]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - HMPID/AliHMPIDCluster.cxx
Fix funny signs in combo boxes
[u/mrichter/AliRoot.git] / HMPID / AliHMPIDCluster.cxx
index 8504030a81036c994110ae9a399c4e874e1d5f22..0265c5b619d04491933f0f341fa79e5c243fde95 100644 (file)
 //  **************************************************************************
 
 #include "AliHMPIDCluster.h"  //class header
+#include <TVirtualFitter.h>  //Solve()
 #include <TMinuit.h>         //Solve()
 #include <TClonesArray.h>    //Solve()
 #include <TMarker.h>         //Draw()
+
+#include "AliLog.h"          //FindCusterSize()
+
+Bool_t AliHMPIDCluster::fgDoCorrSin=kTRUE;
+
 ClassImp(AliHMPIDCluster)
+    
+
+void AliHMPIDCluster::SetClusterParams(Double_t xL,Double_t yL,Int_t iCh  )
+{
+  //------------------------------------------------------------------------
+  //Set the cluster properties for the AliCluster3D part
+  //------------------------------------------------------------------------
+
+  fParam = AliHMPIDParam::Instance();
+    
+  if(!fParam->GetInstType())               //if there is no geometry we cannot retrieve the volId (only for monitoring)
+  {
+    new(this) AliCluster3D(); return;
+  }
+  
+  //Get the volume ID from the previously set PNEntry
+  UShort_t volId=AliGeomManager::LayerToVolUID(AliGeomManager::kHMPID,iCh);
+
+  
+  //get L->T cs matrix for a given chamber
+  const TGeoHMatrix *t2l= AliGeomManager::GetTracking2LocalMatrix(volId);
+
+  fParam = AliHMPIDParam::Instance();
+
+  //transformation from the pad cs to local
+  xL -= 0.5*fParam->SizeAllX();      //size of all pads with dead zones included
+  yL -= 0.5*fParam->SizeAllY();
+
+  // Get the position in the tracking cs
+  Double_t posL[3]={xL, yL, 0.};            //this is the LORS of HMPID
+  Double_t posT[3];
+  t2l->MasterToLocal(posL,posT);
+
+ //Get the cluster covariance matrix in the tracking cs
+  Double_t covL[9] = {
+    0.8*0.8/12., 0.,            0.0,                 //pad size X
+    0.,          0.84*0.84/12., 0.0,                 //pad size Y
+    0.,          0.,            0.1,                 //just 1 , no Z dimension ???
+  };
+                
+  TGeoHMatrix m;
+  m.SetRotation(covL);
+  m.Multiply(t2l);
+  m.MultiplyLeft(&t2l->Inverse());
+  Double_t *covT = m.GetRotationMatrix();
+
+  new(this) AliCluster3D(volId,            // Can be done safer
+       posT[0],posT[1],posT[2],
+       covT[0],covT[1],covT[2],
+              covT[4],covT[5],
+                      covT[8], 
+                         0x0);            // No MC labels ?
+}
+//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+AliHMPIDCluster::~AliHMPIDCluster()
+{
+  if(fDigs)  delete fDigs; fDigs=0;
+  //PH  if(fParam) delete fParam; fParam=0;
+}
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 void AliHMPIDCluster::CoG()
 {
 // Calculates naive cluster position as a center of gravity of its digits.
