]> git.uio.no Git - u/mrichter/AliRoot.git/blob - PWGCF/EBYE/BalanceFunctions/AliBalanceEventMixing.cxx
Merge branch 'feature-movesplit'
[u/mrichter/AliRoot.git] / PWGCF / EBYE / BalanceFunctions / AliBalanceEventMixing.cxx
1 /**************************************************************************
2  * Author: Panos Christakoglou.                                           *
3  * Contributors are mentioned in the code where appropriate.              *
4  *                                                                        *
5  * Permission to use, copy, modify and distribute this software and its   *
6  * documentation strictly for non-commercial purposes is hereby granted   *
7  * without fee, provided that the above copyright notice appears in all   *
8  * copies and that both the copyright notice and this permission notice   *
9  * appear in the supporting documentation. The authors make no claims     *
10  * about the suitability of this software for any purpose. It is          *
11  * provided "as is" without express or implied warranty.                  *
12  **************************************************************************/
13
14 //-----------------------------------------------------------------
15 //           Balance Function class
16 //   This is the class to deal with the Balance Function analysis
17 //   Origin: Panos Christakoglou, UOA-CERN, Panos.Christakoglou@cern.ch
18 //   Modified: Michael Weber, m.weber@cern.ch
19 //-----------------------------------------------------------------
20
21
22 //ROOT
23 #include <Riostream.h>
24 #include <TMath.h>
25 #include <TAxis.h>
26 #include <TH2D.h>
27 #include <TLorentzVector.h>
28 #include <TObjArray.h>
29 #include <TGraphErrors.h>
30 #include <TString.h>
31
32 #include "AliVParticle.h"
33 #include "AliMCParticle.h"
34 #include "AliESDtrack.h"
35 #include "AliAODTrack.h"
36
37 #include "AliBalance.h"
38 #include "AliBalanceEventMixing.h"
39
40 using std::cout;
41 using std::cerr;
42 using std::endl;
43
44 ClassImp(AliBalanceEventMixing)
45
46 //____________________________________________________________________//
47 AliBalanceEventMixing::AliBalanceEventMixing() :
48   TObject(), 
49   fShuffle(kFALSE),
50   fHBTcut(kFALSE),
51   fConversionCut(kFALSE),
52   fAnalysisLevel("ESD"),
53   fAnalyzedEvents(0) ,
54   fCentralityId(0) ,
55   fCentStart(0.),
56   fCentStop(0.)
57 {
58   // Default constructor
59  
60   for(Int_t i = 0; i < ANALYSIS_TYPES; i++){
61     if(i == 6) {
62       fNumberOfBins[i] = 180;
63       fP1Start[i]      = -360.0;
64       fP1Stop[i]       = 360.0;
65       fP2Start[i]      = -360.0;
66       fP2Stop[i]       = 360.0;
67       fP2Step[i]       = 0.1;
68     }
69     else {
70       fNumberOfBins[i] = 20;
71       fP1Start[i]      = -1.0;
72       fP1Stop[i]       = 1.0;
73       fP2Start[i]      = 0.0;
74       fP2Stop[i]       = 2.0;
75     }
76     fP2Step[i] = TMath::Abs(fP2Start - fP2Stop) / (Double_t)fNumberOfBins[i];
77     fCentStart = 0.;
78     fCentStop  = 0.;
79
80     fNn[i] = 0.0;
81     fNp[i] = 0.0;
82
83     for(Int_t j = 0; j < MAXIMUM_NUMBER_OF_STEPS; j++) {
84       fNpp[i][j] = .0;
85       fNnn[i][j] = .0;
86       fNpn[i][j] = .0;
87       fNnp[i][j] = .0;
88       fB[i][j] = 0.0;
89       ferror[i][j] = 0.0;
90     }
91
92     fHistP[i]  = NULL;
93     fHistN[i]  = NULL;
94     fHistPP[i] = NULL;
95     fHistPN[i] = NULL;
96     fHistNP[i] = NULL;
97     fHistNN[i] = NULL;
98
99   }
100 }
101
102
103 //____________________________________________________________________//
104 AliBalanceEventMixing::AliBalanceEventMixing(const AliBalanceEventMixing& balance):
105   TObject(balance), fShuffle(balance.fShuffle),
106   fHBTcut(balance.fHBTcut), 
107   fConversionCut(balance.fConversionCut),  
108   fAnalysisLevel(balance.fAnalysisLevel),
109   fAnalyzedEvents(balance.fAnalyzedEvents), 
110   fCentralityId(balance.fCentralityId),
111   fCentStart(balance.fCentStart),
112   fCentStop(balance.fCentStop) {
113   //copy constructor
114   for(Int_t i = 0; i < ANALYSIS_TYPES; i++){
115     fNn[i] = balance.fNn[i];
116     fNp[i] = balance.fNp[i];
117
118     fP1Start[i]      = balance.fP1Start[i];
119     fP1Stop[i]       = balance.fP1Stop[i];
120     fNumberOfBins[i] = balance.fNumberOfBins[i];
121     fP2Start[i]      = balance.fP2Start[i];
122     fP2Stop[i]       = balance.fP2Stop[i];
123     fP2Step[i]       = balance.fP2Step[i];
124     fCentStart       = balance.fCentStart;
125     fCentStop        = balance.fCentStop; 
126
127     fHistP[i]        = balance.fHistP[i];
128     fHistN[i]        = balance.fHistN[i];
129     fHistPN[i]        = balance.fHistPN[i];
130     fHistNP[i]        = balance.fHistNP[i];
131     fHistPP[i]        = balance.fHistPP[i];
132     fHistNN[i]        = balance.fHistNN[i];
133
134     for(Int_t j = 0; j < MAXIMUM_NUMBER_OF_STEPS; j++) {
135       fNpp[i][j] = .0;
136       fNnn[i][j] = .0;
137       fNpn[i][j] = .0;
138       fNnp[i][j] = .0;
139       fB[i][j] = 0.0;
140       ferror[i][j] = 0.0;
141     } 
142   }
143  }
144  
145
146 //____________________________________________________________________//
147 AliBalanceEventMixing::~AliBalanceEventMixing() {
148   // Destructor
149
150   for(Int_t i = 0; i < ANALYSIS_TYPES; i++){
151  
152     delete fHistP[i];
153     delete fHistN[i];
154     delete fHistPN[i];
155     delete fHistNP[i];
156     delete fHistPP[i];
157     delete fHistNN[i];
158   
159   }
160 }
161
162 //____________________________________________________________________//
163 void AliBalanceEventMixing::SetInterval(Int_t iAnalysisType,
164                              Double_t p1Start, Double_t p1Stop,
165                              Int_t ibins, Double_t p2Start, Double_t p2Stop) {
166   // Sets the analyzed interval. 
