations = new Int_t[5];
73     for (Int_t i=0; i<5; i++) fStations[i] = 1;
74
75     AliMUONFactory factory;
76     factory.Build(this, title);
77
78     fStepManagerVersionOld = kFALSE;
79     fAngleEffect = kTRUE;
80     fStepMaxInActiveGas = 0.6;
81
82     fStepSum   = new Float_t [AliMUONConstants::NCh()];
83     fDestepSum = new Float_t [AliMUONConstants::NCh()];
84     for (Int_t i=0; i<AliMUONConstants::NCh(); i++) {
85       fStepSum[i] =0.0;
86       fDestepSum[i]=0.0;
87     }
88     // Ratio of particle mean eloss with respect MIP's Khalil Boudjemline, sep 2003, PhD.Thesis and Particle Data Book
89     fElossRatio = new TF1("ElossRatio","[0]+[1]*x+[2]*x*x+[3]*x*x*x+[4]*x*x*x*x",0.5,5.); 
90     fElossRatio->SetParameter(0,1.02138);
91     fElossRatio->SetParameter(1,-9.54149e-02);
92     fElossRatio->SetParameter(2,+7.83433e-02); 
93     fElossRatio->SetParameter(3,-9.98208e-03);
94     fElossRatio->SetParameter(4,+3.83279e-04);
95
96     // Angle effect in tracking chambers at theta =10 degres as a function of ElossRatio (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis) (in micrometers)
97     fAngleEffect10 = new TF1("AngleEffect10","[0]+[1]*x+[2]*x*x",0.5,3.0);
98     fAngleEffect10->SetParameter(0, 1.90691e+02);
99     fAngleEffect10->SetParameter(1,-6.62258e+01);
100     fAngleEffect10->SetParameter(2,+1.28247e+01);
101     // Angle effect: Normalisation form theta=10 degres to theta between 0 and 10 (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis)  
102     // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
103     fAngleEffectNorma = new TF1("AngleEffectNorma","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.0,10.0);
104     fAngleEffectNorma->SetParameter(0,4.148);
105     fAngleEffectNorma->SetParameter(1,-6.809e-01);
106     fAngleEffectNorma->SetParameter(2,5.151e-02);
107     fAngleEffectNorma->SetParameter(3,-1.490e-03);
108 }
109
110 //_____________________________________________________________________________
111 AliMUONv3::AliMUONv3(const AliMUONv3& right) 
112   : AliMUON(right) 
113 {  
114   // copy constructor (not implemented)
115
116   Fatal("AliMUONv3", "Copy constructor not provided.");
117 }
118
119 //_____________________________________________________________________________
120 AliMUONv3& AliMUONv3::operator=(const AliMUONv3& right)
121 {
122   // assignement operator (not implemented)
123
124   // check assignement to self
125   if (this == &right) return *this;
126
127   Fatal("operator =", "Assignement operator not provided.");
128     
129   return *this;  
130 }    
131
132 //___________________________________________
133 void AliMUONv3::CreateGeometry()
134 {
135 //
136 //   Note: all chambers have the same structure, which could be 
137 //   easily parameterised. This was intentionally not done in order
138 //   to give a starting point for the implementation of the actual 
139 //   design of each station. 
140   Int_t *idtmed = fIdtmed->GetArray()-1099;
141
142 //   Distance between Stations
143 //
144      Float_t bpar[3];
145      Float_t tpar[3];
146 //      Float_t pgpar[10];
147      Float_t zpos1, zpos2, zfpos;
148      // Outer excess and inner recess for mother volume radius
149      // with respect to ROuter and RInner
150      Float_t dframep=.001; // Value for station 3 should be 6 ...
151      // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm)
152 //      Float_t dframep1=.001;
153      Float_t dframep1 = 11.0;
154 //      Bool_t frameCrosses=kFALSE;     
155      Bool_t frameCrosses=kTRUE;     
156      Float_t *dum=0;
157      
158 //      Float_t dframez=0.9;
159      // Half of the total thickness of frame crosses (including DAlu)
160      // for each chamber in stations 1 and 2:
161      // 3% of X0 of composite material,
162      // but taken as Aluminium here, with same thickness in number of X0
163      Float_t dframez = 3. * 8.9 / 100;
164 //      Float_t dr;
165      Float_t dstation;
166
167 //
168 //   Rotation matrices in the x-y plane  
169      Int_t idrotm[1199];
170 //   phi=   0 deg
171      AliMatrix(idrotm[1100],  90.,   0., 90.,  90., 0., 0.);
172 //   phi=  90 deg
173      AliMatrix(idrotm[1101],  90.,  90., 90., 180., 0., 0.);
174 //   phi= 180 deg
175      AliMatrix(idrotm[1102],  90., 180., 90., 270., 0., 0.);
176 //   phi= 270 deg
177      AliMatrix(idrotm[1103],  90., 270., 90.,   0., 0., 0.);
178 //
179      Float_t phi=2*TMath::Pi()/12/2;
180
181 //
182 //   pointer to the current chamber
183 //   pointer to the current chamber
184      Int_t idAlu1=idtmed[1103]; // medium 4
185      Int_t idAlu2=idtmed[1104]; // medium 5
186 //     Int_t idAlu1=idtmed[1100];
187 //     Int_t idAlu2=idtmed[1100];
188      Int_t idAir=idtmed[1100]; // medium 1
189 //      Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas
190      Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%)
191      
192
193      AliMUONChamber *iChamber, *iChamber1, *iChamber2;
194
195      if (fStations[0]) {
196          
197 //********************************************************************
198 //                            Station 1                             **
199 //********************************************************************
200 //  CONCENTRIC
201      // indices 1 and 2 for first and second chambers in the station
202      // iChamber (first chamber) kept for other quanties than Z,
203      // assumed to be the same in both chambers
204      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0];
205      iChamber2 =(AliMUONChamber*) (*fChambers)[1];
206      zpos1=iChamber1->Z(); 
207      zpos2=iChamber2->Z();
208      dstation = TMath::Abs(zpos2 - zpos1);
209      // DGas decreased from standard one (0.5)
210      iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4);
211      // DAlu increased from standard one (3% of X0),
212      // because more electronics with smaller pads
213      iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.);
214      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
215      
216 //
217 //   Mother volume
218      tpar[0] = iChamber->RInner()-dframep; 
219      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
220      tpar[2] = dstation/5;
221
222      gMC->Gsvolu("S01M", "TUBE", idAir, tpar, 3);
223      gMC->Gsvolu("S02M", "TUBE", idAir, tpar, 3);
224      gMC->Gspos("S01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
225      gMC->Gspos("S02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");     
226 // // Aluminium frames
227 // // Outer frames
228 //      pgpar[0] = 360/12/2;
229 //      pgpar[1] = 360.;
230 //      pgpar[2] = 12.;
231 //      pgpar[3] =   2;
232 //      pgpar[4] = -dframez/2;
233 //      pgpar[5] = iChamber->ROuter();
234 //      pgpar[6] = pgpar[5]+dframep1;
235 //      pgpar[7] = +dframez/2;
236 //      pgpar[8] = pgpar[5];
237 //      pgpar[9] = pgpar[6];
238 //      gMC->Gsvolu("S01O", "PGON", idAlu1, pgpar, 10);
239 //      gMC->Gsvolu("S02O", "PGON", idAlu1, pgpar, 10);
240 //      gMC->Gspos("S01O",1,"S01M", 0.,0.,-zfpos,  0,"ONLY");
241 //      gMC->Gspos("S01O",2,"S01M", 0.,0.,+zfpos,  0,"ONLY");
242 //      gMC->Gspos("S02O",1,"S02M", 0.,0.,-zfpos,  0,"ONLY");
243 //      gMC->Gspos("S02O",2,"S02M", 0.,0.,+zfpos,  0,"ONLY");
244 // //
245 // // Inner frame
246 //      tpar[0]= iChamber->RInner()-dframep1;
247 //      tpar[1]= iChamber->RInner();
248 //      tpar[2]= dframez/2;
249 //      gMC->Gsvolu("S01I", "TUBE", idAlu1, tpar, 3);
250 //      gMC->Gsvolu("S02I", "TUBE", idAlu1, tpar, 3);
251
252 //      gMC->Gspos("S01I",1,"S01M", 0.,0.,-zfpos,  0,"ONLY");
253 //      gMC->Gspos("S01I",2,"S01M", 0.,0.,+zfpos,  0,"ONLY");
254 //      gMC->Gspos("S02I",1,"S02M", 0.,0.,-zfpos,  0,"ONLY");
255 //      gMC->Gspos("S02I",2,"S02M", 0.,0.,+zfpos,  0,"ONLY");
256 //
257 // Frame Crosses
258      if (frameCrosses) {
259          // outside gas
260          // security for inside mother volume
261          bpar[0] = (iChamber->ROuter() - iChamber->RInner())
262            * TMath::Cos(TMath::ASin(dframep1 /
263                                    (iChamber->ROuter() - iChamber->RInner())))
264            / 2.0;
265          bpar[1] = dframep1/2;
266          // total thickness will be (4 * bpar[2]) for each chamber,
267          // which has to be equal to (2 * dframez) - DAlu
268          bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
269          gMC->Gsvolu("S01B", "BOX", idAlu1, bpar, 3);
270          gMC->Gsvolu("S02B", "BOX", idAlu1, bpar, 3);
271          
272          gMC->Gspos("S01B",1,"S01M", -iChamber->RInner()-bpar[0] , 0, zfpos, 
273                     idrotm[1100],"ONLY");
274          gMC->Gspos("S01B",2,"S01M",  iChamber->RInner()+bpar[0] , 0, zfpos, 
275                     idrotm[1100],"ONLY");
276          gMC->Gspos("S01B",3,"S01M", 0, -iChamber->RInner()-bpar[0] , zfpos, 
277                     idrotm[1101],"ONLY");
278          gMC->Gspos("S01B",4,"S01M", 0,  iChamber->RInner()+bpar[0] , zfpos, 
279                     idrotm[1101],"ONLY");
280          gMC->Gspos("S01B",5,"S01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
281                     idrotm[1100],"ONLY");
282          gMC->Gspos("S01B",6,"S01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
283                     idrotm[1100],"ONLY");
284          gMC->Gspos("S01B",7,"S01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
285                     idrotm[1101],"ONLY");
286          gMC->Gspos("S01B",8,"S01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
287                     idrotm[1101],"ONLY");
288          
289          gMC->Gspos("S02B",1,"S02M", -iChamber->RInner()-bpar[0] , 0, zfpos, 
290                     idrotm[1100],"ONLY");
291          gMC->Gspos("S02B",2,"S02M",  iChamber->RInner()+bpar[0] , 0, zfpos, 
292                     idrotm[1100],"ONLY");
