]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONClusterFinderAZ.cxx
Multiple inclusion protection name corrected. (I. Hrivnacova)
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterFinderAZ.cxx
CommitLineData
0df3ca52 1#include "AliMUONClusterFinderAZ.h"
2
1f9a65c4 3#include <stdlib.h>
0df3ca52 4#include <fcntl.h>
5#include <Riostream.h>
6#include <TROOT.h>
7#include <TCanvas.h>
8#include <TLine.h>
9#include <TTree.h>
10#include <TH2.h>
11#include <TView.h>
12#include <TStyle.h>
13#include <TMinuit.h>
14#include <TMatrixD.h>
15
16#include "AliHeader.h"
17#include "AliRun.h"
18#include "AliMUON.h"
19#include "AliMUONChamber.h"
20#include "AliMUONDigit.h"
21#include "AliMUONHit.h"
22#include "AliMUONChamber.h"
23#include "AliMUONRawCluster.h"
24#include "AliMUONClusterInput.h"
25#include "AliMUONPixel.h"
5d12ce38 26#include "AliMC.h"
0df3ca52 27
c1aed84f 28// Clusterizer class developped by Zitchenko (Dubna)
29//
30//
31//
9e993f2a 32
0df3ca52 33
34ClassImp(AliMUONClusterFinderAZ)
0558a292 35
36 AliMUONClusterFinderAZ* AliMUONClusterFinderAZ::fgClusterFinder = 0x0;
37 TMinuit* AliMUONClusterFinderAZ::fgMinuit = 0x0;
0df3ca52 38
0df3ca52 39
40//_____________________________________________________________________________
41AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(Bool_t draw=0, Int_t iReco=0)
42{
43// Constructor
44 for (Int_t i=0; i<4; i++) {fHist[i] = 0;}
45 fMuonDigits = 0;
46 fSegmentation[1] = fSegmentation[0] = 0;
0558a292 47 fgClusterFinder = 0x0;
48 fgMinuit = 0x0;
0df3ca52 49 if (!fgClusterFinder) fgClusterFinder = this;
50 if (!fgMinuit) fgMinuit = new TMinuit(8);
51 fDraw = draw;
52 fReco = iReco;
53 fPixArray = new TObjArray(20);
54 /*
55 fPoints = 0;
56 fPhits = 0;
57 fRpoints = 0;
58 fCanvas = 0;
59 fNextCathode = kFALSE;
60 fColPad = 0;
61 */
62}
63
64//_____________________________________________________________________________
65AliMUONClusterFinderAZ::~AliMUONClusterFinderAZ()
66{
67 // Destructor
68 delete fgMinuit; fgMinuit = 0; delete fPixArray; fPixArray = 0;
69 /*
70 // Delete space point structure
71 if (fPoints) fPoints->Delete();
72 delete fPoints;
73 fPoints = 0;
74 //
75 if (fPhits) fPhits->Delete();
76 delete fPhits;
77 fPhits = 0;
78 //
79 if (fRpoints) fRpoints->Delete();
80 delete fRpoints;
81 fRpoints = 0;
82 */
83}
84
85//_____________________________________________________________________________
86void AliMUONClusterFinderAZ::FindRawClusters()
87{
88// To provide the same interface as in AliMUONClusterFinderVS
89
90 EventLoop (gAlice->GetHeader()->GetEvent(), AliMUONClusterInput::Instance()->Chamber());
91}
92
93//_____________________________________________________________________________
94void AliMUONClusterFinderAZ::EventLoop(Int_t nev=0, Int_t ch=0)
95{
96// Loop over events
97
98 FILE *lun = 0;
99 TCanvas *c1 = 0;
100 TView *view = 0;
101 TH2F *hist = 0;
102 Double_t p1[3]={0}, p2[3];
c1aed84f 103 TTree *treeR = 0;
0df3ca52 104 if (fDraw) {
105 // File
106 lun = fopen("pool.dat","w");
107 c1 = new TCanvas("c1","Clusters",0,0,600,700);
108 c1->Divide(1,2);
109 new TCanvas("c2","Mlem",700,0,600,350);
110 }
111
112newev:
113 Int_t nparticles = 0, nent;
88cb7938 114
115 //Loaders
116 AliRunLoader * rl = AliRunLoader::GetRunLoader();
117 AliLoader * gime = rl->GetLoader("MUONLoader");
118
119 if (!fReco) nparticles = rl->GetEvent(nev);
5d12ce38 120 else nparticles = gAlice->GetMCApp()->GetNtrack();
0df3ca52 121 cout << "nev " << nev <<endl;
122 cout << "nparticles " << nparticles <<endl;
123 if (nparticles <= 0) return;
124
c1aed84f 125 TTree *treeH = gime->TreeH();
126 Int_t ntracks = (Int_t) treeH->GetEntries();
0df3ca52 127 cout<<"ntracks "<<ntracks<<endl;
128
129 // Get pointers to Alice detectors and Digits containers
c1aed84f 130 AliMUON *muon = (AliMUON*) gAlice->GetModule("MUON");
131 if (!muon) return;
0df3ca52 132 // TClonesArray *Particles = gAlice->Particles();
133 if (!fReco) {
c1aed84f 134 treeR = gime->TreeR();
135 if (treeR) {
136 muon->ResetRawClusters();
137 nent = (Int_t) treeR->GetEntries();
0df3ca52 138 if (nent != 1) {
139 cout << "Error in MUONdrawClust" << endl;
140 cout << " nent = " << nent << " not equal to 1" << endl;
141 //exit(0);
142 }