 // Arguments: none 
 //   Returns: none
-  
-//  if(fDigs==0) return;                                //no digits in this cluster
-  fX=fY=fQ=0;                                           //set cluster position to (0,0) to start to collect contributions
-  Int_t maxQpad=-1,maxQ=-1;                             //to calculate the pad with the highest charge
-  AliHMPIDDigit *pDig;
-  for(Int_t iDig=0;iDig<fDigs->GetEntriesFast();iDig++){//digits loop
-    pDig=(AliHMPIDDigit*)fDigs->At(iDig);               //get pointer to next digit
-    Float_t q=pDig->Q();                                //get QDC 
-    fX += pDig->LorsX()*q;fY +=pDig->LorsY()*q;         //add digit center weighted by QDC
-    fQ+=q;                                              //increment total charge 
-    if(q>maxQ) {maxQpad = pDig->Pad();maxQ=(Int_t)q;}   // to find pad with highest charge
+  Int_t minPadX=999,minPadY=999,maxPadX=-1,maxPadY=-1;      //for box finding  
+  if(fDigs==0) return;                                      //no digits in this cluster
+  fXX=fYY=fQRaw=0;                                          //init summable parameters
+  fCh = -1;                                                 //init chamber
+  Int_t maxQpad=-1,maxQ=-1;                                 //to calculate the pad with the highest charge
+  AliHMPIDDigit *pDig=0x0;
+  for(Int_t iDig=0;iDig<fDigs->GetEntriesFast();iDig++){    //digits loop
+    pDig=(AliHMPIDDigit*)fDigs->At(iDig);                   //get pointer to next digit
+    if(!pDig) continue;                                     //protection
+    if(pDig->PadPcX() > maxPadX) maxPadX = pDig->PadPcX();  // find the minimum box that contain the cluster  MaxX                            
+    if(pDig->PadPcY() > maxPadY) maxPadY = pDig->PadPcY();  //                                                MaxY
+    if(pDig->PadPcX() < minPadX) minPadX = pDig->PadPcX();  //                                                MinX   
+    if(pDig->PadPcY() < minPadY) minPadY = pDig->PadPcY();  //                                                MinY   
+    
+    Float_t q=pDig->Q();                                    //get QDC 
+    fXX += pDig->LorsX()*q;fYY +=pDig->LorsY()*q;             //add digit center weighted by QDC
+    fQRaw+=q;                                               //increment total charge 
+    if(q>maxQ) {maxQpad = pDig->Pad();maxQ=(Int_t)q;}       // to find pad with highest charge
+    fCh=pDig->Ch();                                         //initialize chamber number
   }//digits loop
-  if ( fQ != 0 )   fX/=fQ;fY/=fQ;                       //final center of gravity
   
-  CorrSin();                                            //correct it by sinoid   
-  fCh=pDig->Ch();                                       //initialize chamber number
-  fMaxQpad = maxQpad; fMaxQ=maxQ;                       //store max charge pad to the field
-  fXi=fX+99; fYi=fY+99; fQi=fQ+99;                      //initial local max position is to be shifted artificially 
+  fBox=(maxPadX-minPadX+1)*100+maxPadY-minPadY+1;           // dimension of the box: format Xdim*100+Ydim
+  
+  if ( fQRaw != 0 ) {fXX/=fQRaw;fYY/=fQRaw;}                //final center of gravity
+   
+  if(fDigs->GetEntriesFast()>1&&fgDoCorrSin)CorrSin();       //correct it by sinoid   
+  
+  fQ  = fQRaw;                                              // Before starting fit procedure, Q and QRaw must be equal
+  fMaxQpad = maxQpad; fMaxQ=maxQ;                           //store max charge pad to the field
+  fChi2=0;                                                  // no Chi2 to find
+  fNlocMax=0;                                               // proper status from this method
   fSt=kCoG;
+  
+  SetClusterParams(fXX,fYY,fCh);                              //need to fill the AliCluster3D part
 }//CoG()
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 void AliHMPIDCluster::CorrSin() 
@@ -51,38 +131,94 @@ void AliHMPIDCluster::CorrSin()
 // Correction of cluster x position due to sinoid, see HMPID TDR  page 30
 // Arguments: none
 //   Returns: none
-  AliHMPIDDigit dig;dig.Manual1(Ch(),fX,fY);                                               //tmp digit to get it center
-  Float_t x=fX-dig.LorsX();  
-  fX+=3.31267e-2*TMath::Sin(2*TMath::Pi()/0.8*x)-2.66575e-3*TMath::Sin(4*TMath::Pi()/0.8*x)+2.80553e-3*TMath::Sin(6*TMath::Pi()/0.8*x)+0.0070;
+  Int_t pc,px,py;
+  fParam->Lors2Pad(fXX,fYY,pc,px,py);             //tmp digit to get it center
+  Float_t x=fXX-fParam->LorsX(pc,px);                    //diff between cluster x and center of the pad contaning this cluster   
+  fXX+=3.31267e-2*TMath::Sin(2*TMath::Pi()/0.8*x)-2.66575e-3*TMath::Sin(4*TMath::Pi()/0.8*x)+2.80553e-3*TMath::Sin(6*TMath::Pi()/0.8*x)+0.0070;
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 void AliHMPIDCluster::Draw(Option_t*)
 {
-  TMarker *pMark=new TMarker(X(),Y(),5); pMark->SetMarkerColor(kBlue); pMark->Draw();
+  TMarker *pMark=new TMarker(X(),Y(),5); pMark->SetUniqueID(fSt);pMark->SetMarkerColor(kBlue); pMark->Draw();
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-void AliHMPIDCluster::FitFunc(Int_t &iNpars, Double_t *, Double_t &chi2, Double_t *par, Int_t )
+void AliHMPIDCluster::FitFunc(Int_t &iNpars, Double_t* deriv, Double_t &chi2, Double_t *par, Int_t iflag)
 {
 // Cluster fit function 
 // par[0]=x par[1]=y par[2]=q for the first Mathieson shape
 // par[3]=x par[4]=y par[5]=q for the second Mathieson shape and so on up to iNpars/3 Mathieson shapes
-// For each pad of the cluster calculates the difference between actual pad charge and the charge induced to this pad by all Mathieson distributions 
+// For each pad of the cluster calculates the difference between actual pad charge and the charge induced to this pad by all Mathieson distributions
 // Then the chi2 is calculated as the sum of this value squared for all pad in the cluster.  