293          gMC->Gspos("S02B",3,"S02M", 0, -iChamber->RInner()-bpar[0] , zfpos, 
294                     idrotm[1101],"ONLY");
295          gMC->Gspos("S02B",4,"S02M", 0,  iChamber->RInner()+bpar[0] , zfpos, 
296                     idrotm[1101],"ONLY");
297          gMC->Gspos("S02B",5,"S02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
298                     idrotm[1100],"ONLY");
299          gMC->Gspos("S02B",6,"S02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
300                     idrotm[1100],"ONLY");
301          gMC->Gspos("S02B",7,"S02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
302                     idrotm[1101],"ONLY");
303          gMC->Gspos("S02B",8,"S02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
304                     idrotm[1101],"ONLY");
305      }
306 //
307 //   Chamber Material represented by Alu sheet
308      tpar[0]= iChamber->RInner();
309      tpar[1]= iChamber->ROuter();
310      tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
311      gMC->Gsvolu("S01A", "TUBE",  idAlu2, tpar, 3);
312      gMC->Gsvolu("S02A", "TUBE",idAlu2, tpar, 3);
313      gMC->Gspos("S01A", 1, "S01M", 0., 0., 0.,  0, "ONLY");
314      gMC->Gspos("S02A", 1, "S02M", 0., 0., 0.,  0, "ONLY");
315 //     
316 //   Sensitive volumes
317      // tpar[2] = iChamber->DGas();
318      tpar[2] = iChamber->DGas()/2;
319      gMC->Gsvolu("S01G", "TUBE", idGas, tpar, 3);
320      gMC->Gsvolu("S02G", "TUBE", idGas, tpar, 3);
321      gMC->Gspos("S01G", 1, "S01A", 0., 0., 0.,  0, "ONLY");
322      gMC->Gspos("S02G", 1, "S02A", 0., 0., 0.,  0, "ONLY");
323 //
324 // Frame Crosses to be placed inside gas
325      // NONE: chambers are sensitive everywhere
326 //      if (frameCrosses) {
327
328 //       dr = (iChamber->ROuter() - iChamber->RInner());
329 //       bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
330 //       bpar[1] = dframep1/2;
331 //       bpar[2] = iChamber->DGas()/2;
332 //       gMC->Gsvolu("S01F", "BOX", idAlu1, bpar, 3);
333 //       gMC->Gsvolu("S02F", "BOX", idAlu1, bpar, 3);
334          
335 //       gMC->Gspos("S01F",1,"S01G", +iChamber->RInner()+bpar[0] , 0, 0, 
336 //                  idrotm[1100],"ONLY");
337 //       gMC->Gspos("S01F",2,"S01G", -iChamber->RInner()-bpar[0] , 0, 0, 
338 //                  idrotm[1100],"ONLY");
339 //       gMC->Gspos("S01F",3,"S01G", 0, +iChamber->RInner()+bpar[0] , 0, 
340 //                  idrotm[1101],"ONLY");
341 //       gMC->Gspos("S01F",4,"S01G", 0, -iChamber->RInner()-bpar[0] , 0, 
342 //                  idrotm[1101],"ONLY");
343          
344 //       gMC->Gspos("S02F",1,"S02G", +iChamber->RInner()+bpar[0] , 0, 0, 
345 //                  idrotm[1100],"ONLY");
346 //       gMC->Gspos("S02F",2,"S02G", -iChamber->RInner()-bpar[0] , 0, 0, 
347 //                  idrotm[1100],"ONLY");
348 //       gMC->Gspos("S02F",3,"S02G", 0, +iChamber->RInner()+bpar[0] , 0, 
349 //                  idrotm[1101],"ONLY");
350 //       gMC->Gspos("S02F",4,"S02G", 0, -iChamber->RInner()-bpar[0] , 0, 
351 //                  idrotm[1101],"ONLY");
352 //      }
353      }
354      if (fStations[1]) {
355          
356 //********************************************************************
357 //                            Station 2                             **
358 //********************************************************************
359      // indices 1 and 2 for first and second chambers in the station
360      // iChamber (first chamber) kept for other quanties than Z,
361      // assumed to be the same in both chambers
362      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2];
363      iChamber2 =(AliMUONChamber*) (*fChambers)[3];
364      zpos1=iChamber1->Z(); 
365      zpos2=iChamber2->Z();
366      dstation = TMath::Abs(zpos2 - zpos1);
367      // DGas and DAlu not changed from standard values
368      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
369      
370 //
371 //   Mother volume
372      tpar[0] = iChamber->RInner()-dframep; 
373      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
374      tpar[2] = dstation/5;
375
376      gMC->Gsvolu("S03M", "TUBE", idAir, tpar, 3);
377      gMC->Gsvolu("S04M", "TUBE", idAir, tpar, 3);
378      gMC->Gspos("S03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
379      gMC->Gspos("S04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
380      gMC->Gsbool("S03M", "L3DO");
381      gMC->Gsbool("S03M", "L3O1");
382      gMC->Gsbool("S03M", "L3O2");
383      gMC->Gsbool("S04M", "L3DO");
384      gMC->Gsbool("S04M", "L3O1");
385      gMC->Gsbool("S04M", "L3O2");
386
387 // // Aluminium frames
388 // // Outer frames
389 //      pgpar[0] = 360/12/2;
390 //      pgpar[1] = 360.;
391 //      pgpar[2] = 12.;
392 //      pgpar[3] =   2;
393 //      pgpar[4] = -dframez/2;
394 //      pgpar[5] = iChamber->ROuter();
395 //      pgpar[6] = pgpar[5]+dframep;
396 //      pgpar[7] = +dframez/2;
397 //      pgpar[8] = pgpar[5];
398 //      pgpar[9] = pgpar[6];
399 //      gMC->Gsvolu("S03O", "PGON", idAlu1, pgpar, 10);
400 //      gMC->Gsvolu("S04O", "PGON", idAlu1, pgpar, 10);
401 //      gMC->Gspos("S03O",1,"S03M", 0.,0.,-zfpos,  0,"ONLY");
402 //      gMC->Gspos("S03O",2,"S03M", 0.,0.,+zfpos,  0,"ONLY");
403 //      gMC->Gspos("S04O",1,"S04M", 0.,0.,-zfpos,  0,"ONLY");
404 //      gMC->Gspos("S04O",2,"S04M", 0.,0.,+zfpos,  0,"ONLY");
405 // //
406 // // Inner frame
407 //      tpar[0]= iChamber->RInner()-dframep;
408 //      tpar[1]= iChamber->RInner();
409 //      tpar[2]= dframez/2;
410 //      gMC->Gsvolu("S03I", "TUBE", idAlu1, tpar, 3);
411 //      gMC->Gsvolu("S04I", "TUBE", idAlu1, tpar, 3);
412
413 //      gMC->Gspos("S03I",1,"S03M", 0.,0.,-zfpos,  0,"ONLY");
414 //      gMC->Gspos("S03I",2,"S03M", 0.,0.,+zfpos,  0,"ONLY");
415 //      gMC->Gspos("S04I",1,"S04M", 0.,0.,-zfpos,  0,"ONLY");
416 //      gMC->Gspos("S04I",2,"S04M", 0.,0.,+zfpos,  0,"ONLY");
417 //
418 // Frame Crosses
419      if (frameCrosses) {
420          // outside gas
421          // security for inside mother volume
422          bpar[0] = (iChamber->ROuter() - iChamber->RInner())
423            * TMath::Cos(TMath::ASin(dframep1 /
424                                    (iChamber->ROuter() - iChamber->RInner())))
425            / 2.0;
426          bpar[1] = dframep1/2;
427          // total thickness will be (4 * bpar[2]) for each chamber,
428          // which has to be equal to (2 * dframez) - DAlu
429          bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
430          gMC->Gsvolu("S03B", "BOX", idAlu1, bpar, 3);
431          gMC->Gsvolu("S04B", "BOX", idAlu1, bpar, 3);
432          
433          gMC->Gspos("S03B",1,"S03M", -iChamber->RInner()-bpar[0] , 0, zfpos, 
434                     idrotm[1100],"ONLY");
435          gMC->Gspos("S03B",2,"S03M", +iChamber->RInner()+bpar[0] , 0, zfpos, 
436                     idrotm[1100],"ONLY");
437          gMC->Gspos("S03B",3,"S03M", 0, -iChamber->RInner()-bpar[0] , zfpos, 
438                     idrotm[1101],"ONLY");
439          gMC->Gspos("S03B",4,"S03M", 0, +iChamber->RInner()+bpar[0] , zfpos, 
440                     idrotm[1101],"ONLY");
441          gMC->Gspos("S03B",5,"S03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
442                     idrotm[1100],"ONLY");
443          gMC->Gspos("S03B",6,"S03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
444                     idrotm[1100],"ONLY");
445          gMC->Gspos("S03B",7,"S03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
446                     idrotm[1101],"ONLY");
447          gMC->Gspos("S03B",8,"S03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
448                     idrotm[1101],"ONLY");
449          
450          gMC->Gspos("S04B",1,"S04M", -iChamber->RInner()-bpar[0] , 0, zfpos, 
451                     idrotm[1100],"ONLY");
452          gMC->Gspos("S04B",2,"S04M", +iChamber->RInner()+bpar[0] , 0, zfpos, 
453                     idrotm[1100],"ONLY");
454          gMC->Gspos("S04B",3,"S04M", 0, -iChamber->RInner()-bpar[0] , zfpos, 
455                     idrotm[1101],"ONLY");
456          gMC->Gspos("S04B",4,"S04M", 0, +iChamber->RInner()+bpar[0] , zfpos, 
457                     idrotm[1101],"ONLY");
458          gMC->Gspos("S04B",5,"S04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
459                     idrotm[1100],"ONLY");
460          gMC->Gspos("S04B",6,"S04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
461                     idrotm[1100],"ONLY");
462          gMC->Gspos("S04B",7,"S04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
463                     idrotm[1101],"ONLY");
464          gMC->Gspos("S04B",8,"S04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
465                     idrotm[1101],"ONLY");
466      }
467 //
468 //   Chamber Material represented by Alu sheet
469      tpar[0]= iChamber->RInner();
470      tpar[1]= iChamber->ROuter();
471      tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
472      gMC->Gsvolu("S03A", "TUBE", idAlu2, tpar, 3);
473      gMC->Gsvolu("S04A", "TUBE", idAlu2, tpar, 3);
474      gMC->Gspos("S03A", 1, "S03M", 0., 0., 0.,  0, "ONLY");
475      gMC->Gspos("S04A", 1, "S04M", 0., 0., 0.,  0, "ONLY");
476 //     
477 //   Sensitive volumes
478      // tpar[2] = iChamber->DGas();
479      tpar[2] = iChamber->DGas()/2;
480      gMC->Gsvolu("S03G", "TUBE", idGas, tpar, 3);
481      gMC->Gsvolu("S04G", "TUBE", idGas, tpar, 3);
482      gMC->Gspos("S03G", 1, "S03A", 0., 0., 0.,  0, "ONLY");
483      gMC->Gspos("S04G", 1, "S04A", 0., 0., 0.,  0, "ONLY");
484 //
485 // Frame Crosses to be placed inside gas 
486      // NONE: chambers are sensitive everywhere
487 //      if (frameCrosses) {
488
489 //       dr = (iChamber->ROuter() - iChamber->RInner());
490 //       bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