167   // Set the same Information for all analyses
168
169   if(iAnalysisType == -1){             
170     for(Int_t i = 0; i < ANALYSIS_TYPES; i++){
171       fP1Start[i] = p1Start;
172       fP1Stop[i] = p1Stop;
173       fNumberOfBins[i] = ibins;
174       fP2Start[i] = p2Start;
175       fP2Stop[i] = p2Stop;
176       fP2Step[i] = TMath::Abs(p2Start - p2Stop) / (Double_t)fNumberOfBins[i];
177     }
178   }
179   // Set the Information for one analysis
180   else if((iAnalysisType > -1) && (iAnalysisType < ANALYSIS_TYPES)) {
181     fP1Start[iAnalysisType] = p1Start;
182     fP1Stop[iAnalysisType] = p1Stop;
183     fNumberOfBins[iAnalysisType] = ibins;
184     fP2Start[iAnalysisType] = p2Start;
185     fP2Stop[iAnalysisType] = p2Stop;
186     fP2Step[iAnalysisType] = TMath::Abs(p2Start - p2Stop) / (Double_t)fNumberOfBins[iAnalysisType];
187   }
188   else {
189     AliError("Wrong ANALYSIS number!");
190   }
191 }
192
193 //____________________________________________________________________//
194 void AliBalanceEventMixing::InitHistograms() {
195   //Initialize the histograms
196
197   // global switch disabling the reference 
198   // (to avoid "Replacing existing TH1" if several wagons are created in train)
199   Bool_t oldStatus = TH1::AddDirectoryStatus();
200   TH1::AddDirectory(kFALSE);
201
202   TString histName;
203   for(Int_t iAnalysisType = 0; iAnalysisType < ANALYSIS_TYPES; iAnalysisType++) {
204     histName = "fHistP"; histName += kBFAnalysisType[iAnalysisType]; 
205     if(fShuffle) histName.Append("_shuffle");
206     if(fCentralityId) histName += fCentralityId.Data();
207     fHistP[iAnalysisType] = new TH2D(histName.Data(),"",fCentStop-fCentStart,fCentStart,fCentStop,100,fP1Start[iAnalysisType],fP1Stop[iAnalysisType]);
208
209     histName = "fHistN"; histName += kBFAnalysisType[iAnalysisType]; 
210     if(fShuffle) histName.Append("_shuffle");
211     if(fCentralityId) histName += fCentralityId.Data();
212     fHistN[iAnalysisType] = new TH2D(histName.Data(),"",fCentStop-fCentStart,fCentStart,fCentStop,100,fP1Start[iAnalysisType],fP1Stop[iAnalysisType]);
213   
214     histName = "fHistPN"; histName += kBFAnalysisType[iAnalysisType]; 
215     if(fShuffle) histName.Append("_shuffle");
216     if(fCentralityId) histName += fCentralityId.Data();
217     fHistPN[iAnalysisType] = new TH2D(histName.Data(),"",fCentStop-fCentStart,fCentStart,fCentStop,fNumberOfBins[iAnalysisType],fP2Start[iAnalysisType],fP2Stop[iAnalysisType]);
218     
219     histName = "fHistNP"; histName += kBFAnalysisType[iAnalysisType]; 
220     if(fShuffle) histName.Append("_shuffle");
221     if(fCentralityId) histName += fCentralityId.Data();
222     fHistNP[iAnalysisType] = new TH2D(histName.Data(),"",fCentStop-fCentStart,fCentStart,fCentStop,fNumberOfBins[iAnalysisType],fP2Start[iAnalysisType],fP2Stop[iAnalysisType]);
223     
224     histName = "fHistPP"; histName += kBFAnalysisType[iAnalysisType]; 
225     if(fShuffle) histName.Append("_shuffle");
226     if(fCentralityId) histName += fCentralityId.Data();
227     fHistPP[iAnalysisType] = new TH2D(histName.Data(),"",fCentStop-fCentStart,fCentStart,fCentStop,fNumberOfBins[iAnalysisType],fP2Start[iAnalysisType],fP2Stop[iAnalysisType]);
228     
229     histName = "fHistNN"; histName += kBFAnalysisType[iAnalysisType]; 
230     if(fShuffle) histName.Append("_shuffle");
231     if(fCentralityId) histName += fCentralityId.Data();
232     fHistNN[iAnalysisType] = new TH2D(histName.Data(),"",fCentStop-fCentStart,fCentStart,fCentStop,fNumberOfBins[iAnalysisType],fP2Start[iAnalysisType],fP2Stop[iAnalysisType]);
233   }
234
235   TH1::AddDirectory(oldStatus);
236
237 }
238
239 //____________________________________________________________________//
240 void AliBalanceEventMixing::PrintAnalysisSettings() {
241   //prints the analysis settings
242   
243   Printf("======================================");
244   Printf("Analysis level: %s",fAnalysisLevel.Data());
245   Printf("======================================");
246   for(Int_t ibin = 0; ibin < ANALYSIS_TYPES; ibin++){
247     Printf("Interval info for variable %d",ibin);
248     Printf("Analyzed interval (min.): %lf",fP2Start[ibin]);
249     Printf("Analyzed interval (max.): %lf",fP2Stop[ibin]);
250     Printf("Number of bins: %d",fNumberOfBins[ibin]);
251     Printf("Step: %lf",fP2Step[ibin]);
252     Printf("          ");
253   }
254   Printf("======================================");
255 }
256
257 //____________________________________________________________________//
258 void AliBalanceEventMixing::CalculateBalance(Float_t fCentrality,vector<Double_t> **chargeVector,Int_t iMainTrack,Float_t bSign) {
259   // Calculates the balance function
260   // For the event mixing only for all combinations of the first track (main event) with all other tracks (mix event)
261   fAnalyzedEvents++;
262   Int_t i = 0 , j = 0;
263   Int_t iBin = 0;
264
265   // Initialize histograms if not done yet
266   if(!fHistPN[0]){
267     AliWarning("Histograms not yet initialized! --> Will be done now");
268     AliWarning("This works only in local mode --> Add 'gBalance->InitHistograms()' in your configBalanceFunction");
269     InitHistograms();
270   }
271
272   Int_t gNtrack = chargeVector[0]->size();
273   //Printf("(AliBalanceEventMixing) Number of tracks: %d",gNtrack);
274
275   for(i = 0; i < gNtrack;i++){
276
277       // for event mixing: only store the track from the main event