 // Arguments: iNpars - number of parameters which is number of local maxima of cluster * 3
 //            chi2   - function result to be minimised 
 //            par   - parameters array of size iNpars            
 //   Returns: none  
-  AliHMPIDCluster *pClu=(AliHMPIDCluster*)gMinuit->GetObjectFit();
-  Int_t iNshape = iNpars/3;
-    
+  
+  AliHMPIDCluster *pClu=(AliHMPIDCluster*)TVirtualFitter::GetFitter()->GetObjectFit();
+
+  Int_t nPads = pClu->Size();  
+  
   chi2 = 0;
-  for(Int_t i=0;i<pClu->Size();i++){                                       //loop on all pads of the cluster
-    Double_t dQpadMath = 0;                                                //pad charge collector  
-    for(Int_t j=0;j<iNshape;j++){                                          //Mathiesons loop as all of them may contribute to this pad
-      dQpadMath+=par[3*j+2]*pClu->Dig(i)->Mathieson(par[3*j],par[3*j+1]);  // par[3*j+2] is charge par[3*j] is x par[3*j+1] is y of current Mathieson
+  
+  Int_t iNshape = iNpars/3;
+  
+  for(Int_t i=0;i<nPads;i++){                                                          //loop on all pads of the cluster
+    Double_t dQpadMath = 0;
+    for(Int_t j=0;j<iNshape;j++){                                                      //Mathiesons loop as all of them may contribute to this pad
+      Double_t fracMathi = pClu->Dig(i)->IntMathieson(par[3*j],par[3*j+1]);
+      dQpadMath+=par[3*j+2]*fracMathi;                                                 // par[3*j+2] is charge par[3*j] is x par[3*j+1] is y of current Mathieson
+    }
+    if(dQpadMath>0 && pClu->Dig(i)->Q()>0) {
+      chi2 +=TMath::Power((pClu->Dig(i)->Q()-dQpadMath),2)/pClu->Dig(i)->Q();          //chi2 function to be minimized
     }
-    chi2 +=TMath::Power((pClu->Dig(i)->Q()-dQpadMath),2);                  //
-  }                                                                             //loop on all pads of the cluster     
+  }
+//---calculate gradients...  
