]> git.uio.no Git - u/mrichter/AliRoot.git/blob - TRD/AliTRDclusterizerV1.cxx
Transition to NewIO
[u/mrichter/AliRoot.git] / TRD / AliTRDclusterizerV1.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /* $Id$ */
17
18 ///////////////////////////////////////////////////////////////////////////////
19 //                                                                           //
20 // TRD cluster finder for the slow simulator. 
21 //                                                                           //
22 ///////////////////////////////////////////////////////////////////////////////
23
24 #include <TF1.h>
25 #include <TTree.h>
26 #include <TH1.h>
27 #include <TFile.h>
28
29 #include "AliRun.h"
30 #include "AliRunLoader.h"
31 #include "AliLoader.h"
32
33 #include "AliTRD.h"
34 #include "AliTRDclusterizerV1.h"
35 #include "AliTRDmatrix.h"
36 #include "AliTRDgeometry.h"
37 #include "AliTRDdigitizer.h"
38 #include "AliTRDdataArrayF.h"
39 #include "AliTRDdataArrayI.h"
40 #include "AliTRDdigitsManager.h"
41 #include "AliTRDparameter.h"
42
43 ClassImp(AliTRDclusterizerV1)
44
45 //_____________________________________________________________________________
46 AliTRDclusterizerV1::AliTRDclusterizerV1():AliTRDclusterizer()
47 {
48   //
49   // AliTRDclusterizerV1 default constructor
50   //
51
52   fDigitsManager = 0;
53
54 }
55
56 //_____________________________________________________________________________
57 AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t* name, const Text_t* title)
58                     :AliTRDclusterizer(name,title)
59 {
60   //
61   // AliTRDclusterizerV1 default constructor
62   //
63
64   fDigitsManager = new AliTRDdigitsManager();
65   fDigitsManager->CreateArrays();
66
67 }
68
69 //_____________________________________________________________________________
70 AliTRDclusterizerV1::AliTRDclusterizerV1(const AliTRDclusterizerV1 &c)
71 {
72   //
73   // AliTRDclusterizerV1 copy constructor
74   //
75
76   ((AliTRDclusterizerV1 &) c).Copy(*this);
77
78 }
79
80 //_____________________________________________________________________________
81 AliTRDclusterizerV1::~AliTRDclusterizerV1()
82 {
83   //
84   // AliTRDclusterizerV1 destructor
85   //
86
87   if (fDigitsManager) {
88     delete fDigitsManager;
89     fDigitsManager = NULL;
90   }
91
92 }
93
94 //_____________________________________________________________________________
95 AliTRDclusterizerV1 &AliTRDclusterizerV1::operator=(const AliTRDclusterizerV1 &c)
96 {
97   //
98   // Assignment operator
99   //
100
101   if (this != &c) ((AliTRDclusterizerV1 &) c).Copy(*this);
102   return *this;
103
104 }
105
106 //_____________________________________________________________________________
107 void AliTRDclusterizerV1::Copy(TObject &c)
108 {
109   //
110   // Copy function
111   //
112
113   ((AliTRDclusterizerV1 &) c).fDigitsManager = 0;
114
115   AliTRDclusterizer::Copy(c);
116
117 }
118
119 //_____________________________________________________________________________
120 Bool_t AliTRDclusterizerV1::ReadDigits()
121 {
122   //
123   // Reads the digits arrays from the input aliroot file
124   //
125
126   if (!fRunLoader) {
127     printf("<AliTRDclusterizerV1::ReadDigits> ");
128     printf("No input file open\n");
129     return kFALSE;
130   }
131   AliLoader* loader = fRunLoader->GetLoader("TRDLoader");
132   if (!loader->TreeD()) loader->LoadDigits();
133
134   // Read in the digit arrays
135   return (fDigitsManager->ReadDigits(loader->TreeD()));
136
137 }
138
139 //_____________________________________________________________________________
140 Bool_t AliTRDclusterizerV1::MakeClusters()
141 {
142   //
143   // Generates the cluster.
