]> git.uio.no Git - u/mrichter/AliRoot.git/blob - TRD/AliTRDclusterizerV1.cxx
Particle history saved
[u/mrichter/AliRoot.git] / TRD / AliTRDclusterizerV1.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /* $Id$ */
17
18 ///////////////////////////////////////////////////////////////////////////////
19 //                                                                           //
20 // TRD cluster finder for the slow simulator. 
21 //                                                                           //
22 ///////////////////////////////////////////////////////////////////////////////
23
24 #include <TF1.h>
25 #include <TTree.h>
26 #include <TH1.h>
27 #include <TFile.h>
28
29 #include "AliRun.h"
30 #include "AliRunLoader.h"
31 #include "AliLoader.h"
32
33 #include "AliTRDclusterizerV1.h"
34 #include "AliTRDmatrix.h"
35 #include "AliTRDgeometry.h"
36 #include "AliTRDdataArrayF.h"
37 #include "AliTRDdataArrayI.h"
38 #include "AliTRDdigitsManager.h"
39 #include "AliTRDparameter.h"
40
41 ClassImp(AliTRDclusterizerV1)
42
43 //_____________________________________________________________________________
44 AliTRDclusterizerV1::AliTRDclusterizerV1():AliTRDclusterizer()
45 {
46   //
47   // AliTRDclusterizerV1 default constructor
48   //
49
50   fDigitsManager = 0;
51
52 }
53
54 //_____________________________________________________________________________
55 AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t* name, const Text_t* title)
56                     :AliTRDclusterizer(name,title)
57 {
58   //
59   // AliTRDclusterizerV1 default constructor
60   //
61
62   fDigitsManager = new AliTRDdigitsManager();
63   fDigitsManager->CreateArrays();
64
65 }
66
67 //_____________________________________________________________________________
68 AliTRDclusterizerV1::AliTRDclusterizerV1(const AliTRDclusterizerV1 &c)
69 :AliTRDclusterizer(c)
70 {
71   //
72   // AliTRDclusterizerV1 copy constructor
73   //
74
75   ((AliTRDclusterizerV1 &) c).Copy(*this);
76
77 }
78
79 //_____________________________________________________________________________
80 AliTRDclusterizerV1::~AliTRDclusterizerV1()
81 {
82   //
83   // AliTRDclusterizerV1 destructor
84   //
85
86   if (fDigitsManager) {
87     delete fDigitsManager;
88     fDigitsManager = NULL;
89   }
90
91 }
92
93 //_____________________________________________________________________________
94 AliTRDclusterizerV1 &AliTRDclusterizerV1::operator=(const AliTRDclusterizerV1 &c)
95 {
96   //
97   // Assignment operator
98   //
99
100   if (this != &c) ((AliTRDclusterizerV1 &) c).Copy(*this);
101   return *this;
102
103 }
104
105 //_____________________________________________________________________________
106 void AliTRDclusterizerV1::Copy(TObject &c)
107 {
108   //
109   // Copy function
110   //
111
112   ((AliTRDclusterizerV1 &) c).fDigitsManager = 0;
113
114   AliTRDclusterizer::Copy(c);
115
116 }
117
118 //_____________________________________________________________________________
119 Bool_t AliTRDclusterizerV1::ReadDigits()
120 {
121   //
122   // Reads the digits arrays from the input aliroot file
123   //
124
125   if (!fRunLoader) {
126     printf("<AliTRDclusterizerV1::ReadDigits> ");
127     printf("No input file open\n");
128     return kFALSE;
129   }
130   AliLoader* loader = fRunLoader->GetLoader("TRDLoader");
131   if (!loader->TreeD()) loader->LoadDigits();
132
133   // Read in the digit arrays
134   return (fDigitsManager->ReadDigits(loader->TreeD()));
135
136 }
137
138 //_____________________________________________________________________________
139 Bool_t AliTRDclusterizerV1::MakeClusters()
140 {
141   //
142   // Generates the cluster.