+  if(iflag==2) {
+    Double_t **derivPart;
+
+    derivPart = new Double_t*[iNpars];
+
+    for(Int_t j=0;j<iNpars;j++){                                                      
+      deriv[j] = 0;
+      derivPart[j] = new Double_t[nPads];
+      for(Int_t i=0;i<nPads;i++){                                                          
+        derivPart[j][i] = 0;
+      }
+    }
+
+    for(Int_t i=0;i<nPads;i++){                                                          //loop on all pads of the cluster
+      for(Int_t j=0;j<iNshape;j++){                                                      //Mathiesons loop as all of them may contribute to this pad
+        Double_t fracMathi = pClu->Dig(i)->IntMathieson(par[3*j],par[3*j+1]);
+        derivPart[3*j  ][i] += par[3*j+2]*(pClu->Dig(i)->MathiesonX(par[3*j]-pClu->Dig(i)->LorsX()-0.5*AliHMPIDParam::SizePadX())-
+                                           pClu->Dig(i)->MathiesonX(par[3*j]-pClu->Dig(i)->LorsX()+0.5*AliHMPIDParam::SizePadX()))*
+                                           pClu->Dig(i)->IntPartMathiY(par[3*j+1]);
+        derivPart[3*j+1][i] += par[3*j+2]*(pClu->Dig(i)->MathiesonY(par[3*j+1]-pClu->Dig(i)->LorsY()-0.5*AliHMPIDParam::SizePadY())-
+                                           pClu->Dig(i)->MathiesonY(par[3*j+1]-pClu->Dig(i)->LorsY()+0.5*AliHMPIDParam::SizePadY()))*
+                                           pClu->Dig(i)->IntPartMathiX(par[3*j]);
+        derivPart[3*j+2][i] += fracMathi;
+      }
+    }
+                                                                                         //loop on all pads of the cluster     
+    for(Int_t i=0;i<nPads;i++){                                                          //loop on all pads of the cluster
+      Double_t dQpadMath = 0;                                                            //pad charge collector  
+      for(Int_t j=0;j<iNshape;j++){                                                      //Mathiesons loop as all of them may contribute to this pad
+        Double_t fracMathi = pClu->Dig(i)->IntMathieson(par[3*j],par[3*j+1]);
+        dQpadMath+=par[3*j+2]*fracMathi;                                                 
+        if(dQpadMath>0 && pClu->Dig(i)->Q()>0) {
+          deriv[3*j]   += 2/pClu->Dig(i)->Q()*(pClu->Dig(i)->Q()-dQpadMath)*derivPart[3*j  ][i];
+          deriv[3*j+1] += 2/pClu->Dig(i)->Q()*(pClu->Dig(i)->Q()-dQpadMath)*derivPart[3*j+1][i];
+          deriv[3*j+2] += 2/pClu->Dig(i)->Q()*(pClu->Dig(i)->Q()-dQpadMath)*derivPart[3*j+2][i];
+        }
+      }
+    }
+    //delete array...
+    for(Int_t i=0;i<iNpars;i++) delete [] derivPart[i]; delete [] derivPart;
+  }
+//---gradient calculations ended
+
+// fit ended. Final calculations
+  
+  
 }//FitFunction()
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 void AliHMPIDCluster::Print(Option_t* opt)const
@@ -94,22 +230,25 @@ void AliHMPIDCluster::Print(Option_t* opt)const
     case        kUnf  : status="unfolded (fit)"   ;break;
     case        kCoG  : status="coged         "   ;break;
     case        kLo1  : status="locmax 1 (fit)"   ;break;
-    case        kAbn  : status="abnorm   (fit)"   ;break;
     case        kMax  : status="exceeded (cog)"   ;break;
     case        kNot  : status="not done (cog)"   ;break;
     case        kEmp  : status="empty         "   ;break;
     case        kEdg  : status="edge     (fit)"   ;break;
     case       kSi1  : status="size 1   (cog)"   ;break;
     case       kNoLoc: status="no LocMax(fit)"   ;break;
+    case       kAbn  : status="Abnormal fit  "   ;break;
+    case       kBig  : status="Big Clu(>100) "   ;break;
     
     default:            status="??????"          ;break;   
   }
-  Printf("%sCLU:(%7.3f,%7.3f) Q=%8.3f  ch=%i, FormedSize=%2i   N loc. max. %i Box %i  Chi2 %7.3f        %s",
-         opt,    X(),  Y(),   Q(),     Ch(),  Size(),           fNlocMax,       fBox,   fChi2,                 status);
+  Double_t ratio=0;
+  if(Q()>0&&QRaw()>0) ratio = Q()/QRaw()*100;
+  Printf("%sCLU: ch=%i  (%7.3f,%7.3f) Q=%8.3f Qraw=%8.3f(%3.0f%%) Size=%2i DimBox=%i LocMax=%i Chi2=%7.3f   %s",
+         opt,Ch(),X(),Y(),Q(),QRaw(),ratio,Size(),fBox,fNlocMax,fChi2,status);
   if(fDigs) fDigs->Print();    
 }//Print()
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-Int_t AliHMPIDCluster::Solve(TClonesArray *pCluLst,Bool_t isTryUnfold)
+Int_t AliHMPIDCluster::Solve(TClonesArray *pCluLst,Int_t *pSigmaCut, Bool_t isTryUnfold)
 {
 //This methode is invoked when the cluster is formed to solve it. Solve the cluster means to try to unfold the cluster
 //into the local maxima number of clusters. This methode is invoked by AliHMPIDRconstructor::Dig2Clu() on cluster by cluster basis.  
