]> git.uio.no Git - u/mrichter/AliRoot.git/blob - RICH/AliRICH.cxx
Fixes to coding conventions violations
[u/mrichter/AliRoot.git] / RICH / AliRICH.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /* $Id$ */
17
18 ////////////////////////////////////////////////
19 //  Manager and hits classes for set:RICH     //
20 ////////////////////////////////////////////////
21
22 #include <Riostream.h>
23 #include <strings.h>
24
25 #include <TArrayF.h>
26 #include <TBRIK.h>
27 #include <TCanvas.h>
28 #include <TF1.h>
29 #include <TFile.h>
30 #include <TGeometry.h>
31 #include <TH1.h>
32 #include <TH2.h>
33 #include <TNode.h> 
34 #include <TObjArray.h>
35 #include <TObject.h>
36 #include <TParticle.h>
37 #include <TPDGCode.h>
38 #include <TRandom.h> 
39 #include <TStyle.h>
40 #include <TTUBE.h>
41 #include <TTree.h>
42 #include <TVector.h>
43 #include "AliConst.h"
44 #include "AliMagF.h"
45 #include "AliPoints.h"
46 #include "AliRICH.h"
47 #include "AliRICHClusterFinder.h"
48 #include "AliRICHDigit.h"
49 #include "AliRICHDigitizer.h"
50 #include "AliRICHHitMapA1.h"
51 #include "AliRICHMerger.h"
52 #include "AliRICHRawCluster.h"
53 #include "AliRICHRecHit1D.h"
54 #include "AliRICHRecHit3D.h"
55 #include "AliRICHSDigit.h"
56 #include "AliRICHSegmentationV0.h"
57 #include "AliRICHTransientDigit.h"
58 #include "AliRun.h"
59 #include "AliRunDigitizer.h"
60 #include "AliSegmentation.h"
61 #include "AliRICHParam.h"
62
63 static Int_t sMaxIterPad=0;    // Static variables for the pad-hit iterator routines
64 static Int_t sCurIterPad=0;
65  
66 ClassImp(AliRICHhit)
67 ClassImp(AliRICHdigit)
68 ClassImp(AliRICH)
69     
70 //___________________________________________
71 // RICH manager class   
72 //Begin_Html
73 /*
74   <img src="gif/alirich.gif">
75 */
76 //End_Html
77
78 AliRICH::AliRICH()
79 {//Default ctor should not contain any new operators
80   fIshunt     = 0;
81   fHits       = 0;
82   fSDigits    = 0;
83   fNsdigits   = 0;
84   fNcerenkovs = 0;
85   fDchambers  = 0;
86   fRecHits1D = 0;
87   fRecHits3D = 0;
88   fRawClusters = 0;
89   fChambers = 0;
90   fCerenkovs  = 0;
91   for (Int_t i=0; i<kNCH; i++){
92       fNdch[i]       = 0;
93       fNrawch[i]     = 0;
94       fNrechits1D[i] = 0;
95       fNrechits3D[i] = 0;
96   }
97   fpParam=0;
98 //kir  fFileName = 0;
99 //kir  fMerger = 0;
100 }//AliRICH::AliRICH()
101 //______________________________________________________________________________
102 AliRICH::AliRICH(const char *name, const char *title)
103         :AliDetector(name,title)
104 {//Named ctor
105   if(GetDebug())Info("named ctor","Start.");
106   fpParam     =new AliRICHParam;
107   fHits       =new TClonesArray("AliRICHhit",1000  );
108   fCerenkovs  =new TClonesArray("AliRICHCerenkov",1000);
109   fSDigits    =new TClonesArray("AliRICHdigit",100000);
110   gAlice->AddHitList(fHits);
111   gAlice->AddHitList(fCerenkovs);
112   fNsdigits   =0;
113   fNcerenkovs =0;
114   fIshunt     =0;
115   fDchambers  =new TObjArray(kNCH);
116   fRawClusters=new TObjArray(kNCH);
117   fRecHits1D  =new TObjArray(kNCH);
118   fRecHits3D  =new TObjArray(kNCH);
119   for(int i=0;i<kNCH;i++) {
120     fDchambers->AddAt(new TClonesArray("AliRICHDigit",10000), i); 
121     fRawClusters->AddAt(new TClonesArray("AliRICHRawCluster",10000), i); 
122     fRecHits1D->AddAt(new TClonesArray("AliRICHRecHit1D",1000), i);
123     fRecHits3D->AddAt(new TClonesArray("AliRICHRecHit3D",1000), i);
124     fNdch[i]=0;
125     fNrawch[i]=0;
126   }
127   SetMarkerColor(kRed);
128   fCkovNumber=fFreonProd=0;
129 //kir  fFileName = 0;
130 //kir  fMerger = 0;
131   if(GetDebug())Info("named ctor","Stop.");
132 }//AliRICH::AliRICH(const char *name, const char *title)
133 //______________________________________________________________________________
134 AliRICH::~AliRICH()
135 {//dtor
136   if(GetDebug()) Info("dtor","Start.");
137
138     fIshunt  = 0;
139     delete fHits;
140     delete fSDigits;
141     delete fCerenkovs;
142     
143     //PH Delete TObjArrays
144     if (fChambers) {
145       fChambers->Delete();
146       delete fChambers;
147     }
148     if (fDchambers) {
149       fDchambers->Delete();
150       delete fDchambers;
151     }
152     if (fRawClusters) {
153       fRawClusters->Delete();
154       delete fRawClusters;
155     }
156     if (fRecHits1D) {
157       fRecHits1D->Delete();
158       delete fRecHits1D;
159     }
160     if (fRecHits3D) {
161       fRecHits3D->Delete();
162       delete fRecHits3D;
163     }                     
164   if(GetDebug()) Info("dtor","Stop.");    
165 }//AliRICH::~AliRICH()
166 //______________________________________________________________________________
167 Int_t AliRICH::Hits2SDigits(Float_t xhit,Float_t yhit,Float_t eloss, Int_t idvol, ResponseType res)
168 {//calls the charge disintegration method of the current chamber and adds all generated sdigits to the list of digits
169    
170    Int_t iChamber,iPadX,iPadY,iAdc,iTrack;
171    Float_t list[4][500];
172    Int_t iNdigits;
173         
174
175   ((AliRICHChamber*)fChambers->At(idvol))->DisIntegration(eloss, xhit, yhit, iNdigits, list, res);
176     Int_t ic=0;
177     
178   for(Int_t i=0; i<iNdigits; i++) {
179     if(Int_t(list[0][i]) > 0) {
180             ic++;
181             iAdc = Int_t(list[0][i]);
182             iPadX = Int_t(list[1][i]);
183             iPadY = Int_t(list[2][i]);
184             iChamber = Int_t(list[3][i]);
185
186             
187             AddSDigit(iChamber,iPadX,iPadY,iAdc,iTrack);
188         }
189     }
190     
191    if(gAlice->TreeS()){
192         gAlice->TreeS()->Fill();
193         gAlice->TreeS()->Write(0,TObject::kOverwrite);
194    }
195    return iNdigits;
196 }//Int_t AliRICH::Hits2SDigits(Float_t xhit,Float_t yhit,Float_t eloss, Int_t idvol, ResponseType res)
197 //______________________________________________________________________________
198 void AliRICH::Hits2SDigits()
199 {//Create a list of sdigits corresponding to list of hits. Every hit generates sdigit.
200   if(GetDebug()) Info("Hit2SDigits","Start.");
201   
202   for(Int_t iEventN=0;iEventN<gAlice->GetEventsPerRun();iEventN++){//loop on events
203     fLoader->GetRunLoader()->GetEvent(iEventN);
204   
205     if(!fLoader->TreeH()) fLoader->LoadHits();
206     if(!fLoader->TreeS()) fLoader->MakeTree("S");
207     MakeBranch("S");
208   
209     for(int iPrimN=0;iPrimN<TreeH()->GetEntries();iPrimN++){//loop on primary tracks
210       fLoader->TreeH()->GetEntry(iPrimN); 
211       for(Int_t iHitN=0;iHitN<Hits()->GetEntries();iHitN++){//loop on hits for given primary track  
212         AddSDigit(4,13,24,55,4);//chamber-xpad-ypad-qdc-track1-2-3
213       }//loop on hits for given primary track
214     }//loop on primary tracks
215   
216     fLoader->TreeS()->Fill();
217     fLoader->WriteSDigits("OVERWRITE");
218   }//loop on events
219   
220   if(GetDebug()) Info("Hit2SDigits","Stop.");
221 }
222 //______________________________________________________________________________
223 void AliRICH::SDigits2Digits()
224 {//Generate digits from sdigits.
225   if(GetDebug()) Info("SDigits2Digits","Start.");
226    //AliRICHChamber*       iChamber;
227   
228   
229    //for(Int_t i=0;i<7;i++) {
230    //iChamber = &(Chamber(i));
231    //iChamber->GenerateTresholds();
232    //}
233   
234    //int nparticles = gAlice->GetNtrack();
235    //cout << "Particles (RICH):" <<nparticles<<endl;
236    //if (nparticles <= 0) return;
237    //if (!fMerger) {
238    //fMerger = new AliRICHMerger();
239    //}
240
241
242    //fMerger->Init();
243    //fMerger->Digitise(nev,flag);
244
245    AliRunDigitizer * manager = new AliRunDigitizer(1,1);
246    manager->SetInputStream(0,"galice.root");
247    //AliRICHDigitizer *dRICH  = new AliRICHDigitizer(manager);
248    manager->Exec("deb");
249   if(GetDebug()) Info("SDigits2Digits","Stop.");
250 }//void AliRICH::SDigits2Digits()
251 //______________________________________________________________________________
252 void AliRICH::Digits2Reco()
253 {
254 // Generate clusters
255 // Called from alirun, single event only.     
256   if(GetDebug()) Info("Digits2Reco","Start.");
257
258   int nparticles = gAlice->GetNtrack();
259   cout << "Particles (RICH):" <<nparticles<<endl;
260   if (nparticles > 0) FindClusters(0);
261
262 }//void AliRICH::Digits2Reco()  
263
264
265 void AliRICH::AddDigits(Int_t id, Int_t *tracks, Int_t *charges, Int_t *digits)
266 {// Add a RICH digit to the list   
267
268    TClonesArray &ldigits = *((TClonesArray*)fDchambers->At(id));
269    new(ldigits[fNdch[id]++]) AliRICHDigit(tracks,charges,digits);
270 }
271
272 void AliRICH::AddRawCluster(Int_t id, const AliRICHRawCluster& c)
273 {// Add a RICH digit to the list
274    
275     TClonesArray &lrawcl = *((TClonesArray*)fRawClusters->At(id));
276     new(lrawcl[fNrawch[id]++]) AliRICHRawCluster(c);
277 }
278 //_____________________________________________________________________________
279 void AliRICH::AddRecHit1D(Int_t id, Float_t *rechit, Float_t *photons, Int_t *padsx, Int_t* padsy)
280 {// Add a RICH reconstructed hit to the list
281
282     TClonesArray &lrec1D = *((TClonesArray*)fRecHits1D->At(id));
283     new(lrec1D[fNrechits1D[id]++]) AliRICHRecHit1D(id,rechit,photons,padsx,padsy);
284 }
285 //_____________________________________________________________________________
286 void AliRICH::AddRecHit3D(Int_t id, Float_t *rechit, Float_t omega, Float_t theta, Float_t phi)
287 {// Add a RICH reconstructed hit to the list
288
289     TClonesArray &lrec3D = *((TClonesArray*)fRecHits3D->At(id));
290     new(lrec3D[fNrechits3D[id]++]) AliRICHRecHit3D(id,rechit,omega,theta,phi);
291 }
292 //______________________________________________________________________________
293 void AliRICH::BuildGeometry() 
294 {//Builds a TNode geometry for event display
295   if(GetDebug())Info("BuildGeometry","Start.");
296   
297   TNode *node, *subnode, *top;
298   top=gAlice->GetGeometry()->GetNode("alice");
299   
300   new TBRIK("S_RICH","S_RICH","void",71.09999,11.5,73.15);
301
302   Float_t wid=fpParam->PadPlaneWidth();
303   Float_t len=fpParam->PadPlaneLength();
304   new TBRIK("PHOTO","PHOTO","void",wid/2,0.1,len/2);
305   
306   for(int i=0;i<kNCH;i++){
307     top->cd();
308     node = new TNode(Form("RICH%i",i+1),Form("RICH%i",i+1),"S_RICH",C(i)->X(),C(i)->Y(),C(i)->Z(),C(i)->RotMatrixName());
309     node->SetLineColor(kRed);
310     node->cd();
311     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",wid+fpParam->DeadZone(),5,len/2+fpParam->DeadZone()/2,"");
312     subnode->SetLineColor(kGreen);
313     fNodes->Add(subnode);
314     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,len/2+fpParam->DeadZone()/2,"");
315     subnode->SetLineColor(kGreen);
316     fNodes->Add(subnode);
317     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-wid-fpParam->DeadZone(),5,len/2+fpParam->DeadZone()/2,"");
318     subnode->SetLineColor(kGreen);
319     fNodes->Add(subnode);
320     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",wid+fpParam->DeadZone(),5,-len/2-fpParam->DeadZone()/2,"");
321     subnode->SetLineColor(kGreen);
322     fNodes->Add(subnode);
323     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-len/2 -fpParam->DeadZone()/2,"");
324     subnode->SetLineColor(kGreen);
325     fNodes->Add(subnode);
326     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-wid-fpParam->DeadZone(),5,-len/2 - fpParam->DeadZone()/2,"");
327     subnode->SetLineColor(kGreen);
328     fNodes->Add(subnode);
329     fNodes->Add(node);
330   }  
331   if(GetDebug())Info("BuildGeometry","Stop.");    
332 }//void AliRICH::BuildGeometry()
333 //______________________________________________________________________________
334 void AliRICH::CreateMaterials()
335 {
336     //
337     // *** DEFINITION OF AVAILABLE RICH MATERIALS *** 
338     // ORIGIN    : NICK VAN EIJNDHOVEN 
339     // Modified by:  N. Colonna (INFN - BARI, Nicola.Colonna@ba.infn.it) 
340     //               R.A. Fini  (INFN - BARI, Rosanna.Fini@ba.infn.it) 
341     //               R.A. Loconsole (Bari University, loco@riscom.ba.infn.it) 
342     //
343     Int_t   isxfld = gAlice->Field()->Integ();
344     Float_t sxmgmx = gAlice->Field()->Max();
345     Int_t i;
346
347     /************************************Antonnelo's Values (14-vectors)*****************************************/
348     /*
349     Float_t ppckov[14] = { 5.63e-9,5.77e-9,5.9e-9,6.05e-9,6.2e-9,6.36e-9,6.52e-9,
350                            6.7e-9,6.88e-9,7.08e-9,7.3e-9,7.51e-9,7.74e-9,8e-9 };
351     Float_t rIndexQuarz[14] = { 1.528309,1.533333,
352                                  1.538243,1.544223,1.550568,1.55777,
353                                  1.565463,1.574765,1.584831,1.597027,
354                                1.611858,1.6277,1.6472,1.6724 };
355     Float_t rIndexOpaqueQuarz[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
356     Float_t rIndexMethane[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
357     Float_t rIndexGrid[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
358     Float_t abscoFreon[14] = { 179.0987,179.0987,
359                                 179.0987,179.0987,179.0987,142.92,56.65,13.95,10.43,7.07,2.03,.5773,.33496,0. };
360     //Float_t abscoFreon[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,
361         //                       1e-5,1e-5,1e-5,1e-5,1e-5 };
362     Float_t abscoQuarz[14] = { 64.035,39.98,35.665,31.262,27.527,22.815,21.04,17.52,
363                                 14.177,9.282,4.0925,1.149,.3627,.10857 };
364     Float_t abscoOpaqueQuarz[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,
365                                  1e-5,1e-5,1e-5,1e-5,1e-5 };
366     Float_t abscoCsI[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,
367                               1e-4,1e-4,1e-4,1e-4 };
368     Float_t abscoMethane[14] = { 1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,
369                                   1e6,1e6,1e6 };
370     Float_t abscoGrid[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,
371                               1e-4,1e-4,1e-4,1e-4 };
372     Float_t efficAll[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
373     Float_t efficCsI[14] = { 6e-4,.005,.0075,.01125,.045,.117,.135,.16575,
374                               .17425,.1785,.1836,.1904,.1938,.221 };
375     Float_t efficGrid[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
376     */
377    
378     
379     /**********************************End of Antonnelo's Values**********************************/
380     
381     /**********************************Values from rich_media.f (31-vectors)**********************************/
382     
383
384     //Photons energy intervals
385     Float_t ppckov[26];
386     for (i=0;i<26;i++) 
387     {
388         ppckov[i] = (Float_t(i)*0.1+5.5)*1e-9;
389     }
390     
391     
392     //Refraction index for quarz
393     Float_t rIndexQuarz[26];
394     Float_t  e1= 10.666;
395     Float_t  e2= 18.125;
396     Float_t  f1= 46.411;
397     Float_t  f2= 228.71;
398     for (i=0;i<26;i++)
399     {
400         Float_t ene=ppckov[i]*1e9;
401         Float_t a=f1/(e1*e1 - ene*ene);
402         Float_t b=f2/(e2*e2 - ene*ene);
403         rIndexQuarz[i] = TMath::Sqrt(1. + a + b );
404     } 
405     
406     //Refraction index for opaque quarz, methane and grid
407     Float_t rIndexOpaqueQuarz[26];
408     Float_t rIndexMethane[26];
409     Float_t rIndexGrid[26];
410     for (i=0;i<26;i++)
411     {
412         rIndexOpaqueQuarz[i]=1;
413         rIndexMethane[i]=1.000444;
414         rIndexGrid[i]=1;
415     } 
416     
417     //Absorption index for freon
418     Float_t abscoFreon[26] = {179.0987, 179.0987, 179.0987, 179.0987, 179.0987,  179.0987, 179.0987, 179.0987, 
419                                179.0987, 142.9206, 56.64957, 25.58622, 13.95293, 12.03905, 10.42953, 8.804196, 
420                                7.069031, 4.461292, 2.028366, 1.293013, .577267,   .40746,  .334964, 0., 0., 0.};
421     
422     //Absorption index for quarz
423     /*Float_t Qzt [21] = {.0,.0,.005,.04,.35,.647,.769,.808,.829,.844,.853,.858,.869,.887,.903,.902,.902,
424                         .906,.907,.907,.907};
425     Float_t Wavl2[] = {150.,155.,160.0,165.0,170.0,175.0,180.0,185.0,190.0,195.0,200.0,205.0,210.0,
426                        215.0,220.0,225.0,230.0,235.0,240.0,245.0,250.0};                                 
427     Float_t abscoQuarz[31];          
428     for (Int_t i=0;i<31;i++)
429     {
430         Float_t Xlam = 1237.79 / (ppckov[i]*1e9);
431         if (Xlam <= 160) abscoQuarz[i] = 0;
432         if (Xlam > 250) abscoQuarz[i] = 1;
433         else 
434         {
435             for (Int_t j=0;j<21;j++)
436             {
437                 if (Xlam > Wavl2[j] && Xlam < Wavl2[j+1])
438                 {
439                     Float_t Dabs = (Qzt[j+1] - Qzt[j])/(Wavl2[j+1] - Wavl2[j]);
440                     Float_t Abso = Qzt[j] + Dabs*(Xlam - Wavl2[j]);
441                     abscoQuarz[i] = -5.0/(TMath::Log(Abso));
442                 } 
443             }
444         }
445     }*/
446
447     /*Float_t abscoQuarz[31] = {49.64211, 48.41296, 47.46989, 46.50492, 45.13682, 44.47883, 43.1929 , 41.30922, 40.5943 ,
448                                39.82956, 38.98623, 38.6247 , 38.43448, 37.41084, 36.22575, 33.74852, 30.73901, 24.25086, 
449                                17.94531, 11.88753, 5.99128,  3.83503,  2.36661,  1.53155, 1.30582, 1.08574, .8779708, 
450                                .675275, 0., 0., 0.};
451     
452     for (Int_t i=0;i<31;i++)
453     {
454         abscoQuarz[i] = abscoQuarz[i]/10;
455     }*/
456
457     Float_t abscoQuarz [26] = {105.8, 65.52, 48.58, 42.85, 35.79, 31.262, 28.598, 27.527, 25.007, 22.815, 21.004,
458                                 19.266, 17.525, 15.878, 14.177, 11.719, 9.282, 6.62, 4.0925, 2.601, 1.149, .667, .3627,
459                                 .192, .1497, .10857};
460     
461     //Absorption index for methane
462     Float_t abscoMethane[26];
463     for (i=0;i<26;i++) 
464     {
465         abscoMethane[i]=AbsoCH4(ppckov[i]*1e9); 
466     }
467     
468     //Absorption index for opaque quarz, csi and grid, efficiency for all and grid
469     Float_t abscoOpaqueQuarz[26];
470     Float_t abscoCsI[26];
471     Float_t abscoGrid[26];
472     Float_t efficAll[26];
473     Float_t efficGrid[26];
474     for (i=0;i<26;i++)
475     { 
476         abscoOpaqueQuarz[i]=1e-5; 
477         abscoCsI[i]=1e-4; 
478         abscoGrid[i]=1e-4; 
479         efficAll[i]=1; 
480         efficGrid[i]=1;
481     } 
482     
483     //Efficiency for csi 
484     
485     Float_t efficCsI[26] = {0.000199999995, 0.000600000028, 0.000699999975, 0.00499999989, 0.00749999983, 0.010125,
486                              0.0242999997, 0.0405000001, 0.0688500032, 0.105299994, 0.121500008, 0.141749993, 0.157949999,
487                              0.162, 0.166050002, 0.167669997, 0.174299985, 0.176789999, 0.179279998, 0.182599992, 0.18592,
488                              0.187579989, 0.189239994, 0.190899998, 0.207499996, 0.215799987};
489         
490     
491
492     //FRESNEL LOSS CORRECTION FOR PERPENDICULAR INCIDENCE AND
493     //UNPOLARIZED PHOTONS
494
495     for (i=0;i<26;i++)
496     {
497         efficCsI[i] = efficCsI[i]/(1.-Fresnel(ppckov[i]*1e9,1.,0)); 
498     }
499         
500     /*******************************************End of rich_media.f***************************************/
501
502   
503
504     
505     
506     
507     Float_t afre[2], agri, amet[2], aqua[2], ahon, zfre[2], zgri, zhon, 
508     zmet[2], zqua[2];
509     Int_t nlmatfre;
510     Float_t densquao;
511     Int_t nlmatmet, nlmatqua;
512     Float_t wmatquao[2], rIndexFreon[26];
513     Float_t aquao[2], epsil, stmin, zquao[2];
514     Int_t nlmatquao;
515     Float_t radlal, densal, tmaxfd, deemax, stemax;
516     Float_t aal, zal, radlgri, densfre, radlhon, densgri, denshon,densqua, densmet, wmatfre[2], wmatmet[2], wmatqua[2];
517     
518     Int_t *idtmed = fIdtmed->GetArray()-999;
519     
520     // --- Photon energy (GeV) 
521     // --- Refraction indexes 
522     for (i = 0; i < 26; ++i) {
523       rIndexFreon[i] = ppckov[i] * .0172 * 1e9 + 1.177;
524       //rIndexFreon[i] = 1;
525     }
526             
527     // --- Detection efficiencies (quantum efficiency for CsI) 
528     // --- Define parameters for honeycomb. 