143   //
144
145   Int_t row, col, time;
146
147   /*
148   if (fTRD->IsVersion() != 1) {
149     printf("<AliTRDclusterizerV1::MakeCluster> ");
150     printf("TRD must be version 1 (slow simulator).\n");
151     return kFALSE; 
152   }
153   */
154
155   // Get the geometry
156   AliTRDgeometry *geo = AliTRDgeometry::GetGeometry(fRunLoader);
157
158   // Create a default parameter class if none is defined
159   if (!fPar) {
160     fPar = new AliTRDparameter("TRDparameter","Standard TRD parameter");
161     printf("<AliTRDclusterizerV1::MakeCluster> ");
162     printf("Create the default parameter object.\n");
163   }
164
165   Float_t timeBinSize = fPar->GetTimeBinSize();
166   // Half of ampl.region
167   const Float_t kAmWidth = AliTRDgeometry::AmThick()/2.; 
168
169   Float_t omegaTau = fPar->GetOmegaTau();
170   if (fVerbose > 0) {
171     printf("<AliTRDclusterizerV1::MakeCluster> ");
172     printf("OmegaTau = %f \n",omegaTau);
173     printf("<AliTRDclusterizerV1::MakeCluster> ");
174     printf("Start creating clusters.\n");
175   } 
176
177   AliTRDdataArrayI *digits;
178   AliTRDdataArrayI *track0;
179   AliTRDdataArrayI *track1;
180   AliTRDdataArrayI *track2; 
181
182   // Threshold value for the maximum
183   Int_t maxThresh = fPar->GetClusMaxThresh();   
184   // Threshold value for the digit signal
185   Int_t sigThresh = fPar->GetClusSigThresh();   
186
187   // Iteration limit for unfolding procedure
188   const Float_t kEpsilon = 0.01;             
189
190   const Int_t   kNclus   = 3;  
191   const Int_t   kNsig    = 5;
192   const Int_t   kNtrack  = 3 * kNclus;
193
194   Int_t   iType          = 0;
195   Int_t   iUnfold        = 0;
196
197   Float_t ratioLeft      = 1.0;
198   Float_t ratioRight     = 1.0;
199
200   Float_t padSignal[kNsig];   
201   Float_t clusterSignal[kNclus];
202   Float_t clusterPads[kNclus];   
203   Int_t   clusterDigit[kNclus];
204   Int_t   clusterTracks[kNtrack];   
205
206   Int_t chamBeg = 0;
207   Int_t chamEnd = AliTRDgeometry::Ncham();
208   Int_t planBeg = 0;
209   Int_t planEnd = AliTRDgeometry::Nplan();
210   Int_t sectBeg = 0;
211   Int_t sectEnd = AliTRDgeometry::Nsect();
212
213   // Start clustering in every chamber
214   for (Int_t icham = chamBeg; icham < chamEnd; icham++) {
215     for (Int_t iplan = planBeg; iplan < planEnd; iplan++) {
216       for (Int_t isect = sectBeg; isect < sectEnd; isect++) {
217
218         Int_t idet = geo->GetDetector(iplan,icham,isect);
219
220         Int_t nClusters      = 0;
221         Int_t nClusters2pad  = 0;
222         Int_t nClusters3pad  = 0;
223         Int_t nClusters4pad  = 0;
224         Int_t nClusters5pad  = 0;
225         Int_t nClustersLarge = 0;
226
227         if (fVerbose > 0) {
228           printf("<AliTRDclusterizerV1::MakeCluster> ");
229           printf("Analyzing chamber %d, plane %d, sector %d.\n"
230                 ,icham,iplan,isect);
231         }
232
233         Int_t   nRowMax     = fPar->GetRowMax(iplan,icham,isect);
234         Int_t   nColMax     = fPar->GetColMax(iplan);
235         Int_t   nTimeBefore = fPar->GetTimeBefore();
236         Int_t   nTimeTotal  = fPar->GetTimeTotal();  
237
238         Float_t row0        = fPar->GetRow0(iplan,icham,isect);
239         Float_t col0        = fPar->GetCol0(iplan);
240         Float_t rowSize     = fPar->GetRowPadSize(iplan,icham,isect);
241         Float_t colSize     = fPar->GetColPadSize(iplan);
242
243         // Get the digits
244         digits = fDigitsManager->GetDigits(idet);
245         digits->Expand();
246         track0 = fDigitsManager->GetDictionary(idet,0);
247         track0->Expand();
248         track1 = fDigitsManager->GetDictionary(idet,1);
249         track1->Expand();
250         track2 = fDigitsManager->GetDictionary(idet,2); 
251         track2->Expand();
252
253         // Loop through the chamber and find the maxima 
254         for ( row = 0;  row <  nRowMax;    row++) {
255           //          for ( col = 2;  col <  nColMax;    col++) {
256           for ( col = 4;  col <  nColMax-2;    col++) {
257             for (time = 0; time < nTimeTotal; time++) {
258
259               Int_t signalL = TMath::Abs(digits->GetDataUnchecked(row,col  ,time));
260               Int_t signalM = TMath::Abs(digits->GetDataUnchecked(row,col-1,time));
261               Int_t signalR = TMath::Abs(digits->GetDataUnchecked(row,col-2,time));
262  
