]> git.uio.no Git - u/mrichter/AliRoot.git/blob - TRD/AliTRDclusterizerV1.cxx
Updated version of the TRD reconstruction (M.Ivanov)
[u/mrichter/AliRoot.git] / TRD / AliTRDclusterizerV1.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /* $Id$ */
17
18 ///////////////////////////////////////////////////////////////////////////////
19 //                                                                           //
20 // TRD cluster finder for the slow simulator. 
21 //                                                                           //
22 ///////////////////////////////////////////////////////////////////////////////
23
24 #include <TF1.h>
25 #include <TTree.h>
26 #include <TH1.h>
27 #include <TFile.h>
28
29 #include "AliRun.h"
30 #include "AliRunLoader.h"
31 #include "AliLoader.h"
32
33 #include "AliTRDclusterizerV1.h"
34 #include "AliTRDmatrix.h"
35 #include "AliTRDgeometry.h"
36 #include "AliTRDdataArrayF.h"
37 #include "AliTRDdataArrayI.h"
38 #include "AliTRDdigitsManager.h"
39 #include "AliTRDparameter.h"
40 #include "AliTRDpadPlane.h"
41
42 ClassImp(AliTRDclusterizerV1)
43
44 //_____________________________________________________________________________
45 AliTRDclusterizerV1::AliTRDclusterizerV1():AliTRDclusterizer()
46 {
47   //
48   // AliTRDclusterizerV1 default constructor
49   //
50
51   fDigitsManager = 0;
52
53 }
54
55 //_____________________________________________________________________________
56 AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t* name, const Text_t* title)
57                     :AliTRDclusterizer(name,title)
58 {
59   //
60   // AliTRDclusterizerV1 default constructor
61   //
62
63   fDigitsManager = new AliTRDdigitsManager();
64   fDigitsManager->CreateArrays();
65
66 }
67
68 //_____________________________________________________________________________
69 AliTRDclusterizerV1::AliTRDclusterizerV1(const AliTRDclusterizerV1 &c)
70 :AliTRDclusterizer(c)
71 {
72   //
73   // AliTRDclusterizerV1 copy constructor
74   //
75
76   ((AliTRDclusterizerV1 &) c).Copy(*this);
77
78 }
79
80 //_____________________________________________________________________________
81 AliTRDclusterizerV1::~AliTRDclusterizerV1()
82 {
83   //
84   // AliTRDclusterizerV1 destructor
85   //
86
87   if (fDigitsManager) {
88     delete fDigitsManager;
89     fDigitsManager = NULL;
90   }
91
92 }
93
94 //_____________________________________________________________________________
95 AliTRDclusterizerV1 &AliTRDclusterizerV1::operator=(const AliTRDclusterizerV1 &c)
96 {
97   //
98   // Assignment operator
99   //
100
101   if (this != &c) ((AliTRDclusterizerV1 &) c).Copy(*this);
102   return *this;
103
104 }
105
106 //_____________________________________________________________________________
107 void AliTRDclusterizerV1::Copy(TObject &c) const
108 {
109   //
110   // Copy function
111   //
112
113   ((AliTRDclusterizerV1 &) c).fDigitsManager = 0;
114
115   AliTRDclusterizer::Copy(c);
116
117 }
118
119 //_____________________________________________________________________________
120 Bool_t AliTRDclusterizerV1::ReadDigits()
121 {
122   //
123   // Reads the digits arrays from the input aliroot file
124   //
125
126   if (!fRunLoader) {
127     printf("<AliTRDclusterizerV1::ReadDigits> ");
128     printf("No input file open\n");
129     return kFALSE;
130   }
131   AliLoader* loader = fRunLoader->GetLoader("TRDLoader");
132   if (!loader->TreeD()) loader->LoadDigits();
133
134   // Read in the digit arrays
135   return (fDigitsManager->ReadDigits(loader->TreeD()));
136
137 }
138
139 //_____________________________________________________________________________
140 Bool_t AliTRDclusterizerV1::MakeClusters()
141 {
142   //
143   // Generates the cluster.