529     //     Used carbon of equivalent rad. lenght 
530     
531     ahon    = 12.01;
532     zhon    = 6.;
533     denshon = 0.1;
534     radlhon = 18.8;
535     
536     // --- Parameters to include in GSMIXT, relative to Quarz (SiO2) 
537     
538     aqua[0]    = 28.09;
539     aqua[1]    = 16.;
540     zqua[0]    = 14.;
541     zqua[1]    = 8.;
542     densqua    = 2.64;
543     nlmatqua   = -2;
544     wmatqua[0] = 1.;
545     wmatqua[1] = 2.;
546     
547     // --- Parameters to include in GSMIXT, relative to opaque Quarz (SiO2) 
548     
549     aquao[0]    = 28.09;
550     aquao[1]    = 16.;
551     zquao[0]    = 14.;
552     zquao[1]    = 8.;
553     densquao    = 2.64;
554     nlmatquao   = -2;
555     wmatquao[0] = 1.;
556     wmatquao[1] = 2.;
557     
558     // --- Parameters to include in GSMIXT, relative to Freon (C6F14) 
559     
560     afre[0]    = 12.;
561     afre[1]    = 19.;
562     zfre[0]    = 6.;
563     zfre[1]    = 9.;
564     densfre    = 1.7;
565     nlmatfre   = -2;
566     wmatfre[0] = 6.;
567     wmatfre[1] = 14.;
568     
569     // --- Parameters to include in GSMIXT, relative to methane (CH4) 
570     
571     amet[0]    = 12.01;
572     amet[1]    = 1.;
573     zmet[0]    = 6.;
574     zmet[1]    = 1.;
575     densmet    = 7.17e-4;
576     nlmatmet   = -2;
577     wmatmet[0] = 1.;
578     wmatmet[1] = 4.;
579     
580     // --- Parameters to include in GSMIXT, relative to anode grid (Cu) 
581   
582     agri    = 63.54;
583     zgri    = 29.;
584     densgri = 8.96;
585     radlgri = 1.43;
586     
587     // --- Parameters to include in GSMATE related to aluminium sheet 
588     
589     aal    = 26.98;
590     zal    = 13.;
591     densal = 2.7;
592     radlal = 8.9;
593
594     // --- Glass parameters
595
596     Float_t aglass[5]={12.01, 28.09, 16.,   10.8,  23.};
597     Float_t zglass[5]={ 6.,   14.,    8.,    5.,   11.};
598     Float_t wglass[5]={ 0.5,  0.105, 0.355, 0.03,  0.01};
599     Float_t dglass=1.74;
600
601     
602     AliMaterial(1, "Air     $", 14.61, 7.3, .001205, 30420., 67500);
603     AliMaterial(6, "HON", ahon, zhon, denshon, radlhon, 0);
604     AliMaterial(16, "CSI", ahon, zhon, denshon, radlhon, 0);
605     AliMixture(20, "QUA", aqua, zqua, densqua, nlmatqua, wmatqua);
606     AliMixture(21, "QUAO", aquao, zquao, densquao, nlmatquao, wmatquao);
607     AliMixture(30, "FRE", afre, zfre, densfre, nlmatfre, wmatfre);
608     AliMixture(40, "MET", amet, zmet, densmet, nlmatmet, wmatmet);
609     AliMixture(41, "METG", amet, zmet, densmet, nlmatmet, wmatmet);
610     AliMaterial(11, "GRI", agri, zgri, densgri, radlgri, 0);
611     AliMaterial(50, "ALUM", aal, zal, densal, radlal, 0);
612     AliMixture(32, "GLASS",aglass, zglass, dglass, 5, wglass);
613     AliMaterial(31, "COPPER$",   63.54,    29.,   8.96,  1.4, 0.);
614     
615     tmaxfd = -10.;
616     stemax = -.1;
617     deemax = -.2;
618     epsil  = .001;
619     stmin  = -.001;
620     
621     AliMedium(1, "DEFAULT MEDIUM AIR$", 1, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
622     AliMedium(2, "HONEYCOMB$", 6, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
623     AliMedium(3, "QUARZO$", 20, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
624     AliMedium(4, "FREON$", 30, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
625     AliMedium(5, "METANO$", 40, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
626     AliMedium(6, "CSI$", 16, 1, isxfld, sxmgmx,tmaxfd, stemax, deemax, epsil, stmin);
627     AliMedium(7, "GRIGLIA$", 11, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
628     AliMedium(8, "QUARZOO$", 21, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
629     AliMedium(9, "GAP$", 41, 1, isxfld, sxmgmx,tmaxfd, .1, -deemax, epsil, -stmin);
630     AliMedium(10, "ALUMINUM$", 50, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
631     AliMedium(11, "GLASS", 32, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
632     AliMedium(12, "PCB_COPPER", 31, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
633     
634
635     gMC->SetCerenkov(idtmed[1000], 26, ppckov, abscoMethane, efficAll, rIndexMethane);
636     gMC->SetCerenkov(idtmed[1001], 26, ppckov, abscoMethane, efficAll, rIndexMethane);
637     gMC->SetCerenkov(idtmed[1002], 26, ppckov, abscoQuarz, efficAll,rIndexQuarz);
638     gMC->SetCerenkov(idtmed[1003], 26, ppckov, abscoFreon, efficAll,rIndexFreon);
639     gMC->SetCerenkov(idtmed[1004], 26, ppckov, abscoMethane, efficAll, rIndexMethane);
640     gMC->SetCerenkov(idtmed[1005], 26, ppckov, abscoCsI, efficCsI, rIndexMethane);
641     gMC->SetCerenkov(idtmed[1006], 26, ppckov, abscoGrid, efficGrid, rIndexGrid);
642     gMC->SetCerenkov(idtmed[1007], 26, ppckov, abscoOpaqueQuarz, efficAll, rIndexOpaqueQuarz);
643     gMC->SetCerenkov(idtmed[1008], 26, ppckov, abscoMethane, efficAll, rIndexMethane);
644     gMC->SetCerenkov(idtmed[1009], 26, ppckov, abscoGrid, efficGrid, rIndexGrid);
645     gMC->SetCerenkov(idtmed[1010], 26, ppckov, abscoOpaqueQuarz, efficAll, rIndexOpaqueQuarz);
646 }
647 //______________________________________________________________________________
648 Float_t AliRICH::Fresnel(Float_t ene,Float_t pdoti, Bool_t pola)
649 {
650
651     //ENE(EV), PDOTI=COS(INC.ANG.), PDOTR=COS(POL.PLANE ROT.ANG.)
652     
653     Float_t en[36] = {5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,
654                       6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7,
655                       7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5};
656      
657
658     Float_t csin[36] = {2.14,2.21,2.33,2.48,2.76,2.97,2.99,2.59,2.81,3.05,
659                         2.86,2.53,2.55,2.66,2.79,2.96,3.18,3.05,2.84,2.81,2.38,2.11,
660                         2.01,2.13,2.39,2.73,3.08,3.15,2.95,2.73,2.56,2.41,2.12,1.95,
661                         1.72,1.53};
662       
663     Float_t csik[36] = {0.,0.,0.,0.,0.,0.196,0.408,0.208,0.118,0.49,0.784,0.543,
664                         0.424,0.404,0.371,0.514,0.922,1.102,1.139,1.376,1.461,1.253,0.878,
665                         0.69,0.612,0.649,0.824,1.347,1.571,1.678,1.763,1.857,1.824,1.824,
666                         1.714,1.498};
667     Float_t xe=ene;
668     Int_t  j=Int_t(xe*10)-49;
669     Float_t cn=csin[j]+((csin[j+1]-csin[j])/0.1)*(xe-en[j]);
670     Float_t ck=csik[j]+((csik[j+1]-csik[j])/0.1)*(xe-en[j]);
671
672     //FORMULAE FROM HANDBOOK OF OPTICS, 33.23 OR
673     //W.R. HUNTER, J.O.S.A. 54 (1964),15 , J.O.S.A. 55(1965),1197
674
675     Float_t sinin=TMath::Sqrt(1-pdoti*pdoti);
676     Float_t tanin=sinin/pdoti;
677
678     Float_t c1=cn*cn-ck*ck-sinin*sinin;
679     Float_t c2=4*cn*cn*ck*ck;
680     Float_t aO=TMath::Sqrt(0.5*(TMath::Sqrt(c1*c1+c2)+c1));
681     Float_t b2=0.5*(TMath::Sqrt(c1*c1+c2)-c1);
682     
683     Float_t rs=((aO-pdoti)*(aO-pdoti)+b2)/((aO+pdoti)*(aO+pdoti)+b2);
684     Float_t rp=rs*((aO-sinin*tanin)*(aO-sinin*tanin)+b2)/((aO+sinin*tanin)*(aO+sinin*tanin)+b2);
685     
686
687     //CORRECTION FACTOR FOR SURFACE ROUGHNESS
688     //B.J. STAGG  APPLIED OPTICS, 30(1991),4113
689
690     Float_t sigraf=18.;
691     Float_t lamb=1240/ene;
692     Float_t fresn;
693  
694     Float_t  rO=TMath::Exp(-(4*TMath::Pi()*pdoti*sigraf/lamb)*(4*TMath::Pi()*pdoti*sigraf/lamb));
695
696     if(pola)
697     {
698         Float_t pdotr=0.8;                                 //DEGREE OF POLARIZATION : 1->P , -1->S
699         fresn=0.5*(rp*(1+pdotr)+rs*(1-pdotr));
700     }
701     else
702         fresn=0.5*(rp+rs);
703       
704     fresn = fresn*rO;
705     return(fresn);
706 }
707
708 //__________________________________________
709 Float_t AliRICH::AbsoCH4(Float_t x)
710 {
711
712     //KLOSCH,SCH4(9),WL(9),EM(9),ALENGTH(31)
713     Float_t sch4[9] = {.12,.16,.23,.38,.86,2.8,7.9,28.,80.};              //MB X 10^22
714     //Float_t wl[9] = {153.,152.,151.,150.,149.,148.,147.,146.,145};
715     Float_t em[9] = {8.1,8.158,8.212,8.267,8.322,8.378,8.435,8.493,8.55};
716     const Float_t kLosch=2.686763E19;                                      // LOSCHMIDT NUMBER IN CM-3
717     const Float_t kIgas1=100, kIgas2=0, kOxy=10., kWater=5., kPressure=750.,kTemperature=283.;                                      
718     Float_t pn=kPressure/760.;
719     Float_t tn=kTemperature/273.16;
720     
721         
722 // ------- METHANE CROSS SECTION -----------------
723 // ASTROPH. J. 214, L47 (1978)
724         
725     Float_t sm=0;
726     if (x<7.75) 
727         sm=.06e-22;
728     
729     if(x>=7.75 && x<=8.1)
730     {
731         Float_t c0=-1.655279e-1;
732         Float_t c1=6.307392e-2;
733         Float_t c2=-8.011441e-3;
734         Float_t c3=3.392126e-4;
735         sm=(c0+c1*x+c2*x*x+c3*x*x*x)*1.e-18;
736     }
737     
738     if (x> 8.1)
739     {
740         Int_t j=0;
741         while (x<=em[j] && x>=em[j+1])
742         {
743             j++;
744             Float_t a=(sch4[j+1]-sch4[j])/(em[j+1]-em[j]);
745             sm=(sch4[j]+a*(x-em[j]))*1e-22;
746         }
747     }
748     
749     Float_t dm=(kIgas1/100.)*(1.-((kOxy+kWater)/1.e6))*kLosch*pn/tn;
750     Float_t abslm=1./sm/dm;
751     
752 //    ------- ISOBUTHANE CROSS SECTION --------------
753 //     i-C4H10 (ai) abs. length from curves in
754 //     Lu-McDonald paper for BARI RICH workshop .