263               // Look for the maximum
264               if (signalM >= maxThresh) {
265                 if (((signalL >= sigThresh) &&
266                      (signalL <  signalM))  ||
267                     ((signalR >= sigThresh) &&
268                      (signalR <  signalM))) {
269                   // Maximum found, mark the position by a negative signal
270                   digits->SetDataUnchecked(row,col-1,time,-signalM);
271                 }
272               }
273
274             }  
275           }    
276         }      
277
278         // Now check the maxima and calculate the cluster position
279         for ( row = 0;  row <  nRowMax  ;  row++) {
280           for (time = 0; time < nTimeTotal; time++) {
281             for ( col = 1;  col <  nColMax-1;  col++) {
282
283               // Maximum found ?             
284               if (digits->GetDataUnchecked(row,col,time) < 0) {
285
286                 Int_t iPad;
287                 for (iPad = 0; iPad < kNclus; iPad++) {
288                   Int_t iPadCol = col - 1 + iPad;
289                   clusterSignal[iPad]     = TMath::Abs(digits->GetDataUnchecked(row
290                                                                                ,iPadCol
291                                                                                ,time));
292                   clusterDigit[iPad]      = digits->GetIndexUnchecked(row,iPadCol,time);
293                   clusterTracks[3*iPad  ] = track0->GetDataUnchecked(row,iPadCol,time) - 1;
294                   clusterTracks[3*iPad+1] = track1->GetDataUnchecked(row,iPadCol,time) - 1;
295                   clusterTracks[3*iPad+2] = track2->GetDataUnchecked(row,iPadCol,time) - 1;
296                 }
297
298                 // Count the number of pads in the cluster
299                 Int_t nPadCount = 0;
300                 Int_t ii        = 0;
301                 while (TMath::Abs(digits->GetDataUnchecked(row,col-ii  ,time))
302                                                                   >= sigThresh) {
303                   nPadCount++;
304                   ii++;
305                   if (col-ii   <        0) break;
306                 }
307                 ii = 0;
308                 while (TMath::Abs(digits->GetDataUnchecked(row,col+ii+1,time))
309                                                                   >= sigThresh) {
310                   nPadCount++;
311                   ii++;
312                   if (col+ii+1 >= nColMax) break;
313                 }
314
315                 nClusters++;
316                 switch (nPadCount) {
317                 case 2:
318                   iType = 0;
319                   nClusters2pad++;
320                   break;
321                 case 3:
322                   iType = 1;
323                   nClusters3pad++;
324                   break;
325                 case 4:
326                   iType = 2;
327                   nClusters4pad++;
328                   break;
329                 case 5:
330                   iType = 3;
331                   nClusters5pad++;
332                   break;
333                 default:
334                   iType = 4;
335                   nClustersLarge++;
336                   break;
337                 };
338
339                 // Don't analyze large clusters
340                 //if (iType == 4) continue;
341
342                 // Look for 5 pad cluster with minimum in the middle
343                 Bool_t fivePadCluster = kFALSE;
344                 if (col < nColMax-3) {
345                   if (digits->GetDataUnchecked(row,col+2,time) < 0) {
346                     fivePadCluster = kTRUE;
347                   }
348                   if ((fivePadCluster) && (col < nColMax-5)) {
349                     if (digits->GetDataUnchecked(row,col+4,time) >= sigThresh) {
350                       fivePadCluster = kFALSE;
351                     }
352                   }
353                   if ((fivePadCluster) && (col >         1)) {
354                     if (digits->GetDataUnchecked(row,col-2,time) >= sigThresh) {
355                       fivePadCluster = kFALSE;
356                     }
357                   }
358                 }
359
360                 // 5 pad cluster
361                 // Modify the signal of the overlapping pad for the left part 
362                 // of the cluster which remains from a previous unfolding