144   //
145
146   Int_t row, col, time;
147
148   /*
149   if (fTRD->IsVersion() != 1) {
150     printf("<AliTRDclusterizerV1::MakeCluster> ");
151     printf("TRD must be version 1 (slow simulator).\n");
152     return kFALSE; 
153   }
154   */
155
156   // Get the geometry
157   AliTRDgeometry *geo = AliTRDgeometry::GetGeometry(fRunLoader);
158
159   // Create a default parameter class if none is defined
160   if (!fPar) {
161     fPar = new AliTRDparameter("TRDparameter","Standard TRD parameter");
162     printf("<AliTRDclusterizerV1::MakeCluster> ");
163     printf("Create the default parameter object.\n");
164   }
165   fPar->Init();
166
167   //Float_t timeBinSize = fPar->GetDriftVelocity()
168   //                    / fPar->GetSamplingFrequency();
169   // Half of ampl.region
170   //  const Float_t kAmWidth = AliTRDgeometry::AmThick()/2.; 
171
172   Float_t omegaTau = fPar->GetOmegaTau();
173   if (fVerbose > 0) {
174     printf("<AliTRDclusterizerV1::MakeCluster> ");
175     printf("OmegaTau = %f \n",omegaTau);
176     printf("<AliTRDclusterizerV1::MakeCluster> ");
177     printf("Start creating clusters.\n");
178   } 
179
180   AliTRDdataArrayI *digits;
181   AliTRDdataArrayI *track0;
182   AliTRDdataArrayI *track1;
183   AliTRDdataArrayI *track2; 
184
185   // Threshold value for the maximum
186   Int_t maxThresh = fPar->GetClusMaxThresh();   
187   // Threshold value for the digit signal
188   Int_t sigThresh = fPar->GetClusSigThresh();   
189   // Iteration limit for unfolding procedure
190   const Float_t kEpsilon = 0.01;             
191
192   const Int_t   kNclus   = 3;  
193   const Int_t   kNsig    = 5;
194   const Int_t   kNtrack  = 3 * kNclus;
195
196   Int_t    iType         = 0;
197   Int_t    iUnfold       = 0;  
198   Double_t ratioLeft     = 1.0;
199   Double_t ratioRight    = 1.0;
200
201   //
202   Double_t padSignal[kNsig];   
203   Double_t clusterSignal[kNclus];
204   Double_t clusterPads[kNclus];   
205   Int_t    clusterDigit[kNclus];
206   Int_t    clusterTracks[kNtrack];   
207
208   Int_t    chamBeg = 0;
209   Int_t    chamEnd = AliTRDgeometry::Ncham();
210   Int_t    planBeg = 0;
211   Int_t    planEnd = AliTRDgeometry::Nplan();
212   Int_t    sectBeg = 0;
213   Int_t    sectEnd = AliTRDgeometry::Nsect();
214
215   // Start clustering in every chamber
216   for (Int_t icham = chamBeg; icham < chamEnd; icham++) {
217     for (Int_t iplan = planBeg; iplan < planEnd; iplan++) {
218       for (Int_t isect = sectBeg; isect < sectEnd; isect++) {
219
220         Int_t idet = geo->GetDetector(iplan,icham,isect);
221
222         Int_t nClusters      = 0;
223         Int_t nClusters2pad  = 0;
224         Int_t nClusters3pad  = 0;
225         Int_t nClusters4pad  = 0;
226         Int_t nClusters5pad  = 0;
227         Int_t nClustersLarge = 0;
228
229         if (fVerbose > 0) {
230           printf("<AliTRDclusterizerV1::MakeCluster> ");
231           printf("Analyzing chamber %d, plane %d, sector %d.\n"
232                 ,icham,iplan,isect);
233         }
234
235         Int_t    nRowMax     = fPar->GetRowMax(iplan,icham,isect);
236         Int_t    nColMax     = fPar->GetColMax(iplan);
237         Int_t    nTimeBefore = fPar->GetTimeBefore();
238         Int_t    nTimeTotal  = fPar->GetTimeTotal();  
239
240         AliTRDpadPlane *padPlane = fPar->GetPadPlane(iplan,icham);
241
242         // Get the digits
243         digits = fDigitsManager->GetDigits(idet);
244         digits->Expand();
245         track0 = fDigitsManager->GetDictionary(idet,0);
246         track0->Expand();
247         track1 = fDigitsManager->GetDictionary(idet,1);
248         track1->Expand();
249         track2 = fDigitsManager->GetDictionary(idet,2); 
250         track2->Expand();
251
252         // Loop through the chamber and find the maxima 
253         for ( row = 0;  row <  nRowMax;    row++) {
254           //          for ( col = 2;  col <  nColMax;    col++) {
255           for ( col = 4;  col <  nColMax-2;    col++) {
256             for (time = 0; time < nTimeTotal; time++) {
257
258               Int_t signalL = TMath::Abs(digits->GetDataUnchecked(row,col  ,time));
259               Int_t signalM = TMath::Abs(digits->GetDataUnchecked(row,col-1,time));