144   //
145
146   Int_t row, col, time;
147
148   if (fTRD->IsVersion() != 1) {
149     printf("<AliTRDclusterizerV1::MakeCluster> ");
150     printf("TRD must be version 1 (slow simulator).\n");
151     return kFALSE; 
152   }
153
154   // Get the geometry
155   AliTRDgeometry *geo = fTRD->GetGeometry();
156
157   // Create a default parameter class if none is defined
158   if (!fPar) {
159     fPar = new AliTRDparameter("TRDparameter","Standard TRD parameter");
160     printf("<AliTRDclusterizerV1::MakeCluster> ");
161     printf("Create the default parameter object.\n");
162   }
163
164   Float_t timeBinSize = fPar->GetTimeBinSize();
165   // Half of ampl.region
166   const Float_t kAmWidth = AliTRDgeometry::AmThick()/2.; 
167
168   Float_t omegaTau = fPar->GetOmegaTau();
169   if (fVerbose > 0) {
170     printf("<AliTRDclusterizerV1::MakeCluster> ");
171     printf("OmegaTau = %f \n",omegaTau);
172     printf("<AliTRDclusterizerV1::MakeCluster> ");
173     printf("Start creating clusters.\n");
174   } 
175
176   AliTRDdataArrayI *digits;
177   AliTRDdataArrayI *track0;
178   AliTRDdataArrayI *track1;
179   AliTRDdataArrayI *track2; 
180
181   // Threshold value for the maximum
182   Int_t maxThresh = fPar->GetClusMaxThresh();   
183   // Threshold value for the digit signal
184   Int_t sigThresh = fPar->GetClusSigThresh();   
185
186   // Iteration limit for unfolding procedure
187   const Float_t kEpsilon = 0.01;             
188
189   const Int_t   kNclus   = 3;  
190   const Int_t   kNsig    = 5;
191   const Int_t   kNtrack  = 3 * kNclus;
192
193   Int_t   iType          = 0;
194   Int_t   iUnfold        = 0;
195
196   Float_t ratioLeft      = 1.0;
197   Float_t ratioRight     = 1.0;
198
199   Float_t padSignal[kNsig];   
200   Float_t clusterSignal[kNclus];
201   Float_t clusterPads[kNclus];   
202   Int_t   clusterDigit[kNclus];
203   Int_t   clusterTracks[kNtrack];   
204
205   Int_t chamBeg = 0;
206   Int_t chamEnd = AliTRDgeometry::Ncham();
207   if (fTRD->GetSensChamber()  >= 0) {
208     chamBeg = fTRD->GetSensChamber();
209     chamEnd = chamBeg + 1;
210   }
211   Int_t planBeg = 0;
212   Int_t planEnd = AliTRDgeometry::Nplan();
213   if (fTRD->GetSensPlane()    >= 0) {
214     planBeg = fTRD->GetSensPlane();
215     planEnd = planBeg + 1;
216   }
217   Int_t sectBeg = 0;
218   Int_t sectEnd = AliTRDgeometry::Nsect();
219
220   // Start clustering in every chamber
221   for (Int_t icham = chamBeg; icham < chamEnd; icham++) {
222     for (Int_t iplan = planBeg; iplan < planEnd; iplan++) {
223       for (Int_t isect = sectBeg; isect < sectEnd; isect++) {
224
225         if (fTRD->GetSensSector() >= 0) {
226           Int_t sens1 = fTRD->GetSensSector();
227           Int_t sens2 = sens1 + fTRD->GetSensSectorRange();
228           sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect())) 
229                  * AliTRDgeometry::Nsect();
230           if (sens1 < sens2) {
231             if ((isect < sens1) || (isect >= sens2)) continue;
232           }
233           else {
234             if ((isect < sens1) && (isect >= sens2)) continue;
235           }
236         }
237
238         Int_t idet = geo->GetDetector(iplan,icham,isect);
239
240         Int_t nClusters      = 0;
241         Int_t nClusters2pad  = 0;
242         Int_t nClusters3pad  = 0;
243         Int_t nClusters4pad  = 0;
244         Int_t nClusters5pad  = 0;
245         Int_t nClustersLarge = 0;
246
247         if (fVerbose > 0) {
248           printf("<AliTRDclusterizerV1::MakeCluster> ");
249           printf("Analyzing chamber %d, plane %d, sector %d.\n"
250                 ,icham,iplan,isect);
251         }
252
253         Int_t   nRowMax     = fPar->GetRowMax(iplan,icham,isect);
254         Int_t   nColMax     = fPar->GetColMax(iplan);
255         Int_t   nTimeBefore = fPar->GetTimeBefore();
256         Int_t   nTimeTotal  = fPar->GetTimeTotal();  
257
258         Float_t row0        = fPar->GetRow0(iplan,icham,isect);
259         Float_t col0        = fPar->GetCol0(iplan);
260         Float_t rowSize     = fPar->GetRowPadSize(iplan,icham,isect);
261         Float_t colSize     = fPar->GetColPadSize(iplan);
262
263         // Get the digits
264         digits = fDigitsManager->GetDigits(idet);
265         digits->Expand();
266         track0 = fDigitsManager->GetDictionary(idet,0);
267         track0->Expand();
268         track1 = fDigitsManager->GetDictionary(idet,1);
269         track1->Expand();
270         track2 = fDigitsManager->GetDictionary(idet,2); 
271         track2->Expand();
272