278       if(iMainTrack > -1){ 
279         if(i>0) break;
280       }
281       
282       Short_t charge          = chargeVector[0]->at(i);
283       Double_t rapidity       = chargeVector[1]->at(i);
284       Double_t pseudorapidity = chargeVector[2]->at(i);
285       Double_t phi            = chargeVector[3]->at(i);
286       
287       //0:y - 1:eta - 2:Qlong - 3:Qout - 4:Qside - 5:Qinv - 6:phi
288       for(Int_t iAnalysisType = 0; iAnalysisType < ANALYSIS_TYPES; iAnalysisType++) {
289         if(iAnalysisType == kEta) {
290           if((pseudorapidity >= fP1Start[iAnalysisType]) && (pseudorapidity <= fP1Stop[iAnalysisType])) {
291             if(charge > 0) {
292               fNp[iAnalysisType] += 1.;
293               fHistP[iAnalysisType]->Fill(fCentrality,pseudorapidity);
294             }//charge > 0
295             if(charge < 0) {
296               fNn[iAnalysisType] += 1.;
297               fHistN[iAnalysisType]->Fill(fCentrality,pseudorapidity);
298             }//charge < 0
299           }//p1 interval check
300         }//analysis type: eta
301         else if(iAnalysisType == kPhi) {
302           if((phi >= fP1Start[iAnalysisType]) && (phi <= fP1Stop[iAnalysisType])) {
303             if(charge > 0) {
304               fNp[iAnalysisType] += 1.;
305               fHistP[iAnalysisType]->Fill(fCentrality,phi);
306             }//charge > 0
307             if(charge < 0) {
308               fNn[iAnalysisType] += 1.;
309               fHistN[iAnalysisType]->Fill(fCentrality,phi);
310             }//charge < 0
311           }//p1 interval check
312         }//analysis type: phi
313         else {
314           if((rapidity >= fP1Start[iAnalysisType]) && (rapidity <= fP1Stop[iAnalysisType])) {
315             if(charge > 0) {
316               fNp[iAnalysisType] += 1.;
317               fHistP[iAnalysisType]->Fill(fCentrality,rapidity);
318             }//charge > 0
319             if(charge < 0) {
320               fNn[iAnalysisType] += 1.;
321               fHistN[iAnalysisType]->Fill(fCentrality,rapidity);
322             }//charge < 0
323           }//p1 interval check
324         }//analysis type: y, qside, qout, qlong, qinv
325       }//analysis type loop
326   }
327
328   //Printf("Np: %lf - Nn: %lf",fNp[0],fNn[0]);
329
330   Double_t dy = 0., deta = 0.;
331   Double_t qLong = 0., qOut = 0., qSide = 0., qInv = 0.;
332   Double_t dphi = 0.;
333
334   Short_t charge1  = 0;
335   Double_t eta1 = 0., rap1 = 0.;
336   Double_t px1 = 0., py1 = 0., pz1 = 0.;
337   Double_t pt1 = 0.;
338   Double_t energy1 = 0.;
339   Double_t phi1    = 0.;
340
341   Short_t charge2  = 0;
342   Double_t eta2 = 0., rap2 = 0.;
343   Double_t px2 = 0., py2 = 0., pz2 = 0.;
344   Double_t pt2 = 0.;
345   Double_t energy2 = 0.;
346   Double_t phi2    = 0.;
347   //0:y - 1:eta - 2:Qlong - 3:Qout - 4:Qside - 5:Qinv - 6:phi
348   for(i = 1; i < gNtrack; i++) {
349
350       charge1 = chargeVector[0]->at(i);
351       rap1    = chargeVector[1]->at(i);
352       eta1    = chargeVector[2]->at(i);
353       phi1    = chargeVector[3]->at(i);
354       px1     = chargeVector[4]->at(i);
355       py1     = chargeVector[5]->at(i);
356       pz1     = chargeVector[6]->at(i);
357       pt1     = chargeVector[7]->at(i);
358       energy1 = chargeVector[8]->at(i);
359
360      for(j = 0; j < i; j++) {
361
362       // for event mixing: only store the track from the main event
363       if(iMainTrack > -1){ 
364         if(j>0) break;
365       }
366
367       charge2 = chargeVector[0]->at(j);
368       rap2    = chargeVector[1]->at(j);
369       eta2    = chargeVector[2]->at(j);
370       phi2    = chargeVector[3]->at(j);
371       px2     = chargeVector[4]->at(j);
372       py2     = chargeVector[5]->at(j);
373       pz2     = chargeVector[6]->at(j);
374       pt2     = chargeVector[7]->at(j);
375       energy2 = chargeVector[8]->at(j);
376     
377         // filling the arrays
378
379         // RAPIDITY 
380         dy = TMath::Abs(rap1 - rap2);
381
382         // Eta
383         deta = TMath::Abs(eta1 - eta2);
384
385         //qlong
386         Double_t eTot = energy1 + energy2;
387         Double_t pxTot = px1 + px2;
388         Double_t pyTot = py1 + py2;
389         Double_t pzTot = pz1 + pz2;
390         Double_t q0Tot = energy1 - energy2;
391         Double_t qxTot = px1 - px2;
392         Double_t qyTot = py1 - py2;
393         Double_t qzTot = pz1 - pz2;
394
395         Double_t eTot2 = eTot*eTot;
396         Double_t pTot2 = pxTot*pxTot + pyTot*pyTot + pzTot*pzTot;
397         Double_t pzTot2 = pzTot*pzTot;
398
399         Double_t q0Tot2 = q0Tot*q0Tot;
400         Double_t qTot2  = qxTot*qxTot + qyTot*qyTot + qzTot*qzTot;
401
402         Double_t snn    = eTot2 - pTot2;
403         Double_t ptTot2 = pTot2 - pzTot2 ;
404         Double_t ptTot  = TMath::Sqrt( ptTot2 );
405         
406         qLong = TMath::Abs(eTot*qzTot - pzTot*q0Tot)/TMath::Sqrt(snn + ptTot2);
407         
408         //qout
409         qOut = TMath::Sqrt(snn/(snn + ptTot2)) * TMath::Abs(pxTot*qxTot + pyTot*qyTot)/ptTot;
410         
411         //qside
412         qSide = TMath::Abs(pxTot*qyTot - pyTot*qxTot)/ptTot;
413         
414         //qinv
415         qInv = TMath::Sqrt(TMath::Abs(-q0Tot2 + qTot2 ));
416         
417         //phi
418         dphi = TMath::Abs(phi1 - phi2);
419         if(dphi>180) dphi = 360 - dphi;  //dphi should be between 0 and 180!