491 //       bpar[1] = dframep1/2;
492 //       bpar[2] = iChamber->DGas()/2;
493 //       gMC->Gsvolu("S03F", "BOX", idAlu1, bpar, 3);
494 //       gMC->Gsvolu("S04F", "BOX", idAlu1, bpar, 3);
495          
496 //       gMC->Gspos("S03F",1,"S03G", +iChamber->RInner()+bpar[0] , 0, 0, 
497 //                  idrotm[1100],"ONLY");
498 //       gMC->Gspos("S03F",2,"S03G", -iChamber->RInner()-bpar[0] , 0, 0, 
499 //                  idrotm[1100],"ONLY");
500 //       gMC->Gspos("S03F",3,"S03G", 0, +iChamber->RInner()+bpar[0] , 0, 
501 //                  idrotm[1101],"ONLY");
502 //       gMC->Gspos("S03F",4,"S03G", 0, -iChamber->RInner()-bpar[0] , 0, 
503 //                  idrotm[1101],"ONLY");
504          
505 //       gMC->Gspos("S04F",1,"S04G", +iChamber->RInner()+bpar[0] , 0, 0, 
506 //                  idrotm[1100],"ONLY");
507 //       gMC->Gspos("S04F",2,"S04G", -iChamber->RInner()-bpar[0] , 0, 0, 
508 //                  idrotm[1100],"ONLY");
509 //       gMC->Gspos("S04F",3,"S04G", 0, +iChamber->RInner()+bpar[0] , 0, 
510 //                  idrotm[1101],"ONLY");
511 //       gMC->Gspos("S04F",4,"S04G", 0, -iChamber->RInner()-bpar[0] , 0, 
512 //                  idrotm[1101],"ONLY");
513 //      }
514      }
515      // define the id of tracking media:
516      Int_t idCopper = idtmed[1110];
517      Int_t idGlass  = idtmed[1111];
518      Int_t idCarbon = idtmed[1112];
519      Int_t idRoha   = idtmed[1113];
520
521       // sensitive area: 40*40 cm**2
522      const Float_t ksensLength = 40.; 
523      const Float_t ksensHeight = 40.; 
524      const Float_t ksensWidth  = 0.5; // according to TDR fig 2.120 
525      const Int_t ksensMaterial = idGas;
526      const Float_t kyOverlap   = 1.5; 
527
528      // PCB dimensions in cm; width: 30 mum copper   
529      const Float_t kpcbLength  = ksensLength; 
530      const Float_t kpcbHeight  = 60.; 
531      const Float_t kpcbWidth   = 0.003;   
532      const Int_t   kpcbMaterial= idCopper;
533
534      // Insulating material: 200 mum glass fiber glued to pcb  
535      const Float_t kinsuLength = kpcbLength; 
536      const Float_t kinsuHeight = kpcbHeight; 
537      const Float_t kinsuWidth  = 0.020;   
538      const Int_t kinsuMaterial = idGlass;
539
540      // Carbon fiber panels: 200mum carbon/epoxy skin   
541      const Float_t kpanelLength = ksensLength; 
542      const Float_t kpanelHeight = ksensHeight; 
543      const Float_t kpanelWidth  = 0.020;      
544      const Int_t kpanelMaterial = idCarbon;
545
546      // rohacell between the two carbon panels   
547      const Float_t krohaLength = ksensLength; 
548      const Float_t krohaHeight = ksensHeight; 
549      const Float_t krohaWidth  = 0.5;
550      const Int_t krohaMaterial = idRoha;
551
552      // Frame around the slat: 2 sticks along length,2 along height  
553      // H: the horizontal ones 
554      const Float_t khFrameLength = kpcbLength; 
555      const Float_t khFrameHeight = 1.5; 
556      const Float_t khFrameWidth  = ksensWidth; 
557      const Int_t khFrameMaterial = idGlass;
558
559      // V: the vertical ones 
560      const Float_t kvFrameLength = 4.0; 
561      const Float_t kvFrameHeight = ksensHeight + khFrameHeight; 
562      const Float_t kvFrameWidth  = ksensWidth;
563      const Int_t kvFrameMaterial = idGlass;
564
565      // B: the horizontal border filled with rohacell 
566      const Float_t kbFrameLength = khFrameLength; 
567      const Float_t kbFrameHeight = (kpcbHeight - ksensHeight)/2. - khFrameHeight; 
568      const Float_t kbFrameWidth  = khFrameWidth;
569      const Int_t kbFrameMaterial = idRoha;
570
571      // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper)
572      const Float_t knulocLength = 2.5; 
573      const Float_t knulocHeight = 7.5; 
574      const Float_t knulocWidth  = 0.0030 + 0.0014; // equivalent copper width of vetronite; 
575      const Int_t   knulocMaterial = idCopper;
576
577      const Float_t kslatHeight = kpcbHeight; 
578      const Float_t kslatWidth = ksensWidth + 2.*(kpcbWidth + kinsuWidth + 
579                                                2.* kpanelWidth + krohaWidth);
580      const Int_t kslatMaterial = idAir;
581      const Float_t kdSlatLength = kvFrameLength; // border on left and right 
582
583      Float_t spar[3];  
584      Int_t i, j;
585
586      // the panel volume contains the rohacell
587
588      Float_t twidth = 2 * kpanelWidth + krohaWidth; 
589      Float_t panelpar[3] = { kpanelLength/2., kpanelHeight/2., twidth/2. }; 
590      Float_t rohapar[3] = { krohaLength/2., krohaHeight/2., krohaWidth/2. }; 
591
592      // insulating material contains PCB-> gas-> 2 borders filled with rohacell
593
594      twidth = 2*(kinsuWidth + kpcbWidth) + ksensWidth;  
595      Float_t insupar[3] = { kinsuLength/2., kinsuHeight/2., twidth/2. }; 
596      twidth -= 2 * kinsuWidth; 
597      Float_t pcbpar[3] = { kpcbLength/2., kpcbHeight/2., twidth/2. }; 
598      Float_t senspar[3] = { ksensLength/2., ksensHeight/2., ksensWidth/2. }; 
599      Float_t theight = 2*khFrameHeight + ksensHeight;
600      Float_t hFramepar[3]={khFrameLength/2., theight/2., khFrameWidth/2.}; 
601      Float_t bFramepar[3]={kbFrameLength/2., kbFrameHeight/2., kbFrameWidth/2.}; 
602      Float_t vFramepar[3]={kvFrameLength/2., kvFrameHeight/2., kvFrameWidth/2.}; 
603      Float_t nulocpar[3]={knulocLength/2., knulocHeight/2., knulocWidth/2.}; 
604      Float_t xx;
605      Float_t xxmax = (kbFrameLength - knulocLength)/2.; 
606      Int_t index=0;
607      
608      if (fStations[2]) {
609          
610 //********************************************************************
611 //                            Station 3                             **
612 //********************************************************************
613      // indices 1 and 2 for first and second chambers in the station
614      // iChamber (first chamber) kept for other quanties than Z,
615      // assumed to be the same in both chambers
616      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4];
617      iChamber2 =(AliMUONChamber*) (*fChambers)[5];
618      zpos1=iChamber1->Z(); 
619      zpos2=iChamber2->Z();
620      dstation = TMath::Abs(zpos2 - zpos1);
621
622 //
623 //   Mother volume
624      tpar[0] = iChamber->RInner()-dframep; 
625      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
626      tpar[2] = dstation/5;
627
628      const char *slats5Mother = "S05M";
629      const char *slats6Mother = "S06M";
630      Float_t zoffs5 = 0;
631      Float_t zoffs6 = 0;
632
633      if (gAlice->GetModule("DIPO")) {
634        slats5Mother="DDIP";
635        slats6Mother="DDIP";
636
637        zoffs5 = TMath::Abs(zpos1);
638        zoffs6 = TMath::Abs(zpos2);
639      }
640
641      else {
642        gMC->Gsvolu("S05M", "TUBE", idAir, tpar, 3);
643        gMC->Gsvolu("S06M", "TUBE", idAir, tpar, 3);
644        gMC->Gspos("S05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
645        gMC->Gspos("S06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
646      }
647
648      // volumes for slat geometry (xx=5,..,10 chamber id): 
649      // Sxx0 Sxx1 Sxx2 Sxx3  -->   Slat Mother volumes 
650      // SxxG                          -->   Sensitive volume (gas)
651      // SxxP                          -->   PCB (copper) 
652      // SxxI                          -->   Insulator (vetronite) 
653      // SxxC                          -->   Carbon panel 
654      // SxxR                          -->   Rohacell
655      // SxxH, SxxV                    -->   Horizontal and Vertical frames (vetronite)
656      // SB5x                          -->   Volumes for the 35 cm long PCB
657      // slat dimensions: slat is a MOTHER volume!!! made of air
658
659      // only for chamber 5: slat 1 has a PCB shorter by 5cm!
660
661      Float_t tlength = 35.;
662      Float_t panelpar2[3]  = { tlength/2., panelpar[1],  panelpar[2]}; 
663      Float_t rohapar2[3]   = { tlength/2., rohapar[1],   rohapar[2]}; 
664      Float_t insupar2[3]   = { tlength/2., insupar[1],   insupar[2]}; 
665      Float_t pcbpar2[3]    = { tlength/2., pcbpar[1],    pcbpar[2]}; 
666      Float_t senspar2[3]   = { tlength/2., senspar[1],   senspar[2]}; 
667      Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]}; 
668      Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]}; 
669
670      const Int_t knSlats3 = 5;  // number of slats per quadrant
671      const Int_t knPCB3[knSlats3] = {3,3,4,3,2}; // n PCB per slat
672      const Float_t kxpos3[knSlats3] = {31., 40., 0., 0., 0.};
673      Float_t slatLength3[knSlats3]; 
674
675      // create and position the slat (mother) volumes 
676
677      char volNam5[5];
678      char volNam6[5];
679      Float_t xSlat3;
680
681      Float_t spar2[3];
682      for (i = 0; i<knSlats3; i++){
683        slatLength3[i] = kpcbLength * knPCB3[i] + 2. * kdSlatLength; 
684        xSlat3 = slatLength3[i]/2. - kvFrameLength/2. + kxpos3[i]; 
685        if (i==1 || i==0) slatLength3[i] -=  2. *kdSlatLength; // frame out in PCB with circular border 
686        Float_t ySlat31 =  ksensHeight * i - kyOverlap * i; 
687        Float_t ySlat32 = -ksensHeight * i + kyOverlap * i; 
688        spar[0] = slatLength3[i]/2.; 
689        spar[1] = kslatHeight/2.;
690        spar[2] = kslatWidth/2. * 1.01; 
691        // take away 5 cm from the first slat in chamber 5
692        Float_t xSlat32 = 0;
693        if (i==1 || i==2) { // 1 pcb is shortened by 5cm
694          spar2[0] = spar[0]-5./2.;
695          xSlat32 = xSlat3 - 5/2.;
696        }
697        else {
698          spar2[0] = spar[0];
699          xSlat32 = xSlat3;
700        }
701        spar2[1] = spar[1];
702        spar2[2] = spar[2]; 
703        Float_t dzCh3=spar[2] * 1.01;
704        // zSlat to be checked (odd downstream or upstream?)