@@ -119,119 +258,157 @@ Int_t AliHMPIDCluster::Solve(TClonesArray *pCluLst,Bool_t isTryUnfold)
 //Arguments: pCluLst     - cluster list pointer where to add new cluster(s)
 //           isTryUnfold - flag to switch on/off unfolding   
 //  Returns: number of local maxima of original cluster
-  CoG();
-  //  Printf("1 - fStatus: %d",fSt);
-  Int_t iCluCnt=pCluLst->GetEntriesFast();                                             //get current number of clusters already stored in the list by previous operations
-  if(isTryUnfold==kFALSE || Size()==1) {                                               //if cluster contains single pad there is no way to improve the knowledge 
-    (isTryUnfold)?fSt=kSi1:fSt=kNot;
+  const Int_t kMaxLocMax=6;                                                              //max allowed number of loc max for fitting
+//  
+  CoG();                                                                                 //First calculate CoG for the given cluster
+  
+  Int_t iCluCnt=pCluLst->GetEntriesFast();                                               //get current number of clusters already stored in the list by previous operations
+  
+  Int_t rawSize = Size();                                                                //get current raw cluster size
+  
+  if(rawSize>100) {
+    fSt = kBig;
+  } else if(isTryUnfold==kFALSE) {
+    fSt = kNot;
+  } else if(rawSize==1) {
+    fSt = kSi1;
+  }
+  
+  if(rawSize>100 || isTryUnfold==kFALSE || rawSize==1) {                                 //No deconv if: 1 - big cluster (also avoid no zero suppression!)
+                                                                                         //              2 - flag is set to FALSE
+    SetClusterParams(fXX,fYY,fCh);                                                       //              3 - size = 1
     new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this);  //add this raw cluster 
     return 1;
+    
   } 
-  // Printf("2 - fStatus: %d",fSt);
-//Phase 0. Initialise TMinuit  
-  const Int_t kMaxLocMax=6;                                                            //max allowed number of loc max for fitting
-  TMinuit *pMinuit = new TMinuit(3*kMaxLocMax);                                        //init MINUIT with this number of parameters (3 params per mathieson)
-  pMinuit->SetObjectFit((TObject*)this);  pMinuit->SetFCN(AliHMPIDCluster::FitFunc);   //set fit function
-  Double_t aArg=-1;                                     Int_t iErrFlg;                 //tmp vars for TMinuit
-  pMinuit->mnexcm("SET PRI",&aArg,1,iErrFlg);                                          //suspend all printout from TMinuit 
-  pMinuit->mnexcm("SET NOW",&aArg,0,iErrFlg);                                          //suspend all warning printout from TMinuit
-//Phase 1. Find number of local maxima. Strategy is to check if the current pad has QDC more then all neigbours. Also find the box contaning the cluster   
-  fNlocMax=0;
-  Int_t minPadX=999,minPadY=999,maxPadX=-1,maxPadY=-1,pc=-1;                             //for box finding   
-  //Double_t  lowX,highX,lowY,highY;
   
-  //  Printf("3 - fStatus: %d",fSt);
- for(Int_t iDig1=0;iDig1<Size();iDig1++) {                                              //first digits loop
-    AliHMPIDDigit *pDig1 = Dig(iDig1);                                                   //take next digit
-    pc=pDig1->Pc();                                                                      //finding the box  
+//Phase 0. Initialise Fitter  
+  Double_t arglist[10];