755 //     -----------------------------------------------------------
756     
757     Float_t ai;
758     Float_t absli;
759     if (kIgas2 != 0) 
760     {
761         if (x<7.25)
762             ai=100000000.;
763         
764         if(x>=7.25 && x<7.375)
765             ai=24.3;
766         
767         if(x>=7.375)
768             ai=.0000000001;
769         
770         Float_t si = 1./(ai*kLosch*273.16/293.);                    // ISOB. CRO.SEC.IN CM2
771         Float_t di=(kIgas2/100.)*(1.-((kOxy+kWater)/1.e6))*kLosch*pn/tn;
772         absli =1./si/di;
773     }
774     else
775         absli=1.e18;
776 //    ---------------------------------------------------------
777 //
778 //       transmission of O2
779 //
780 //       y= path in cm, x=energy in eV
781 //       so= cross section for UV absorption in cm2
782 //       do= O2 molecular density in cm-3
783 //    ---------------------------------------------------------
784     
785     Float_t abslo;
786     Float_t so=0;
787     if(x>=6.0)
788     {
789         if(x>=6.0 && x<6.5)
790         {
791             so=3.392709e-13 * TMath::Exp(2.864104 *x);
792             so=so*1e-18;
793         }
794         
795         if(x>=6.5 && x<7.0) 
796         {
797             so=2.910039e-34 * TMath::Exp(10.3337*x);
798             so=so*1e-18;
799         }
800             
801
802         if (x>=7.0) 
803         {
804             Float_t a0=-73770.76;
805             Float_t a1=46190.69;
806             Float_t a2=-11475.44;
807             Float_t a3=1412.611;
808             Float_t a4=-86.07027;
809             Float_t a5=2.074234;
810             so= a0+(a1*x)+(a2*x*x)+(a3*x*x*x)+(a4*x*x*x*x)+(a5*x*x*x*x*x);
811             so=so*1e-18;
812         }
813         
814         Float_t dox=(kOxy/1e6)*kLosch*pn/tn;
815         abslo=1./so/dox;
816     }
817     else
818         abslo=1.e18;
819 //     ---------------------------------------------------------
820 //
821 //       transmission of H2O
822 //
823 //       y= path in cm, x=energy in eV
824 //       sw= cross section for UV absorption in cm2
825 //       dw= H2O molecular density in cm-3
826 //     ---------------------------------------------------------
827     
828     Float_t abslw;
829     
830     Float_t b0=29231.65;
831     Float_t b1=-15807.74;
832     Float_t b2=3192.926;
833     Float_t b3=-285.4809;
834     Float_t b4=9.533944;
835     
836     if(x>6.75)
837     {    
838         Float_t sw= b0+(b1*x)+(b2*x*x)+(b3*x*x*x)+(b4*x*x*x*x);
839         sw=sw*1e-18;
840         Float_t dw=(kWater/1e6)*kLosch*pn/tn;
841         abslw=1./sw/dw;
842     }
843     else
844         abslw=1.e18;
845             
846 //    ---------------------------------------------------------
847     
848     Float_t alength=1./(1./abslm+1./absli+1./abslo+1./abslw);
849     return (alength);
850 }
851
852
853
854 //___________________________________________
855 //____________________________________________
856 void AliRICH::ResetDigits()
857 {//Reset number of digits and the digits array for this detector
858   for ( int i=0;i<kNCH;i++ ) {
859     if (fDchambers && fDchambers->At(i))   fDchambers->At(i)->Clear();
860     if (fNdch)  fNdch[i]=0;
861   }
862 }
863 //____________________________________________
864 void AliRICH::ResetRawClusters()
865 {//Reset number of raw clusters and the raw clust array for this detector
866   for ( int i=0;i<kNCH;i++ ) {
867     if (fRawClusters->At(i))    ((TClonesArray*)fRawClusters->At(i))->Clear();
868     if (fNrawch)  fNrawch[i]=0;
869   }
870 }
871 //____________________________________________
872 void AliRICH::ResetRecHits1D()
873 {//Reset number of raw clusters and the raw clust array for this detector
874   for ( int i=0;i<kNCH;i++ ) {
875     if (fRecHits1D->At(i))    ((TClonesArray*)fRecHits1D->At(i))->Clear();
876     if (fNrechits1D)  fNrechits1D[i]=0;
877   }
878 }
879
880 //____________________________________________
881 void AliRICH::ResetRecHits3D()
882 {// Reset number of raw clusters and the raw clust array for this detector
883   for ( int i=0;i<kNCH;i++ ) {
884     if (fRecHits3D->At(i))    ((TClonesArray*)fRecHits3D->At(i))->Clear();
885     if (fNrechits3D)  fNrechits3D[i]=0;
886   }
887 }
888 //______________________________________________________________________________
889 void AliRICH::FindClusters(Int_t nev /*kir,Int_t lastEntry*/)
890 {// Loop on chambers and on cathode planes
891     for (Int_t icat=1;icat<2;icat++) {
892         gAlice->ResetDigits();
893         gAlice->TreeD()->GetEvent(0);
894         for (Int_t ich=0;ich<kNCH;ich++) {
895       //PH        AliRICHChamber* iChamber=(AliRICHChamber*) (*fChambers)[ich];
896           AliRICHChamber* iChamber=(AliRICHChamber*)fChambers->At(ich);
897           TClonesArray *pRICHdigits  = this->DigitsAddress(ich);
898           if (pRICHdigits == 0)       
899               continue;
900           //
901           // Get ready the current chamber stuff
902           //
903           AliRICHResponse* response = iChamber->GetResponseModel();
904           AliSegmentation*  seg = iChamber->GetSegmentationModel();
905           AliRICHClusterFinder* rec = iChamber->GetReconstructionModel();
906           if (seg) {      
907               rec->SetSegmentation(seg);
908               rec->SetResponse(response);
909               rec->SetDigits(pRICHdigits);
910               rec->SetChamber(ich);
911               if (nev==0) rec->CalibrateCOG(); 
912               rec->FindRawClusters();
913           }  
914           TClonesArray *fRch;
915           fRch=RawClustAddress(ich);
916           fRch->Sort();
917         } // for ich
918
919         gAlice->TreeR()->Fill();
920         TClonesArray *fRch;
921         for (int i=0;i<kNCH;i++) {
922             fRch=RawClustAddress(i);
923             fRch->GetEntriesFast();
924         }
925         
926         ResetRawClusters();
927         
928     } // for icat
929     
930     char hname[30];
931     sprintf(hname,"TreeR%d",nev);
932     gAlice->TreeR()->Write(hname,kOverwrite,0);
933     gAlice->TreeR()->Reset();    
934 }//void AliRICH::FindClusters(Int_t nev)
935 //______________________________________________________________________________
936 AliRICHSDigit* AliRICH::FirstPad(AliRICHhit*  hit,TClonesArray *clusters ) 
937 {// Initialise the pad iterator Return the address of the first sdigit for hit
938     TClonesArray *theClusters = clusters;
939     Int_t nclust = theClusters->GetEntriesFast();
940     if (nclust && hit->PHlast() > 0) {
941         sMaxIterPad=Int_t(hit->PHlast());
942         sCurIterPad=Int_t(hit->PHfirst());
943         return (AliRICHSDigit*) clusters->UncheckedAt(sCurIterPad-1);
944     } else {
945         return 0;
946     }
947     
948 }
949 //______________________________________________________________________________
950 AliRICHSDigit* AliRICH::NextPad(TClonesArray *clusters) 
951 {// Iterates over pads
952   
953     sCurIterPad++;
954     if (sCurIterPad <= sMaxIterPad) {
955         return (AliRICHSDigit*) clusters->UncheckedAt(sCurIterPad-1);
956     } else {
957         return 0;
958     }
959 }
960
961
962 void AliRICH::DiagnosticsFE(Int_t evNumber1,Int_t evNumber2)
963 {
964   
965   Int_t NpadX = 162;                 // number of pads on X
966   Int_t NpadY = 162;                 // number of pads on Y
967   
968   Int_t Pad[162][162];
969   for (Int_t i=0;i<NpadX;i++) {
970     for (Int_t j=0;j<NpadY;j++) {
971       Pad[i][j]=0;
972     }
973   }
974   
975   //  Create some histograms
976
977   TH1F *pionspectra1 = new TH1F("pionspectra1","Pion Spectra",200,-4,2);
978   TH1F *pionspectra2 = new TH1F("pionspectra2","Pion Spectra",200,-4,2);
979   TH1F *pionspectra3 = new TH1F("pionspectra3","Pion Spectra",200,-4,2);
980   TH1F *protonspectra1 = new TH1F("protonspectra1","Proton Spectra",200,-4,2);
981   TH1F *protonspectra2 = new TH1F("protonspectra2","Proton Spectra",200,-4,2);
982   TH1F *protonspectra3 = new TH1F("protonspectra3","Proton Spectra",200,-4,2);
983   TH1F *kaonspectra1 = new TH1F("kaonspectra1","Kaon Spectra",100,-4,2);
984   TH1F *kaonspectra2 = new TH1F("kaonspectra2","Kaon Spectra",100,-4,2);
985   TH1F *kaonspectra3 = new TH1F("kaonspectra3","Kaon Spectra",100,-4,2);
986   TH1F *electronspectra1 = new TH1F("electronspectra1","Electron Spectra",100,-4,2);
987   TH1F *electronspectra2 = new TH1F("electronspectra2","Electron Spectra",100,-4,2);
988   TH1F *electronspectra3 = new TH1F("electronspectra3","Electron Spectra",100,-4,2);
989   TH1F *muonspectra1 = new TH1F("muonspectra1","Muon Spectra",100,-4,2);
990   TH1F *muonspectra2 = new TH1F("muonspectra2","Muon Spectra",100,-4,2);
991   TH1F *muonspectra3 = new TH1F("muonspectra3","Muon Spectra",100,-4,2);
992   TH1F *neutronspectra1 = new TH1F("neutronspectra1","Neutron Spectra",100,-4,2);
993   TH1F *neutronspectra2 = new TH1F("neutronspectra2","Neutron Spectra",100,-4,2);
994   TH1F *neutronspectra3 = new TH1F("neutronspectra2","Neutron Spectra",100,-4,2);
995   TH1F *chargedspectra1 = new TH1F("chargedspectra1","Charged particles above 1 GeV Spectra",100,-1,3);
996   TH1F *chargedspectra2 = new TH1F("chargedspectra2","Charged particles above 1 GeV Spectra",100,-1,3);
997   TH1F *chargedspectra3 = new TH1F("chargedspectra2","Charged particles above 1 GeV Spectra",100,-1,3);
998   TH1F *pionptspectrafinal = new TH1F("pionptspectrafinal","Primary Pions Transverse Momenta at HMPID",20,0,5);
999   TH1F *pionptspectravertex = new TH1F("pionptspectravertex","Primary Pions Transverse Momenta at vertex",20,0,5);
1000   TH1F *kaonptspectrafinal = new TH1F("kaonptspectrafinal","Primary Kaons Transverse Momenta at HMPID",20,0,5);
1001   TH1F *kaonptspectravertex = new TH1F("kaonptspectravertex","Primary Kaons Transverse Momenta at vertex",20,0,5);
1002   //TH1F *hitsPhi = new TH1F("hitsPhi","Distribution of phi angle of incidence",100,-180,180);
1003   TH1F *hitsTheta = new TH1F("hitsTheta","Distribution of Theta angle of incidence, all tracks",100,0,50);
1004   TH1F *hitsTheta500MeV = new TH1F("hitsTheta500MeV","Distribution of Theta angle of incidence, 0.5-1 GeV primary tracks",100,0,50);
1005   TH1F *hitsTheta1GeV = new TH1F("hitsTheta1GeV","Distribution of Theta angle of incidence, 1-2 GeV primary tracks",100,0,50);
1006   TH1F *hitsTheta2GeV = new TH1F("hitsTheta2GeV","Distribution of Theta angle of incidence, 2-3 GeV primary tracks",100,0,50);
1007   TH1F *hitsTheta3GeV = new TH1F("hitsTheta3GeV","Distribution of Theta angle of incidence, >3 GeV primary tracks",100,0,50);
1008   TH2F *production = new TH2F("production","Mother production vertices",100,-300,300,100,0,600);
1009    
1010    
1011    
1012
1013 //   Start loop over events 
1014
1015   Int_t pion=0, kaon=0, proton=0, electron=0, positron=0, neutron=0, highneutrons=0, muon=0;
1016   Int_t chargedpions=0,primarypions=0,highprimarypions=0,chargedkaons=0,primarykaons=0,highprimarykaons=0;
1017   Int_t photons=0, primaryphotons=0, highprimaryphotons=0;
1018   TRandom* random=0;
1019
1020    for (int nev=0; nev<= evNumber2; nev++) {
1021        Int_t nparticles = gAlice->GetEvent(nev);
1022        
1023
1024        if (nev < evNumber1) continue;
1025        if (nparticles <= 0) return;
1026        
1027 // Get pointers to RICH detector and Hits containers
1028        
1029        AliRICH *pRICH = (AliRICH *) gAlice->GetDetector("RICH");
1030      
1031        TTree *treeH = TreeH();
1032        Int_t ntracks =(Int_t) treeH->GetEntries();
1033             
1034 // Start loop on tracks in the hits containers
1035        
1036        for (Int_t track=0; track<ntracks;track++) {
1037            printf ("Processing Track: %d\n",track);
1038            gAlice->ResetHits();
1039            treeH->GetEvent(track);
1040                            
1041            for(AliRICHhit* mHit=(AliRICHhit*)pRICH->FirstHit(-1); 
1042                mHit;
1043                mHit=(AliRICHhit*)pRICH->NextHit()) 
1044              {
1045                //Int_t nch  = mHit->fChamber;              // chamber number
1046                //Float_t x  = mHit->X();                    // x-pos of hit
1047                //Float_t y  = mHit->Z();                    // y-pos
1048                //Float_t z  = mHit->Y();
1049                //Float_t phi = mHit->Phi();                 //Phi angle of incidence
1050                Float_t theta = mHit->Theta();             //Theta angle of incidence
1051                Float_t px = mHit->MomX();
1052                Float_t py = mHit->MomY();
1053                Int_t index = mHit->Track();
1054                Int_t particle = (Int_t)(mHit->Particle());    
1055                Float_t R;
1056                Float_t PTfinal;
1057                Float_t PTvertex;
1058
1059               TParticle *current = gAlice->Particle(index);
1060               
1061               //Float_t energy=current->Energy(); 
1062
1063               R=TMath::Sqrt(current->Vx()*current->Vx() + current->Vy()*current->Vy());
1064               PTfinal=TMath::Sqrt(px*px + py*py);
1065               PTvertex=TMath::Sqrt(current->Px()*current->Px() + current->Py()*current->Py());
1066               
1067               
1068
1069               if (TMath::Abs(particle) < 10000000)
1070                 {
1071                   hitsTheta->Fill(theta,(float) 1);
1072                   if (R<5)
1073                     {
1074                       if (PTvertex>.5 && PTvertex<=1)
1075                         {
1076                           hitsTheta500MeV->Fill(theta,(float) 1);
1077                         }
1078                       if (PTvertex>1 && PTvertex<=2)
1079                         {
1080                           hitsTheta1GeV->Fill(theta,(float) 1);
1081                         }
1082                       if (PTvertex>2 && PTvertex<=3)
1083                         {
1084                           hitsTheta2GeV->Fill(theta,(float) 1);
1085                         }
1086                       if (PTvertex>3)
1087                         {
1088                           hitsTheta3GeV->Fill(theta,(float) 1);
1089                         }
1090                     }
1091                   
1092                 }
1093
1094               //if (nch == 3)
1095                 //{
1096               
1097               if (TMath::Abs(particle) < 50000051)
1098                 {
1099                   //if (TMath::Abs(particle) == 50000050 || TMath::Abs(particle) == 2112)
1100                   if (TMath::Abs(particle) == 2112 || TMath::Abs(particle) == 50000050)
1101                     {
1102                       //gMC->Rndm(&random, 1);
1103                       if (random->Rndm() < .1)
1104                         production->Fill(current->Vz(),R,(float) 1);
1105                       if (TMath::Abs(particle) == 50000050)
1106                         //if (TMath::Abs(particle) > 50000000)
1107                         {
1108                           photons +=1;
1109                           if (R<5)
1110                             {
1111                               primaryphotons +=1;
1112                               if (current->Energy()>0.001)
1113                                 highprimaryphotons +=1;
1114                             }
1115                         }       
1116                       if (TMath::Abs(particle) == 2112)
1117                         {
1118                           neutron +=1;
1119                           if (current->Energy()>0.0001)
1120                             highneutrons +=1;
1121                         }
1122                     }
1123                   if (TMath::Abs(particle) < 50000000)
1124                     {
1125                       production->Fill(current->Vz(),R,(float) 1);
1126                     }
1127                   //mip->Fill(x,y,(float) 1);
1128                 }
1129               
1130               if (TMath::Abs(particle)==211 || TMath::Abs(particle)==111)
1131                 {
1132                   if (R<5)
1133                     {
1134                       pionptspectravertex->Fill(PTvertex,(float) 1);
1135                       pionptspectrafinal->Fill(PTfinal,(float) 1);
1136                     }
1137                 }
1138               
1139               if (TMath::Abs(particle)==321 || TMath::Abs(particle)==130 || TMath::Abs(particle)==310 
1140                   || TMath::Abs(particle)==311)
1141                 {
1142                   if (R<5)
1143                     {
1144                       kaonptspectravertex->Fill(PTvertex,(float) 1);
1145                       kaonptspectrafinal->Fill(PTfinal,(float) 1);
1146                     }
1147                 }
1148               
1149               
1150               if (TMath::Abs(particle)==211 || TMath::Abs(particle)==111)
1151                 {
1152                   pionspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1153                   if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1154                     pionspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1155                   if (R>250 && R<450)
1156                     {
1157                       pionspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1158                     }
1159                   pion +=1;
1160                   if (TMath::Abs(particle)==211)
1161                     {
1162                       chargedpions +=1;
1163                       if (R<5)
1164                         {
1165                           primarypions +=1;
1166                           if (current->Energy()>1)
1167                             highprimarypions +=1;
1168                         }
1169                     }   
1170                 }
1171               if (TMath::Abs(particle)==2212)
1172                 {
1173                   protonspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1174                   //ptspectra->Fill(Pt,(float) 1);
1175                   if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1176                     protonspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1177                   if (R>250 && R<450)
1178                     protonspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1179                   proton +=1;
1180                 }
1181               if (TMath::Abs(particle)==321 || TMath::Abs(particle)==130 || TMath::Abs(particle)==310 
1182                   || TMath::Abs(particle)==311)
1183                 {
1184                   kaonspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1185                   //ptspectra->Fill(Pt,(float) 1);
1186                   if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1187                     kaonspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1188                   if (R>250 && R<450)
1189                     kaonspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1190                   kaon +=1;
1191                   if (TMath::Abs(particle)==321)
1192                     {
1193                       chargedkaons +=1;
1194                       if (R<5)
1195                         {
1196                           primarykaons +=1;
1197                           if (current->Energy()>1)
1198                             highprimarykaons +=1;
1199                         }
1200                     }
1201                 }
1202               if (TMath::Abs(particle)==11)
1203                 {
1204                   electronspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1205                   //ptspectra->Fill(Pt,(float) 1);
1206                   if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1207                     electronspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1208                   if (R>250 && R<450)
1209                     electronspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1210                   if (particle == 11)
1211                     electron +=1;
1212                   if (particle == -11)
1213                     positron +=1;
1214                 }
1215               if (TMath::Abs(particle)==13)
1216                 {
1217                   muonspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1218                   //ptspectra->Fill(Pt,(float) 1);
1219                   if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1220                     muonspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1221                   if (R>250 && R<450)
1222                     muonspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1223                   muon +=1;
1224                 }
1225               if (TMath::Abs(particle)==2112)
1226                 {
1227                   neutronspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1228                   //ptspectra->Fill(Pt,(float) 1);
1229                   if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1230                     neutronspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1231                   if (R>250 && R<450)
1232                     {
1233                       neutronspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1234                     }
1235                   neutron +=1;
1236                 }
1237               if(TMath::Abs(particle)==211 || TMath::Abs(particle)==2212 || TMath::Abs(particle)==321)
1238                 {
1239                   if (current->Energy()-current->GetCalcMass()>1)
1240                     {
1241                       chargedspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1242                       if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1243                         chargedspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1244                       if (R>250 && R<450)
1245                         chargedspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1246                     }
1247                 }
1248               // Fill the histograms