705        Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2];
706
707         if (gAlice->GetModule("DIPO")) {zSlat*=-1.;}
708
709        sprintf(volNam5,"S05%d",i);
710        gMC->Gsvolu(volNam5,"BOX",kslatMaterial,spar2,3);
711        gMC->Gspos(volNam5, i*4+1,slats5Mother, -xSlat32, ySlat31, zoffs5-zSlat-2.*dzCh3, 0, "ONLY");
712        gMC->Gspos(volNam5, i*4+2,slats5Mother, +xSlat32, ySlat31, zoffs5-zSlat+2.*dzCh3, 0, "ONLY");
713        
714         if (i>0) { 
715          gMC->Gspos(volNam5, i*4+3,slats5Mother,-xSlat32, ySlat32, zoffs5-zSlat-2.*dzCh3, 0, "ONLY");
716          gMC->Gspos(volNam5, i*4+4,slats5Mother,+xSlat32, ySlat32, zoffs5-zSlat+2.*dzCh3, 0, "ONLY");
717        }
718        sprintf(volNam6,"S06%d",i);
719        gMC->Gsvolu(volNam6,"BOX",kslatMaterial,spar,3);
720        gMC->Gspos(volNam6, i*4+1,slats6Mother,-xSlat3, ySlat31, zoffs6-zSlat-2.*dzCh3, 0, "ONLY");
721        gMC->Gspos(volNam6, i*4+2,slats6Mother,+xSlat3, ySlat31, zoffs6-zSlat+2.*dzCh3, 0, "ONLY");
722        if (i>0) { 
723          gMC->Gspos(volNam6, i*4+3,slats6Mother,-xSlat3, ySlat32, zoffs6-zSlat-2.*dzCh3, 0, "ONLY");
724          gMC->Gspos(volNam6, i*4+4,slats6Mother,+xSlat3, ySlat32, zoffs6-zSlat+2.*dzCh3, 0, "ONLY");
725        }
726      }
727
728      // create the panel volume 
729  
730      gMC->Gsvolu("S05C","BOX",kpanelMaterial,panelpar,3);
731      gMC->Gsvolu("SB5C","BOX",kpanelMaterial,panelpar2,3);
732      gMC->Gsvolu("S06C","BOX",kpanelMaterial,panelpar,3);
733
734      // create the rohacell volume 
735
736      gMC->Gsvolu("S05R","BOX",krohaMaterial,rohapar,3);
737      gMC->Gsvolu("SB5R","BOX",krohaMaterial,rohapar2,3);
738      gMC->Gsvolu("S06R","BOX",krohaMaterial,rohapar,3);
739
740      // create the insulating material volume 
741
742      gMC->Gsvolu("S05I","BOX",kinsuMaterial,insupar,3);
743      gMC->Gsvolu("SB5I","BOX",kinsuMaterial,insupar2,3);
744      gMC->Gsvolu("S06I","BOX",kinsuMaterial,insupar,3);
745
746      // create the PCB volume 
747
748      gMC->Gsvolu("S05P","BOX",kpcbMaterial,pcbpar,3);
749      gMC->Gsvolu("SB5P","BOX",kpcbMaterial,pcbpar2,3);
750      gMC->Gsvolu("S06P","BOX",kpcbMaterial,pcbpar,3);
751  
752      // create the sensitive volumes,
753      gMC->Gsvolu("S05G","BOX",ksensMaterial,dum,0);
754      gMC->Gsvolu("S06G","BOX",ksensMaterial,dum,0);
755
756
757      // create the vertical frame volume 
758
759      gMC->Gsvolu("S05V","BOX",kvFrameMaterial,vFramepar,3);
760      gMC->Gsvolu("S06V","BOX",kvFrameMaterial,vFramepar,3);
761
762      // create the horizontal frame volume 
763
764      gMC->Gsvolu("S05H","BOX",khFrameMaterial,hFramepar,3);
765      gMC->Gsvolu("SB5H","BOX",khFrameMaterial,hFramepar2,3);
766      gMC->Gsvolu("S06H","BOX",khFrameMaterial,hFramepar,3);
767
768      // create the horizontal border volume 
769
770      gMC->Gsvolu("S05B","BOX",kbFrameMaterial,bFramepar,3);
771      gMC->Gsvolu("SB5B","BOX",kbFrameMaterial,bFramepar2,3);
772      gMC->Gsvolu("S06B","BOX",kbFrameMaterial,bFramepar,3);
773
774      index=0; 
775      for (i = 0; i<knSlats3; i++){
776        sprintf(volNam5,"S05%d",i);
777        sprintf(volNam6,"S06%d",i);
778        Float_t xvFrame  = (slatLength3[i] - kvFrameLength)/2.;
779        Float_t xvFrame2  = xvFrame;
780        if ( i==1 || i ==2 ) xvFrame2 -= 5./2.;
781        // position the vertical frames 
782        if (i!=1 && i!=0) { 
783          gMC->Gspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY");
784          gMC->Gspos("S05V",2*i  ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY");
785          gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY");
786          gMC->Gspos("S06V",2*i  ,volNam6,-xvFrame, 0., 0. , 0, "ONLY");
787        }       
788        // position the panels and the insulating material 
789        for (j=0; j<knPCB3[i]; j++){
790          index++;
791          Float_t xx = ksensLength * (-knPCB3[i]/2.+j+.5); 
792          Float_t xx2 = xx + 5/2.; 
793          
794          Float_t zPanel = spar[2] - panelpar[2]; 
795          if ( (i==1 || i==2) && j == knPCB3[i]-1) { // 1 pcb is shortened by 5cm 
796            gMC->Gspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
797            gMC->Gspos("SB5C",2*index  ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
798            gMC->Gspos("SB5I",index    ,volNam5, xx, 0., 0      , 0, "ONLY");
799          }
800          else if ( (i==1 || i==2) && j < knPCB3[i]-1) {
801            gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY");
802            gMC->Gspos("S05C",2*index  ,volNam5, xx2, 0.,-zPanel , 0, "ONLY");
803            gMC->Gspos("S05I",index    ,volNam5, xx2, 0., 0 , 0, "ONLY");
804          }
805          else {
806            gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
807            gMC->Gspos("S05C",2*index  ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
808            gMC->Gspos("S05I",index    ,volNam5, xx, 0., 0 , 0, "ONLY");
809          }
810          gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY");
811          gMC->Gspos("S06C",2*index  ,volNam6, xx, 0.,-zPanel , 0, "ONLY");
812          gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY");
813        } 
814      }
815      
816      // position the rohacell volume inside the panel volume
817      gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY"); 
818      gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY"); 
819      gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY"); 
820
821      // position the PCB volume inside the insulating material volume
822      gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); 
823      gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY"); 
824      gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); 
825      // position the horizontal frame volume inside the PCB volume
826      gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); 
827      gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY"); 
828      gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); 
829      // position the sensitive volume inside the horizontal frame volume
830      gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); 
831      gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3); 
832      gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); 
833      // position the border volumes inside the PCB volume
834      Float_t yborder = ( kpcbHeight - kbFrameHeight ) / 2.; 
835      gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); 
836      gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); 
837      gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY"); 
838      gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY"); 
839      gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); 
840      gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); 
841
842      // create the NULOC volume and position it in the horizontal frame
843
844      gMC->Gsvolu("S05N","BOX",knulocMaterial,nulocpar,3);
845      gMC->Gsvolu("S06N","BOX",knulocMaterial,nulocpar,3);
846      index = 0;
847      Float_t xxmax2 = xxmax - 5./2.;
848      for (xx = -xxmax; xx<=xxmax; xx+=2*knulocLength) { 
849        index++; 
850        gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
851        gMC->Gspos("S05N",2*index  ,"S05B", xx, 0., kbFrameWidth/4., 0, "ONLY");
852        if (xx > -xxmax2 && xx< xxmax2) {
853          gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
854          gMC->Gspos("S05N",2*index  ,"SB5B", xx, 0., kbFrameWidth/4., 0, "ONLY");
855        }
856        gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
857        gMC->Gspos("S06N",2*index  ,"S06B", xx, 0., kbFrameWidth/4., 0, "ONLY");
858      }
859      
860      // position the volumes approximating the circular section of the pipe
861      Float_t yoffs = ksensHeight/2. - kyOverlap; 
862      Float_t epsilon = 0.001; 
863      Int_t ndiv=6;
864      Float_t divpar[3];
865      Double_t dydiv= ksensHeight/ndiv;
866      Double_t ydiv = yoffs -dydiv;
867      Int_t imax=0; 
868      imax = 1; 
869      Float_t rmin = 33.; 
870      Float_t z1 = spar[2], z2=2*spar[2]*1.01; 
871      if (gAlice->GetModule("DIPO")) {z1*=-1.;}
872      for (Int_t idiv=0;idiv<ndiv; idiv++){ 
873        ydiv+= dydiv;
874        Float_t xdiv = 0.; 
875        if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
876        divpar[0] = (kpcbLength-xdiv)/2.; 
877        divpar[1] = dydiv/2. - epsilon;
878        divpar[2] = ksensWidth/2.; 
879        Float_t xvol=(kpcbLength+xdiv)/2.+1.999;
880        Float_t yvol=ydiv + dydiv/2.; 
881        //printf ("y ll = %f y ur = %f \n",yvol - divpar[1], yvol + divpar[1]); 
882        gMC->Gsposp("S05G",imax+4*idiv+1,slats5Mother,-xvol, yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3);
883        gMC->Gsposp("S06G",imax+4*idiv+1,slats6Mother,-xvol, yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3);
884        gMC->Gsposp("S05G",imax+4*idiv+2,slats5Mother,-xvol,-yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3);
885        gMC->Gsposp("S06G",imax+4*idiv+2,slats6Mother,-xvol,-yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3);
886        gMC->Gsposp("S05G",imax+4*idiv+3,slats5Mother,+xvol, yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3);
887        gMC->Gsposp("S06G",imax+4*idiv+3,slats6Mother,+xvol, yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3);
888        gMC->Gsposp("S05G",imax+4*idiv+4,slats5Mother,+xvol,-yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3);
889        gMC->Gsposp("S06G",imax+4*idiv+4,slats6Mother,+xvol,-yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3);
890      }
891      }
892      
893  if (fStations[3]) {
894
895 //********************************************************************
896 //                            Station 4                             **
897 //********************************************************************
898      // indices 1 and 2 for first and second chambers in the station
899      // iChamber (first chamber) kept for other quanties than Z,
900      // assumed to be the same in both chambers
901      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6];
902      iChamber2 =(AliMUONChamber*) (*fChambers)[7];
903      zpos1=iChamber1->Z(); 
904      zpos2=iChamber2->Z();
905      dstation = TMath::Abs(zpos2 - zpos1);
906 //      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
907      
908 //
909 //   Mother volume
910      tpar[0] = iChamber->RInner()-dframep; 
911      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
912      tpar[2] = dstation/4;
913
914      gMC->Gsvolu("S07M", "TUBE", idAir, tpar, 3);
915      gMC->Gsvolu("S08M", "TUBE", idAir, tpar, 3);
916      gMC->Gspos("S07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
917      gMC->Gspos("S08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
918      
919
920      const Int_t knSlats4 = 6;  // number of slats per quadrant
921      const Int_t knPCB4[knSlats4] = {4,4,5,5,4,3}; // n PCB per slat
922      const Float_t kxpos4[knSlats4] = {38.5, 40., 0., 0., 0., 0.};
923      Float_t slatLength4[knSlats4];     
924
925      // create and position the slat (mother) volumes 
926
927      char volNam7[5];
928      char volNam8[5];
929      Float_t xSlat4;
930      Float_t ySlat4;
931
932      for (i = 0; i<knSlats4; i++){
933        slatLength4[i] = kpcbLength * knPCB4[i] + 2. * kdSlatLength; 
934        xSlat4 = slatLength4[i]/2. - kvFrameLength/2. + kxpos4[i]; 
935        if (i==1) slatLength4[i] -=  2. *kdSlatLength; // frame out in PCB with circular border 
936        ySlat4 =  ksensHeight * i - kyOverlap *i;
937        
938        spar[0] = slatLength4[i]/2.; 
939        spar[1] = kslatHeight/2.;
940        spar[2] = kslatWidth/2.*1.01; 
941        Float_t dzCh4=spar[2]*1.01;
942        // zSlat to be checked (odd downstream or upstream?)