273         // Loop through the chamber and find the maxima 
274         for ( row = 0;  row <  nRowMax;    row++) {
275           for ( col = 2;  col <  nColMax;    col++) {
276             for (time = 0; time < nTimeTotal; time++) {
277
278               Int_t signalL = TMath::Abs(digits->GetDataUnchecked(row,col  ,time));
279               Int_t signalM = TMath::Abs(digits->GetDataUnchecked(row,col-1,time));
280               Int_t signalR = TMath::Abs(digits->GetDataUnchecked(row,col-2,time));
281  
282               // Look for the maximum
283               if (signalM >= maxThresh) {
284                 if (((signalL >= sigThresh) &&
285                      (signalL <  signalM))  ||
286                     ((signalR >= sigThresh) &&
287                      (signalR <  signalM))) {
288                   // Maximum found, mark the position by a negative signal
289                   digits->SetDataUnchecked(row,col-1,time,-signalM);
290                 }
291               }
292
293             }  
294           }    
295         }      
296
297         // Now check the maxima and calculate the cluster position
298         for ( row = 0;  row <  nRowMax  ;  row++) {
299           for (time = 0; time < nTimeTotal; time++) {
300             for ( col = 1;  col <  nColMax-1;  col++) {
301
302               // Maximum found ?             
303               if (digits->GetDataUnchecked(row,col,time) < 0) {
304
305                 Int_t iPad;
306                 for (iPad = 0; iPad < kNclus; iPad++) {
307                   Int_t iPadCol = col - 1 + iPad;
308                   clusterSignal[iPad]     = TMath::Abs(digits->GetDataUnchecked(row
309                                                                                ,iPadCol
310                                                                                ,time));
311                   clusterDigit[iPad]      = digits->GetIndexUnchecked(row,iPadCol,time);
312                   clusterTracks[3*iPad  ] = track0->GetDataUnchecked(row,iPadCol,time) - 1;
313                   clusterTracks[3*iPad+1] = track1->GetDataUnchecked(row,iPadCol,time) - 1;
314                   clusterTracks[3*iPad+2] = track2->GetDataUnchecked(row,iPadCol,time) - 1;
315                 }
316
317                 // Count the number of pads in the cluster
318                 Int_t nPadCount = 0;
319                 Int_t ii        = 0;
320                 while (TMath::Abs(digits->GetDataUnchecked(row,col-ii  ,time))
321                                                                   >= sigThresh) {
322                   nPadCount++;
323                   ii++;
324                   if (col-ii   <        0) break;
325                 }
326                 ii = 0;
327                 while (TMath::Abs(digits->GetDataUnchecked(row,col+ii+1,time))
328                                                                   >= sigThresh) {
329                   nPadCount++;
330                   ii++;
331                   if (col+ii+1 >= nColMax) break;
332                 }
333
334                 nClusters++;
335                 switch (nPadCount) {
336                 case 2:
337                   iType = 0;
338                   nClusters2pad++;
339                   break;
340                 case 3:
341                   iType = 1;
342                   nClusters3pad++;
343                   break;
344                 case 4:
345                   iType = 2;
346                   nClusters4pad++;
347                   break;
348                 case 5:
349                   iType = 3;
350                   nClusters5pad++;
351                   break;
352                 default:
353                   iType = 4;
354                   nClustersLarge++;
355                   break;
356                 };
357
358                 // Don't analyze large clusters
359                 //if (iType == 4) continue;
360
361                 // Look for 5 pad cluster with minimum in the middle
362                 Bool_t fivePadCluster = kFALSE;
363                 if (col < nColMax-3) {
364                   if (digits->GetDataUnchecked(row,col+2,time) < 0) {
365                     fivePadCluster = kTRUE;
366                   }
367                   if ((fivePadCluster) && (col < nColMax-5)) {
368                     if (digits->GetDataUnchecked(row,col+4,time) >= sigThresh) {
369                       fivePadCluster = kFALSE;
370                     }
371                   }
372                   if ((fivePadCluster) && (col >         1)) {
373                     if (digits->GetDataUnchecked(row,col-2,time) >= sigThresh) {