260               Int_t signalR = TMath::Abs(digits->GetDataUnchecked(row,col-2,time));
261  
262 //            // Look for the maximum
263 //               if (signalM >= maxThresh) {
264 //                 if (((signalL >= sigThresh) &&
265 //                      (signalL <  signalM))  ||
266 //                     ((signalR >= sigThresh) &&
267 //                      (signalR <  signalM))) {
268 //                   // Maximum found, mark the position by a negative signal
269 //                   digits->SetDataUnchecked(row,col-1,time,-signalM);
270 //              }
271 //            }
272               // Look for the maximum
273               if (signalM >= maxThresh) {
274                 if ( (signalL<=signalM) && (signalR<=signalM) && (signalL+signalR)>sigThresh ) {
275                   // Maximum found, mark the position by a negative signal
276                   digits->SetDataUnchecked(row,col-1,time,-signalM);
277                 }
278               }
279
280             }  
281           }    
282         }      
283
284         // Now check the maxima and calculate the cluster position
285         for ( row = 0;  row <  nRowMax  ;  row++) {
286           for (time = 0; time < nTimeTotal; time++) {
287             for ( col = 1;  col <  nColMax-1;  col++) {
288
289               // Maximum found ?             
290               if (digits->GetDataUnchecked(row,col,time) < 0) {
291
292                 Int_t iPad;
293                 for (iPad = 0; iPad < kNclus; iPad++) {
294                   Int_t iPadCol = col - 1 + iPad;
295                   clusterSignal[iPad]     = TMath::Abs(digits->GetDataUnchecked(row
296                                                                                ,iPadCol
297                                                                                ,time));
298                   clusterDigit[iPad]      = digits->GetIndexUnchecked(row,iPadCol,time);
299                   clusterTracks[3*iPad  ] = track0->GetDataUnchecked(row,iPadCol,time) - 1;
300                   clusterTracks[3*iPad+1] = track1->GetDataUnchecked(row,iPadCol,time) - 1;
301                   clusterTracks[3*iPad+2] = track2->GetDataUnchecked(row,iPadCol,time) - 1;
302                 }
303
304                 // Count the number of pads in the cluster
305                 Int_t nPadCount = 0;
306                 Int_t ii        = 0;
307                 while (TMath::Abs(digits->GetDataUnchecked(row,col-ii  ,time))
308                                                                   >= sigThresh) {
309                   nPadCount++;
310                   ii++;
311                   if (col-ii   <        0) break;
312                 }
313                 ii = 0;
314                 while (TMath::Abs(digits->GetDataUnchecked(row,col+ii+1,time))
315                                                                   >= sigThresh) {
316                   nPadCount++;
317                   ii++;
318                   if (col+ii+1 >= nColMax) break;
319                 }
320
321                 nClusters++;
322                 switch (nPadCount) {
323                 case 2:
324                   iType = 0;
325                   nClusters2pad++;
326                   break;
327                 case 3:
328                   iType = 1;
329                   nClusters3pad++;
330                   break;
331                 case 4:
332                   iType = 2;
333                   nClusters4pad++;
334                   break;
335                 case 5:
336                   iType = 3;
337                   nClusters5pad++;
338                   break;
339                 default:
340                   iType = 4;
341                   nClustersLarge++;
342                   break;
343                 };
344
345                  // Look for 5 pad cluster with minimum in the middle
346                 Bool_t fivePadCluster = kFALSE;
347                 if (col < nColMax-3) {
348                   if (digits->GetDataUnchecked(row,col+2,time) < 0) {
349                     fivePadCluster = kTRUE;
350                   }
351                   if ((fivePadCluster) && (col < nColMax-5)) {