943        Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2]; 
944        sprintf(volNam7,"S07%d",i);
945        gMC->Gsvolu(volNam7,"BOX",kslatMaterial,spar,3);
946        gMC->Gspos(volNam7, i*4+1,"S07M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
947        gMC->Gspos(volNam7, i*4+2,"S07M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
948        if (i>0) { 
949          gMC->Gspos(volNam7, i*4+3,"S07M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
950          gMC->Gspos(volNam7, i*4+4,"S07M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
951        }
952        sprintf(volNam8,"S08%d",i);
953        gMC->Gsvolu(volNam8,"BOX",kslatMaterial,spar,3);
954        gMC->Gspos(volNam8, i*4+1,"S08M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
955        gMC->Gspos(volNam8, i*4+2,"S08M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
956        if (i>0) { 
957          gMC->Gspos(volNam8, i*4+3,"S08M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
958          gMC->Gspos(volNam8, i*4+4,"S08M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
959        }
960      }
961      
962
963      // create the panel volume 
964  
965      gMC->Gsvolu("S07C","BOX",kpanelMaterial,panelpar,3);
966      gMC->Gsvolu("S08C","BOX",kpanelMaterial,panelpar,3);
967
968      // create the rohacell volume 
969
970      gMC->Gsvolu("S07R","BOX",krohaMaterial,rohapar,3);
971      gMC->Gsvolu("S08R","BOX",krohaMaterial,rohapar,3);
972
973      // create the insulating material volume 
974
975      gMC->Gsvolu("S07I","BOX",kinsuMaterial,insupar,3);
976      gMC->Gsvolu("S08I","BOX",kinsuMaterial,insupar,3);
977
978      // create the PCB volume 
979
980      gMC->Gsvolu("S07P","BOX",kpcbMaterial,pcbpar,3);
981      gMC->Gsvolu("S08P","BOX",kpcbMaterial,pcbpar,3);
982  
983      // create the sensitive volumes,
984
985      gMC->Gsvolu("S07G","BOX",ksensMaterial,dum,0);
986      gMC->Gsvolu("S08G","BOX",ksensMaterial,dum,0);
987
988      // create the vertical frame volume 
989
990      gMC->Gsvolu("S07V","BOX",kvFrameMaterial,vFramepar,3);
991      gMC->Gsvolu("S08V","BOX",kvFrameMaterial,vFramepar,3);
992
993      // create the horizontal frame volume 
994
995      gMC->Gsvolu("S07H","BOX",khFrameMaterial,hFramepar,3);
996      gMC->Gsvolu("S08H","BOX",khFrameMaterial,hFramepar,3);
997
998      // create the horizontal border volume 
999
1000      gMC->Gsvolu("S07B","BOX",kbFrameMaterial,bFramepar,3);
1001      gMC->Gsvolu("S08B","BOX",kbFrameMaterial,bFramepar,3);
1002
1003      index=0; 
1004      for (i = 0; i<knSlats4; i++){
1005        sprintf(volNam7,"S07%d",i);
1006        sprintf(volNam8,"S08%d",i);
1007        Float_t xvFrame  = (slatLength4[i] - kvFrameLength)/2.;
1008        // position the vertical frames 
1009        if (i!=1 && i!=0) { 
1010          gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY");
1011          gMC->Gspos("S07V",2*i  ,volNam7,-xvFrame, 0., 0. , 0, "ONLY");
1012          gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY");
1013          gMC->Gspos("S08V",2*i  ,volNam8,-xvFrame, 0., 0. , 0, "ONLY");
1014        }
1015        // position the panels and the insulating material 
1016        for (j=0; j<knPCB4[i]; j++){
1017          index++;
1018          Float_t xx = ksensLength * (-knPCB4[i]/2.+j+.5); 
1019
1020          Float_t zPanel = spar[2] - panelpar[2]; 
1021          gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY");
1022          gMC->Gspos("S07C",2*index  ,volNam7, xx, 0.,-zPanel , 0, "ONLY");
1023          gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY");
1024          gMC->Gspos("S08C",2*index  ,volNam8, xx, 0.,-zPanel , 0, "ONLY");
1025
1026          gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY");
1027          gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY");
1028        } 
1029      }
1030
1031      // position the rohacell volume inside the panel volume
1032      gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY"); 
1033      gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY"); 
1034
1035      // position the PCB volume inside the insulating material volume
1036      gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); 
1037      gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); 
1038      // position the horizontal frame volume inside the PCB volume
1039      gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); 
1040      gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); 
1041      // position the sensitive volume inside the horizontal frame volume
1042      gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); 
1043      gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); 
1044      // position the border volumes inside the PCB volume
1045      Float_t yborder = ( kpcbHeight - kbFrameHeight ) / 2.; 
1046      gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); 
1047      gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); 
1048      gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); 
1049      gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); 
1050
1051      // create the NULOC volume and position it in the horizontal frame
1052
1053      gMC->Gsvolu("S07N","BOX",knulocMaterial,nulocpar,3);
1054      gMC->Gsvolu("S08N","BOX",knulocMaterial,nulocpar,3);
1055      index = 0;
1056      for (xx = -xxmax; xx<=xxmax; xx+=2*knulocLength) { 
1057        index++; 
1058        gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1059        gMC->Gspos("S07N",2*index  ,"S07B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1060        gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1061        gMC->Gspos("S08N",2*index  ,"S08B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1062      }
1063
1064      // position the volumes approximating the circular section of the pipe
1065      Float_t yoffs = ksensHeight/2. - kyOverlap; 
1066      Float_t epsilon = 0.001; 
1067      Int_t ndiv=6;
1068      Float_t divpar[3];
1069      Double_t dydiv= ksensHeight/ndiv;
1070      Double_t ydiv = yoffs -dydiv;
1071      Int_t imax=0; 
1072      imax = 1; 
1073      Float_t rmin = 40.; 
1074      Float_t z1 = -spar[2], z2=2*spar[2]*1.01; 
1075      for (Int_t idiv=0;idiv<ndiv; idiv++){ 
1076        ydiv+= dydiv;
1077        Float_t xdiv = 0.; 
1078        if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1079        divpar[0] = (kpcbLength-xdiv)/2.; 
1080        divpar[1] = dydiv/2. - epsilon;
1081        divpar[2] = ksensWidth/2.; 
1082        Float_t xvol=(kpcbLength+xdiv)/2.+1.999;
1083        Float_t yvol=ydiv + dydiv/2.;
1084        gMC->Gsposp("S07G",imax+4*idiv+1,"S07M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1085        gMC->Gsposp("S08G",imax+4*idiv+1,"S08M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1086        gMC->Gsposp("S07G",imax+4*idiv+2,"S07M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1087        gMC->Gsposp("S08G",imax+4*idiv+2,"S08M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1088        gMC->Gsposp("S07G",imax+4*idiv+3,"S07M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1089        gMC->Gsposp("S08G",imax+4*idiv+3,"S08M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1090        gMC->Gsposp("S07G",imax+4*idiv+4,"S07M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1091        gMC->Gsposp("S08G",imax+4*idiv+4,"S08M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1092      }
1093
1094
1095
1096
1097
1098  }
1099
1100  if (fStations[4]) {
1101      
1102
1103 //********************************************************************
1104 //                            Station 5                             **
1105 //********************************************************************
1106      // indices 1 and 2 for first and second chambers in the station
1107      // iChamber (first chamber) kept for other quanties than Z,
1108      // assumed to be the same in both chambers
1109      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8];
1110      iChamber2 =(AliMUONChamber*) (*fChambers)[9];
1111      zpos1=iChamber1->Z(); 
1112      zpos2=iChamber2->Z();
1113      dstation = TMath::Abs(zpos2 - zpos1);
1114 //      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
1115      
1116 //
1117 //   Mother volume
1118      tpar[0] = iChamber->RInner()-dframep; 
1119      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
1120      tpar[2] = dstation/5.;
1121
1122      gMC->Gsvolu("S09M", "TUBE", idAir, tpar, 3);
1123      gMC->Gsvolu("S10M", "TUBE", idAir, tpar, 3);
1124      gMC->Gspos("S09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1125      gMC->Gspos("S10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1126
1127
1128      const Int_t knSlats5 = 7;  // number of slats per quadrant
1129      const Int_t knPCB5[knSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat
1130      const Float_t kxpos5[knSlats5] = {38.5, 40., 0., 0., 0., 0., 0.};
1131      Float_t slatLength5[knSlats5]; 
1132      char volNam9[5];
1133      char volNam10[5];
1134      Float_t xSlat5;
1135      Float_t ySlat5;
1136
1137      for (i = 0; i<knSlats5; i++){
1138        slatLength5[i] = kpcbLength * knPCB5[i] + 2. * kdSlatLength; 
1139        xSlat5 = slatLength5[i]/2. - kvFrameLength/2. +kxpos5[i]; 
1140        if (i==1 || i==0) slatLength5[i] -=  2. *kdSlatLength; // frame out in PCB with circular border 
1141        ySlat5 = ksensHeight * i - kyOverlap * i; 
1142        spar[0] = slatLength5[i]/2.; 
1143        spar[1] = kslatHeight/2.;
1144        spar[2] = kslatWidth/2. * 1.01; 
1145        Float_t dzCh5=spar[2]*1.01;
1146        // zSlat to be checked (odd downstream or upstream?)
1147        Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; 
1148        sprintf(volNam9,"S09%d",i);
1149        gMC->Gsvolu(volNam9,"BOX",kslatMaterial,spar,3);
1150        gMC->Gspos(volNam9, i*4+1,"S09M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1151        gMC->Gspos(volNam9, i*4+2,"S09M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1152        if (i>0) { 
1153            gMC->Gspos(volNam9, i*4+3,"S09M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1154            gMC->Gspos(volNam9, i*4+4,"S09M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1155        }
1156        sprintf(volNam10,"S10%d",i);
1157        gMC->Gsvolu(volNam10,"BOX",kslatMaterial,spar,3);
1158        gMC->Gspos(volNam10, i*4+1,"S10M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1159        gMC->Gspos(volNam10, i*4+2,"S10M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1160        if (i>0) { 
1161            gMC->Gspos(volNam10, i*4+3,"S10M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1162            gMC->Gspos(volNam10, i*4+4,"S10M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1163        }
1164      }
1165
1166      // create the panel volume 
1167  
1168      gMC->Gsvolu("S09C","BOX",kpanelMaterial,panelpar,3);
1169      gMC->Gsvolu("S10C","BOX",kpanelMaterial,panelpar,3);
1170
1171      // create the rohacell volume 
1172
1173      gMC->Gsvolu("S09R","BOX",krohaMaterial,rohapar,3);
1174      gMC->Gsvolu("S10R","BOX",krohaMaterial,rohapar,3);
1175
1176      // create the insulating material volume 
1177
1178      gMC->Gsvolu("S09I","BOX",kinsuMaterial,insupar,3);