374                       fivePadCluster = kFALSE;
375                     }
376                   }
377                 }
378
379                 // 5 pad cluster
380                 // Modify the signal of the overlapping pad for the left part 
381                 // of the cluster which remains from a previous unfolding
382                 if (iUnfold) {
383                   clusterSignal[0] *= ratioLeft;
384                   iType   = 3;
385                   iUnfold = 0;
386                 }
387
388                 // Unfold the 5 pad cluster
389                 if (fivePadCluster) {
390                   for (iPad = 0; iPad < kNsig; iPad++) {
391                     padSignal[iPad] = TMath::Abs(digits->GetDataUnchecked(row
392                                                                          ,col-1+iPad
393                                                                          ,time));
394                   }
395                   // Unfold the two maxima and set the signal on 
396                   // the overlapping pad to the ratio
397                   ratioRight        = Unfold(kEpsilon,iplan,padSignal);
398                   ratioLeft         = 1.0 - ratioRight; 
399                   clusterSignal[2] *= ratioRight;
400                   iType   = 3;
401                   iUnfold = 1;
402                 }
403
404                 Float_t clusterCharge = clusterSignal[0]
405                                       + clusterSignal[1]
406                                       + clusterSignal[2];
407                 
408                 // The position of the cluster
409                 clusterPads[0] = row + 0.5;
410                 // Take the shift of the additional time bins into account
411                 clusterPads[2] = time - nTimeBefore + 0.5;
412
413                 if (fPar->LUTOn()) {
414
415                   // Calculate the position of the cluster by using the
416                   // lookup table method
417                   clusterPads[1] = col + 0.5
418                                  + fPar->LUTposition(iplan,clusterSignal[0]
419                                                           ,clusterSignal[1]
420                                                           ,clusterSignal[2]);
421
422                 }
423                 else {
424
425                   // Calculate the position of the cluster by using the
426                   // center of gravity method
427                   clusterPads[1] = col + 0.5 
428                                  + (clusterSignal[2] - clusterSignal[0]) 
429                                  / clusterCharge;
430
431                 }
432
433                 Float_t q0 = clusterSignal[0];
434                 Float_t q1 = clusterSignal[1];
435                 Float_t q2 = clusterSignal[2];
436                 Float_t clusterSigmaY2 = (q1*(q0+q2)+4*q0*q2) /
437                                          (clusterCharge*clusterCharge);
438
439                 // Correct for ExB displacement
440                 if (fPar->ExBOn()) { 
441                   Int_t   local_time_bin = (Int_t) clusterPads[2];
442                   Float_t driftLength    = local_time_bin * timeBinSize + kAmWidth;
443                   Float_t colSize        = fPar->GetColPadSize(iplan);
444                   Float_t deltaY         = omegaTau*driftLength/colSize;
445                   clusterPads[1]         = clusterPads[1] - deltaY;
446                 }
447                                        
448                 if (fVerbose > 1) {
449                   printf("-----------------------------------------------------------\n");
450                   printf("Create cluster no. %d\n",nClusters);
451                   printf("Position: row = %f, col = %f, time = %f\n",clusterPads[0]
452                                                                     ,clusterPads[1]
453                                                                     ,clusterPads[2]);
454                   printf("Indices: %d, %d, %d\n",clusterDigit[0]
455                                                 ,clusterDigit[1]
456                                                 ,clusterDigit[2]);
457                   printf("Total charge = %f\n",clusterCharge);
458                   printf("Tracks: pad0 %d, %d, %d\n",clusterTracks[0]
459                                                     ,clusterTracks[1]
460                                                     ,clusterTracks[2]);
461                   printf("        pad1 %d, %d, %d\n",clusterTracks[3]
462                                                     ,clusterTracks[4]