420
421         // HBT like cut
422         if(fHBTcut && charge1 * charge2 > 0){
423           //if( dphi < 3 || deta < 0.01 ){   // VERSION 1
424           //  continue;
425           
426           // VERSION 2 (Taken from DPhiCorrelations)
427           // the variables & cuthave been developed by the HBT group 
428           // see e.g. https://indico.cern.ch/materialDisplay.py?contribId=36&sessionId=6&materialId=slides&confId=142700
429           
430           // optimization
431           if (TMath::Abs(deta) < 0.02 * 2.5 * 3) //twoTrackEfficiencyCutValue = 0.02 [default for dphicorrelations]
432             {
433
434               // phi in rad
435               Float_t phi1rad = phi1*TMath::DegToRad();
436               Float_t phi2rad = phi2*TMath::DegToRad();
437
438               // check first boundaries to see if is worth to loop and find the minimum
439               Float_t dphistar1 = GetDPhiStar(phi1rad, pt1, charge1, phi2rad, pt2, charge2, 0.8, bSign);
440               Float_t dphistar2 = GetDPhiStar(phi1rad, pt1, charge1, phi2rad, pt2, charge2, 2.5, bSign);
441               
442               const Float_t kLimit = 0.02 * 3;
443               
444               Float_t dphistarminabs = 1e5;
445
446               if (TMath::Abs(dphistar1) < kLimit || TMath::Abs(dphistar2) < kLimit || dphistar1 * dphistar2 < 0 )
447                 {
448                   for (Double_t rad=0.8; rad<2.51; rad+=0.01) 
449                     {
450                       Float_t dphistar = GetDPhiStar(phi1rad, pt1, charge1, phi2rad, pt2, charge2, rad, bSign);
451                       Float_t dphistarabs = TMath::Abs(dphistar);
452                       
453                       if (dphistarabs < dphistarminabs)
454                         {
455                           dphistarminabs = dphistarabs;
456                         }
457                     }
458                 
459                   if (dphistarminabs < 0.02 && TMath::Abs(deta) < 0.02)
460                     {
461                       //AliInfo(Form("HBT: Removed track pair %d %d with [[%f %f]] %f %f %f | %f %f %d %f %f %d %f", i, j, deta, dphi, dphistarminabs, dphistar1, dphistar2, phi1rad, pt1, charge1, phi2rad, pt2, charge2, bSign));
462                       continue;
463                     }
464                 }
465             }
466         }
467         
468         // conversions
469         if(fConversionCut){
470           if (charge1 * charge2 < 0)
471             {
472
473               Float_t m0 = 0.510e-3;
474               Float_t tantheta1 = 1e10;
475
476               // phi in rad
477               Float_t phi1rad = phi1*TMath::DegToRad();
478               Float_t phi2rad = phi2*TMath::DegToRad();
479               
480               if (eta1 < -1e-10 || eta1 > 1e-10)
481                 tantheta1 = 2 * TMath::Exp(-eta1) / ( 1 - TMath::Exp(-2*eta1));
482               
483               Float_t tantheta2 = 1e10;
484               if (eta2 < -1e-10 || eta2 > 1e-10)
485                 tantheta2 = 2 * TMath::Exp(-eta2) / ( 1 - TMath::Exp(-2*eta2));
486               
487               Float_t e1squ = m0 * m0 + pt1 * pt1 * (1.0 + 1.0 / tantheta1 / tantheta1);
488               Float_t e2squ = m0 * m0 + pt2 * pt2 * (1.0 + 1.0 / tantheta2 / tantheta2);
489
490               Float_t masssqu = 2 * m0 * m0 + 2 * ( TMath::Sqrt(e1squ * e2squ) - ( pt1 * pt2 * ( TMath::Cos(phi1rad - phi2rad) + 1.0 / tantheta1 / tantheta2 ) ) );
491
492               if (masssqu < 0.04*0.04){
493                 //AliInfo(Form("Conversion: Removed track pair %d %d with [[%f %f] %f %f] %d %d <- %f %f  %f %f   %f %f ", i, j, deta, dphi, masssqu, charge1, charge2,eta1,eta2,phi1,phi2,pt1,pt2));
494                 continue;
495               }
496             }
497         }
498
499         //0:y - 1:eta - 2:Qlong - 3:Qout - 4:Qside - 5:Qinv - 6:phi
500         if((rap1 >= fP1Start[kRapidity]) && (rap1 <= fP1Stop[kRapidity]) && (rap2 >= fP1Start[kRapidity]) && (rap2 <= fP1Stop[kRapidity])) {
501
502           // rapidity
503           if( dy > fP2Start[kRapidity] && dy < fP2Stop[kRapidity]){
504             iBin = Int_t((dy-fP2Start[kRapidity])/fP2Step[kRapidity]);
505             if(iBin >=0 && iBin < MAXIMUM_NUMBER_OF_STEPS){
506               
507               if((charge1 > 0)&&(charge2 > 0)) {
508                 fNpp[kRapidity][iBin] += 1.;
509                 fHistPP[kRapidity]->Fill(fCentrality,dy);
510               }
511               else if((charge1 < 0)&&(charge2 < 0)) {
512                 fNnn[kRapidity][iBin] += 1.;
513                 fHistNN[kRapidity]->Fill(fCentrality,dy);
514               }
515               else if((charge1 > 0)&&(charge2 < 0)) {
516                 fNpn[kRapidity][iBin] += 1.;
517                 fHistPN[kRapidity]->Fill(fCentrality,dy);
518               }
519               else if((charge1 < 0)&&(charge2 > 0)) {
520                 fNpn[kRapidity][iBin] += 1.;
521                     fHistPN[kRapidity]->Fill(fCentrality,dy);
522               }
523             }//BF binning check