352                     if (digits->GetDataUnchecked(row,col+4,time) >= sigThresh) {
353                       fivePadCluster = kFALSE;
354                     }
355                   }
356                   if ((fivePadCluster) && (col >         1)) {
357                     if (digits->GetDataUnchecked(row,col-2,time) >= sigThresh) {
358                       fivePadCluster = kFALSE;
359                     }
360                   }
361                 }
362
363                 // 5 pad cluster
364                 // Modify the signal of the overlapping pad for the left part 
365                 // of the cluster which remains from a previous unfolding
366                 if (iUnfold) {
367                   clusterSignal[0] *= ratioLeft;
368                   iType   = 5;
369                   iUnfold = 0;
370                 }
371
372                 // Unfold the 5 pad cluster
373                 if (fivePadCluster) {
374                   for (iPad = 0; iPad < kNsig; iPad++) {
375                     padSignal[iPad] = TMath::Abs(digits->GetDataUnchecked(row
376                                                                          ,col-1+iPad
377                                                                          ,time));
378                   }
379                   // Unfold the two maxima and set the signal on 
380                   // the overlapping pad to the ratio
381                   ratioRight        = Unfold(kEpsilon,iplan,padSignal);
382                   ratioLeft         = 1.0 - ratioRight; 
383                   clusterSignal[2] *= ratioRight;
384                   iType   = 5;
385                   iUnfold = 1;
386                 }
387
388
389                 Double_t clusterCharge = clusterSignal[0]
390                                        + clusterSignal[1]
391                                        + clusterSignal[2];
392                 
393                 // The position of the cluster
394                 clusterPads[0] = row + 0.5;
395                 // Take the shift of the additional time bins into account
396                 clusterPads[2] = time - nTimeBefore + 0.5;
397
398                 if (fPar->LUTOn()) {
399                   // Calculate the position of the cluster by using the
400                   // lookup table method
401                   clusterPads[1] =
402                                   fPar->LUTposition(iplan,clusterSignal[0]
403                                                           ,clusterSignal[1]
404                                                           ,clusterSignal[2]);
405                 }
406                 else {
407                   // Calculate the position of the cluster by using the
408                   // center of gravity method
409                   for (Int_t i=0;i<5;i++) padSignal[i]=0;
410                   padSignal[2] = TMath::Abs(digits->GetDataUnchecked(row,col,time));   // central  pad
411                   padSignal[1] = TMath::Abs(digits->GetDataUnchecked(row,col-1,time)); // left     pad
412                   padSignal[3] = TMath::Abs(digits->GetDataUnchecked(row,col+1,time)); // right    pad
413                   if (col>2 &&TMath::Abs(digits->GetDataUnchecked(row,col-2,time)<padSignal[1])){
414                     padSignal[0] = TMath::Abs(digits->GetDataUnchecked(row,col-2,time));
415                   }
416                   if (col<nColMax-3 &&TMath::Abs(digits->GetDataUnchecked(row,col+2,time)<padSignal[3])){
417                     padSignal[4] = TMath::Abs(digits->GetDataUnchecked(row,col+2,time));
418                   }               
419                   clusterPads[1] =  GetCOG(padSignal);
420                   Double_t check = fPar->LUTposition(iplan,clusterSignal[0]
421                                                           ,clusterSignal[1]
422                                                           ,clusterSignal[2]);
423                   //              clusterPads[1] = check;
424
425                 }
426
427                 Double_t q0 = clusterSignal[0];
428                 Double_t q1 = clusterSignal[1];
429                 Double_t q2 = clusterSignal[2];
430                 Double_t clusterSigmaY2 = (q1*(q0+q2)+4*q0*q2) /