1249               //Nh1+=nhits;
1250               //h->Fill(x,y,(float) 1);
1251               //}
1252               //}
1253            }          
1254            
1255        }
1256        
1257    }
1258    //   }
1259
1260    TStyle *mystyle=new TStyle("Plain","mystyle");
1261    mystyle->SetPalette(1,0);
1262    mystyle->cd();
1263    
1264    //Create canvases, set the view range, show histograms
1265
1266     TCanvas *c2 = new TCanvas("c2","Angles of incidence",150,150,100,150);
1267     c2->Divide(2,2);
1268     //c2->SetFillColor(42);
1269     
1270     c2->cd(1);
1271     hitsTheta500MeV->SetFillColor(5);
1272     hitsTheta500MeV->Draw();
1273     c2->cd(2);
1274     hitsTheta1GeV->SetFillColor(5);
1275     hitsTheta1GeV->Draw();
1276     c2->cd(3);
1277     hitsTheta2GeV->SetFillColor(5);
1278     hitsTheta2GeV->Draw();
1279     c2->cd(4);
1280     hitsTheta3GeV->SetFillColor(5);
1281     hitsTheta3GeV->Draw();
1282     
1283             
1284    
1285     TCanvas *c15 = new TCanvas("c15","Mothers Production Vertices",50,50,600,600);
1286     c15->cd();
1287     production->SetFillColor(42);
1288     production->SetXTitle("z (m)");
1289     production->SetYTitle("R (m)");
1290     production->Draw();
1291
1292     TCanvas *c10 = new TCanvas("c10","Pt Spectra",50,50,600,700);
1293     c10->Divide(2,2);
1294     c10->cd(1);
1295     pionptspectravertex->SetFillColor(5);
1296     pionptspectravertex->SetXTitle("Pt (GeV)");
1297     pionptspectravertex->Draw();
1298     c10->cd(2);
1299     pionptspectrafinal->SetFillColor(5);
1300     pionptspectrafinal->SetXTitle("Pt (GeV)");
1301     pionptspectrafinal->Draw();
1302     c10->cd(3);
1303     kaonptspectravertex->SetFillColor(5);
1304     kaonptspectravertex->SetXTitle("Pt (GeV)");
1305     kaonptspectravertex->Draw();
1306     c10->cd(4);
1307     kaonptspectrafinal->SetFillColor(5);
1308     kaonptspectrafinal->SetXTitle("Pt (GeV)");
1309     kaonptspectrafinal->Draw();
1310    
1311   
1312    TCanvas *c16 = new TCanvas("c16","Particles Spectra II",150,150,600,350);
1313    c16->Divide(2,1);
1314    
1315    c16->cd(1);
1316    //TCanvas *c13 = new TCanvas("c13","Electron Spectra",400,10,600,700);
1317    electronspectra1->SetFillColor(5);
1318    electronspectra1->SetXTitle("log(GeV)");
1319    electronspectra2->SetFillColor(46);
1320    electronspectra2->SetXTitle("log(GeV)");
1321    electronspectra3->SetFillColor(10);
1322    electronspectra3->SetXTitle("log(GeV)");
1323    //c13->SetLogx();
1324    electronspectra1->Draw();
1325    electronspectra2->Draw("same");
1326    electronspectra3->Draw("same");
1327    
1328    c16->cd(2);
1329    //TCanvas *c14 = new TCanvas("c14","Muon Spectra",400,10,600,700);
1330    muonspectra1->SetFillColor(5);
1331    muonspectra1->SetXTitle("log(GeV)");
1332    muonspectra2->SetFillColor(46);
1333    muonspectra2->SetXTitle("log(GeV)");
1334    muonspectra3->SetFillColor(10);
1335    muonspectra3->SetXTitle("log(GeV)");
1336    //c14->SetLogx();
1337    muonspectra1->Draw();
1338    muonspectra2->Draw("same");
1339    muonspectra3->Draw("same");
1340    
1341    //c16->cd(3);
1342    //TCanvas *c16 = new TCanvas("c16","Neutron Spectra",400,10,600,700);
1343    //neutronspectra1->SetFillColor(42);
1344    //neutronspectra1->SetXTitle("log(GeV)");
1345    //neutronspectra2->SetFillColor(46);
1346    //neutronspectra2->SetXTitle("log(GeV)");
1347    //neutronspectra3->SetFillColor(10);
1348    //neutronspectra3->SetXTitle("log(GeV)");
1349    //c16->SetLogx();
1350    //neutronspectra1->Draw();
1351    //neutronspectra2->Draw("same");
1352    //neutronspectra3->Draw("same");
1353
1354    TCanvas *c9 = new TCanvas("c9","Particles Spectra",150,150,600,700);
1355    //TCanvas *c9 = new TCanvas("c9","Pion Spectra",400,10,600,700);
1356    c9->Divide(2,2);
1357    
1358    c9->cd(1);
1359    pionspectra1->SetFillColor(5);
1360    pionspectra1->SetXTitle("log(GeV)");
1361    pionspectra2->SetFillColor(46);
1362    pionspectra2->SetXTitle("log(GeV)");
1363    pionspectra3->SetFillColor(10);
1364    pionspectra3->SetXTitle("log(GeV)");
1365    //c9->SetLogx();
1366    pionspectra1->Draw();
1367    pionspectra2->Draw("same");
1368    pionspectra3->Draw("same");
1369    
1370    c9->cd(2);
1371    //TCanvas *c10 = new TCanvas("c10","Proton Spectra",400,10,600,700);
1372    protonspectra1->SetFillColor(5);
1373    protonspectra1->SetXTitle("log(GeV)");
1374    protonspectra2->SetFillColor(46);
1375    protonspectra2->SetXTitle("log(GeV)");
1376    protonspectra3->SetFillColor(10);
1377    protonspectra3->SetXTitle("log(GeV)");
1378    //c10->SetLogx();
1379    protonspectra1->Draw();
1380    protonspectra2->Draw("same");
1381    protonspectra3->Draw("same");
1382    
1383    c9->cd(3);
1384    //TCanvas *c11 = new TCanvas("c11","Kaon Spectra",400,10,600,700); 
1385    kaonspectra1->SetFillColor(5);
1386    kaonspectra1->SetXTitle("log(GeV)");
1387    kaonspectra2->SetFillColor(46);
1388    kaonspectra2->SetXTitle("log(GeV)");
1389    kaonspectra3->SetFillColor(10);
1390    kaonspectra3->SetXTitle("log(GeV)");
1391    //c11->SetLogx();
1392    kaonspectra1->Draw();
1393    kaonspectra2->Draw("same");
1394    kaonspectra3->Draw("same");
1395    
1396    c9->cd(4);
1397    //TCanvas *c12 = new TCanvas("c12","Charged Particles Spectra",400,10,600,700);
1398    chargedspectra1->SetFillColor(5);
1399    chargedspectra1->SetXTitle("log(GeV)");
1400    chargedspectra2->SetFillColor(46);
1401    chargedspectra2->SetXTitle("log(GeV)");
1402    chargedspectra3->SetFillColor(10);
1403    chargedspectra3->SetXTitle("log(GeV)");
1404    //c12->SetLogx();
1405    chargedspectra1->Draw();
1406    chargedspectra2->Draw("same");
1407    chargedspectra3->Draw("same");
1408    
1409
1410
1411    printf("*****************************************\n");
1412    printf("* Particle                   *  Counts  *\n");
1413    printf("*****************************************\n");
1414
1415    printf("* Pions:                     *   %4d   *\n",pion);
1416    printf("* Charged Pions:             *   %4d   *\n",chargedpions);
1417    printf("* Primary Pions:             *   %4d   *\n",primarypions);
1418    printf("* Primary Pions (p>1GeV/c):  *   %4d   *\n",highprimarypions);
1419    printf("* Kaons:                     *   %4d   *\n",kaon);
1420    printf("* Charged Kaons:             *   %4d   *\n",chargedkaons);
1421    printf("* Primary Kaons:             *   %4d   *\n",primarykaons);
1422    printf("* Primary Kaons (p>1GeV/c):  *   %4d   *\n",highprimarykaons);
1423    printf("* Muons:                     *   %4d   *\n",muon);
1424    printf("* Electrons:                 *   %4d   *\n",electron);
1425    printf("* Positrons:                 *   %4d   *\n",positron);
1426    printf("* Protons:                   *   %4d   *\n",proton);
1427    printf("* All Charged:               *   %4d   *\n",(chargedpions+chargedkaons+muon+electron+positron+proton));
1428    printf("*****************************************\n");
1429    //printf("* Photons:                   *   %3.1f   *\n",photons); 
1430    //printf("* Primary Photons:           *   %3.1f   *\n",primaryphotons);
1431    //printf("* Primary Photons (p>1MeV/c):*   %3.1f   *\n",highprimaryphotons);
1432    //printf("*****************************************\n");
1433    //printf("* Neutrons:                  *   %3.1f   *\n",neutron);
1434    //printf("* Neutrons (p>100keV/c):     *   %3.1f   *\n",highneutrons);
1435    //printf("*****************************************\n");
1436
1437    if (gAlice->TreeD())
1438      {
1439        gAlice->TreeD()->GetEvent(0);
1440    
1441        Float_t occ[7]; 
1442        Float_t sum=0;
1443        Float_t mean=0; 
1444        printf("\n*****************************************\n");
1445        printf("* Chamber   * Digits      * Occupancy   *\n");
1446        printf("*****************************************\n");
1447        
1448        for (Int_t ich=0;ich<7;ich++)
1449          {
1450            TClonesArray *Digits = DigitsAddress(ich);    //  Raw clusters branch
1451            Int_t ndigits = Digits->GetEntriesFast();
1452            occ[ich] = Float_t(ndigits)/(160*144);
1453            sum += Float_t(ndigits)/(160*144);
1454            printf("*   %d      *    %d      *   %3.1f%%     *\n",ich,ndigits,occ[ich]*100);
1455          }
1456        mean = sum/7;
1457        printf("*****************************************\n");
1458        printf("* Mean occupancy          *   %3.1f%%     *\n",mean*100);
1459        printf("*****************************************\n");
1460      }
1461  
1462   printf("\nEnd of analysis\n");
1463    
1464 }//void AliRICH::DiagnosticsFE(Int_t evNumber1,Int_t evNumber2)
1465 //______________________________________________________________________________
1466 void AliRICH::DiagnosticsSE(Int_t diaglevel,Int_t evNumber1,Int_t evNumber2)
1467 {
1468
1469 AliRICH *pRICH  = (AliRICH*)gAlice->GetDetector("RICH");
1470    AliRICHSegmentationV0*  segmentation;
1471    AliRICHChamber*       chamber;
1472    
1473    chamber = &(pRICH->Chamber(0));
1474    segmentation=(AliRICHSegmentationV0*) chamber->GetSegmentationModel();
1475
1476    Int_t NpadX = segmentation->Npx();                 // number of pads on X
1477    Int_t NpadY = segmentation->Npy();                 // number of pads on Y
1478     
1479    //Int_t Pad[144][160];
1480    /*for (Int_t i=0;i<NpadX;i++) {
1481      for (Int_t j=0;j<NpadY;j++) {
1482        Pad[i][j]=0;
1483      }
1484    } */
1485
1486
1487    Int_t xmin= -NpadX/2;  
1488    Int_t xmax=  NpadX/2;
1489    Int_t ymin= -NpadY/2;
1490    Int_t ymax=  NpadY/2;
1491
1492    Float_t PTfinal = 0;
1493    Int_t pionCount = 0;
1494    Int_t kaonCount = 0;
1495    Int_t protonCount = 0;
1496    
1497    TH2F *feedback = 0;
1498    TH2F *mip = 0;
1499    TH2F *cerenkov = 0;
1500    TH2F *h = 0;
1501    TH1F *hitsX = 0;
1502    TH1F *hitsY = 0;
1503
1504    TH2F *hc0 = new TH2F("hc0","Zoom on center of central chamber",150,-25,25,150,-45,5);
1505
1506    if (diaglevel == 1)
1507      {
1508        printf("Single Ring Hits\n");
1509        feedback = new TH2F("feedback","Feedback hit distribution",150,-20,20,150,-35,5);
1510        mip = new TH2F("mip","Mip hit distribution",150,-20,20,150,-35,5);
1511        cerenkov = new TH2F("cerenkov","Cerenkov hit distribution",150,-20,20,150,-35,5);
1512        h = new TH2F("h","Detector hit distribution",150,-20,20,150,-35,5);
1513        hitsX = new TH1F("hitsX","Distribution of hits along x-axis",150,-50,50);
1514        hitsY = new TH1F("hitsY","Distribution of hits along z-axis",150,-50,50);
1515      }       
1516    else
1517      {
1518        printf("Full Event Hits\n");
1519        
1520        feedback = new TH2F("feedback","Feedback hit distribution",150,-300,300,150,-300,300);
1521        mip = new TH2F("mip","Mip hit distribution",150,-300,300,150,-300,300);
1522        cerenkov = new TH2F("cerenkov","Cerenkov hit distribution",150,-300,300,150,-300,300);
1523        h = new TH2F("h","Detector hit distribution",150,-300,300,150,-300,300); 
1524        hitsX = new TH1F("digitsX","Distribution of hits along x-axis",200,-300,300);
1525        hitsY = new TH1F("digitsY","Distribution of hits along z-axis",200,-300,300);
1526      }
1527    
1528
1529
1530    TH2F *hc1 = new TH2F("hc1","Chamber 1 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
1531    TH2F *hc2 = new TH2F("hc2","Chamber 2 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
1532    TH2F *hc3 = new TH2F("hc3","Chamber 3 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
1533    TH2F *hc4 = new TH2F("hc4","Chamber 4 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
1534    TH2F *hc5 = new TH2F("hc5","Chamber 5 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
1535    TH2F *hc6 = new TH2F("hc6","Chamber 6 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
1536    TH2F *hc7 = new TH2F("hc7","Chamber 7 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
1537       
1538    TH1F *Clcharge = new TH1F("Clcharge","Cluster Charge Distribution",500,0.,500.);
1539    TH1F *ckovangle = new TH1F("ckovangle","Cerenkov angle per photon",100,.35,.8);
1540    TH1F *hckphi = new TH1F("hckphi","Cerenkov phi angle per photon",620,-3.1,3.1);
1541    TH1F *mother = new TH1F("mother","Cerenkovs per Mip",75,0.,75.);
1542    TH1F *radius = new TH1F("radius","Mean distance to Mip",100,0.,20.);
1543    TH1F *phspectra1 = new TH1F("phspectra1","Detected Photon Spectra",200,5.,10.);
1544    TH1F *phspectra2 = new TH1F("phspectra2","Produced Photon Spectra",200,5.,10.);
1545    TH1F *totalphotonstrack = new TH1F("totalphotonstrack","Produced Photons per Mip",100,200,700.);
1546    TH1F *totalphotonsevent = new TH1F("totalphotonsevent","Produced Photons per Mip",100,200,700.);
1547    //TH1F *feedbacks = new TH1F("feedbacks","Produced Feedbacks per Mip",50,0.5,50.);
1548    TH1F *padnumber = new TH1F("padnumber","Number of pads per cluster",50,-0.5,50.);
1549    TH1F *padsev = new TH1F("padsev","Number of pads hit per MIP",50,0.5,100.);
1550    TH1F *clusev = new TH1F("clusev","Number of clusters per MIP",50,0.5,50.);
1551    TH1F *photev = new TH1F("photev","Number of detected photons per MIP",50,0.5,50.);
1552    TH1F *feedev = new TH1F("feedev","Number of feedbacks per MIP",50,0.5,50.);
1553    TH1F *padsmip = new TH1F("padsmip","Number of pads per event inside MIP region",50,0.5,50.);
1554    TH1F *padscl = new TH1F("padscl","Number of pads per event from cluster count",50,0.5,100.);
1555    TH1F *pionspectra = new TH1F("pionspectra","Pion Spectra",200,.5,10.);
1556    TH1F *protonspectra = new TH1F("protonspectra","Proton Spectra",200,.5,10.);
1557    TH1F *kaonspectra = new TH1F("kaonspectra","Kaon Spectra",100,.5,10.);
1558    TH1F *chargedspectra = new TH1F("chargedspectra","Charged particles above 1 GeV Spectra",100,.5,10.);
1559    TH1F *hitsPhi = new TH1F("hitsPhi","Distribution of phi angle of incidence",50,0,360);
1560    TH1F *hitsTheta = new TH1F("hitsTheta","Distribution of theta angle of incidence",50,0,15);
1561    TH1F *Omega1D = new TH1F("omega","Reconstructed Cerenkov angle per track",50,.5,1);
1562    TH1F *Theta = new TH1F("theta","Reconstructed theta incidence angle per track",100,0,15);
1563    TH1F *Phi = new TH1F("phi","Reconstructed phi incidence per track",100,0,360);
1564    TH1F *Omega3D = new TH1F("omega","Reconstructed Cerenkov angle per track",100,.35,.8);
1565    TH1F *PhotonCer = new TH1F("photoncer","Reconstructed Cerenkov angle per photon",100,.35,.8);
1566    TH2F *PadsUsed = new TH2F("padsused","Pads Used for Reconstruction",100,-30,30,100,-30,30);
1567    TH1F *MeanRadius = new TH1F("radius","Mean Radius for reconstructed track",100,0.,20.);
1568    TH2F *identification = new TH2F("identification","Particle Identification",100,1,5,100,0,.8);
1569    TH1F *OriginalOmega = new TH1F("Original Omega","Cerenkov angle per track",100,.35,.8);
1570    TH1F *OriginalPhi = new TH1F("Original Phi","Distribution of phi angle of incidence per track",100,0,360);
1571    TH1F *OriginalTheta = new TH1F("Original Theta","Distribution of theta angle per track",100,0,15);
1572    TH1F *OmegaError = new TH1F("Omega Error","Difference between original an reconstructed cerenkov angle",100,0,.2);
1573    TH1F *PhiError = new TH1F("Phi Error","Difference between original an reconstructed phi angle",100,0,360);
1574    TH1F *ThetaError = new TH1F("Theta Error","Difference between original an reconstructed phi angle",100,0,15);
1575
1576
1577 //   Start loop over events 
1578
1579    Int_t Nh=0;
1580    Int_t pads=0;
1581    Int_t Nh1=0;
1582    Int_t mothers[80000];
1583    Int_t mothers2[80000];
1584    Float_t mom[3];
1585    Int_t nraw=0;
1586    Int_t phot=0;
1587    Int_t feed=0;
1588    Int_t padmip=0;
1589    Float_t x=0,y=0;
1590
1591    Float_t chiSquareOmega = 0;
1592    Float_t chiSquareTheta = 0;
1593    Float_t chiSquarePhi = 0;
1594
1595    Float_t recEffEvent = 0;
1596    Float_t recEffTotal = 0;
1597
1598    Float_t trackglob[3];
1599    Float_t trackloc[3];
1600
1601    
1602    for (Int_t i=0;i<100;i++) mothers[i]=0;
1603
1604    for (int nev=0; nev<= evNumber2; nev++) {
1605        Int_t nparticles = gAlice->GetEvent(nev);
1606        
1607
1608        //cout<<"nev  "<<nev<<endl;
1609        printf ("\n**********************************\nProcessing Event: %d\n",nev);
1610        //cout<<"nparticles  "<<nparticles<<endl;
1611        printf ("Particles       : %d\n\n",nparticles);
1612        if (nev < evNumber1) continue;
1613        if (nparticles <= 0) return;
1614        
1615 // Get pointers to RICH detector and Hits containers
1616        
1617
1618        TTree *TH = TreeH(); 
1619        Stat_t ntracks = TH->GetEntries();
1620
1621        // Start loop on tracks in the hits containers
1622        //Int_t Nc=0;
1623        for (Int_t track=0; track<ntracks;track++) {
1624            
1625          printf ("\nProcessing Track: %d\n",track);
1626          gAlice->ResetHits();
1627          TH->GetEvent(track);
1628          Int_t nhits = pRICH->Hits()->GetEntriesFast();
1629          if (nhits) Nh+=nhits;
1630          printf("Hits            : %d\n",nhits);
1631          for(AliRICHhit* mHit=(AliRICHhit*)pRICH->FirstHit(-1); 
1632              mHit;
1633              mHit=(AliRICHhit*)pRICH->NextHit()) 
1634            {
1635              Int_t nch  = mHit->Chamber();              // chamber number
1636              trackglob[0] = mHit->X();                 // x-pos of hit
1637              trackglob[1] = mHit->Y();
1638              trackglob[2] = mHit->Z();                 // y-pos of hit
1639              //x  = mHit->X();                           // x-pos of hit
1640              //y  = mHit->Z();                           // y-pos
1641              Float_t phi = mHit->Phi();                 //Phi angle of incidence
1642              Float_t theta = mHit->Theta();             //Theta angle of incidence
1643              Int_t index = mHit->Track();
1644              Int_t particle = (Int_t)(mHit->Particle());        
1645              //Int_t freon = (Int_t)(mHit->fLoss);    
1646              Float_t px = mHit->MomX();
1647              Float_t py = mHit->MomY();
1648              
1649              if (TMath::Abs(particle) < 10000000)
1650                {
1651                  PTfinal=TMath::Sqrt(px*px + py*py);
1652                }
1653         
1654              chamber = &(pRICH->Chamber(nch-1));
1655              
1656              
1657              chamber->GlobaltoLocal(trackglob,trackloc);
1658              
1659              chamber->LocaltoGlobal(trackloc,trackglob);
1660              
1661        
1662              x=trackloc[0];
1663              y=trackloc[2];
1664              
1665              hitsX->Fill(x,(float) 1);
1666              hitsY->Fill(y,(float) 1);
1667                
1668               
1669               TParticle *current = (TParticle*)gAlice->Particle(index);
1670               //printf("Particle type: %d\n",sizeoff(Particles));
1671
1672               hitsTheta->Fill(theta,(float) 1);
1673               //hitsPhi->Fill(phi,(float) 1);
1674               //if (pRICH->GetDebugLevel() == -1)
1675              
1676               if (current->GetPdgCode() < 10000000)
1677                 {
1678                   mip->Fill(x,y,(float) 1);
1679                   //printf("adding mip\n");
1680                   //if (current->Energy() - current->GetCalcMass()>1 && freon==1)
1681                   //{
1682                   hitsPhi->Fill(TMath::Abs(phi),(float) 1);
1683                   //hitsTheta->Fill(theta,(float) 1);
1684                   //printf("Theta:%f, Phi:%f\n",theta,phi);
1685                   //}
1686                 }
1687               
1688               if (TMath::Abs(particle)==211 || TMath::Abs(particle)==111)
1689                 {
1690                   pionspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1);
1691                 }
1692               if (TMath::Abs(particle)==2212)
1693                 {
1694                   protonspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1);
1695                 }
1696               if (TMath::Abs(particle)==321 || TMath::Abs(particle)==130 || TMath::Abs(particle)==310 
1697                   || TMath::Abs(particle)==311)
1698                 {
1699                   kaonspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1);
1700                 }
1701               if(TMath::Abs(particle)==211 || TMath::Abs(particle)==2212 || TMath::Abs(particle)==321)
1702                 {
1703                   if (current->Energy() - current->GetCalcMass()>1)
1704                     chargedspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1);
1705                 }
1706               //printf("Hits:%d\n",hit);
1707               //printf ("Chamber number:%d x:%f y:%f\n",nch,x,y);
1708               // Fill the histograms
1709               Nh1+=nhits;
1710               h->Fill(x,y,(float) 1);
1711                   //}
1712               //}
1713            }
1714            
1715            Int_t ncerenkovs = pRICH->Cerenkovs()->GetEntriesFast();
1716            //if (current->GetPdgCode() < 50000051 && current->GetPdgCode() > 50000040)
1717            //totalphotonsevent->Fill(ncerenkovs,(float) 1);
1718
1719            if (ncerenkovs) {
1720              printf("Cerenkovs       : %d\n",ncerenkovs);
1721              totalphotonsevent->Fill(ncerenkovs,(float) 1);
1722              for (Int_t hit=0;hit<ncerenkovs;hit++) {
1723                AliRICHCerenkov* cHit = (AliRICHCerenkov*) pRICH->Cerenkovs()->UncheckedAt(hit);
1724                Int_t nchamber = cHit->fChamber;     // chamber number
1725                Int_t index =    cHit->Track();
1726                //Int_t pindex =   (Int_t)(cHit->fIndex);
1727                trackglob[0] = cHit->X();                 // x-pos of hit
1728                trackglob[1] = cHit->Y();