524           }//p2 interval check
525         }//p1 interval check
526         
527         // pseudorapidity
528         if((eta1 >= fP1Start[kEta]) && (eta1 <= fP1Stop[kEta]) && (eta2 >= fP1Start[kEta]) && (eta2 <= fP1Stop[kEta])) {
529           if( deta > fP2Start[kEta] && deta < fP2Stop[kEta]){
530             iBin = Int_t((deta-fP2Start[kEta])/fP2Step[kEta]);  
531             if(iBin >=0 && iBin < MAXIMUM_NUMBER_OF_STEPS){
532               if((charge1 > 0)&&(charge2 > 0)) {
533                 fNpp[kEta][iBin] += 1.;
534                 fHistPP[kEta]->Fill(fCentrality,deta);
535               }
536               if((charge1 < 0)&&(charge2 < 0)) {
537                 fNnn[kEta][iBin] += 1.;
538                     fHistNN[kEta]->Fill(fCentrality,deta);
539               }
540               if((charge1 > 0)&&(charge2 < 0)) {
541                 fNpn[kEta][iBin] += 1.;
542                 fHistPN[kEta]->Fill(fCentrality,deta);
543               }
544               if((charge1 < 0)&&(charge2 > 0)) {
545                 fNpn[kEta][iBin] += 1.;
546                     fHistPN[kEta]->Fill(fCentrality,deta);
547               }
548             }//BF binning check
549           }//p2 interval check
550         }//p1 interval check
551         
552         // Qlong, out, side, inv
553         // Check the p1 intervall for rapidity here (like for single tracks above)
554         if((rap1 >= fP1Start[kRapidity]) && (rap1 <= fP1Stop[kRapidity]) && (rap2 >= fP1Start[kRapidity]) && (rap2 <= fP1Stop[kRapidity])) {
555           if( qLong > fP2Start[kQlong] && qLong < fP2Stop[kQlong]){
556             iBin = Int_t((qLong-fP2Start[kQlong])/fP2Step[kQlong]);     
557             if(iBin >=0 && iBin < MAXIMUM_NUMBER_OF_STEPS){
558               if((charge1 > 0)&&(charge2 > 0)) {
559                 fNpp[kQlong][iBin] += 1.;
560                 fHistPP[kQlong]->Fill(fCentrality,qLong);
561               }
562               if((charge1 < 0)&&(charge2 < 0)) {
563                 fNnn[kQlong][iBin] += 1.;
564                 fHistNN[kQlong]->Fill(fCentrality,qLong);
565               }
566               if((charge1 > 0)&&(charge2 < 0)) {
567                 fNpn[kQlong][iBin] += 1.;
568                 fHistPN[kQlong]->Fill(fCentrality,qLong);
569               }
570               if((charge1 < 0)&&(charge2 > 0)) {
571                 fNpn[kQlong][iBin] += 1.;
572                 fHistPN[kQlong]->Fill(fCentrality,qLong);
573               }
574             }//BF binning check
575           }//p2 interval check
576         }//p1 interval check
577           
578         if((rap1 >= fP1Start[kRapidity]) && (rap1 <= fP1Stop[kRapidity]) && (rap2 >= fP1Start[kRapidity]) && (rap2 <= fP1Stop[kRapidity])) {
579           if( qOut > fP2Start[kQout] && qOut < fP2Stop[kQout]){
580             iBin = Int_t((qOut-fP2Start[kQout])/fP2Step[kQout]);        
581             if(iBin >=0 && iBin < MAXIMUM_NUMBER_OF_STEPS){
582               if((charge1 > 0)&&(charge2 > 0)) {
583                 fNpp[kQout][iBin] += 1.;
584                 fHistPP[kQout]->Fill(fCentrality,qOut);
585                   }
586               if((charge1 < 0)&&(charge2 < 0)) {
587                 fNnn[kQout][iBin] += 1.;
588                 fHistNN[kQout]->Fill(fCentrality,qOut);
589               }
590               if((charge1 > 0)&&(charge2 < 0)) {
591                 fNpn[kQout][iBin] += 1.;
592                 fHistPN[kQout]->Fill(fCentrality,qOut);
593               }
594               if((charge1 < 0)&&(charge2 > 0)) {
595                 fNpn[kQout][iBin] += 1.;
596                 fHistPN[kQout]->Fill(fCentrality,qOut);
597               }
598             }//BF binning check
599           }//p2 interval check
600         }//p1 interval check    
601         
602         if((rap1 >= fP1Start[kRapidity]) && (rap1 <= fP1Stop[kRapidity]) && (rap2 >= fP1Start[kRapidity]) && (rap2 <= fP1Stop[kRapidity])) {
603           if( qSide > fP2Start[kQside] && qSide < fP2Stop[kQside]){
604             iBin = Int_t((qSide-fP2Start[kQside])/fP2Step[kQside]);     
605             if(iBin >=0 && iBin < MAXIMUM_NUMBER_OF_STEPS){
606               if((charge1 > 0)&&(charge2 > 0)) {
607                 fNpp[kQside][iBin] += 1.;
608                 fHistPP[kQside]->Fill(fCentrality,qSide);
609               }
610               if((charge1 < 0)&&(charge2 < 0)) {
611                 fNnn[kQside][iBin] += 1.;
612                 fHistNN[kQside]->Fill(fCentrality,qSide);
613               }
614               if((charge1 > 0)&&(charge2 < 0)) {
615                 fNpn[kQside][iBin] += 1.;
616                 fHistPN[kQside]->Fill(fCentrality,qSide);
617               }
618               if((charge1 < 0)&&(charge2 > 0)) {
619                 fNpn[kQside][iBin] += 1.;
620                 fHistPN[kQside]->Fill(fCentrality,qSide);
621                           }
622             }//BF binning check
623           }//p2 interval check
624         }//p1 interval check
625         