+  Int_t ierflg = 0;
+  TVirtualFitter* fitter = TVirtualFitter::Fitter(this,3*6);                       //initialize Fitter
+  //
+  arglist[0] = -1;
+  ierflg = fitter->ExecuteCommand("SET PRI", arglist, 1);                               // no printout
+  ierflg = fitter->ExecuteCommand("SET NOW", arglist, 0);                               //no warning messages
+  arglist[0] =  1;
+  ierflg = fitter->ExecuteCommand("SET GRA", arglist, 1);                               //force Fitter to use my gradient
+
+  fitter->SetFCN(AliHMPIDCluster::FitFunc);
+
+//  arglist[0] = 1;
+//  ierflg = fitter->ExecuteCommand("SET ERR", arglist ,1);
+  
+// Set starting values and step sizes for parameters
     
-    if(pDig1->PadPcX() > maxPadX) maxPadX = pDig1->PadPcX();                              
-    if(pDig1->PadPcY() > maxPadY) maxPadY = pDig1->PadPcY();
-    if(pDig1->PadPcX() < minPadX) minPadX = pDig1->PadPcX();
-    if(pDig1->PadPcY() < minPadY) minPadY = pDig1->PadPcY();
+//Phase 1. Find number of local maxima. Strategy is to check if the current pad has QDC more then all neigbours. Also find the box contaning the cluster   
+  fNlocMax=0;
+
+  for(Int_t iDig1=0;iDig1<rawSize;iDig1++) {                                               //first digits loop
     
-    fBox=(maxPadX-minPadX+1)*100+maxPadY-minPadY+1;
+    AliHMPIDDigit *pDig1 = Dig(iDig1);                                                   //take next digit    
+    Int_t iCnt = 0;                                                                      //counts how many neighbouring pads has QDC more then current one
     
-    Int_t iHowManyMoreCnt = 0;                                                           //counts how many neighbouring pads has QDC more then current one
-    for(Int_t iDig2=0;iDig2<Size();iDig2++) {                                            //loop on all digits again
+    for(Int_t iDig2=0;iDig2<rawSize;iDig2++) {                                            //loop on all digits again
+      
       if(iDig1==iDig2) continue;                                                         //the same digit, no need to compare 
       AliHMPIDDigit *pDig2 = Dig(iDig2);                                                 //take second digit to compare with the first one
       Int_t dist = TMath::Sign(Int_t(pDig1->PadChX()-pDig2->PadChX()),1)+TMath::Sign(Int_t(pDig1->PadChY()-pDig2->PadChY()),1);//distance between pads
       if(dist==1)                                                                        //means dig2 is a neighbour of dig1
-         if(pDig2->Q()>=pDig1->Q()) iHowManyMoreCnt++;                                   //count number of pads with Q more then Q of current pad
+         if(pDig2->Q()>=pDig1->Q()) iCnt++;                                              //count number of pads with Q more then Q of current pad
+      
     }//second digits loop
-    if(iHowManyMoreCnt==0&&fNlocMax<kMaxLocMax){                                       //this pad has Q more then any neighbour so it's local maximum
+    
+    if(iCnt==0&&fNlocMax<kMaxLocMax){                                                    //this pad has Q more then any neighbour so it's local maximum
       
-      /*
-      lowX  = AliHMPIDDigit::LorsX(pc,minPadX) - 0.5 *AliHMPIDDigit::SizePadX();
-      highX = AliHMPIDDigit::LorsX(pc,maxPadX) + 0.5 *AliHMPIDDigit::SizePadX();
-      lowY  = AliHMPIDDigit::LorsY(pc,minPadY) - 0.5 *AliHMPIDDigit::SizePadY();
-      highY = AliHMPIDDigit::LorsY(pc,maxPadY) + 0.5 *AliHMPIDDigit::SizePadY();
-      */