1729                trackglob[2] = cHit->Z();                 // y-pos of hit
1730                //Float_t cx  =      cHit->X();                // x-position
1731                //Float_t cy  =      cHit->Z();                // y-position
1732                Int_t cmother =  cHit->fCMother;      // Index of mother particle
1733                Int_t closs =    (Int_t)(cHit->fLoss);           // How did the particle get lost? 
1734                Float_t cherenkov = cHit->fCerenkovAngle;   //production cerenkov angle
1735                
1736                chamber = &(pRICH->Chamber(nchamber-1));
1737              
1738                //printf("Nch:%d\n",nch);
1739                
1740                chamber->GlobaltoLocal(trackglob,trackloc);
1741              
1742                chamber->LocaltoGlobal(trackloc,trackglob);
1743              
1744        
1745                Float_t cx=trackloc[0];
1746                Float_t cy=trackloc[2];
1747                
1748                //printf ("Cerenkov hit number %d/%d, X:%f, Y:%f\n",hit,ncerenkovs,cx,cy); 
1749
1750
1751                //printf("Particle:%9d\n",index);
1752                                  
1753                TParticle *current = (TParticle*)gAlice->Particle(index);
1754                Float_t energyckov = current->Energy();
1755                
1756                if (current->GetPdgCode() == 50000051)
1757                  {
1758                    if (closs==4)
1759                      {
1760                        feedback->Fill(cx,cy,(float) 1);
1761                        feed++;
1762                      }
1763                  }
1764                if (current->GetPdgCode() == 50000050)
1765                  {
1766                    
1767                    if (closs !=4)
1768                      {
1769                        phspectra2->Fill(energyckov*1e9,(float) 1);
1770                      }
1771                        
1772                    if (closs==4)
1773                      {
1774                        cerenkov->Fill(cx,cy,(float) 1); 
1775                        
1776                        //printf ("Cerenkov hit number %d/%d, X:%d, Y:%d\n",hit,ncerenkovs,cx,cy); 
1777                        
1778                        //TParticle *MIP = (TParticle*)gAlice->Particle(cmother);
1779                        AliRICHhit* mipHit = (AliRICHhit*) pRICH->Hits()->UncheckedAt(0);
1780                        mom[0] = current->Px();
1781                        mom[1] = current->Py();
1782                        mom[2] = current->Pz();
1783                        //mom[0] = cHit->fMomX;
1784                        // mom[1] = cHit->fMomZ;
1785                        //mom[2] = cHit->fMomY;
1786                        //Float_t energymip = MIP->Energy();
1787                        //Float_t Mip_px = mipHit->fMomFreoX;
1788                        //Float_t Mip_py = mipHit->fMomFreoY;
1789                        //Float_t Mip_pz = mipHit->fMomFreoZ;
1790                        //Float_t Mip_px = MIP->Px();
1791                        //Float_t Mip_py = MIP->Py();
1792                        //Float_t Mip_pz = MIP->Pz();
1793                        
1794                        
1795                        
1796                        //Float_t r = mom[0]*mom[0] + mom[1]*mom[1] + mom[2]*mom[2];
1797                        //Float_t rt = TMath::Sqrt(r);
1798                        //Float_t Mip_r = Mip_px*Mip_px + Mip_py*Mip_py + Mip_pz*Mip_pz; 
1799                        //Float_t Mip_rt = TMath::Sqrt(Mip_r);
1800                        //Float_t coscerenkov = (mom[0]*Mip_px + mom[1]*Mip_py + mom[2]*Mip_pz)/(rt*Mip_rt+0.0000001);
1801                        //Float_t cherenkov = TMath::ACos(coscerenkov);
1802                        ckovangle->Fill(cherenkov,(float) 1);                           //Cerenkov angle calculus
1803                        //printf("Cherenkov: %f\n",cherenkov);
1804                        Float_t ckphi=TMath::ATan2(mom[0], mom[2]);
1805                        hckphi->Fill(ckphi,(float) 1);
1806                        
1807                        
1808                        //Float_t mix = MIP->Vx();
1809                        //Float_t miy = MIP->Vy();
1810                        Float_t mx = mipHit->X();
1811                        Float_t my = mipHit->Z();
1812                        //printf("FX %e, FY %e, VX %e, VY %e\n",cx,cy,mx,my);
1813                        Float_t dx = trackglob[0] - mx;
1814                        Float_t dy = trackglob[2] - my;
1815                        //printf("Dx:%f, Dy:%f\n",dx,dy);
1816                        Float_t final_radius = TMath::Sqrt(dx*dx+dy*dy);
1817                        //printf("Final radius:%f\n",final_radius);
1818                        radius->Fill(final_radius,(float) 1);
1819                        
1820                        phspectra1->Fill(energyckov*1e9,(float) 1);
1821                        phot++;
1822                      }
1823                    for (Int_t nmothers=0;nmothers<=ntracks;nmothers++){
1824                      if (cmother == nmothers){
1825                        if (closs == 4)
1826                          mothers2[cmother]++;
1827                        mothers[cmother]++;
1828                      }
1829                    } 
1830                  }
1831              }
1832            }
1833            
1834
1835            if(gAlice->TreeR())
1836              {
1837                Int_t nent=(Int_t)gAlice->TreeR()->GetEntries();
1838                gAlice->TreeR()->GetEvent(nent-1);
1839                TClonesArray *Rawclusters = pRICH->RawClustAddress(2);    //  Raw clusters branch
1840                //printf ("Rawclusters:%p",Rawclusters);
1841                Int_t nrawclusters = Rawclusters->GetEntriesFast();
1842                        
1843                if (nrawclusters) {
1844                  printf("Raw Clusters    : %d\n",nrawclusters);
1845                  for (Int_t hit=0;hit<nrawclusters;hit++) {
1846                    AliRICHRawCluster* rcHit = (AliRICHRawCluster*) pRICH->RawClustAddress(2)->UncheckedAt(hit);
1847                    //Int_t nchamber = rcHit->fChamber;     // chamber number
1848                    //Int_t nhit = cHit->fHitNumber;        // hit number
1849                    Int_t qtot = rcHit->fQ;                 // charge
1850                    Float_t fx  =  rcHit->fX;                 // x-position
1851                    Float_t fy  =  rcHit->fY;                 // y-position
1852                    //Int_t type = rcHit->fCtype;             // cluster type ?   
1853                    Int_t mult = rcHit->fMultiplicity;      // How many pads form the cluster
1854                    pads += mult;
1855                    if (qtot > 0) {
1856                      //printf ("fx: %d, fy: %d\n",fx,fy);
1857                      if (fx>(x-4) && fx<(x+4)  && fy>(y-4) && fy<(y+4)) {
1858                        //printf("There %d \n",mult);
1859                        padmip+=mult;
1860                      } else {
1861                        padnumber->Fill(mult,(float) 1);
1862                        nraw++;
1863                        if (mult<4) Clcharge->Fill(qtot,(float) 1);
1864                      }
1865                      
1866                    }
1867                  }
1868                }
1869                
1870                
1871                TClonesArray *RecHits1D = pRICH->RecHitsAddress1D(2);
1872                Int_t nrechits1D = RecHits1D->GetEntriesFast();
1873                //printf (" nrechits:%d\n",nrechits);
1874                
1875                if(nrechits1D)
1876                  {
1877                    for (Int_t hit=0;hit<nrechits1D;hit++) {
1878                      AliRICHRecHit1D* recHit1D = (AliRICHRecHit1D*) pRICH->RecHitsAddress1D(2)->UncheckedAt(hit);
1879                      Float_t r_omega = recHit1D->fOmega;                  // Cerenkov angle
1880                      Float_t *cer_pho = recHit1D->fCerPerPhoton;        // Cerenkov angle per photon
1881                      Int_t *padsx = recHit1D->fPadsUsedX;           // Pads Used fo reconstruction (x)
1882                      Int_t *padsy = recHit1D->fPadsUsedY;           // Pads Used fo reconstruction (y)
1883                      Int_t goodPhotons = recHit1D->fGoodPhotons;    // Number of pads used for reconstruction
1884                      
1885                      Omega1D->Fill(r_omega,(float) 1);
1886                      
1887                      for (Int_t i=0; i<goodPhotons; i++)
1888                        {
1889                          PhotonCer->Fill(cer_pho[i],(float) 1);
1890                          PadsUsed->Fill(padsx[i],padsy[i],1);
1891                          //printf("Angle:%f, pad: %d %d\n",cer_pho[i],padsx[i],padsy[i]);
1892                        }
1893                      
1894                      //printf("Omega: %f, Theta: %f, Phi: %f\n",r_omega,r_theta,r_phi);
1895                    }
1896                  }
1897
1898                
1899                TClonesArray *RecHits3D = pRICH->RecHitsAddress3D(2);
1900                Int_t nrechits3D = RecHits3D->GetEntriesFast();
1901                //printf (" nrechits:%d\n",nrechits);
1902                
1903                if(nrechits3D)
1904                  {
1905                    recEffEvent = 0;
1906                    
1907                    //for (Int_t hit=0;hit<nrechits3D;hit++) {
1908                    AliRICHRecHit3D* recHit3D = (AliRICHRecHit3D*) pRICH->RecHitsAddress3D(2)->UncheckedAt(track);
1909                    Float_t r_omega    = recHit3D->fOmega;                  // Cerenkov angle
1910                    Float_t r_theta    = recHit3D->fTheta;                  // Theta angle of incidence
1911                    Float_t r_phi      = recHit3D->fPhi;                    // Phi angle if incidence
1912                    Float_t meanradius = recHit3D->fMeanRadius;              // Mean radius for reconstructed point
1913                    Float_t originalOmega = recHit3D->fOriginalOmega;       // Real Cerenkov angle
1914                    Float_t originalTheta = recHit3D->fOriginalTheta;       // Real incidence angle
1915                    Float_t originalPhi = recHit3D->fOriginalPhi;           // Real azimuthal angle
1916                    
1917                    
1918                    //correction to track cerenkov angle
1919                    originalOmega = (Float_t) ckovangle->GetMean();
1920                    
1921                    if(diaglevel == 4)
1922                      {
1923                        printf("\nMean cerenkov angle: %f\n", originalOmega);
1924                        printf("Reconstructed cerenkov angle: %f\n",r_omega);
1925                      }
1926                    
1927                    Float_t omegaError = TMath::Abs(originalOmega - r_omega);
1928                    Float_t thetaError = TMath::Abs(originalTheta - r_theta);
1929                    Float_t phiError   = TMath::Abs(originalPhi - r_phi);
1930                    
1931                    //chiSquareOmega += (omegaError/originalOmega)*(omegaError/originalOmega); 
1932                    //chiSquareTheta += (thetaError/originalTheta)*(thetaError/originalTheta); 
1933                    //chiSquarePhi += (phiError/originalPhi)*(phiError/originalPhi); 
1934                    
1935                    if(TMath::Abs(omegaError) < 0.015)
1936                      recEffEvent += 1;
1937                    
1938                    
1939                    
1940                    //printf("rechit %f %f %f %f %f\n",recHit3D->fOmega,recHit3D->fTheta,recHit3D->fPhi, recHit3D->fX,recHit3D->fY);  
1941                    
1942                    Omega3D->Fill(r_omega,(float) 1);
1943                    Theta->Fill(r_theta*180/TMath::Pi(),(float) 1);
1944                    Phi->Fill(r_phi*180/TMath::Pi()-180,(float) 1);
1945                    MeanRadius->Fill(meanradius,(float) 1);
1946                    identification->Fill(PTfinal, r_omega,1);
1947                    OriginalOmega->Fill(originalOmega, (float) 1);
1948                    OriginalTheta->Fill(originalTheta, (float) 1);
1949                    OriginalPhi->Fill(TMath::Abs(originalPhi), (float) 1);
1950                    OmegaError->Fill(omegaError, (float) 1);
1951                    ThetaError->Fill(thetaError, (float) 1);
1952                    PhiError->Fill(phiError, (float) 1);
1953                    
1954                    recEffEvent = recEffEvent;
1955                    recEffTotal += recEffEvent;
1956                    
1957                    Float_t pioncer = acos(sqrt((.139*.139+PTfinal*PTfinal)/(PTfinal*PTfinal*1.285*1.285)));
1958                    Float_t kaoncer = acos(sqrt((.439*.439+PTfinal*PTfinal)/(PTfinal*PTfinal*1.285*1.285)));
1959                    Float_t protoncer = acos(sqrt((.938*.938+PTfinal*PTfinal)/(PTfinal*PTfinal*1.285*1.285)));
1960
1961                    Float_t piondist = TMath::Abs(r_omega - pioncer);
1962                    Float_t kaondist = TMath::Abs(r_omega - kaoncer);
1963                    Float_t protondist = TMath::Abs(r_omega - protoncer);
1964
1965                    if(diaglevel == 4)
1966                      {
1967                        if(pioncer<r_omega)
1968                          {
1969                            printf("Identified as a PION!\n");
1970                            pionCount += 1;
1971                          }
1972                        if(kaoncer<r_omega && pioncer>r_omega)
1973                          {
1974                            if(kaondist>piondist)
1975                              {
1976                                printf("Identified as a PION!\n");
1977                                pionCount += 1;
1978                              }
1979                            else
1980                              {
1981                                printf("Identified as a KAON!\n");
1982                                kaonCount += 1;
1983                              }
1984                          }                       }
1985                        if(protoncer<r_omega && kaoncer>r_omega)
1986                          {
1987                            if(kaondist>protondist)
1988                              {
1989                                printf("Identified as a PROTON!\n");
1990                                protonCount += 1;
1991                              }
1992                            else
1993                              {
1994                                printf("Identified as a KAON!\n");
1995                                pionCount += 1;
1996                              }
1997                          }
1998                        if(protoncer>r_omega)
1999                          {
2000                            printf("Identified as a PROTON!\n");
2001                            protonCount += 1;
2002                          }
2003
2004                        printf("\nReconstruction efficiency: %5.2f%%\n", recEffEvent*100);
2005                  }
2006              }
2007        }
2008    
2009        
2010        for (Int_t nmothers=0;nmothers<ntracks;nmothers++){
2011          totalphotonstrack->Fill(mothers[nmothers],(float) 1);
2012          mother->Fill(mothers2[nmothers],(float) 1);
2013          //printf ("Entries in %d : %d\n",nmothers, mothers[nmothers]);
2014        }
2015        
2016        clusev->Fill(nraw,(float) 1);