626         if((rap1 >= fP1Start[kRapidity]) && (rap1 <= fP1Stop[kRapidity]) && (rap2 >= fP1Start[kRapidity]) && (rap2 <= fP1Stop[kRapidity])) {
627           if( qInv > fP2Start[kQinv] && qInv < fP2Stop[kQinv]){
628             iBin = Int_t((qInv-fP2Start[kQinv])/fP2Step[kQinv]);        
629             if(iBin >=0 && iBin < MAXIMUM_NUMBER_OF_STEPS){
630               if((charge1 > 0)&&(charge2 > 0)) {
631                 fNpp[kQinv][iBin] += 1.;
632                 fHistPP[kQinv]->Fill(fCentrality,qInv);
633               }
634               if((charge1 < 0)&&(charge2 < 0)) {
635                 fNnn[kQinv][iBin] += 1.;
636                 fHistNN[kQinv]->Fill(fCentrality,qInv);
637               }
638               if((charge1 > 0)&&(charge2 < 0)) {
639                 fNpn[kQinv][iBin] += 1.;
640                 fHistPN[kQinv]->Fill(fCentrality,qInv);
641               }
642               if((charge1 < 0)&&(charge2 > 0)) {
643                 fNpn[kQinv][iBin] += 1.;
644                 fHistPN[kQinv]->Fill(fCentrality,qInv);
645               }
646             }//BF binning check
647           }//p2 interval check
648         }//p1 interval check
649         
650         // Phi
651         if((phi1 >= fP1Start[kPhi]) && (phi1 <= fP1Stop[kPhi]) && (phi2 >= fP1Start[kPhi]) && (phi2 <= fP1Stop[kPhi])) {
652           if( dphi > fP2Start[kPhi] && dphi < fP2Stop[kPhi]){
653             iBin = Int_t((dphi-fP2Start[kPhi])/fP2Step[kPhi]);  
654             if(iBin >=0 && iBin < MAXIMUM_NUMBER_OF_STEPS){
655               if((charge1 > 0)&&(charge2 > 0)) {
656                 fNpp[kPhi][iBin] += 1.;
657                 fHistPP[kPhi]->Fill(fCentrality,dphi);
658               }
659               if((charge1 < 0)&&(charge2 < 0)) {
660                 fNnn[kPhi][iBin] += 1.;
661                 fHistNN[kPhi]->Fill(fCentrality,dphi);
662               }
663               if((charge1 > 0)&&(charge2 < 0)) {
664                 fNpn[kPhi][iBin] += 1.;
665                 fHistPN[kPhi]->Fill(fCentrality,dphi);
666               }
667               if((charge1 < 0)&&(charge2 > 0)) {
668                 fNpn[kPhi][iBin] += 1.;
669                 fHistPN[kPhi]->Fill(fCentrality,dphi);
670               }
671             }//BF binning check
672           }//p2 interval check
673         }//p1 interval check
674     }//end of 2nd particle loop
675   
676  
677   }//end of 1st particle loop
678   //Printf("Number of analyzed events: %i",fAnalyzedEvents);
679   //Printf("DeltaEta NN[0] = %.0f, PP[0] = %.0f, NP[0] = %.0f, PN[0] = %.0f",fNnn[kEta][0],fNpp[kEta][0],fNnp[kEta][0],fNpn[kEta][0]);
680 }  
681
682
683 //____________________________________________________________________//
684 Double_t AliBalanceEventMixing::GetBalance(Int_t iAnalysisType, Int_t p2) {
685   // Returns the value of the balance function in bin p2
686   fB[iAnalysisType][p2] = 0.5*(((fNpn[iAnalysisType][p2] - 2.*fNnn[iAnalysisType][p2])/fNn[iAnalysisType]) + ((fNpn[iAnalysisType][p2] - 2.*fNpp[iAnalysisType][p2])/fNp[iAnalysisType]))/fP2Step[iAnalysisType];
687   
688   return fB[iAnalysisType][p2];
689 }
690     
691 //____________________________________________________________________//
692 Double_t AliBalanceEventMixing::GetError(Int_t iAnalysisType, Int_t p2) {        
693   // Returns the error on the BF value for bin p2
694   // The errors for fNn and fNp are neglected here (0.1 % of total error)
695   /*ferror[iAnalysisType][p2] = TMath::Sqrt(Double_t(fNpp[iAnalysisType][p2])/(Double_t(fNp[iAnalysisType])*Double_t(fNp[iAnalysisType]))
696                               + Double_t(fNnn[iAnalysisType][p2])/(Double_t(fNn[iAnalysisType])*Double_t(fNn[iAnalysisType]))
697                               + Double_t(fNpn[iAnalysisType][p2])/(Double_t(fNp[iAnalysisType])*Double_t(fNp[iAnalysisType])) 
698                               + Double_t(fNnp[iAnalysisType][p2])/(Double_t(fNp[iAnalysisType])*Double_t(fNp[iAnalysisType]))
699                               //+ TMath::Power(fNpn[iAnalysisType][p2]-fNpp[iAnalysisType][p2],2)/TMath::Power(Double_t(fNp[iAnalysisType]),3)
700                               //+ TMath::Power(fNnp[iAnalysisType][p2]-fNnn[iAnalysisType][p2],2)/TMath::Power(Double_t(fNn[iAnalysisType]),3) 
701                                ) /fP2Step[iAnalysisType];*/
702
703   ferror[iAnalysisType][p2] = TMath::Sqrt( Double_t(fNpp[iAnalysisType][p2])/(Double_t(fNp[iAnalysisType])*Double_t(fNp[iAnalysisType])) + 
704                                            Double_t(fNnn[iAnalysisType][p2])/(Double_t(fNn[iAnalysisType])*Double_t(fNn[iAnalysisType])) + 
705                                            Double_t(fNpn[iAnalysisType][p2])*TMath::Power((0.5/Double_t(fNp[iAnalysisType]) + 0.5/Double_t(fNn[iAnalysisType])),2))/fP2Step[iAnalysisType];
706   
707   return ferror[iAnalysisType][p2];
708 }
709 //____________________________________________________________________//
710 TGraphErrors *AliBalanceEventMixing::DrawBalance(Int_t iAnalysisType) {
711
712   // Draws the BF
713   Double_t x[MAXIMUM_NUMBER_OF_STEPS];
714   Double_t xer[MAXIMUM_NUMBER_OF_STEPS];
715   Double_t b[MAXIMUM_NUMBER_OF_STEPS];