-      //Double_t    lowQ=0,highQ=30000; 
+      Double_t xStart=pDig1->LorsX();Double_t yStart=pDig1->LorsY();
+      Double_t xMin=xStart-fParam->SizePadX();
+      Double_t xMax=xStart+fParam->SizePadX();
+      Double_t yMin=yStart-fParam->SizePadY();
+      Double_t yMax=yStart+fParam->SizePadY();
       
-      fQi=pDig1->Q();  fXi=pDig1->LorsX();  fYi=pDig1->LorsY();                          //initial position of this Mathieson is to be in the center of loc max pad                               
-      /*
-        pMinuit->mnparm(3*fNlocMax  ,Form("x%i",fNlocMax),fXi,0.01,lowX,highX,iErrFlg);
-        pMinuit->mnparm(3*fNlocMax+1,Form("y%i",fNlocMax),fYi,0.01,lowY,highY,iErrFlg);
-        pMinuit->mnparm(3*fNlocMax+2,Form("q%i",fNlocMax),fQi,0.01,lowQ,highQ,iErrFlg);
-      */
-      pMinuit->mnparm(3*fNlocMax  ,Form("x%i",fNlocMax),fXi,0.01,0,0,iErrFlg);
-      pMinuit->mnparm(3*fNlocMax+1,Form("y%i",fNlocMax),fYi,0.01,0,0,iErrFlg);
-      pMinuit->mnparm(3*fNlocMax+2,Form("q%i",fNlocMax),fQi,0.01,0,100000,iErrFlg);
+      ierflg = fitter->SetParameter(3*fNlocMax  ,Form("x%i",fNlocMax),xStart,0.1,xMin,xMax);    // X,Y,Q initial values of the loc max pad
+      ierflg = fitter->SetParameter(3*fNlocMax+1,Form("y%i",fNlocMax),yStart,0.1,yMin,yMax);    // X, Y constrained to be near the loc max
+      ierflg = fitter->SetParameter(3*fNlocMax+2,Form("q%i",fNlocMax),pDig1->Q(),0.1,0,10000);  // Q constrained to be positive
       
       fNlocMax++;
+      
     }//if this pad is local maximum
   }//first digits loop
   
- //Int_t fitChk=0;
-
 //Phase 2. Fit loc max number of Mathiesons or add this current cluster to the list
-// Printf("4 - fStatus: %d",fSt);
- if ( fNlocMax == 0) { // case of no local maxima found: pads with same charge...
-   pMinuit->mnparm(3*fNlocMax  ,Form("x%i",fNlocMax),fX,0.01,0,0,iErrFlg);
-   pMinuit->mnparm(3*fNlocMax+1,Form("y%i",fNlocMax),fY,0.01,0,0,iErrFlg);
-   pMinuit->mnparm(3*fNlocMax+2,Form("q%i",fNlocMax),fQ,0.01,0,100000,iErrFlg);
+// case 1 -> no loc max found
+ if ( fNlocMax == 0) {                                                                       // case of no local maxima found: pads with same charge...
    fNlocMax = 1;
    fSt=kNoLoc;
+   SetClusterParams(fXX,fYY,fCh);                                                          //need to fill the AliCluster3D part
+   new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this);                                    //add new unfolded cluster
+   return fNlocMax;
  }
- if ( fNlocMax >= kMaxLocMax)
-   {
-     fSt   = kMax;   new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this);               //add this raw cluster  
-   }
- else{                                                                                 //resonable number of local maxima to fit and user requested it
-   Double_t arglist[10];     arglist[0] = 10000;     arglist[1] = 1.;                  //number of steps and sigma on pads charges  
-   pMinuit->mnexcm("MIGRAD" ,arglist,0,iErrFlg);                                       //start fitting
-   
-   if (iErrFlg) 
-     {
-       fSt   = kAbn;                                                                   //fit fails, MINUIT returns error flag
-       new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this);                             //add this raw cluster 
+
+// case 2 -> loc max found. Check # of loc maxima 
+ if ( fNlocMax >= kMaxLocMax)  { 
+   SetClusterParams(fXX,fYY,fCh);                                                           // if # of local maxima exceeds kMaxLocMax...