463                                                     ,clusterTracks[5]);
464                   printf("        pad2 %d, %d, %d\n",clusterTracks[6]
465                                                     ,clusterTracks[7]
466                                                     ,clusterTracks[8]);
467                   printf("Type = %d, Number of pads = %d\n",iType,nPadCount);
468                 }
469
470                 // Calculate the position and the error
471                 Float_t clusterPos[3];
472                 clusterPos[0] = clusterPads[1] * colSize + col0;
473                 clusterPos[1] = clusterPads[0] * rowSize + row0;
474                 clusterPos[2] = clusterPads[2];
475                 Float_t clusterSig[2];
476                 clusterSig[0] = (clusterSigmaY2 + 1./12.) * colSize*colSize;
477                 clusterSig[1] = rowSize * rowSize / 12.;
478
479                 // Add the cluster to the output array 
480                 fTRD->AddCluster(clusterPos
481                                 ,idet
482                                 ,clusterCharge
483                                 ,clusterTracks
484                                 ,clusterSig
485                                 ,iType);
486
487               }
488             } 
489           }   
490         }     
491
492         // Compress the arrays
493         digits->Compress(1,0);
494         track0->Compress(1,0);
495         track1->Compress(1,0);
496         track2->Compress(1,0);
497
498         // Write the cluster and reset the array
499         WriteClusters(idet);
500         fTRD->ResetRecPoints();
501
502         if (fVerbose > 0) {
503           printf("<AliTRDclusterizerV1::MakeCluster> ");
504           printf("Found %d clusters in total.\n"
505                 ,nClusters);
506           printf("                                    2pad:  %d\n",nClusters2pad);
507           printf("                                    3pad:  %d\n",nClusters3pad);
508           printf("                                    4pad:  %d\n",nClusters4pad);
509           printf("                                    5pad:  %d\n",nClusters5pad);
510           printf("                                    Large: %d\n",nClustersLarge);
511         }
512
513       }    
514     }      
515   }        
516
517   if (fVerbose > 0) {
518     printf("<AliTRDclusterizerV1::MakeCluster> ");
519     printf("Done.\n");
520   }
521
522   return kTRUE;
523
524 }
525
526 //_____________________________________________________________________________
527 Float_t AliTRDclusterizerV1::Unfold(Float_t eps, Int_t plane, Float_t* padSignal)
528 {
529   //
530   // Method to unfold neighbouring maxima.
531   // The charge ratio on the overlapping pad is calculated
532   // until there is no more change within the range given by eps.
533   // The resulting ratio is then returned to the calling method.
534   //
535
536   Int_t   irc               = 0;
537   Int_t   itStep            = 0;      // Count iteration steps
538
539   Float_t ratio             = 0.5;    // Start value for ratio
540   Float_t prevRatio         = 0;      // Store previous ratio
541
542   Float_t newLeftSignal[3]  = {0};    // Array to store left cluster signal
543   Float_t newRightSignal[3] = {0};    // Array to store right cluster signal
544   Float_t newSignal[3]      = {0};
545
546   // Start the iteration
547   while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
548
549     itStep++;
550     prevRatio = ratio;
551
552     // Cluster position according to charge ratio
553     Float_t maxLeft  = (ratio*padSignal[2] - padSignal[0]) 
554                      / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
555     Float_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) 
556                      / ((1-ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
557
558     // Set cluster charge ratio
559     irc = fPar->PadResponse(1.0,maxLeft ,plane,newSignal);
560     Float_t ampLeft  = padSignal[1] / newSignal[1];
561     irc = fPar->PadResponse(1.0,maxRight,plane,newSignal);
562     Float_t ampRight = padSignal[3] / newSignal[1];
563
564     // Apply pad response to parameters
565     irc = fPar->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
566     irc = fPar->PadResponse(ampRight,maxRight,plane,newRightSignal);
567
568     // Calculate new overlapping ratio
569     ratio = TMath::Min((Float_t)1.0,newLeftSignal[2] / 
570                           (newLeftSignal[2] + newRightSignal[0]));
571
572   }
573
574   return ratio;
575
576 }
577