716   Double_t ber[MAXIMUM_NUMBER_OF_STEPS];
717
718   if((fNp[iAnalysisType] == 0)||(fNn[iAnalysisType] == 0)) {
719     cerr<<"Couldn't find any particles in the analyzed interval!!!"<<endl;
720     return NULL;
721   }
722   
723   for(Int_t i = 0; i < fNumberOfBins[iAnalysisType]; i++) {
724     b[i] = GetBalance(iAnalysisType,i);
725     ber[i] = GetError(iAnalysisType,i);
726     x[i] = fP2Start[iAnalysisType] + fP2Step[iAnalysisType]*i + fP2Step[iAnalysisType]/2;
727     xer[i] = 0.0;
728   }
729   
730   TGraphErrors *gr = new TGraphErrors(fNumberOfBins[iAnalysisType],x,b,xer,ber);
731   gr->GetXaxis()->SetTitleColor(1);
732   if(iAnalysisType==0) {
733     gr->SetTitle("Balance function B(#Delta y)");
734     gr->GetXaxis()->SetTitle("#Delta y");
735     gr->GetYaxis()->SetTitle("B(#Delta y)");
736   }
737   if(iAnalysisType==1) {
738     gr->SetTitle("Balance function B(#Delta #eta)");
739     gr->GetXaxis()->SetTitle("#Delta #eta");
740     gr->GetYaxis()->SetTitle("B(#Delta #eta)");
741   }
742   if(iAnalysisType==2) {
743     gr->SetTitle("Balance function B(q_{long})");
744     gr->GetXaxis()->SetTitle("q_{long} (GeV/c)");
745     gr->GetYaxis()->SetTitle("B(q_{long}) ((GeV/c)^{-1})");
746   }
747   if(iAnalysisType==3) {
748     gr->SetTitle("Balance function B(q_{out})");
749     gr->GetXaxis()->SetTitle("q_{out} (GeV/c)");
750     gr->GetYaxis()->SetTitle("B(q_{out}) ((GeV/c)^{-1})");
751   }
752   if(iAnalysisType==4) {
753     gr->SetTitle("Balance function B(q_{side})");
754     gr->GetXaxis()->SetTitle("q_{side} (GeV/c)");
755     gr->GetYaxis()->SetTitle("B(q_{side}) ((GeV/c)^{-1})");
756   }
757   if(iAnalysisType==5) {
758     gr->SetTitle("Balance function B(q_{inv})");
759     gr->GetXaxis()->SetTitle("q_{inv} (GeV/c)");
760     gr->GetYaxis()->SetTitle("B(q_{inv}) ((GeV/c)^{-1})");
761   }
762   if(iAnalysisType==6) {
763     gr->SetTitle("Balance function B(#Delta #phi)");
764     gr->GetXaxis()->SetTitle("#Delta #phi");
765     gr->GetYaxis()->SetTitle("B(#Delta #phi)");
766   }
767
768   return gr;
769 }
770
771 //____________________________________________________________________//
772 void AliBalanceEventMixing::PrintResults(Int_t iAnalysisType, TH1D *gHistBalance) {
773   //Prints the calculated width of the BF and its error
774   Double_t gSumXi = 0.0, gSumBi = 0.0, gSumBiXi = 0.0;
775   Double_t gSumBiXi2 = 0.0, gSumBi2Xi2 = 0.0;
776   Double_t gSumDeltaBi2 = 0.0, gSumXi2DeltaBi2 = 0.0;
777   Double_t deltaBalP2 = 0.0, integral = 0.0;
778   Double_t deltaErrorNew = 0.0;
779   
780   cout<<"=================================================="<<endl;
781   for(Int_t i = 1; i <= fNumberOfBins[iAnalysisType]; i++) { 
782     //cout<<"B: "<<gHistBalance->GetBinContent(i)<<"\t Error: "<<gHistBalance->GetBinError(i)<<"\t bin: "<<gHistBalance->GetBinCenter(i)<<endl;
783   } 
784   //cout<<"=================================================="<<endl;
785   for(Int_t i = 2; i <= fNumberOfBins[iAnalysisType]; i++) {
786     gSumXi += gHistBalance->GetBinCenter(i);
787     gSumBi += gHistBalance->GetBinContent(i);
788     gSumBiXi += gHistBalance->GetBinContent(i)*gHistBalance->GetBinCenter(i);
789     gSumBiXi2 += gHistBalance->GetBinContent(i)*TMath::Power(gHistBalance->GetBinCenter(i),2);
790     gSumBi2Xi2 += TMath::Power(gHistBalance->GetBinContent(i),2)*TMath::Power(gHistBalance->GetBinCenter(i),2);
791     gSumDeltaBi2 +=  TMath::Power(gHistBalance->GetBinError(i),2);
792     gSumXi2DeltaBi2 += TMath::Power(gHistBalance->GetBinCenter(i),2) * TMath::Power(gHistBalance->GetBinError(i),2);
793     
794     deltaBalP2 += fP2Step[iAnalysisType]*TMath::Power(gHistBalance->GetBinError(i),2);
795     integral += fP2Step[iAnalysisType]*gHistBalance->GetBinContent(i);
796   }
797   for(Int_t i = 1; i < fNumberOfBins[iAnalysisType]; i++)
798     deltaErrorNew += gHistBalance->GetBinError(i)*(gHistBalance->GetBinCenter(i)*gSumBi - gSumBiXi)/TMath::Power(gSumBi,2);
799   
800   Double_t integralError = TMath::Sqrt(deltaBalP2);
801   
802   Double_t delta = gSumBiXi / gSumBi;
803   Double_t deltaError = (gSumBiXi / gSumBi) * TMath::Sqrt(TMath::Power((TMath::Sqrt(gSumXi2DeltaBi2)/gSumBiXi),2) + TMath::Power((gSumDeltaBi2/gSumBi),2) );
804   cout<<"Analysis type: "<<kBFAnalysisType[iAnalysisType].Data()<<endl;
805   cout<<"Width: "<<delta<<"\t Error: "<<deltaError<<endl;
806   cout<<"New error: "<<deltaErrorNew<<endl;
807   cout<<"Integral: "<<integral<<"\t Error: "<<integralError<<endl;
808   cout<<"=================================================="<<endl;
809 }
810  
811 //____________________________________________________________________//
812 TH1D *AliBalanceEventMixing::GetBalanceFunctionHistogram(Int_t iAnalysisType,Double_t centrMin, Double_t centrMax, Double_t etaWindow) {
813   //Returns the BF histogram, extracted from the 6 TH2D objects 
814   //(private members) of the AliBalanceEventMixing class.
815   //
816   // Acceptance correction: 
817   // - only for analysis type = kEta
818   // - only if etaWindow > 0 (default = -1.)