+   fSt = kMax;   new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this);                      //...add this raw cluster  
+ } else {                                                                               //or resonable number of local maxima to fit and user requested it
+  // Now ready for minimization step
+   arglist[0] = 500;                                                                      //number of steps and sigma on pads charges
+   arglist[1] = 1.;                                                                       //
+
+   ierflg = fitter->ExecuteCommand("SIMPLEX",arglist,2);                                  //start fitting with Simplex
+   if (!ierflg)
+     fitter->ExecuteCommand("MIGRAD" ,arglist,2);                                         //fitting improved by Migrad
+   if(ierflg) {
+     Double_t strategy=2;
+     ierflg = fitter->ExecuteCommand("SET STR",&strategy,1);                              //change level of strategy 
+     if(!ierflg) {
+       ierflg = fitter->ExecuteCommand("SIMPLEX",arglist,2);                              //start fitting with Simplex
+       if (!ierflg)
+         fitter->ExecuteCommand("MIGRAD" ,arglist,2);                                     //fitting improved by Migrad
      }
-   else
-     {                                                                                 //Only if MIGRAD converged normally
-       Double_t d2,d3; TString sName;                                                  //vars to get results from TMinuit
-       for(Int_t i=0;i<fNlocMax;i++){                                                  //local maxima loop
-         pMinuit->mnpout(3*i   ,sName,  fX, fXe , d2, d3, iErrFlg);
-         pMinuit->mnpout(3*i+1 ,sName,  fY, fYe , d2, d3, iErrFlg);
-         pMinuit->mnpout(3*i+2 ,sName,  fQ, fQe , d2, d3, iErrFlg);
-         pMinuit->mnstat(fChi2,d2,d2,iErrFlg,iErrFlg,iErrFlg);
-         
-         if(fNlocMax!=1)fSt=kUnf;
-         if(fNlocMax==1&&fSt!=kNoLoc) fSt=kLo1;
-         if ( !IsInPc()) fSt = kEdg;       
-         if(fSt==kNoLoc) fNlocMax=0;
-         new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this);      //add new unfolded cluster
-       }
+   }        
+   if(ierflg) fSt=kAbn;                                                                   //no convergence of the fit...
+   Double_t dummy; char sName[80];                                                        //vars to get results from Minuit
+   Double_t edm, errdef;
+   Int_t nvpar, nparx;
+   
+   for(Int_t i=0;i<fNlocMax;i++){                                                        //store the local maxima parameters
+     fitter->GetParameter(3*i   ,sName,  fXX, fErrX , dummy, dummy);                     // X
+     fitter->GetParameter(3*i+1 ,sName,  fYY, fErrY , dummy, dummy);                     // Y
+     fitter->GetParameter(3*i+2 ,sName,  fQ, fErrQ , dummy, dummy);                      // Q
+     fitter->GetStats(fChi2, edm, errdef, nvpar, nparx);                                 //get fit infos
+
+     if(fNlocMax>1)FindClusterSize(i,pSigmaCut);                                         //find clustersize for deconvoluted clusters
+                                                                                         //after this call, fSi temporarly is the calculated size. Later is set again 
+                                                                                         //to its original value
+     if(fSt!=kAbn) {         
+      if(fNlocMax!=1)fSt=kUnf;                                                           // if unfolded
+      if(fNlocMax==1&&fSt!=kNoLoc) fSt=kLo1;                                             // if only 1 loc max
+      if ( !IsInPc()) fSt = kEdg;                                                        // if Out of Pc
+      if(fSt==kNoLoc) fNlocMax=0;                                                        // if with no loc max (pads with same charge..)
      }
+     SetClusterParams(fXX,fYY,fCh);                                                      //need to fill the AliCluster3D part
+     new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this);                                //add new unfolded cluster
+     if(fNlocMax>1)SetSize(rawSize);                                                     //Original raw size is set again to its proper value
+   }
  }
-    
-
-  
 
 delete pMinuit;
-  return fNlocMax;
return fNlocMax;
 }//Solve()
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+void AliHMPIDCluster::FindClusterSize(Int_t i,Int_t *pSigmaCut)
+{
+
+//Estimate of the clustersize for a deconvoluted cluster
+  Int_t size = 0;
+  for(Int_t iDig=0;iDig<Size();iDig++) {                                               //digits loop
+    AliHMPIDDigit *pDig = Dig(iDig);                                                   //take digit
+    Int_t iCh = pDig->Ch();
+    Double_t qPad = Q()*pDig->IntMathieson(X(),Y());                                   //pad charge
+    AliDebug(1,Form("Chamber %i X %i Y %i SigmaCut %i pad %i qpadMath %8.2f qPadRaw %8.2f Qtotal %8.2f cluster n.%i",iCh,pDig->PadChX(),pDig->PadChY(),
+        pSigmaCut[iCh],iDig,qPad,pDig->Q(),QRaw(),i));
+    if(qPad>pSigmaCut[iCh]) size++;
+   }
+  AliDebug(1,Form(" Calculated size %i",size));
+  if(size>0) SetSize(size);                                                            //in case of size == 0, original raw clustersize used 
+}