431                                           (clusterCharge*clusterCharge);
432
433                 // Calculate the position and the error
434                 Double_t colSize = padPlane->GetColSize(col);
435                 Double_t rowSize = padPlane->GetRowSize(row);
436                 Double_t clusterPos[3];
437                 clusterPos[0] = padPlane->GetColPos(col) + (clusterPads[1]-0.5)*colSize;  // MI change
438                 clusterPos[1] = padPlane->GetRowPos(row) -0.5*rowSize; //MI change
439                 clusterPos[2] = clusterPads[2];
440                 Double_t clusterSig[2];
441                 clusterSig[0] = (clusterSigmaY2 + 1./12.) * colSize*colSize;
442                 clusterSig[1] = rowSize * rowSize / 12.;                                       
443                 // Add the cluster to the output array 
444                 AddCluster(clusterPos
445                           ,idet
446                           ,clusterCharge
447                           ,clusterTracks
448                           ,clusterSig
449                           ,iType);
450
451               }
452             } 
453           }   
454         }     
455
456         // Compress the arrays
457         digits->Compress(1,0);
458         track0->Compress(1,0);
459         track1->Compress(1,0);
460         track2->Compress(1,0);
461
462         // Write the cluster and reset the array
463         WriteClusters(idet);
464         ResetRecPoints();
465       }    
466     }      
467   }        
468
469   if (fVerbose > 0) {
470     printf("<AliTRDclusterizerV1::MakeCluster> ");
471     printf("Done.\n");
472   }
473
474   return kTRUE;
475
476 }
477
478 Double_t AliTRDclusterizerV1::GetCOG(Double_t signal[5])
479 {
480   //
481   // get COG position
482   // used for clusters with more than 3 pads - where LUT not applicable
483   Double_t sum = signal[0]+signal[1]+signal[2]+signal[3]+signal[4];
484   Double_t res = (0.0*(-signal[0]+signal[4])+(-signal[1]+signal[3]))/sum;
485   return res;             
486 }
487
488
489
490 //_____________________________________________________________________________
491 Double_t AliTRDclusterizerV1::Unfold(Double_t eps, Int_t plane, Double_t* padSignal)
492 {
493   //
494   // Method to unfold neighbouring maxima.
495   // The charge ratio on the overlapping pad is calculated
496   // until there is no more change within the range given by eps.
497   // The resulting ratio is then returned to the calling method.
498   //
499
500   Int_t   irc                = 0;
501   Int_t   itStep             = 0;      // Count iteration steps
502
503   Double_t ratio             = 0.5;    // Start value for ratio
504   Double_t prevRatio         = 0;      // Store previous ratio
505
506   Double_t newLeftSignal[3]  = {0};    // Array to store left cluster signal
507   Double_t newRightSignal[3] = {0};    // Array to store right cluster signal
508   Double_t newSignal[3]      = {0};
509
510   // Start the iteration
511   while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
512
513     itStep++;
514     prevRatio = ratio;
515
516     // Cluster position according to charge ratio
517     Double_t maxLeft  = (ratio*padSignal[2] - padSignal[0]) 
518                       / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
519     Double_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) 
520                       / ((1-ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
521
522     // Set cluster charge ratio
523     irc = fPar->PadResponse(1.0,maxLeft ,plane,newSignal);
524     Double_t ampLeft  = padSignal[1] / newSignal[1];
525     irc = fPar->PadResponse(1.0,maxRight,plane,newSignal);
526     Double_t ampRight = padSignal[3] / newSignal[1];
527
528     // Apply pad response to parameters
529     irc = fPar->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
530     irc = fPar->PadResponse(ampRight,maxRight,plane,newRightSignal);
531
532     // Calculate new overlapping ratio
533     ratio = TMath::Min((Double_t)1.0,newLeftSignal[2] / 
534                           (newLeftSignal[2] + newRightSignal[0]));
535
536   }
537
538   return ratio;
539
540 }
541