1179      gMC->Gsvolu("S10I","BOX",kinsuMaterial,insupar,3);
1180
1181      // create the PCB volume 
1182
1183      gMC->Gsvolu("S09P","BOX",kpcbMaterial,pcbpar,3);
1184      gMC->Gsvolu("S10P","BOX",kpcbMaterial,pcbpar,3);
1185  
1186      // create the sensitive volumes,
1187
1188      gMC->Gsvolu("S09G","BOX",ksensMaterial,dum,0);
1189      gMC->Gsvolu("S10G","BOX",ksensMaterial,dum,0);
1190
1191      // create the vertical frame volume 
1192
1193      gMC->Gsvolu("S09V","BOX",kvFrameMaterial,vFramepar,3);
1194      gMC->Gsvolu("S10V","BOX",kvFrameMaterial,vFramepar,3);
1195
1196      // create the horizontal frame volume 
1197
1198      gMC->Gsvolu("S09H","BOX",khFrameMaterial,hFramepar,3);
1199      gMC->Gsvolu("S10H","BOX",khFrameMaterial,hFramepar,3);
1200
1201      // create the horizontal border volume 
1202
1203      gMC->Gsvolu("S09B","BOX",kbFrameMaterial,bFramepar,3);
1204      gMC->Gsvolu("S10B","BOX",kbFrameMaterial,bFramepar,3);
1205
1206      index=0; 
1207      for (i = 0; i<knSlats5; i++){
1208        sprintf(volNam9,"S09%d",i);
1209        sprintf(volNam10,"S10%d",i);
1210        Float_t xvFrame  = (slatLength5[i] - kvFrameLength)/2.;
1211        // position the vertical frames 
1212        if (i!=1 && i!=0) { 
1213          gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY");
1214          gMC->Gspos("S09V",2*i  ,volNam9,-xvFrame, 0., 0. , 0, "ONLY");
1215          gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY");
1216          gMC->Gspos("S10V",2*i  ,volNam10,-xvFrame, 0., 0. , 0, "ONLY");
1217        }
1218        
1219        // position the panels and the insulating material 
1220        for (j=0; j<knPCB5[i]; j++){
1221          index++;
1222          Float_t xx = ksensLength * (-knPCB5[i]/2.+j+.5); 
1223
1224          Float_t zPanel = spar[2] - panelpar[2]; 
1225          gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY");
1226          gMC->Gspos("S09C",2*index  ,volNam9, xx, 0.,-zPanel , 0, "ONLY");
1227          gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY");
1228          gMC->Gspos("S10C",2*index  ,volNam10, xx, 0.,-zPanel , 0, "ONLY");
1229
1230          gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY");
1231          gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY");
1232        } 
1233      }
1234
1235      // position the rohacell volume inside the panel volume
1236      gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY"); 
1237      gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY"); 
1238
1239      // position the PCB volume inside the insulating material volume
1240      gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); 
1241      gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); 
1242      // position the horizontal frame volume inside the PCB volume
1243      gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); 
1244      gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); 
1245      // position the sensitive volume inside the horizontal frame volume
1246      gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); 
1247      gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); 
1248      // position the border volumes inside the PCB volume
1249      Float_t yborder = ( kpcbHeight - kbFrameHeight ) / 2.; 
1250      gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); 
1251      gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); 
1252      gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); 
1253      gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); 
1254
1255      // create the NULOC volume and position it in the horizontal frame
1256
1257      gMC->Gsvolu("S09N","BOX",knulocMaterial,nulocpar,3);
1258      gMC->Gsvolu("S10N","BOX",knulocMaterial,nulocpar,3);
1259      index = 0;
1260      for (xx = -xxmax; xx<=xxmax; xx+=2*knulocLength) { 
1261        index++; 
1262        gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1263        gMC->Gspos("S09N",2*index  ,"S09B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1264        gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1265        gMC->Gspos("S10N",2*index  ,"S10B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1266      }
1267      // position the volumes approximating the circular section of the pipe
1268      Float_t yoffs = ksensHeight/2. - kyOverlap; 
1269      Float_t epsilon = 0.001; 
1270      Int_t ndiv=6;
1271      Float_t divpar[3];
1272      Double_t dydiv= ksensHeight/ndiv;
1273      Double_t ydiv = yoffs -dydiv;
1274      Int_t imax=0; 
1275      //     for (Int_t islat=0; islat<knSlats3; islat++) imax += knPCB3[islat]; 
1276      imax = 1; 
1277      Float_t rmin = 40.; 
1278      Float_t z1 = spar[2], z2=2*spar[2]*1.01; 
1279      for (Int_t idiv=0;idiv<ndiv; idiv++){ 
1280        ydiv+= dydiv;
1281        Float_t xdiv = 0.; 
1282        if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1283        divpar[0] = (kpcbLength-xdiv)/2.; 
1284        divpar[1] = dydiv/2. - epsilon;
1285        divpar[2] = ksensWidth/2.; 
1286        Float_t xvol=(kpcbLength+xdiv)/2. + 1.999;
1287        Float_t yvol=ydiv + dydiv/2.;
1288        gMC->Gsposp("S09G",imax+4*idiv+1,"S09M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1289        gMC->Gsposp("S10G",imax+4*idiv+1,"S10M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1290        gMC->Gsposp("S09G",imax+4*idiv+2,"S09M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1291        gMC->Gsposp("S10G",imax+4*idiv+2,"S10M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1292        gMC->Gsposp("S09G",imax+4*idiv+3,"S09M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1293        gMC->Gsposp("S10G",imax+4*idiv+3,"S10M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1294        gMC->Gsposp("S09G",imax+4*idiv+4,"S09M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1295        gMC->Gsposp("S10G",imax+4*idiv+4,"S10M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1296      }
1297
1298  }
1299  
1300 //********************************************************************
1301 //                            Trigger                               **
1302 //******************************************************************** 
1303  /* 
1304     zpos1 and zpos2 are the middle of the first and second
1305     planes of station 1 (+1m for second station):
1306     zpos1=(zpos1m+zpos1p)/2=(15999+16071)/2=16035 mm, thick/2=40 mm
1307     zpos2=(zpos2m+zpos2p)/2=(16169+16241)/2=16205 mm, thick/2=40 mm
1308     zposxm and zposxp= middles of gaz gaps within a detection plane
1309     rem: the total thickness accounts for 1 mm of al on both
1310     side of the RPCs (see zpos1 and zpos2)
1311  */
1312
1313 // vertical gap between right and left chambers (kDXZERO*2=4cm)
1314  const Float_t kDXZERO=2.; 
1315 // main distances for chamber definition in first plane/first station
1316  const Float_t kXMIN=34.;       
1317  const Float_t kXMED=51.;                                
1318  const Float_t kXMAX=272.; 
1319 // kXMAX will become 255. in real life. segmentation to be updated accordingly
1320 // (see fig.2-4 & 2-5 of Local Trigger Board PRR)
1321  const Float_t kYMIN=34.;                              
1322  const Float_t kYMAX=51.;                              
1323 // inner/outer radius of flange between beam shield. and chambers (1/station)
1324  const Float_t kRMIN[2]={50.,50.};
1325  const Float_t kRMAX[2]={64.,68.};
1326 // z position of the middle of the gas gap in mother vol 
1327  const Float_t kZm=-3.6;
1328  const Float_t kZp=+3.6;     
1329  
1330  iChamber1 = (AliMUONChamber*) (*fChambers)[10];     
1331  zpos1 = iChamber1->Z();
1332
1333 // ratio of zpos1m/zpos1p and inverse for first plane
1334  Float_t zmp=(zpos1+3.6)/(zpos1-3.6);
1335  Float_t zpm=1./zmp;
1336  
1337  Int_t icount=0; // chamber counter (0 1 2 3)
1338  
1339  for (Int_t istation=0; istation<2; istation++) { // loop on stations    
1340      for (Int_t iplane=0; iplane<2; iplane++) {   // loop on detection planes
1341          
1342          Int_t iVolNum=1; // counter Volume Number
1343          icount = Int_t(iplane*TMath::Power(2,0))+
1344              Int_t(istation*TMath::Power(2,1));
1345          
1346          char volPlane[5]; 
1347          sprintf(volPlane,"SM%d%d",istation+1,iplane+1);
1348          
1349          iChamber = (AliMUONChamber*) (*fChambers)[10+icount];
1350          Float_t zpos = iChamber->Z();       
1351          
1352 // mother volume 
1353          tpar[0] = iChamber->RInner(); 
1354          tpar[1] = iChamber->ROuter(); 
1355          tpar[2] = 4.0;    
1356          gMC->Gsvolu(volPlane,"TUBE",idAir,tpar,3);
1357          
1358 // Flange between beam shielding and RPC 
1359          tpar[0]= kRMIN[istation];
1360          tpar[1]= kRMAX[istation];
1361          tpar[2]= 4.0;
1362          
1363          char volFlange[5];
1364          sprintf(volFlange,"SF%dA",icount+1);    
1365          gMC->Gsvolu(volFlange,"TUBE",idAlu1,tpar,3);     //Al
1366          gMC->Gspos(volFlange,1,volPlane,0.,0.,0.,0,"MANY");
1367          
1368 // scaling factor
1369          Float_t zRatio = zpos / zpos1;
1370          
1371 // chamber prototype
1372          tpar[0]= 0.;
1373          tpar[1]= 0.;
1374          tpar[2]= 0.;
1375          
1376          char volAlu[5]; // Alu
1377          char volBak[5]; // Bakelite
1378          char volGaz[5]; // Gas streamer
1379          
1380          sprintf(volAlu,"SC%dA",icount+1);
1381          sprintf(volBak,"SB%dA",icount+1);
1382          sprintf(volGaz,"SG%dA",icount+1);
1383          
1384          gMC->Gsvolu(volAlu,"BOX",idAlu1,tpar,0);           // Al
1385          gMC->Gsvolu(volBak,"BOX",idtmed[1107],tpar,0);     // Bakelite
1386          gMC->Gsvolu(volGaz,"BOX",idtmed[1106],tpar,0);     // Gas streamer
1387          
1388 // chamber type A
1389          tpar[0] = -1.;
1390          tpar[1] = -1.;
1391          
1392          Float_t xA=(kDXZERO+kXMED+(kXMAX-kXMED)/2.)*zRatio;
1393          Float_t yAm=0.;
1394          Float_t yAp=0.;
1395          
1396          tpar[2] = 0.1;    
1397          gMC->Gsposp(volGaz,1,volBak,0.,0.,0.,0,"ONLY",tpar,3);
1398          tpar[2] = 0.3;
1399          gMC->Gsposp(volBak,1,volAlu,0.,0.,0.,0,"ONLY",tpar,3);
1400          
1401          tpar[2] = 0.4;
1402          tpar[0] = ((kXMAX-kXMED)/2.)*zRatio;
1403          tpar[1] = kYMIN*zRatio;
1404          
1405          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xA,yAm,-kZm,0,"ONLY",tpar,3);
1406          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xA,yAp,-kZp,0,"ONLY",tpar,3);
1407          gMC->Gsbool(volAlu,volFlange);
1408          
1409 // chamber type B    
1410          Float_t tpar1save=tpar[1];
1411          Float_t y1msave=yAm;
1412          Float_t y1psave=yAp;
1413          
1414          tpar[0] = ((kXMAX-kXMIN)/2.) * zRatio;
1415          tpar[1] = ((kYMAX-kYMIN)/2.) * zRatio;
1416          
1417          Float_t xB=(kDXZERO+kXMIN)*zRatio+tpar[0];
1418          Float_t yBp=(y1msave+tpar1save)*zpm+tpar[1];
1419          Float_t yBm=(y1psave+tpar1save)*zmp+tpar[1];    
1420
1421          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB, yBp,-kZp,0,"ONLY",tpar,3);
1422          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xB, yBm,-kZm,0,"ONLY",tpar,3);