363                 if (iUnfold) {
364                   clusterSignal[0] *= ratioLeft;
365                   iType   = 3;
366                   iUnfold = 0;
367                 }
368
369                 // Unfold the 5 pad cluster
370                 if (fivePadCluster) {
371                   for (iPad = 0; iPad < kNsig; iPad++) {
372                     padSignal[iPad] = TMath::Abs(digits->GetDataUnchecked(row
373                                                                          ,col-1+iPad
374                                                                          ,time));
375                   }
376                   // Unfold the two maxima and set the signal on 
377                   // the overlapping pad to the ratio
378                   ratioRight        = Unfold(kEpsilon,iplan,padSignal);
379                   ratioLeft         = 1.0 - ratioRight; 
380                   clusterSignal[2] *= ratioRight;
381                   iType   = 3;
382                   iUnfold = 1;
383                 }
384
385                 Float_t clusterCharge = clusterSignal[0]
386                                       + clusterSignal[1]
387                                       + clusterSignal[2];
388                 
389                 // The position of the cluster
390                 clusterPads[0] = row + 0.5;
391                 // Take the shift of the additional time bins into account
392                 clusterPads[2] = time - nTimeBefore + 0.5;
393
394                 if (fPar->LUTOn()) {
395
396                   // Calculate the position of the cluster by using the
397                   // lookup table method
398                   clusterPads[1] = col + 0.5
399                                  + fPar->LUTposition(iplan,clusterSignal[0]
400                                                           ,clusterSignal[1]
401                                                           ,clusterSignal[2]);
402
403                 }
404                 else {
405
406                   // Calculate the position of the cluster by using the
407                   // center of gravity method
408                   clusterPads[1] = col + 0.5 
409                                  + (clusterSignal[2] - clusterSignal[0]) 
410                                  / clusterCharge;
411
412                 }
413
414                 Float_t q0 = clusterSignal[0];
415                 Float_t q1 = clusterSignal[1];
416                 Float_t q2 = clusterSignal[2];
417                 Float_t clusterSigmaY2 = (q1*(q0+q2)+4*q0*q2) /
418                                          (clusterCharge*clusterCharge);
419
420                 // Correct for ExB displacement
421                 if (fPar->ExBOn()) { 
422                   Int_t   local_time_bin = (Int_t) clusterPads[2];
423                   Float_t driftLength    = local_time_bin * timeBinSize + kAmWidth;
424                   Float_t colSize        = fPar->GetColPadSize(iplan);
425                   Float_t deltaY         = omegaTau*driftLength/colSize;
426                   clusterPads[1]         = clusterPads[1] - deltaY;
427                 }
428                                        
429                 if (fVerbose > 1) {
430                   printf("-----------------------------------------------------------\n");
431                   printf("Create cluster no. %d\n",nClusters);
432                   printf("Position: row = %f, col = %f, time = %f\n",clusterPads[0]
433                                                                     ,clusterPads[1]
434                                                                     ,clusterPads[2]);
435                   printf("Indices: %d, %d, %d\n",clusterDigit[0]
436                                                 ,clusterDigit[1]
437                                                 ,clusterDigit[2]);
438                   printf("Total charge = %f\n",clusterCharge);
439                   printf("Tracks: pad0 %d, %d, %d\n",clusterTracks[0]
440                                                     ,clusterTracks[1]
441                                                     ,clusterTracks[2]);
442                   printf("        pad1 %d, %d, %d\n",clusterTracks[3]
443                                                     ,clusterTracks[4]
444                                                     ,clusterTracks[5]);