2017        photev->Fill(phot,(float) 1);
2018        feedev->Fill(feed,(float) 1);
2019        padsmip->Fill(padmip,(float) 1);
2020        padscl->Fill(pads,(float) 1);
2021        //printf("Photons:%d\n",phot);
2022        phot = 0;
2023        feed = 0;
2024        pads = 0;
2025        nraw=0;
2026        padmip=0;
2027        
2028        
2029        
2030        gAlice->ResetDigits();
2031        //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
2032        gAlice->TreeD()->GetEvent(0);
2033        
2034        if (diaglevel < 4)
2035          {
2036            
2037            
2038            TClonesArray *Digits  = pRICH->DigitsAddress(2);
2039            Int_t ndigits = Digits->GetEntriesFast();
2040            printf("Digits          : %d\n",ndigits);
2041            padsev->Fill(ndigits,(float) 1);
2042            for (Int_t hit=0;hit<ndigits;hit++) {
2043              AliRICHDigit* dHit = (AliRICHDigit*) Digits->UncheckedAt(hit);
2044              Int_t qtot = dHit->Signal();                // charge
2045              Int_t ipx  = dHit->PadX();               // pad number on X
2046              Int_t ipy  = dHit->PadY();               // pad number on Y
2047              //printf("%d, %d\n",ipx,ipy);
2048              if( ipx<=100 && ipy <=100) hc0->Fill(ipx,ipy,(float) qtot);
2049            }
2050          }
2051        
2052        if (diaglevel == 5)
2053          {
2054            for (Int_t ich=0;ich<7;ich++)
2055              {
2056                TClonesArray *Digits = pRICH->DigitsAddress(ich);    //  Raw clusters branch
2057                Int_t ndigits = Digits->GetEntriesFast();
2058                //printf("Digits:%d\n",ndigits);
2059                padsev->Fill(ndigits,(float) 1); 
2060                if (ndigits) {
2061                  for (Int_t hit=0;hit<ndigits;hit++) {
2062                    AliRICHDigit* dHit = (AliRICHDigit*) Digits->UncheckedAt(hit);
2063                    //Int_t nchamber = dHit->GetChamber();     // chamber number
2064                    //Int_t nhit = dHit->fHitNumber;          // hit number
2065                    Int_t qtot = dHit->Signal();                // charge
2066                    Int_t ipx  = dHit->PadX();               // pad number on X
2067                    Int_t ipy  = dHit->PadY();               // pad number on Y
2068                    //Int_t iqpad  = dHit->fQpad;           // charge per pad
2069                    //Int_t rpad  = dHit->fRSec;            // R-position of pad
2070                    //printf ("Pad hit, PadX:%d, PadY:%d\n",ipx,ipy);
2071                    if( ipx<=100 && ipy <=100 && ich==2) hc0->Fill(ipx,ipy,(float) qtot);
2072                    if( ipx<=162 && ipy <=162 && ich==0) hc1->Fill(ipx,ipy,(float) qtot);
2073                    if( ipx<=162 && ipy <=162 && ich==1) hc2->Fill(ipx,ipy,(float) qtot);
2074                    if( ipx<=162 && ipy <=162 && ich==2) hc3->Fill(ipx,ipy,(float) qtot);
2075                    if( ipx<=162 && ipy <=162 && ich==3) hc4->Fill(ipx,ipy,(float) qtot);
2076                    if( ipx<=162 && ipy <=162 && ich==4) hc5->Fill(ipx,ipy,(float) qtot);
2077                    if( ipx<=162 && ipy <=162 && ich==5) hc6->Fill(ipx,ipy,(float) qtot);
2078                    if( ipx<=162 && ipy <=162 && ich==6) hc7->Fill(ipx,ipy,(float) qtot);
2079                  }
2080                }
2081              }
2082          }
2083    }
2084    
2085    if(diaglevel == 4)
2086      {
2087
2088        Stat_t omegaE;
2089        Stat_t thetaE;
2090        Stat_t phiE;
2091        
2092        Stat_t omegaO;
2093        Stat_t thetaO;
2094        Stat_t phiO;
2095        
2096        for(Int_t i=0;i<99;i++)
2097          {
2098            omegaE = OriginalOmega->GetBinContent(i);
2099            if(omegaE != 0)
2100              {
2101                omegaO = Omega3D->GetBinContent(i);
2102                chiSquareOmega += (TMath::Power(omegaE,2) - TMath::Power(omegaO,2))/omegaO;
2103              }
2104
2105            thetaE = OriginalTheta->GetBinContent(i);
2106            if(thetaE != 0)
2107              {
2108                thetaO = Theta->GetBinContent(i);
2109                chiSquareTheta += (TMath::Power(thetaE,2) - TMath::Power(thetaO,2))/thetaO;
2110              }
2111
2112            phiE = OriginalPhi->GetBinContent(i);
2113            if(phiE != 0)
2114              {
2115                phiO = Phi->GetBinContent(i);
2116                chiSquarePhi += (TMath::Power(phiE,2) - TMath::Power(phiO,2))/phiO;
2117              }
2118            
2119            //printf(" o: %f  t: %f  p: %f\n", OriginalOmega->GetBinContent(i), OriginalTheta->GetBinContent(i),OriginalPhi->GetBinContent(i));
2120
2121          }
2122
2123        
2124
2125        printf("\nChi square test values:   Omega - %f\n", chiSquareOmega);
2126        printf("                          Theta - %f\n", chiSquareTheta);
2127        printf("                          Phi   - %f\n", chiSquarePhi);
2128        
2129        printf("\nKolmogorov test values:   Omega - %5.4f\n", Omega3D->KolmogorovTest(OriginalOmega));
2130        printf("                          Theta - %5.4f\n", Theta->KolmogorovTest(OriginalTheta));
2131        printf("                          Phi   - %5.4f\n", Phi->KolmogorovTest(OriginalPhi));
2132
2133        recEffTotal = recEffTotal/evNumber2;
2134        printf("\nTotal reconstruction efficiency: %5.2f%%\n", recEffTotal*100);
2135        printf("\n Pions: %d\n Kaons: %d\n Protons:%d\n",pionCount, kaonCount, protonCount);
2136
2137      }
2138    
2139    
2140    //Create canvases, set the view range, show histograms
2141
2142    TCanvas *c1 = 0;
2143    TCanvas *c2 = 0;
2144    TCanvas *c3 = 0;
2145    TCanvas *c4 = 0;
2146    TCanvas *c5 = 0;
2147    TCanvas *c6 = 0;
2148    TCanvas *c7 = 0;
2149    TCanvas *c8 = 0;
2150    TCanvas *c9 = 0;
2151    TCanvas *c10 = 0;
2152    TCanvas *c11 = 0;
2153    TCanvas *c12 = 0;
2154    TCanvas *c13 = 0;
2155
2156    //TF1* expo = 0;
2157    //TF1* gaus = 0;
2158    
2159    TStyle *mystyle=new TStyle("Plain","mystyle");
2160    mystyle->SetPalette(1,0);
2161    //mystyle->SetTitleYSize(0.2);
2162    //mystyle->SetStatW(0.19);
2163    //mystyle->SetStatH(0.1);
2164    //mystyle->SetStatFontSize(0.01);
2165    //mystyle->SetTitleYSize(0.3);
2166    mystyle->SetFuncColor(2);
2167    //mystyle->SetOptStat(0111);
2168    mystyle->SetDrawBorder(0);
2169    mystyle->SetTitleBorderSize(0);
2170    mystyle->SetOptFit(1111);
2171    mystyle->cd();
2172
2173    
2174    TClonesArray *RecHits3D = pRICH->RecHitsAddress3D(2);
2175    Int_t nrechits3D = RecHits3D->GetEntriesFast();
2176    TClonesArray *RecHits1D = pRICH->RecHitsAddress1D(2);
2177    Int_t nrechits1D = RecHits1D->GetEntriesFast();
2178
2179   switch(diaglevel)
2180      {
2181      case 1:
2182        
2183        c1 = new TCanvas("c1","Alice RICH digits",50,50,300,350);
2184        hc0->SetXTitle("ix (npads)");
2185        hc0->Draw("colz");
2186         
2187 //
2188        c2 = new TCanvas("c2","Hits per type",100,100,600,700);
2189        c2->Divide(2,2);
2190        //c4->SetFillColor(42);
2191
2192        c2->cd(1);
2193        feedback->SetXTitle("x (cm)");
2194        feedback->SetYTitle("y (cm)");
2195        feedback->Draw("colz");
2196        
2197        c2->cd(2);
2198        //mip->SetFillColor(5);
2199        mip->SetXTitle("x (cm)");
2200        mip->SetYTitle("y (cm)");
2201        mip->Draw("colz");
2202        
2203        c2->cd(3);
2204        //cerenkov->SetFillColor(5);
2205        cerenkov->SetXTitle("x (cm)");
2206        cerenkov->SetYTitle("y (cm)"); 
2207        cerenkov->Draw("colz");
2208        
2209        c2->cd(4);
2210        //h->SetFillColor(5);
2211        h->SetXTitle("x (cm)");
2212        h->SetYTitle("y (cm)");
2213        h->Draw("colz");
2214
2215        c3 = new TCanvas("c3","Hits distribution",150,150,600,350);
2216        c3->Divide(2,1);
2217        //c10->SetFillColor(42);
2218        
2219        c3->cd(1);
2220        hitsX->SetFillColor(5);
2221        hitsX->SetXTitle("(cm)");
2222        hitsX->Draw();
2223        
2224        c3->cd(2);
2225        hitsY->SetFillColor(5);
2226        hitsY->SetXTitle("(cm)");
2227        hitsY->Draw();
2228        
2229       
2230        break;
2231 //
2232      case 2:
2233        
2234        c4 = new TCanvas("c4","Photon Spectra",50,50,600,350);
2235        c4->Divide(2,1);
2236        //c6->SetFillColor(42);
2237        
2238        c4->cd(1);
2239        phspectra2->SetFillColor(5);
2240        phspectra2->SetXTitle("energy (eV)");
2241        phspectra2->Draw();
2242        c4->cd(2);
2243        phspectra1->SetFillColor(5);
2244        phspectra1->SetXTitle("energy (eV)");
2245        phspectra1->Draw();
2246        
2247        c5 = new TCanvas("c5","Particles Spectra",100,100,600,700);
2248        c5->Divide(2,2);
2249        //c9->SetFillColor(42);
2250        
2251        c5->cd(1);
2252        pionspectra->SetFillColor(5);
2253        pionspectra->SetXTitle("(GeV)");
2254        pionspectra->Draw();
2255        
2256        c5->cd(2);
2257        protonspectra->SetFillColor(5);
2258        protonspectra->SetXTitle("(GeV)");
2259        protonspectra->Draw();
2260        
2261        c5->cd(3);
2262        kaonspectra->SetFillColor(5);
2263        kaonspectra->SetXTitle("(GeV)");
2264        kaonspectra->Draw();
2265        
2266        c5->cd(4);
2267        chargedspectra->SetFillColor(5);
2268        chargedspectra->SetXTitle("(GeV)");
2269        chargedspectra->Draw();
2270
2271        break;
2272        
2273      case 3:
2274
2275        
2276        if(gAlice->TreeR())
2277          {
2278            c6=new TCanvas("c6","Clusters Statistics",50,50,600,700);
2279            c6->Divide(2,2);
2280            //c3->SetFillColor(42);
2281            
2282            c6->cd(1);
2283            //TPad* c6_1;
2284            //c6_1->SetLogy();
2285            Clcharge->SetFillColor(5);
2286            Clcharge->SetXTitle("ADC counts");
2287            if (evNumber2>10)
2288              {
2289                Clcharge->Fit("expo");
2290                //expo->SetLineColor(2);
2291                //expo->SetLineWidth(3);
2292              }
2293            Clcharge->Draw();
2294            
2295            c6->cd(2);
2296            padnumber->SetFillColor(5);
2297            padnumber->SetXTitle("(counts)");
2298            padnumber->Draw();
2299            
2300            c6->cd(3);
2301            clusev->SetFillColor(5);
2302            clusev->SetXTitle("(counts)");
2303            if (evNumber2>10)
2304              {
2305                clusev->Fit("gaus");
2306                //gaus->SetLineColor(2);
2307                //gaus->SetLineWidth(3);
2308              }
2309            clusev->Draw();
2310            
2311            c6->cd(4);
2312            padsmip->SetFillColor(5);
2313            padsmip->SetXTitle("(counts)");
2314            padsmip->Draw(); 
2315          }
2316        
2317        if(evNumber2<1)
2318          {
2319            c11 = new TCanvas("c11","Cherenkov per Mip",400,10,600,700);
2320            mother->SetFillColor(5);
2321            mother->SetXTitle("counts");
2322            mother->Draw();
2323          }
2324
2325        c7 = new TCanvas("c7","Production Statistics",100,100,600,700);
2326        c7->Divide(2,2);
2327        //c7->SetFillColor(42);
2328        
2329        c7->cd(1);
2330        totalphotonsevent->SetFillColor(5);
2331        totalphotonsevent->SetXTitle("Photons (counts)");
2332        if (evNumber2>10)
2333            {
2334              totalphotonsevent->Fit("gaus");
2335              //gaus->SetLineColor(2);
2336              //gaus->SetLineWidth(3);
2337            }
2338        totalphotonsevent->Draw();
2339        
2340        c7->cd(2);
2341        photev->SetFillColor(5);
2342        photev->SetXTitle("(counts)");
2343        if (evNumber2>10)
2344          {
2345            photev->Fit("gaus");
2346            //gaus->SetLineColor(2);
2347            //gaus->SetLineWidth(3);
2348          }
2349        photev->Draw();
2350        
2351        c7->cd(3);
2352        feedev->SetFillColor(5);
2353        feedev->SetXTitle("(counts)");
2354        if (evNumber2>10)
2355          {
2356            feedev->Fit("gaus");
2357            //gaus->SetLineColor(2);
2358            //gaus->SetLineWidth(3);
2359          }
2360        feedev->Draw();
2361
2362        c7->cd(4);
2363        padsev->SetFillColor(5);
2364        padsev->SetXTitle("(counts)");
2365        if (evNumber2>10)
2366          {
2367            padsev->Fit("gaus");
2368            //gaus->SetLineColor(2);
2369            //gaus->SetLineWidth(3);
2370          }
2371        padsev->Draw();
2372
2373        break;
2374
2375      case 4:
2376        
2377
2378        if(nrechits3D)
2379          {
2380            c8 = new TCanvas("c8","3D reconstruction of Phi angle",50,50,300,1050);
2381            c8->Divide(1,3);
2382            //c2->SetFillColor(42);
2383            
2384            
2385            // data per hit
2386            c8->cd(1);
2387            hitsPhi->SetFillColor(5);
2388            if (evNumber2>10)
2389              hitsPhi->Fit("gaus");
2390            hitsPhi->Draw();
2391            
2392             //data per track
2393            c8->cd(2);
2394            OriginalPhi->SetFillColor(5);
2395            if (evNumber2>10)
2396              OriginalPhi->Fit("gaus");
2397            OriginalPhi->Draw();
2398
2399            //recontructed data
2400            c8->cd(3);
2401            Phi->SetFillColor(5);
2402            if (evNumber2>10)
2403              Phi->Fit("gaus");
2404            Phi->Draw();
2405
2406            c9 = new TCanvas("c9","3D reconstruction of theta angle",75,75,300,1050);
2407            c9->Divide(1,3);
2408
2409            // data per hit
2410            c9->cd(1);
2411            hitsTheta->SetFillColor(5);
2412            if (evNumber2>10)
2413              hitsTheta->Fit("gaus");
2414            hitsTheta->Draw();
2415            
2416            //data per track
2417            c9->cd(2);
2418            OriginalTheta->SetFillColor(5);
2419            if (evNumber2>10)
2420              OriginalTheta->Fit("gaus");
2421            OriginalTheta->Draw();
2422
2423            //recontructed data
2424            c9->cd(3);
2425            Theta->SetFillColor(5);
2426            if (evNumber2>10)
2427              Theta->Fit("gaus");
2428            Theta->Draw();
2429
2430            c10 = new TCanvas("c10","3D reconstruction of cherenkov angle",100,100,300,1050);
2431            c10->Divide(1,3);
2432
2433            // data per hit
2434            c10->cd(1);
2435            ckovangle->SetFillColor(5);
2436            ckovangle->SetXTitle("angle (radians)");
2437            if (evNumber2>10)
2438              ckovangle->Fit("gaus");
2439            ckovangle->Draw();
2440            
2441            //data per track
2442            c10->cd(2);
2443            OriginalOmega->SetFillColor(5);
2444            OriginalOmega->SetXTitle("angle (radians)");
2445            if (evNumber2>10)
2446              OriginalOmega->Fit("gaus");
2447            OriginalOmega->Draw();
2448
2449            //recontructed data
2450            c10->cd(3);
2451            Omega3D->SetFillColor(5);
2452            Omega3D->SetXTitle("angle (radians)");
2453            if (evNumber2>10)
2454              Omega3D->Fit("gaus");
2455            Omega3D->Draw(); 
2456
2457