1423          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB,-yBp,-kZp,0,"ONLY",tpar,3);
1424          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xB,-yBm,-kZm,0,"ONLY",tpar,3);
1425          
1426 // chamber type C (note : same Z than type B)
1427          tpar1save=tpar[1];
1428          y1msave=yBm;
1429          y1psave=yBp;
1430          
1431          tpar[0] = (kXMAX/2)*zRatio;
1432          tpar[1] = (kYMAX/2)*zRatio;
1433          
1434          Float_t xC=kDXZERO*zRatio+tpar[0];
1435          Float_t yCp=(y1psave+tpar1save)*1.+tpar[1];
1436          Float_t yCm=(y1msave+tpar1save)*1.+tpar[1];
1437          
1438          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC, yCp,-kZp,0,"ONLY",tpar,3);
1439          gMC->Gsposp(volAlu,iVolNum++,volPlane, xC, yCm,-kZm,0,"ONLY",tpar,3);
1440          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC,-yCp,-kZp,0,"ONLY",tpar,3);
1441          gMC->Gsposp(volAlu,iVolNum++,volPlane, xC,-yCm,-kZm,0,"ONLY",tpar,3);
1442                  
1443 // chamber type D, E and F (same size)        
1444          tpar1save=tpar[1];
1445          y1msave=yCm;
1446          y1psave=yCp;
1447          
1448          tpar[0] = (kXMAX/2.)*zRatio;
1449          tpar[1] =  kYMIN*zRatio;
1450          
1451          Float_t xD=kDXZERO*zRatio+tpar[0];
1452          Float_t yDp=(y1msave+tpar1save)*zpm+tpar[1];
1453          Float_t yDm=(y1psave+tpar1save)*zmp+tpar[1];
1454          
1455          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yDm,-kZm,0,"ONLY",tpar,3);
1456          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD, yDp,-kZp,0,"ONLY",tpar,3);
1457          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yDm,-kZm,0,"ONLY",tpar,3);
1458          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD,-yDp,-kZp,0,"ONLY",tpar,3);
1459          
1460          tpar1save=tpar[1];
1461          y1msave=yDm;
1462          y1psave=yDp;
1463          Float_t yEp=(y1msave+tpar1save)*zpm+tpar[1];
1464          Float_t yEm=(y1psave+tpar1save)*zmp+tpar[1];
1465          
1466          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yEp,-kZp,0,"ONLY",tpar,3);
1467          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD, yEm,-kZm,0,"ONLY",tpar,3);
1468          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yEp,-kZp,0,"ONLY",tpar,3);
1469          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD,-yEm,-kZm,0,"ONLY",tpar,3);
1470          
1471          tpar1save=tpar[1];
1472          y1msave=yEm;
1473          y1psave=yEp;
1474          Float_t yFp=(y1msave+tpar1save)*zpm+tpar[1];
1475          Float_t yFm=(y1psave+tpar1save)*zmp+tpar[1];
1476          
1477          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yFm,-kZm,0,"ONLY",tpar,3);
1478          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD, yFp,-kZp,0,"ONLY",tpar,3);
1479          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yFm,-kZm,0,"ONLY",tpar,3);
1480          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD,-yFp,-kZp,0,"ONLY",tpar,3);
1481
1482 // Positioning plane in ALICE     
1483          gMC->Gspos(volPlane,1,"ALIC",0.,0.,zpos,0,"ONLY");
1484          
1485      } // end loop on detection planes
1486  } // end loop on stations
1487
1488 }
1489
1490  
1491 //___________________________________________
1492 void AliMUONv3::CreateMaterials()
1493 {
1494   // *** DEFINITION OF AVAILABLE MUON MATERIALS *** 
1495   //
1496   //     Ar-CO2 gas (80%+20%)
1497     Float_t ag1[3]   = { 39.95,12.01,16. };
1498     Float_t zg1[3]   = { 18.,6.,8. };
1499     Float_t wg1[3]   = { .8,.0667,.13333 };
1500     Float_t dg1      = .001821;
1501     //
1502     //     Ar-buthane-freon gas -- trigger chambers 
1503     Float_t atr1[4]  = { 39.95,12.01,1.01,19. };
1504     Float_t ztr1[4]  = { 18.,6.,1.,9. };
1505     Float_t wtr1[4]  = { .56,.1262857,.2857143,.028 };
1506     Float_t dtr1     = .002599;
1507     //
1508     //     Ar-CO2 gas 
1509     Float_t agas[3]  = { 39.95,12.01,16. };
1510     Float_t zgas[3]  = { 18.,6.,8. };
1511     Float_t wgas[3]  = { .74,.086684,.173316 };
1512     Float_t dgas     = .0018327;
1513     //
1514     //     Ar-Isobutane gas (80%+20%) -- tracking 
1515     Float_t ag[3]    = { 39.95,12.01,1.01 };
1516     Float_t zg[3]    = { 18.,6.,1. };
1517     Float_t wg[3]    = { .8,.057,.143 };
1518     Float_t dg       = .0019596;
1519     //
1520     //     Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger 
1521     Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
1522     Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
1523     Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
1524     Float_t dtrig    = .0031463;
1525     //
1526     //     bakelite 
1527
1528     Float_t abak[3] = {12.01 , 1.01 , 16.};
1529     Float_t zbak[3] = {6.     , 1.   , 8.};
1530     Float_t wbak[3] = {6.     , 6.   , 1.}; 
1531     Float_t dbak = 1.4;
1532
1533     Float_t epsil, stmin, deemax, tmaxfd, stemax;
1534
1535     Int_t iSXFLD   = gAlice->Field()->Integ();
1536     Float_t sXMGMX = gAlice->Field()->Max();
1537     //
1538     // --- Define the various materials for GEANT --- 
1539     AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1540     AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1541     AliMaterial(15, "AIR$      ", 14.61, 7.3, .001205, 30423.24, 67500);
1542     AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
1543     AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
1544     AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
1545     AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
1546     AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
1547     AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
1548     // materials for slat: 
1549     //     Sensitive area: gas (already defined) 
1550     //     PCB: copper 
1551     //     insulating material and frame: vetronite
1552     //     walls: carbon, rohacell, carbon 
1553   Float_t aglass[5]={12.01, 28.09, 16.,   10.8,  23.};
1554   Float_t zglass[5]={ 6.,   14.,    8.,    5.,   11.};
1555   Float_t wglass[5]={ 0.5,  0.105, 0.355, 0.03,  0.01};
1556   Float_t dglass=1.74;
1557
1558   // rohacell: C9 H13 N1 O2
1559   Float_t arohac[4] = {12.01,  1.01, 14.010, 16.};
1560   Float_t zrohac[4] = { 6.,    1.,    7.,     8.};
1561   Float_t wrohac[4] = { 9.,   13.,    1.,     2.};
1562   Float_t drohac    = 0.03;
1563
1564   AliMaterial(31, "COPPER$",   63.54,    29.,   8.96,  1.4, 0.);
1565   AliMixture(32, "Vetronite$",aglass, zglass, dglass,    5, wglass);
1566   AliMaterial(33, "Carbon$",   12.01,     6.,  2.265, 18.8, 49.9);
1567   AliMixture(34, "Rohacell$", arohac, zrohac, drohac,   -4, wrohac); 
1568
1569
1570     epsil  = .001; // Tracking precision, 
1571     stemax = -1.;  // Maximum displacement for multiple scat 
1572     tmaxfd = -20.; // Maximum angle due to field deflection 
1573     deemax = -.3;  // Maximum fractional energy loss, DLS 
1574     stmin  = -.8;
1575     //
1576     //    Air 
1577     AliMedium(1, "AIR_CH_US         ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1578     //
1579     //    Aluminum 
1580
1581     AliMedium(4, "ALU_CH_US          ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, 
1582             fMaxDestepAlu, epsil, stmin);
1583     AliMedium(5, "ALU_CH_US          ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, 
1584             fMaxDestepAlu, epsil, stmin);
1585     //
1586     //    Ar-isoC4H10 gas 
1587
1588     AliMedium(6, "AR_CH_US          ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, 
1589             fMaxDestepGas, epsil, stmin);
1590 //
1591     //    Ar-Isobuthane-Forane-SF6 gas 
1592
1593     AliMedium(7, "GAS_CH_TRIGGER    ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1594
1595     AliMedium(8, "BAKE_CH_TRIGGER   ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, 
1596             fMaxDestepAlu, epsil, stmin);
1597
1598     AliMedium(9, "ARG_CO2   ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, 
1599             fMaxDestepAlu, epsil, stmin);
1600     // tracking media for slats: check the parameters!! 
1601     AliMedium(11, "PCB_COPPER        ", 31, 0, iSXFLD, sXMGMX, tmaxfd, 
1602               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1603     AliMedium(12, "VETRONITE         ", 32, 0, iSXFLD, sXMGMX, tmaxfd, 
1604               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1605     AliMedium(13, "CARBON            ", 33, 0, iSXFLD, sXMGMX, tmaxfd, 
1606               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1607     AliMedium(14, "Rohacell          ", 34, 0, iSXFLD, sXMGMX, tmaxfd, 
1608               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1609 }
1610
1611 //___________________________________________
1612
1613 void AliMUONv3::Init()
1614 {
1615    // 
1616    // Initialize Tracking Chambers
1617    //
1618
1619    if(fDebug) printf("\n%s: Start Init for version 1 - CPC chamber type\n\n",ClassName());
1620    Int_t i;
1621    for (i=0; i<AliMUONConstants::NCh(); i++) {
1622        ( (AliMUONChamber*) (*fChambers)[i])->Init();
1623    }
1624    
1625    //
1626    // Set the chamber (sensitive region) GEANT identifier
1627    ((AliMUONChamber*)(*fChambers)[0])->GetGeometry()->SetSensitiveVolume("S01G");
1628    ((AliMUONChamber*)(*fChambers)[1])->GetGeometry()->SetSensitiveVolume("S02G");
1629
1630    ((AliMUONChamber*)(*fChambers)[2])->GetGeometry()->SetSensitiveVolume("S03G");
1631    ((AliMUONChamber*)(*fChambers)[3])->GetGeometry()->SetSensitiveVolume("S04G");
1632
1633    ((AliMUONChamber*)(*fChambers)[4])->GetGeometry()->SetSensitiveVolume("S05G");
1634    ((AliMUONChamber*)(*fChambers)[5])->GetGeometry()->SetSensitiveVolume("S06G");
1635
1636    ((AliMUONChamber*)(*fChambers)[6])->GetGeometry()->SetSensitiveVolume("S07G");
1637    ((AliMUONChamber*)(*fChambers)[7])->GetGeometry()->SetSensitiveVolume("S08G");
1638
1639    ((AliMUONChamber*)(*fChambers)[8])->GetGeometry()->SetSensitiveVolume("S09G");
1640    ((AliMUONChamber*)(*fChambers)[9])->GetGeometry()->SetSensitiveVolume("S10G");
1641
1642    ((AliMUONChamber*)(*fChambers)[10])->GetGeometry()->SetSensitiveVolume("SG1A");
1643    ((AliMUONChamber*)(*fChambers)[11])->GetGeometry()->SetSensitiveVolume("SG2A");
1644    ((AliMUONChamber*)(*fChambers)[12])->GetGeometry()->SetSensitiveVolume("SG3A");
1645    ((AliMUONChamber*)(*fChambers)[13])->GetGeometry()->SetSensitiveVolume("SG4A");
1646
1647    if(fDebug) printf("\n%s: Finished Init for version 1 - CPC chamber type\n",ClassName());
1648
1649    //cp 
1650    if(fDebug) printf("\n%s: Start Init for Trigger Circuits\n",ClassName());
1651    for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) {
1652      ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i);
1653    }
1654    if(fDebug) printf("%s: Finished Init for Trigger Circuits\n",ClassName());
1655    //cp
1656
1657 }
1658
1659 //_______________________________________________________________________________
1660 Int_t  AliMUONv3::GetChamberId(Int_t volId) const
1661 {
1662 // Check if the volume with specified  volId is a sensitive volume (gas) 
1663 // of some chamber and returns the chamber number;
1664 // if not sensitive volume - return 0.