445                   printf("        pad2 %d, %d, %d\n",clusterTracks[6]
446                                                     ,clusterTracks[7]
447                                                     ,clusterTracks[8]);
448                   printf("Type = %d, Number of pads = %d\n",iType,nPadCount);
449                 }
450
451                 // Calculate the position and the error
452                 Float_t clusterPos[3];
453                 clusterPos[0] = clusterPads[1] * colSize + col0;
454                 clusterPos[1] = clusterPads[0] * rowSize + row0;
455                 clusterPos[2] = clusterPads[2];
456                 Float_t clusterSig[2];
457                 clusterSig[0] = (clusterSigmaY2 + 1./12.) * colSize*colSize;
458                 clusterSig[1] = rowSize * rowSize / 12.;
459
460                 // Add the cluster to the output array 
461                 AddCluster(clusterPos
462                            ,idet
463                            ,clusterCharge
464                            ,clusterTracks
465                            ,clusterSig
466                            ,iType);
467
468               }
469             } 
470           }   
471         }     
472
473         // Compress the arrays
474         digits->Compress(1,0);
475         track0->Compress(1,0);
476         track1->Compress(1,0);
477         track2->Compress(1,0);
478
479         // Write the cluster and reset the array
480         WriteClusters(idet);
481         ResetRecPoints();
482
483         if (fVerbose > 0) {
484           printf("<AliTRDclusterizerV1::MakeCluster> ");
485           printf("Found %d clusters in total.\n"
486                 ,nClusters);
487           printf("                                    2pad:  %d\n",nClusters2pad);
488           printf("                                    3pad:  %d\n",nClusters3pad);
489           printf("                                    4pad:  %d\n",nClusters4pad);
490           printf("                                    5pad:  %d\n",nClusters5pad);
491           printf("                                    Large: %d\n",nClustersLarge);
492         }
493
494       }    
495     }      
496   }        
497
498   if (fVerbose > 0) {
499     printf("<AliTRDclusterizerV1::MakeCluster> ");
500     printf("Done.\n");
501   }
502
503   return kTRUE;
504
505 }
506
507 //_____________________________________________________________________________
508 Float_t AliTRDclusterizerV1::Unfold(Float_t eps, Int_t plane, Float_t* padSignal)
509 {
510   //
511   // Method to unfold neighbouring maxima.
512   // The charge ratio on the overlapping pad is calculated
513   // until there is no more change within the range given by eps.
514   // The resulting ratio is then returned to the calling method.
515   //
516
517   Int_t   irc               = 0;
518   Int_t   itStep            = 0;      // Count iteration steps
519
520   Float_t ratio             = 0.5;    // Start value for ratio
521   Float_t prevRatio         = 0;      // Store previous ratio
522
523   Float_t newLeftSignal[3]  = {0};    // Array to store left cluster signal
524   Float_t newRightSignal[3] = {0};    // Array to store right cluster signal
525   Float_t newSignal[3]      = {0};
526
527   // Start the iteration
528   while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
529
530     itStep++;
531     prevRatio = ratio;
532
533     // Cluster position according to charge ratio
534     Float_t maxLeft  = (ratio*padSignal[2] - padSignal[0]) 
535                      / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
536     Float_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) 
537                      / ((1-ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
538
539     // Set cluster charge ratio
540     irc = fPar->PadResponse(1.0,maxLeft ,plane,newSignal);
541     Float_t ampLeft  = padSignal[1] / newSignal[1];
542     irc = fPar->PadResponse(1.0,maxRight,plane,newSignal);
543     Float_t ampRight = padSignal[3] / newSignal[1];
544
545     // Apply pad response to parameters
546     irc = fPar->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
547     irc = fPar->PadResponse(ampRight,maxRight,plane,newRightSignal);
548
549     // Calculate new overlapping ratio
550     ratio = TMath::Min((Float_t)1.0,newLeftSignal[2] / 
551                           (newLeftSignal[2] + newRightSignal[0]));
552
553   }
554
555   return ratio;
556
557 }
558