819   // - calculated as proposed by STAR 
820   //
821   TString gAnalysisType[ANALYSIS_TYPES] = {"y","eta","qlong","qout","qside","qinv","phi"};
822   TString histName = "gHistBalanceFunctionHistogram";
823   histName += gAnalysisType[iAnalysisType];
824
825   SetInterval(iAnalysisType, fHistP[iAnalysisType]->GetYaxis()->GetXmin(),
826               fHistP[iAnalysisType]->GetYaxis()->GetXmin(),
827               fHistPP[iAnalysisType]->GetNbinsY(),
828               fHistPP[iAnalysisType]->GetYaxis()->GetXmin(),
829               fHistPP[iAnalysisType]->GetYaxis()->GetXmax());
830
831   // determine the projection thresholds
832   Int_t binMinX, binMinY, binMinZ;
833   Int_t binMaxX, binMaxY, binMaxZ;
834
835   fHistPP[iAnalysisType]->GetBinXYZ(fHistPP[iAnalysisType]->FindBin(centrMin),binMinX,binMinY,binMinZ);
836   fHistPP[iAnalysisType]->GetBinXYZ(fHistPP[iAnalysisType]->FindBin(centrMax),binMaxX,binMaxY,binMaxZ);
837
838   TH1D *gHistBalanceFunctionHistogram = new TH1D(histName.Data(),"",fHistPP[iAnalysisType]->GetNbinsY(),fHistPP[iAnalysisType]->GetYaxis()->GetXmin(),fHistPP[iAnalysisType]->GetYaxis()->GetXmax());
839   switch(iAnalysisType) {
840   case kRapidity:
841     gHistBalanceFunctionHistogram->GetXaxis()->SetTitle("#Delta y");
842     gHistBalanceFunctionHistogram->GetYaxis()->SetTitle("B(#Delta y)");
843     break;
844   case kEta:
845     gHistBalanceFunctionHistogram->GetXaxis()->SetTitle("#Delta #eta");
846     gHistBalanceFunctionHistogram->GetYaxis()->SetTitle("B(#Delta #eta)");
847     break;
848   case kQlong:
849     gHistBalanceFunctionHistogram->GetXaxis()->SetTitle("q_{long} (GeV/c)");
850     gHistBalanceFunctionHistogram->GetYaxis()->SetTitle("B(q_{long})");
851     break;
852   case kQout:
853     gHistBalanceFunctionHistogram->GetXaxis()->SetTitle("q_{out} (GeV/c)");
854     gHistBalanceFunctionHistogram->GetYaxis()->SetTitle("B(q_{out})");
855     break;
856   case kQside:
857     gHistBalanceFunctionHistogram->GetXaxis()->SetTitle("q_{side} (GeV/c)");
858     gHistBalanceFunctionHistogram->GetYaxis()->SetTitle("B(q_{side})");
859     break;
860   case kQinv:
861     gHistBalanceFunctionHistogram->GetXaxis()->SetTitle("q_{inv} (GeV/c)");
862     gHistBalanceFunctionHistogram->GetYaxis()->SetTitle("B(q_{inv})");
863     break;
864   case kPhi:
865     gHistBalanceFunctionHistogram->GetXaxis()->SetTitle("#Delta #phi (deg.)");
866     gHistBalanceFunctionHistogram->GetYaxis()->SetTitle("B(#Delta #phi)");
867     break;
868   default:
869     break;
870   }
871
872   TH1D *hTemp1 = dynamic_cast<TH1D *>(fHistPN[iAnalysisType]->ProjectionY(Form("%s_Cent_%.0f_%.0f",fHistPN[iAnalysisType]->GetName(),centrMin,centrMax),binMinX,binMaxX));
873   TH1D *hTemp2 = dynamic_cast<TH1D *>(fHistPN[iAnalysisType]->ProjectionY(Form("%s_Cent_%.0f_%.0f_copy",fHistPN[iAnalysisType]->GetName(),centrMin,centrMax),binMinX,binMaxX));
874   TH1D *hTemp3 = dynamic_cast<TH1D *>(fHistNN[iAnalysisType]->ProjectionY(Form("%s_Cent_%.0f_%.0f",fHistNN[iAnalysisType]->GetName(),centrMin,centrMax),binMinX,binMaxX));
875   TH1D *hTemp4 = dynamic_cast<TH1D *>(fHistPP[iAnalysisType]->ProjectionY(Form("%s_Cent_%.0f_%.0f",fHistPP[iAnalysisType]->GetName(),centrMin,centrMax),binMinX,binMaxX));
876   TH1D *hTemp5 = dynamic_cast<TH1D *>(fHistN[iAnalysisType]->ProjectionY(Form("%s_Cent_%.0f_%.0f",fHistN[iAnalysisType]->GetName(),centrMin,centrMax),binMinX,binMaxX));
877   TH1D *hTemp6 = dynamic_cast<TH1D *>(fHistP[iAnalysisType]->ProjectionY(Form("%s_Cent_%.0f_%.0f",fHistP[iAnalysisType]->GetName(),centrMin,centrMax),binMinX,binMaxX));
878
879   if((hTemp1)&&(hTemp2)&&(hTemp3)&&(hTemp4)) {
880     hTemp1->Sumw2();
881     hTemp2->Sumw2();
882     hTemp3->Sumw2();
883     hTemp4->Sumw2();
884     hTemp1->Add(hTemp3,-2.);
885     hTemp1->Scale(1./hTemp5->GetEntries());
886     hTemp2->Add(hTemp4,-2.);
887     hTemp2->Scale(1./hTemp6->GetEntries());
888     gHistBalanceFunctionHistogram->Add(hTemp1,hTemp2,1.,1.);
889     gHistBalanceFunctionHistogram->Scale(0.5/fP2Step[iAnalysisType]);
890   }
891
892   // do the acceptance correction (only for Eta and etaWindow > 0)
893   if(iAnalysisType == kEta && etaWindow > 0){
894     for(Int_t iBin = 0; iBin < gHistBalanceFunctionHistogram->GetNbinsX(); iBin++){
895       
896       Double_t notCorrected = gHistBalanceFunctionHistogram->GetBinContent(iBin+1);
897       Double_t corrected    = notCorrected / (1 - (gHistBalanceFunctionHistogram->GetBinCenter(iBin+1))/ etaWindow );
898       gHistBalanceFunctionHistogram->SetBinContent(iBin+1, corrected);
899       
900     }
901   }
902   
903   PrintResults(iAnalysisType,gHistBalanceFunctionHistogram);
904
905   return gHistBalanceFunctionHistogram;
906 }