2458            c11 = new TCanvas("c11","3D reconstruction of mean radius",125,125,300,700);
2459            c11->Divide(1,2);
2460
2461            // data per hit
2462            c11->cd(1);
2463            radius->SetFillColor(5);
2464            radius->SetXTitle("radius (cm)");
2465            radius->Draw();
2466
2467            //recontructed data
2468            c11->cd(2);
2469            MeanRadius->SetFillColor(5);
2470            MeanRadius->SetXTitle("radius (cm)");
2471            MeanRadius->Draw();
2472
2473            
2474            c12 = new TCanvas("c12","Cerenkov angle vs. Momentum",150,150,550,350);
2475
2476            c12->cd(1);
2477            identification->SetFillColor(5);
2478            identification->SetXTitle("Momentum (GeV/c)");
2479            identification->SetYTitle("Cherenkov angle (radians)");
2480            
2481            //Float_t pionmass=.139;
2482            //Float_t kaonmass=.493;
2483            //Float_t protonmass=.938;
2484            //Float_t n=1.295;
2485            
2486            TF1 *pionplot = new TF1("pion","acos(sqrt((.139*.139+x*x)/(x*x*1.285*1.285)))",1,5);
2487            TF1 *kaonplot = new TF1("kaon","acos(sqrt((.439*.439+x*x)/(x*x*1.285*1.285)))",1,5);
2488            TF1 *protonplot = new TF1("proton","acos(sqrt((.938*.938+x*x)/(x*x*1.285*1.285)))",1,5);
2489            
2490            identification->Draw();
2491
2492            pionplot->SetLineColor(5);
2493            pionplot->Draw("same");
2494
2495            kaonplot->SetLineColor(4);
2496            kaonplot->Draw("same");
2497
2498            protonplot->SetLineColor(3);
2499            protonplot->Draw("same");
2500            //identification->Draw("same");
2501
2502
2503
2504            c13 = new TCanvas("c13","Reconstruction Errors",200,200,900,350);
2505            c13->Divide(3,1);
2506
2507            c13->cd(1);
2508            PhiError->SetFillColor(5);
2509            if (evNumber2>10)
2510              PhiError->Fit("gaus");
2511            PhiError->Draw();
2512            c13->cd(2);
2513            ThetaError->SetFillColor(5);
2514            if (evNumber2>10)
2515              ThetaError->Fit("gaus");
2516            ThetaError->Draw();
2517            c13->cd(3);
2518            OmegaError->SetFillColor(5);
2519            OmegaError->SetXTitle("angle (radians)");
2520            if (evNumber2>10)
2521              OmegaError->Fit("gaus");
2522            OmegaError->Draw();
2523            
2524          }
2525        
2526        if(nrechits1D)
2527          {
2528            c9 = new TCanvas("c9","1D Reconstruction",100,100,1100,700);
2529            c9->Divide(3,2);
2530            //c5->SetFillColor(42);
2531            
2532            c9->cd(1);
2533            ckovangle->SetFillColor(5);
2534            ckovangle->SetXTitle("angle (radians)");
2535            ckovangle->Draw();
2536            
2537            c9->cd(2);
2538            radius->SetFillColor(5);
2539            radius->SetXTitle("radius (cm)");
2540            radius->Draw();
2541            
2542            c9->cd(3);
2543            hc0->SetXTitle("pads");
2544            hc0->Draw("box"); 
2545            
2546            c9->cd(5);
2547            Omega1D->SetFillColor(5);
2548            Omega1D->SetXTitle("angle (radians)");
2549            Omega1D->Draw();
2550            
2551            c9->cd(4);
2552            PhotonCer->SetFillColor(5);
2553            PhotonCer->SetXTitle("angle (radians)");
2554            PhotonCer->Draw();
2555            
2556            c9->cd(6);
2557            PadsUsed->SetXTitle("pads");
2558            PadsUsed->Draw("box"); 
2559          }
2560        
2561        break;
2562        
2563      case 5:
2564        
2565        printf("Drawing histograms.../n");
2566
2567        //if (ndigits)
2568          //{
2569        c10 = new TCanvas("c10","Alice RICH digits",50,50,1200,700);
2570        c1->Divide(4,2);
2571        //c1->SetFillColor(42);
2572        
2573        c10->cd(1);
2574        hc1->SetXTitle("ix (npads)");
2575        hc1->Draw("box");
2576        c10->cd(2);
2577        hc2->SetXTitle("ix (npads)");
2578        hc2->Draw("box");
2579        c10->cd(3);
2580        hc3->SetXTitle("ix (npads)");
2581        hc3->Draw("box");
2582        c10->cd(4);
2583        hc4->SetXTitle("ix (npads)");
2584        hc4->Draw("box");
2585        c10->cd(5);
2586        hc5->SetXTitle("ix (npads)");
2587        hc5->Draw("box");
2588        c10->cd(6);
2589        hc6->SetXTitle("ix (npads)");
2590        hc6->Draw("box");
2591        c10->cd(7);
2592        hc7->SetXTitle("ix (npads)");
2593        hc7->Draw("box");
2594        c10->cd(8);
2595        hc0->SetXTitle("ix (npads)");
2596        hc0->Draw("box");
2597          //}
2598 //
2599        c11 = new TCanvas("c11","Hits per type",100,100,600,700);
2600        c11->Divide(2,2);
2601        //c4->SetFillColor(42);
2602        
2603        c11->cd(1);
2604        feedback->SetXTitle("x (cm)");
2605        feedback->SetYTitle("y (cm)");
2606        feedback->Draw();
2607        
2608        c11->cd(2);
2609        //mip->SetFillColor(5);
2610        mip->SetXTitle("x (cm)");
2611        mip->SetYTitle("y (cm)");
2612        mip->Draw();
2613        
2614        c11->cd(3);
2615        //cerenkov->SetFillColor(5);
2616        cerenkov->SetXTitle("x (cm)");
2617        cerenkov->SetYTitle("y (cm)"); 
2618        cerenkov->Draw();
2619        
2620        c11->cd(4);
2621        //h->SetFillColor(5);
2622        h->SetXTitle("x (cm)");
2623        h->SetYTitle("y (cm)");
2624        h->Draw();
2625
2626        c12 = new TCanvas("c12","Hits distribution",150,150,600,350);
2627        c12->Divide(2,1);
2628        //c10->SetFillColor(42);
2629        
2630        c12->cd(1);
2631        hitsX->SetFillColor(5);
2632        hitsX->SetXTitle("(cm)");
2633        hitsX->Draw();
2634        
2635        c12->cd(2);
2636        hitsY->SetFillColor(5);
2637        hitsY->SetXTitle("(cm)");
2638        hitsY->Draw();
2639        
2640        break;
2641        
2642      }
2643        
2644
2645    // calculate the number of pads which give a signal
2646
2647
2648    //Int_t Np=0;
2649    /*for (Int_t i=0;i< NpadX;i++) {
2650        for (Int_t j=0;j< NpadY;j++) {
2651            if (Pad[i][j]>=6){
2652                Np+=1;
2653            }
2654        }
2655    }*/
2656    //printf("The total number of pads which give a signal: %d %d\n",Nh,Nh1);
2657    printf("\nEnd of analysis\n");
2658    printf("**********************************\n");
2659 }//void AliRICH::DiagnosticsSE(Int_t diaglevel,Int_t evNumber1,Int_t evNumber2)
2660 //______________________________________________________________________________
2661 void AliRICH::MakeBranchInTreeD(TTree *treeD, const char *file)
2662 {// Create TreeD branches for the RICH.
2663   if(GetDebug())Info("MakeBranchInTreeD","Start.");
2664
2665   const Int_t kBufferSize = 4000;
2666   char branchname[30];
2667     
2668   //
2669   // one branch for digits per chamber
2670   // 
2671   for (Int_t i=0; i<kNCH ;i++) {
2672     sprintf(branchname,"%sDigits%d",GetName(),i+1);     
2673     if (fDchambers && treeD) {
2674       MakeBranchInTree(treeD,branchname, &((*fDchambers)[i]), kBufferSize, file);
2675 //      printf("Making Branch %s for digits in chamber %d\n",branchname,i+1);
2676     }
2677   }
2678 }
2679 //______________________________________________________________________________
2680 void AliRICH::MakeBranch(Option_t* option)
2681 {//Create Tree branches for the RICH.
2682   if(GetDebug())Info("MakeBranch","Start with option= %s.",option);
2683     
2684   const Int_t kBufferSize = 4000;
2685   char branchname[20];
2686       
2687    
2688   const char *cH = strstr(option,"H");
2689   const char *cD = strstr(option,"D");
2690   const char *cR = strstr(option,"R");
2691   const char *cS = strstr(option,"S");
2692
2693
2694   if(cH&&TreeH()){
2695     if(!fHits) fHits=new TClonesArray("AliRICHhit",1000  );
2696     if(!fCerenkovs) fCerenkovs  = new TClonesArray("AliRICHCerenkov",1000);
2697     MakeBranchInTree(TreeH(),"RICHCerenkov", &fCerenkovs, kBufferSize, 0) ;
2698
2699     //kir if(!fSDigits) fSDigits    = new TClonesArray("AliRICHdigit",100000);
2700     //kir MakeBranchInTree(TreeH(),"RICHSDigits", &fSDigits, kBufferSize, 0) ;
2701   }     
2702   AliDetector::MakeBranch(option);//this is after cH because we need to guarantee that fHits array is created
2703       
2704   if(cS&&fLoader->TreeS()){  
2705     if(!fSDigits) fSDigits=new TClonesArray("AliRICHdigit",100000);
2706     MakeBranchInTree(fLoader->TreeS(),"RICH",&fSDigits,kBufferSize,0) ;
2707   }
2708    
2709   int i;
2710   if (cD&&fLoader->TreeD()){
2711     if(!fDchambers){
2712       fDchambers=new TObjArray(kNCH);    // one branch for digits per chamber
2713       for(i=0;i<kNCH;i++){ 
2714         fDchambers->AddAt(new TClonesArray("AliRICHDigit",10000), i); 
2715       }       
2716     }
2717     for (i=0; i<kNCH ;i++) 
2718       {
2719         sprintf(branchname,"%sDigits%d",GetName(),i+1); 
2720         MakeBranchInTree(fLoader->TreeD(),branchname, &((*fDchambers)[i]), kBufferSize, 0);
2721       }
2722    }
2723
2724   if (cR&&gAlice->TreeR()){//one branch for raw clusters per chamber
2725     Int_t i;
2726     if (fRawClusters == 0x0 ) 
2727      {
2728        fRawClusters = new TObjArray(kNCH);
2729        for (i=0; i<kNCH ;i++) 
2730          {
2731            fRawClusters->AddAt(new TClonesArray("AliRICHRawCluster",10000), i); 
2732          }
2733      }
2734      
2735     if (fRecHits1D == 0x0) 
2736      {
2737         fRecHits1D = new TObjArray(kNCH);
2738         for (i=0; i<kNCH ;i++) 
2739          {
2740           fRecHits1D->AddAt(new TClonesArray("AliRICHRecHit1D",1000), i);
2741          }
2742      }
2743
2744     if (fRecHits3D == 0x0) 
2745      {
2746         fRecHits3D = new TObjArray(kNCH);
2747         for (i=0; i<kNCH ;i++) 
2748          {
2749           fRecHits3D->AddAt(new TClonesArray("AliRICHRecHit3D",1000), i);
2750          }
2751      }
2752        
2753     for (i=0; i<kNCH ;i++){
2754        sprintf(branchname,"%sRawClusters%d",GetName(),i+1);      
2755        MakeBranchInTree(gAlice->TreeR(),branchname, &((*fRawClusters)[i]), kBufferSize, 0);
2756        sprintf(branchname,"%sRecHits1D%d",GetName(),i+1);
2757        MakeBranchInTree(fLoader->TreeR(),branchname, &((*fRecHits1D)[i]), kBufferSize, 0);
2758        sprintf(branchname,"%sRecHits3D%d",GetName(),i+1);  
2759        MakeBranchInTree(fLoader->TreeR(),branchname, &((*fRecHits3D)[i]), kBufferSize, 0);
2760      }
2761    }//if (cR && gAlice->TreeR())
2762   if(GetDebug())Info("MakeBranch","Stop.");   
2763 }
2764 //______________________________________________________________________________
2765 void AliRICH::SetTreeAddress()
2766 {//Set branch address for the Hits and Digits Tree.
2767   if(GetDebug())Info("SetTreeAddress","Start.");
2768   
2769   char branchname[20];
2770   Int_t i;
2771
2772     
2773   TBranch *branch;
2774   TTree *treeH = fLoader->TreeH();
2775   TTree *treeD = fLoader->TreeD();
2776   TTree *treeR = fLoader->TreeR();
2777   TTree *treeS = fLoader->TreeS();
2778     
2779   if(treeH){
2780     if(GetDebug())Info("SetTreeAddress","tree H is requested.");
2781     if(fHits==0x0) fHits=new TClonesArray("AliRICHhit",1000); 
2782     
2783     branch = treeH->GetBranch("RICHCerenkov");
2784     if(branch){
2785       if (fCerenkovs == 0x0) fCerenkovs  = new TClonesArray("AliRICHCerenkov",1000); 
2786         branch->SetAddress(&fCerenkovs);
2787     }
2788        
2789 //kir      branch = treeH->GetBranch("RICHSDigits");
2790 //kir      if (branch) 
2791 //kir       {
2792 //kir         if (fSDigits == 0x0) fSDigits    = new TClonesArray("AliRICHdigit",100000);
2793 //kir         branch->SetAddress(&fSDigits);
2794 //kir       }
2795   }//if(treeH)
2796  
2797    //this is after TreeH because we need to guarantee that fHits array is created
2798   AliDetector::SetTreeAddress();
2799     
2800   if(treeS){
2801     if(GetDebug())Info("SetTreeAddress","tree S is requested.");
2802     branch = treeS->GetBranch("RICH");
2803     if(branch){
2804       if(!fSDigits) fSDigits=new TClonesArray("AliRICHdigit",100000);
2805       branch->SetAddress(&fSDigits);
2806     }
2807   }
2808     
2809     
2810   if(treeD){
2811     if(GetDebug())Info("SetTreeAddress","tree D is requested.");
2812
2813       if (fDchambers == 0x0) 
2814         {
2815            fDchambers = new TObjArray(kNCH);
2816            for (i=0; i<kNCH ;i++) 
2817              {
2818                fDchambers->AddAt(new TClonesArray("AliRICHDigit",10000), i); 
2819              }
2820         }
2821       
2822       for (i=0; i<kNCH; i++) {
2823         sprintf(branchname,"%sDigits%d",GetName(),i+1);
2824         if (fDchambers) {
2825            branch = treeD->GetBranch(branchname);
2826            if (branch) branch->SetAddress(&((*fDchambers)[i]));
2827         }
2828       }
2829     }
2830     
2831   if(treeR){
2832     if(GetDebug())Info("SetTreeAddress","tree R is requested.");
2833
2834     if (fRawClusters == 0x0 ) 
2835      {
2836        fRawClusters = new TObjArray(kNCH);
2837        for (i=0; i<kNCH ;i++) 
2838          {
2839            fRawClusters->AddAt(new TClonesArray("AliRICHRawCluster",10000), i); 
2840          }
2841      }
2842      
2843     if (fRecHits1D == 0x0) 
2844      {
2845         fRecHits1D = new TObjArray(kNCH);
2846         for (i=0; i<kNCH ;i++) 
2847          {
2848           fRecHits1D->AddAt(new TClonesArray("AliRICHRecHit1D",1000), i);
2849          }
2850      }
2851
2852     if (fRecHits3D == 0x0) 
2853      {
2854         fRecHits3D = new TObjArray(kNCH);
2855         for (i=0; i<kNCH ;i++) 
2856          {
2857           fRecHits3D->AddAt(new TClonesArray("AliRICHRecHit3D",1000), i);
2858          }
2859      }
2860     
2861     for (i=0; i<kNCH; i++) {
2862           sprintf(branchname,"%sRawClusters%d",GetName(),i+1);
2863           if (fRawClusters) {
2864               branch = treeR->GetBranch(branchname);
2865               if (branch) branch->SetAddress(&((*fRawClusters)[i]));
2866           }
2867     }
2868       
2869     for (i=0; i<kNCH; i++) {
2870         sprintf(branchname,"%sRecHits1D%d",GetName(),i+1);
2871         if (fRecHits1D) {
2872           branch = treeR->GetBranch(branchname);
2873           if (branch) branch->SetAddress(&((*fRecHits1D)[i]));
2874           }
2875      }
2876       
2877      for (i=0; i<kNCH; i++) {
2878         sprintf(branchname,"%sRecHits3D%d",GetName(),i+1);
2879         if (fRecHits3D) {
2880           branch = treeR->GetBranch(branchname);
2881           if (branch) branch->SetAddress(&((*fRecHits3D)[i]));
2882           }
2883       } 
2884       
2885   }//if(treeR)
2886   if(GetDebug())Info("SetTreeAddress","Stop.");
2887 }//void AliRICH::SetTreeAddress()
2888 //______________________________________________________________________________
2889 void AliRICH::Print(Option_t *option)const
2890 {
2891   TObject::Print(option);
2892   fpParam->Dump();
2893   Chambers()->Print(option);  
2894 }//void AliRICH::Print(Option_t *option)const
2895 //______________________________________________________________________________
2896 void AliRICH::CreateGeometry()
2897 {//Creates detailed geometry simulation (currently GEANT volumes tree)         
2898   if(GetDebug())Info("CreateGeometry","Start.");
2899 //???????? to be removed to AliRICHParam?