1665 // ---
1666
1667   for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++)
1668     if ( ((AliMUONChamber*)(*fChambers)[i-1])->IsSensId(volId) ) return i;
1669
1670   return 0;
1671 }
1672 //_______________________________________________________________________________
1673 void AliMUONv3::StepManager()
1674 {
1675   // Stepmanager for the chambers
1676
1677  if (fStepManagerVersionOld) {
1678     StepManagerOld();
1679     return;
1680   }
1681
1682   // Only charged tracks
1683   if( !(gMC->TrackCharge()) ) return; 
1684   // Only charged tracks
1685   
1686   // Only gas gap inside chamber
1687   // Tag chambers and record hits when track enters 
1688   Int_t   idvol=-1;
1689   Int_t   iChamber=0;
1690   Int_t   id=0;
1691   Int_t   copy;
1692   const  Float_t kBig = 1.e10;
1693
1694   id=gMC->CurrentVolID(copy);
1695   iChamber = GetChamberId(id);
1696   idvol=GetChamberId(id)-1;
1697
1698   if (idvol == -1) return;
1699
1700    if( gMC->IsTrackEntering() ) {
1701      Float_t theta = fTrackMomentum.Theta();
1702      if ((TMath::Pi()-theta)*kRaddeg>=15.) gMC->SetMaxStep(fStepMaxInActiveGas); // We use Pi-theta because z is negative
1703   }
1704
1705 //  if (GetDebug()) {
1706 //     Float_t z = ( (AliMUONChamber*)(*fChambers)[idvol])->Z() ;
1707 //      Info("StepManager Step","Active volume found %d chamber %d Z chamber is %f ",idvol,iChamber, z);
1708 //   }  
1709   // Particule id and mass, 
1710   Int_t     ipart = gMC->TrackPid();
1711   Float_t   mass  = gMC->TrackMass();
1712
1713   fDestepSum[idvol]+=gMC->Edep();
1714   // Get current particle id (ipart), track position (pos)  and momentum (mom)
1715   if ( fStepSum[idvol]==0.0 )  gMC->TrackMomentum(fTrackMomentum);
1716   fStepSum[idvol]+=gMC->TrackStep();
1717   
1718 //   if (GetDebug()) {
1719 //     Info("StepManager Step","iChamber %d, Particle %d, theta %f phi %f mass %f StepSum %f eloss %g",
1720 //       iChamber,ipart, fTrackMomentum.Theta()*kRaddeg, fTrackMomentum.Phi()*kRaddeg, mass, fStepSum[idvol], gMC->Edep());
1721 //     Info("StepManager Step","Track Momentum %f %f %f", fTrackMomentum.X(), fTrackMomentum.Y(), fTrackMomentum.Z()) ;
1722 //     gMC->TrackPosition(fTrackPosition);
1723 //     Info("StepManager Step","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1724 //   }
1725
1726   // Track left chamber or StepSum larger than fStepMaxInActiveGas
1727   if ( gMC->IsTrackExiting() || 
1728        gMC->IsTrackStop() || 
1729        gMC->IsTrackDisappeared()||
1730        (fStepSum[idvol]>fStepMaxInActiveGas) ) {
1731     
1732     if   ( gMC->IsTrackExiting() || 
1733            gMC->IsTrackStop() || 
1734            gMC->IsTrackDisappeared() ) gMC->SetMaxStep(kBig);
1735
1736     gMC->TrackPosition(fTrackPosition);
1737     Float_t theta = fTrackMomentum.Theta();
1738     Float_t phi   = fTrackMomentum.Phi();
1739     
1740     TLorentzVector backToWire( fStepSum[idvol]/2.*sin(theta)*cos(phi),
1741                                fStepSum[idvol]/2.*sin(theta)*sin(phi),
1742                                fStepSum[idvol]/2.*cos(theta),0.0       );
1743     //     if (GetDebug()) 
1744     //       Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1745     //     if (GetDebug()) 
1746     //        Info("StepManager Exit ","Track backToWire %f %f %f",backToWire.X(),backToWire.Y(),backToWire.Z()) ;
1747     fTrackPosition-=backToWire;
1748     
1749     //-------------- Angle effect 
1750     // Ratio between energy loss of particle and Mip as a function of BetaGamma of particle (Energy/Mass)
1751     
1752     Float_t BetaxGamma    = fTrackMomentum.P()/mass;//  pc/mc2
1753     Float_t sigmaEffect10degrees;
1754     Float_t sigmaEffectThetadegrees;
1755     Float_t eLossParticleELossMip;
1756     Float_t yAngleEffect=0.;
1757     Float_t thetawires      =  TMath::Abs( TMath::ASin( TMath::Sin(TMath::Pi()-theta) * TMath::Sin(phi) ) );// We use Pi-theta because z is negative
1758
1759
1760     if (fAngleEffect){
1761     if ( (BetaxGamma >3.2)   &&  (thetawires*kRaddeg<=15.) ) {
1762       BetaxGamma=TMath::Log(BetaxGamma);
1763       eLossParticleELossMip = fElossRatio->Eval(BetaxGamma);
1764       // 10 degrees is a reference for a model (arbitrary)
1765       sigmaEffect10degrees=fAngleEffect10->Eval(eLossParticleELossMip);// in micrometers
1766       // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
1767       sigmaEffectThetadegrees =  sigmaEffect10degrees/fAngleEffectNorma->Eval(thetawires*kRaddeg);  // For 5mm gap  
1768       if ( (iChamber==1)  ||  (iChamber==2) )  
1769         sigmaEffectThetadegrees/=(1.09833e+00+1.70000e-02*(thetawires*kRaddeg)); // The gap is different (4mm)
1770       yAngleEffect=1.e-04*gRandom->Gaus(0,sigmaEffectThetadegrees); // Error due to the angle effect in cm
1771     }
1772     }
1773     
1774     // One hit per chamber
1775     GetMUONData()->AddHit(fIshunt, gAlice->GetMCApp()->GetCurrentTrackNumber(), iChamber, ipart, 
1776                           fTrackPosition.X(), fTrackPosition.Y()+yAngleEffect, fTrackPosition.Z(), 0.0, 
1777                           fTrackMomentum.P(),theta, phi, fStepSum[idvol], fDestepSum[idvol],
1778                           fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z());
1779 //     if (GetDebug()){
1780 //       Info("StepManager Exit","Particle exiting from chamber %d",iChamber);
1781 //       Info("StepManager Exit","StepSum %f eloss geant %g ",fStepSum[idvol],fDestepSum[idvol]);
1782 //       Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1783 //     }
1784     fStepSum[idvol]  =0; // Reset for the next event
1785     fDestepSum[idvol]=0; // Reset for the next event
1786   }
1787 }
1788
1789 //__________________________________________
1790 void AliMUONv3::StepManagerOld()
1791 {
1792   // Old Stepmanager for the chambers
1793   Int_t          copy, id;
1794   static Int_t   idvol;
1795   static Int_t   vol[2];
1796   Int_t          ipart;
1797   TLorentzVector pos;
1798   TLorentzVector mom;
1799   Float_t        theta,phi;
1800   Float_t        destep, step;
1801   
1802   static Float_t sstep;
1803   static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength;
1804   const  Float_t kBig = 1.e10;
1805   static Float_t hits[15];
1806
1807   TClonesArray &lhits = *fHits;
1808
1809   //
1810   //
1811   // Only charged tracks
1812   if( !(gMC->TrackCharge()) ) return; 
1813   //
1814   // Only gas gap inside chamber
1815   // Tag chambers and record hits when track enters 
1816   id=gMC->CurrentVolID(copy);
1817   vol[0] = GetChamberId(id);
1818   idvol = vol[0] -1;
1819
1820   if (idvol == -1) return;
1821
1822   //
1823   // Get current particle id (ipart), track position (pos)  and momentum (mom) 
1824   gMC->TrackPosition(pos);
1825   gMC->TrackMomentum(mom);
1826
1827   ipart  = gMC->TrackPid();
1828
1829   //
1830   // momentum loss and steplength in last step
1831   destep = gMC->Edep();
1832   step   = gMC->TrackStep();
1833   // cout<<"------------"<<step<<endl;
1834   //
1835   // record hits when track enters ...
1836   if( gMC->IsTrackEntering()) {
1837
1838       gMC->SetMaxStep(fMaxStepGas);
1839       Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
1840       Double_t rt = TMath::Sqrt(tc);
1841       Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]);
1842       Double_t tx = mom[0]/pmom;
1843       Double_t ty = mom[1]/pmom;
1844       Double_t tz = mom[2]/pmom;
1845       Double_t s  = ((AliMUONChamber*)(*fChambers)[idvol])
1846           ->ResponseModel()
1847           ->Pitch()/tz;
1848       theta   = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
1849       phi     = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
1850       hits[0] = Float_t(ipart);         // Geant3 particle type
1851       hits[1] = pos[0]+s*tx;            // X-position for hit
1852       hits[2] = pos[1]+s*ty;            // Y-position for hit
1853       hits[3] = pos[2]+s*tz;            // Z-position for hit
1854       hits[4] = theta;                  // theta angle of incidence
1855       hits[5] = phi;                    // phi angle of incidence 
1856       hits[8] = 0;//PadHits does not exist anymore  (Float_t) fNPadHits;    // first padhit
1857       hits[9] = -1;                     // last pad hit
1858       hits[10] = mom[3];                // hit momentum P
1859       hits[11] = mom[0];                // Px
1860       hits[12] = mom[1];                // Py
1861       hits[13] = mom[2];                // Pz
1862       tof=gMC->TrackTime();
1863       hits[14] = tof;                   // Time of flight
1864       tlength  = 0;
1865       eloss    = 0;
1866       eloss2   = 0;
1867       sstep=0;
1868       xhit     = pos[0];
1869       yhit     = pos[1];      
1870       zhit     = pos[2];      
1871       Chamber(idvol).ChargeCorrelationInit();
1872       // Only if not trigger chamber
1873
1874 //       printf("---------------------------\n");
1875 //       printf(">>>> Y =  %f \n",hits[2]);
1876 //       printf("---------------------------\n");
1877     
1878       
1879
1880      //  if(idvol < AliMUONConstants::NTrackingCh()) {
1881 //        //
1882 //        //  Initialize hit position (cursor) in the segmentation model 
1883 //        ((AliMUONChamber*) (*fChambers)[idvol])
1884 //            ->SigGenInit(pos[0], pos[1], pos[2]);
1885 //       } else {
1886 //        //geant3->Gpcxyz();
1887 //        //printf("In the Trigger Chamber #%d\n",idvol-9);
1888 //       }
1889   }
1890   eloss2+=destep;
1891   sstep+=step;
1892
1893   // cout<<sstep<<endl;
1894
1895   // 
1896   // Calculate the charge induced on a pad (disintegration) in case 
1897   //
1898   // Mip left chamber ...
1899   if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1900       gMC->SetMaxStep(kBig);
1901       eloss   += destep;
1902       tlength += step;
1903       
1904       Float_t x0,y0,z0;
1905       Float_t localPos[3];
1906       Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1907       gMC->Gmtod(globalPos,localPos,1); 
1908
1909       if(idvol < AliMUONConstants::NTrackingCh()) {
1910 // tracking chambers
1911           x0 = 0.5*(xhit+pos[0]);
1912           y0 = 0.5*(yhit+pos[1]);
1913           z0 = 0.5*(zhit+pos[2]);
1914       } else {
1915 // trigger chambers
1916           x0 = xhit;
1917           y0 = yhit;
1918           z0 = 0.;
1919       }
1920       
1921
1922       //      if (eloss >0)  MakePadHits(x0,y0,z0,eloss,tof,idvol);
1923       
1924           
1925       hits[6] = tlength;   // track length
1926       hits[7] = eloss2;    // de/dx energy loss
1927
1928
1929       //      if (fNPadHits > (Int_t)hits[8]) {
1930       //          hits[8] = hits[8]+1;
1931       //          hits[9] = 0: // PadHits does not exist anymore (Float_t) fNPadHits;
1932       //}
1933 //
1934 //    new hit 
1935       
1936       new(lhits[fNhits++]) 
1937           AliMUONHit(fIshunt, gAlice->GetMCApp()->GetCurrentTrackNumber(), vol,hits);
1938       eloss = 0; 
1939       //
1940       // Check additional signal generation conditions 
1941       // defined by the segmentation
1942       // model (boundary crossing conditions)
1943       // only for tracking chambers
1944   } else if 
1945       ((idvol < AliMUONConstants::NTrackingCh()) &&
1946        ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2]))
1947   {
1948       ((AliMUONChamber*) (*fChambers)[idvol])
1949           ->SigGenInit(pos[0], pos[1], pos[2]);
1950       
1951       Float_t localPos[3];
1952       Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1953       gMC->Gmtod(globalPos,localPos,1); 
1954
1955       eloss    += destep;
1956
1957       // if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh())
1958       //        MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol);
1959       xhit     = pos[0];
1960       yhit     = pos[1]; 
1961       zhit     = pos[2];
1962       eloss = 0;
1963       tlength += step ;
1964       //
1965       // nothing special  happened, add up energy loss
1966   } else {        
1967       eloss   += destep;
1968       tlength += step ;
1969   }
1970 }
1971
1972