2900   fpParam->RadiatorToPads(fpParam->FreonThickness()/2+fpParam->QuartzThickness()+fpParam->GapThickness());
2901     
2902 //Opaque quartz thickness
2903   Float_t oqua_thickness = .5;
2904 //CsI dimensions
2905   Float_t csi_width =fpParam->Nx()*fpParam->PadX()+fpParam->DeadZone();
2906   Float_t csi_length=fpParam->Ny()*fpParam->PadY()+2*fpParam->DeadZone();
2907   
2908   Int_t *idtmed = fIdtmed->GetArray()-999;
2909     
2910   Int_t i;
2911   Float_t zs;
2912   Int_t idrotm[1099];
2913   Float_t par[3];
2914     
2915 //External aluminium box 
2916   par[0]=68.8;par[1]=13;par[2]=70.86;//Original Settings
2917   gMC->Gsvolu("RICH", "BOX ", idtmed[1009], par, 3);
2918 //Air 
2919   par[0]=66.3;   par[1] = 13; par[2] = 68.35; //Original Settings
2920   gMC->Gsvolu("SRIC", "BOX ", idtmed[1000], par, 3); 
2921 //Air 2 (cutting the lower part of the box)
2922   par[0]=1.25;    par[1] = 3;    par[2] = 70.86; //Original Settings
2923   gMC->Gsvolu("AIR2", "BOX ", idtmed[1000], par, 3);
2924 //Air 3 (cutting the lower part of the box)
2925   par[0]=66.3;    par[1] = 3;  par[2] = 1.2505; //Original Settings
2926   gMC->Gsvolu("AIR3", "BOX ", idtmed[1000], par, 3);
2927 //Honeycomb 
2928   par[0]=66.3;par[1]=0.188;  par[2] = 68.35;  //Original Settings
2929   gMC->Gsvolu("HONE", "BOX ", idtmed[1001], par, 3);
2930 //Aluminium sheet 
2931   par[0]=66.3;par[1]=0.025;par[2]=68.35; //Original Settings
2932   //par[0] = 66.5; par[1] = .025; par[2] = 63.1;
2933   gMC->Gsvolu("ALUM", "BOX ", idtmed[1009], par, 3);
2934 //Quartz 
2935   par[0]=fpParam->QuartzWidth()/2;par[1]=fpParam->QuartzThickness()/2;par[2]=fpParam->QuartzLength()/2;
2936   gMC->Gsvolu("QUAR", "BOX ", idtmed[1002], par, 3);
2937 //Spacers (cylinders) 
2938   par[0]=0.;par[1]=.5;par[2]=fpParam->FreonThickness()/2;
2939   gMC->Gsvolu("SPAC", "TUBE", idtmed[1002], par, 3);    
2940 //Feet (freon slabs supports)
2941   par[0] = .7;  par[1] = .3;  par[2] = 1.9;
2942   gMC->Gsvolu("FOOT", "BOX", idtmed[1009], par, 3);
2943 //Opaque quartz 
2944   par[0]=fpParam->QuartzWidth()/2;par[1]= .2;par[2]=fpParam->QuartzLength()/2;
2945   gMC->Gsvolu("OQUA", "BOX ", idtmed[1007], par, 3);
2946 //Frame of opaque quartz
2947   par[0]=fpParam->OuterFreonWidth()/2;par[1]=fpParam->FreonThickness()/2;par[2]=fpParam->OuterFreonLength()/2; 
2948   gMC->Gsvolu("OQF1", "BOX ", idtmed[1007], par, 3);
2949   par[0]=fpParam->InnerFreonWidth()/2;par[1]=fpParam->FreonThickness()/2;par[2]=fpParam->InnerFreonLength()/2; 
2950   gMC->Gsvolu("OQF2", "BOX ", idtmed[1007], par, 3);
2951 //Freon 
2952   par[0]=fpParam->OuterFreonWidth()/2 - oqua_thickness;
2953   par[1]=fpParam->FreonThickness()/2;
2954   par[2]=fpParam->OuterFreonLength()/2 - 2*oqua_thickness; 
2955   gMC->Gsvolu("FRE1", "BOX ", idtmed[1003], par, 3);
2956
2957   par[0]=fpParam->InnerFreonWidth()/2 - oqua_thickness;
2958   par[1]=fpParam->FreonThickness()/2;
2959   par[2]=fpParam->InnerFreonLength()/2 - 2*oqua_thickness; 
2960   gMC->Gsvolu("FRE2", "BOX ", idtmed[1003], par, 3);    
2961 //Methane 
2962   par[0]=csi_width/2;par[1]=fpParam->GapThickness()/2;par[2]=csi_length/2;
2963   gMC->Gsvolu("META", "BOX ", idtmed[1004], par, 3);
2964 //Methane gap 
2965   par[0]=csi_width/2;par[1]=fpParam->ProximityGapThickness()/2;par[2] = csi_length/2;
2966   gMC->Gsvolu("GAP ", "BOX ", idtmed[1008], par, 3);
2967 //CsI photocathode 
2968   par[0]=csi_width/2;par[1]=.25;par[2]=csi_length/2;
2969   gMC->Gsvolu("CSI ", "BOX ", idtmed[1005], par, 3);
2970 //Anode grid 
2971   par[0] = 0.;par[1] = .001;par[2] = 20.;
2972   gMC->Gsvolu("GRID", "TUBE", idtmed[1006], par, 3);
2973
2974 //Wire supports
2975 //Bar of metal
2976   par[0]=csi_width/2;par[1]=1.05;par[2]=1.05;
2977   gMC->Gsvolu("WSMe", "BOX ", idtmed[1009], par, 3);
2978 //Ceramic pick up (base)
2979   par[0]=csi_width/2;par[1]= .25;par[2]=1.05;
2980   gMC->Gsvolu("WSG1", "BOX ", idtmed[1010], par, 3);
2981 //Ceramic pick up (head)
2982   par[0] = csi_width/2;par[1] = .1;par[2] = .1;
2983   gMC->Gsvolu("WSG2", "BOX ", idtmed[1010], par, 3);
2984
2985 //Aluminium supports for methane and CsI
2986 //Short bar
2987   par[0]=csi_width/2;par[1]=fpParam->GapThickness()/2 + .25; par[2] = (68.35 - csi_length/2)/2;
2988   gMC->Gsvolu("SMSH", "BOX", idtmed[1009], par, 3);
2989 //Long bar
2990   par[0]=(66.3 - csi_width/2)/2;par[1]=fpParam->GapThickness()/2+.25;par[2]=csi_length/2+68.35-csi_length/2;
2991   gMC->Gsvolu("SMLG", "BOX", idtmed[1009], par, 3);
2992     
2993 //Aluminium supports for freon
2994 //Short bar
2995   par[0] = fpParam->QuartzWidth()/2; par[1] = .3; par[2] = (68.35 - fpParam->QuartzLength()/2)/2;
2996   gMC->Gsvolu("SFSH", "BOX", idtmed[1009], par, 3);    
2997 //Long bar
2998   par[0] = (66.3 - fpParam->QuartzWidth()/2)/2; par[1] = .3;
2999   par[2] = fpParam->QuartzLength()/2 + 68.35 - fpParam->QuartzLength()/2;
3000   gMC->Gsvolu("SFLG", "BOX", idtmed[1009], par, 3);    
3001 //PCB backplane
3002   par[0] = csi_width/2;par[1] = .25; par[2] = csi_length/4 -.5025;
3003   gMC->Gsvolu("PCB ", "BOX", idtmed[1011], par, 3);
3004
3005 //Backplane supports
3006 //Aluminium slab
3007   par[0] = 33.15;par[1] = 2;par[2] = 21.65;
3008   gMC->Gsvolu("BACK", "BOX", idtmed[1009], par, 3);    
3009 //Big hole
3010   par[0] = 9.05; par[1] = 2; par[2] = 4.4625;
3011   gMC->Gsvolu("BKHL", "BOX", idtmed[1000], par, 3);
3012 //Small hole
3013   par[0] = 5.7;par[1] = 2;par[2] = 4.4625;
3014   gMC->Gsvolu("BKHS", "BOX", idtmed[1000], par, 3);
3015 //Place holes inside backplane support
3016   gMC->Gspos("BKHS", 1, "BACK", .8 + 5.7,0., .6 + 4.4625, 0, "ONLY");
3017   gMC->Gspos("BKHS", 2, "BACK", -.8 - 5.7,0., .6 + 4.4625, 0, "ONLY");
3018   gMC->Gspos("BKHS", 3, "BACK", .8 + 5.7,0., -.6 - 4.4625, 0, "ONLY");
3019   gMC->Gspos("BKHS", 4, "BACK", -.8 - 5.7,0., -.6 - 4.4625, 0, "ONLY");
3020   gMC->Gspos("BKHS", 5, "BACK", .8 + 5.7,0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY");
3021   gMC->Gspos("BKHS", 6, "BACK", -.8 - 5.7,0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY");
3022   gMC->Gspos("BKHS", 7, "BACK", .8 + 5.7,0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY");
3023   gMC->Gspos("BKHS", 8, "BACK", -.8 - 5.7,0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY");
3024   gMC->Gspos("BKHL", 1, "BACK", .8 + 11.4 + 1.6 + 9.05, 0., .6 + 4.4625, 0, "ONLY");
3025   gMC->Gspos("BKHL", 2, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., .6 + 4.4625, 0, "ONLY");
3026   gMC->Gspos("BKHL", 3, "BACK", .8 + 11.4 + 1.6 + 9.05, 0., -.6 - 4.4625, 0, "ONLY");
3027   gMC->Gspos("BKHL", 4, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., -.6 - 4.4625, 0, "ONLY");
3028   gMC->Gspos("BKHL", 5, "BACK", .8 + 11.4+ 1.6 + 9.05, 0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY");
3029   gMC->Gspos("BKHL", 6, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY");
3030   gMC->Gspos("BKHL", 7, "BACK", .8 + 11.4 + 1.6 + 9.05, 0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY");
3031   gMC->Gspos("BKHL", 8, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY");
3032 //Place material inside RICH 
3033   gMC->Gspos("SRIC", 1, "RICH", 0.,0., 0., 0, "ONLY");
3034   gMC->Gspos("AIR2", 1, "RICH", 66.3 + 1.2505, 1.276-fpParam->GapThickness()/2-fpParam->QuartzThickness()-fpParam->FreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, 0., 0, "ONLY");
3035   gMC->Gspos("AIR2", 2, "RICH", -66.3 - 1.2505,1.276-fpParam->GapThickness()/2-fpParam->QuartzThickness()-fpParam->FreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, 0., 0, "ONLY");
3036   gMC->Gspos("AIR3", 1, "RICH", 0., 1.276-fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, -68.35 - 1.25, 0, "ONLY");
3037   gMC->Gspos("AIR3", 2, "RICH", 0., 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35,  68.35 + 1.25, 0, "ONLY");
3038   gMC->Gspos("ALUM", 1, "SRIC", 0., 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .6 - .05 - .376 -.025, 0., 0, "ONLY");
3039   gMC->Gspos("HONE", 1, "SRIC", 0., 1.276- fpParam->GapThickness()/2  - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .6 - .05 - .188, 0., 0, "ONLY");
3040   gMC->Gspos("ALUM", 2, "SRIC", 0., 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .6 - .025, 0., 0, "ONLY");
3041   gMC->Gspos("FOOT", 1, "SRIC", 64.95, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, 36.9, 0, "ONLY");
3042   gMC->Gspos("FOOT", 2, "SRIC", 21.65, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3 , 36.9, 0, "ONLY");
3043   gMC->Gspos("FOOT", 3, "SRIC", -21.65, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, 36.9, 0, "ONLY");
3044   gMC->Gspos("FOOT", 4, "SRIC", -64.95, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, 36.9, 0, "ONLY");
3045   gMC->Gspos("FOOT", 5, "SRIC", 64.95, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, -36.9, 0, "ONLY");
3046   gMC->Gspos("FOOT", 6, "SRIC", 21.65, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, -36.9, 0, "ONLY");
3047   gMC->Gspos("FOOT", 7, "SRIC", -21.65, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, -36.9, 0, "ONLY");
3048   gMC->Gspos("FOOT", 8, "SRIC", -64.95, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, -36.9, 0, "ONLY");
3049   gMC->Gspos("OQUA", 1, "SRIC", 0., 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .2, 0., 0, "ONLY");
3050 // Methane supports
3051   gMC->Gspos("SMLG", 1, "SRIC", csi_width/2 + (66.3 - csi_width/2)/2, 1.276 + .25, 0., 0, "ONLY");
3052   gMC->Gspos("SMLG", 2, "SRIC", - csi_width/2 - (66.3 - csi_width/2)/2, 1.276 + .25, 0., 0, "ONLY");
3053   gMC->Gspos("SMSH", 1, "SRIC", 0., 1.276 + .25, csi_length/2 + (68.35 - csi_length/2)/2, 0, "ONLY");
3054   gMC->Gspos("SMSH", 2, "SRIC", 0., 1.276 + .25, - csi_length/2 - (68.35 - csi_length/2)/2, 0, "ONLY");
3055 //Freon supports
3056   Float_t supp_y = 1.276 - fpParam->GapThickness()/2- fpParam->QuartzThickness() -fpParam->FreonThickness() - .2 + .3; //y position of freon supports
3057   gMC->Gspos("SFLG", 1, "SRIC", fpParam->QuartzWidth()/2 + (66.3 - fpParam->QuartzWidth()/2)/2, supp_y, 0., 0, "ONLY");
3058   gMC->Gspos("SFLG", 2, "SRIC", - fpParam->QuartzWidth()/2 - (66.3 - fpParam->QuartzWidth()/2)/2, supp_y, 0., 0, "ONLY");
3059   gMC->Gspos("SFSH", 1, "SRIC", 0., supp_y, fpParam->QuartzLength()/2 + (68.35 - fpParam->QuartzLength()/2)/2, 0, "ONLY");
3060   gMC->Gspos("SFSH", 2, "SRIC", 0., supp_y, - fpParam->QuartzLength()/2 - (68.35 - fpParam->QuartzLength()/2)/2, 0, "ONLY");
3061   AliMatrix(idrotm[1019], 0., 0., 90., 0., 90., 90.);
3062 //Place spacers
3063   Int_t nspacers = 30;
3064   for (i = 0; i < nspacers/3; i++) {
3065     zs = -11.6/2 + (TMath::Abs(nspacers/6) - i) * 12.2;
3066     gMC->Gspos("SPAC", i, "FRE1", 10.5, 0., zs, idrotm[1019], "ONLY");  //Original settings 
3067   }
3068   for (i = nspacers/3; i < (nspacers*2)/3; i++) {
3069     zs = -11.6/2 + (nspacers/3 + TMath::Abs(nspacers/6) - i) * 12.2;
3070     gMC->Gspos("SPAC", i, "FRE1", 0, 0., zs, idrotm[1019], "ONLY");  //Original settings 
3071   }
3072   for (i = (nspacers*2)/3; i < nspacers; ++i) {
3073     zs = -11.6/2 + ((nspacers*2)/3 + TMath::Abs(nspacers/6) - i) * 12.2;
3074     gMC->Gspos("SPAC", i, "FRE1", -10.5, 0., zs, idrotm[1019], "ONLY"); //Original settings  
3075   }
3076   for (i = 0; i < nspacers/3; i++) {
3077     zs = -11.6/2 + (TMath::Abs(nspacers/6) - i) * 12.2;
3078     gMC->Gspos("SPAC", i, "FRE2", 10.5, 0., zs, idrotm[1019], "ONLY");  //Original settings 
3079   }
3080   for (i = nspacers/3; i < (nspacers*2)/3; i++) {
3081     zs = -11.6/2 + (nspacers/3 + TMath::Abs(nspacers/6) - i) * 12.2;
3082     gMC->Gspos("SPAC", i, "FRE2", 0, 0., zs, idrotm[1019], "ONLY");  //Original settings 
3083   }
3084   for (i = (nspacers*2)/3; i < nspacers; ++i) {
3085     zs = -11.6/2 + ((nspacers*2)/3 + TMath::Abs(nspacers/6) - i) * 12.2;
3086     gMC->Gspos("SPAC", i, "FRE2", -10.5, 0., zs, idrotm[1019], "ONLY"); //Original settings  
3087   }
3088   gMC->Gspos("FRE1", 1, "OQF1", 0., 0., 0., 0, "ONLY");
3089   gMC->Gspos("FRE2", 1, "OQF2", 0., 0., 0., 0, "ONLY");
3090   gMC->Gspos("OQF1", 1, "SRIC", fpParam->OuterFreonWidth()/2 + fpParam->InnerFreonWidth()/2 + 2, 1.276 - fpParam->GapThickness()/2- fpParam->QuartzThickness() -fpParam->FreonThickness()/2, 0., 0, "ONLY"); //Original settings (31.3)
3091   gMC->Gspos("OQF2", 2, "SRIC", 0., 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()/2, 0., 0, "ONLY");          //Original settings 
3092   gMC->Gspos("OQF1", 3, "SRIC", - (fpParam->OuterFreonWidth()/2 + fpParam->InnerFreonWidth()/2) - 2, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()/2, 0., 0, "ONLY");       //Original settings (-31.3)
3093   gMC->Gspos("QUAR", 1, "SRIC", 0., 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness()/2, 0., 0, "ONLY");
3094   gMC->Gspos("GAP ", 1, "META", 0., fpParam->GapThickness()/2 - fpParam->ProximityGapThickness()/2 - 0.0001, 0., 0, "ONLY");
3095   gMC->Gspos("META", 1, "SRIC", 0., 1.276, 0., 0, "ONLY");
3096   gMC->Gspos("CSI ", 1, "SRIC", 0., 1.276 + fpParam->GapThickness()/2 + .25, 0., 0, "ONLY");
3097 //Wire support placing
3098   gMC->Gspos("WSG2", 1, "GAP ", 0., fpParam->ProximityGapThickness()/2 - .1, 0., 0, "ONLY");
3099   gMC->Gspos("WSG1", 1, "CSI ", 0., 0., 0., 0, "ONLY");
3100   gMC->Gspos("WSMe", 1, "SRIC ", 0., 1.276 + fpParam->GapThickness()/2 + .5 + 1.05, 0., 0, "ONLY");
3101 //Backplane placing
3102   gMC->Gspos("BACK", 1, "SRIC ", -33.15, 1.276 + fpParam->GapThickness()/2 + .5 + 2.1 + 2, 43.3, 0, "ONLY");
3103   gMC->Gspos("BACK", 2, "SRIC ", 33.15, 1.276 + fpParam->GapThickness()/2 + .5 + 2.1 + 2 , 43.3, 0, "ONLY");
3104   gMC->Gspos("BACK", 3, "SRIC ", -33.15, 1.276 + fpParam->GapThickness()/2 + .5 + 2.1 + 2, 0., 0, "ONLY");
3105   gMC->Gspos("BACK", 4, "SRIC ", 33.15, 1.276 + fpParam->GapThickness()/2 + .5 + 2.1 + 2, 0., 0, "ONLY");
3106   gMC->Gspos("BACK", 5, "SRIC ", 33.15, 1.276 + fpParam->GapThickness()/2 + .5 + 2.1 + 2, -43.3, 0, "ONLY");
3107   gMC->Gspos("BACK", 6, "SRIC ", -33.15, 1.276 + fpParam->GapThickness()/2 + .5 + 2.1 + 2, -43.3, 0, "ONLY");
3108 //PCB placing
3109   gMC->Gspos("PCB ", 1, "SRIC ", 0.,  1.276 + fpParam->GapThickness()/2 + .5 + 1.05, csi_width/4 + .5025 + 2.5, 0, "ONLY");
3110   gMC->Gspos("PCB ", 2, "SRIC ", 0.,  1.276 + fpParam->GapThickness()/2 + .5 + 1.05, -csi_width/4 - .5025 - 2.5, 0, "ONLY");
3111
3112 //place chambers into mother volume ALIC
3113   CreateChambers();
3114
3115   for(int i=0;i<kNCH;i++){
3116     AliMatrix(idrotm[1000+i],C(i)->ThetaXd(),C(i)->PhiXd(),
3117                              C(i)->ThetaYd(),C(i)->PhiYd(),
3118                              C(i)->ThetaZd(),C(i)->PhiZd());
3119     gMC->Gspos("RICH",i+1,"ALIC",C(i)->X(),C(i)->Y(),C(i)->Z(),idrotm[1000+i], "ONLY");
3120   }
3121
3122   if(GetDebug())Info("CreateGeometry","Stop.");  
3123 }//void AliRICH::CreateGeometry()
3124 //______________________________________________________________________________
3125 void AliRICH::CreateChambers()
3126 {//(re)create all RICH Chambers
3127   if(GetDebug())Info("CreateChambers","Start.");
3128
3129   if(fChambers) delete fChambers;//recreate chambers
3130   fChambers=new TObjArray(kNCH);
3131   fChambers->SetOwner();
3132   for(int i=0;i<kNCH;i++){
3133     fChambers->AddAt(new AliRICHChamber(i+1,fpParam),i);
3134   }
3135
3136   if(GetDebug())Info("CreateChambers","Stop.");
3137 }//void AliRICH::CreateChambers()