c1aed84f 143 } // if (treeR)
0df3ca52 144 } // if (!fReco)
145
c1aed84f 146 TTree *treeD = gime->TreeD();
147 //muon->ResetDigits();
0df3ca52 148
c1aed84f 149 TClonesArray *listMUONrawclust ;
0df3ca52 150 AliMUONChamber* iChamber = 0;
151
152 // As default draw the first cluster of the chamber #0
153
154newchamber:
155 if (ch > 9) {if (fReco) return; nev++; ch = 0; goto newev;}
156 //gAlice->ResetDigits();
c1aed84f 157 fMuonDigits = muon->GetMUONData()->Digits(ch);
0df3ca52 158 if (fMuonDigits == 0) return;
c1aed84f 159 iChamber = &(muon->Chamber(ch));
0df3ca52 160 fSegmentation[0] = iChamber->SegmentationModel(1);
161 fSegmentation[1] = iChamber->SegmentationModel(2);
162 fResponse = iChamber->ResponseModel();
163
164 nent = 0;
165
c1aed84f 166 if (treeD) {
167 nent = (Int_t) treeD->GetEntries();
0df3ca52 168 //printf(" entries %d \n", nent);
169 }
170
171 Int_t ndigits[2]={9,9}, nShown[2]={0};
172 for (Int_t i=0; i<2; i++) {
173 for (Int_t j=0; j<kDim; j++) {fUsed[i][j]=kFALSE;}
174 }
175
176next:
177 if (ndigits[0] == nShown[0] && ndigits[1] == nShown[1]) {
178 // No more clusters
179 if (fReco) return;
180 ch++;
181 goto newchamber; // next chamber
182 }
183 Float_t xpad, ypad, zpad, zpad0;
184 TLine *line[99]={0};
185 Int_t nLine = 0;
186 Bool_t first = kTRUE;
187 cout << " *** Event # " << nev << " chamber: " << ch << endl;
188 fnPads[0] = fnPads[1] = 0;
189 for (Int_t i=0; i<kDim; i++) {fPadIJ[1][i] = 0;}
190 //for (Int_t iii = 0; iii<999; iii++) {
191 for (Int_t iii = 0; iii<2; iii++) {
192 Int_t cath = TMath::Odd(iii);
193 gAlice->ResetDigits();
c1aed84f 194 treeD->GetEvent(cath);
195 fMuonDigits = muon->GetMUONData()->Digits(ch);
0df3ca52 196
197 ndigits[cath] = fMuonDigits->GetEntriesFast();
198 if (!ndigits[0] && !ndigits[1]) {if (fReco) return; ch++; goto newchamber;}
199 if (ndigits[cath] == 0) continue;
200 cout << " ndigits: " << ndigits[cath] << " " << cath << endl;
201
202 AliMUONDigit *mdig;
203 Int_t digit;
204
c1aed84f 205 Bool_t eEOC = kTRUE; // end-of-cluster
0df3ca52 206 for (digit = 0; digit < ndigits[cath]; digit++) {
207 mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
208 if (mdig->Cathode() != cath) continue;
209 if (first) {
210 // Find first unused pad
211 if (fUsed[cath][digit]) continue;
212 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0);
213 } else {
214 if (fUsed[cath][digit]) continue;
215 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad);
216 if (TMath::Abs(zpad-zpad0)>0.1) continue; // different slats
217 // Find a pad overlapping with the cluster
218 if (!Overlap(cath,mdig)) continue;
219 }
220 // Add pad - recursive call
221 AddPad(cath,digit);
c1aed84f 222 eEOC = kFALSE;
0df3ca52 223 if (digit >= 0) break;
224 }
c1aed84f 225 if (first && eEOC) {
0df3ca52 226 // No more unused pads
227 if (cath == 0) continue; // on cathode #0 - check #1
228 else {
229 // No more clusters
230 if (fReco) return;
231 ch++;
232 goto newchamber; // next chamber
233 }
234 }
c1aed84f 235 if (eEOC) break; // cluster found
0df3ca52 236 first = kFALSE;
237 cout << " nPads: " << fnPads[cath] << " " << nShown[cath]+fnPads[cath] << " " << cath << endl;
238 } // for (Int_t iii = 0;
239
240
241 if (fReco) goto skip;
242 char hName[4];
243 for (Int_t cath = 0; cath<2; cath++) {
244 // Build histograms
245 if (fHist[cath*2]) {fHist[cath*2]->Delete(); fHist[cath*2] = 0;}
246 if (fHist[cath*2+1]) {fHist[cath*2+1]->Delete(); fHist[cath*2+1] = 0;}
247 if (fnPads[cath] == 0) continue; // cluster on one cathode only
248 Float_t wxMin=999, wxMax=0, wyMin=999, wyMax=0;
249 Int_t minDx=0, maxDx=0, minDy=0, maxDy=0;
250 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
251 if (fPadIJ[0][i] != cath) continue;
252 if (fXyq[3][i] < wxMin) {wxMin = fXyq[3][i]; minDx = i;}
253 if (fXyq[3][i] > wxMax) {wxMax = fXyq[3][i]; maxDx = i;}
254 if (fXyq[4][i] < wyMin) {wyMin = fXyq[4][i]; minDy = i;}
255 if (fXyq[4][i] > wyMax) {wyMax = fXyq[4][i]; maxDy = i;}
256 }
257 cout << minDx << maxDx << minDy << maxDy << endl;
258 Int_t nx, ny, padSize;
259 Float_t xmin=9999, xmax=-9999, ymin=9999, ymax=-9999;
260 if (TMath::Nint(fXyq[3][minDx]*1000) == TMath::Nint(fXyq[3][maxDx]*1000) &&
261 TMath::Nint(fXyq[4][minDy]*1000) == TMath::Nint(fXyq[4][maxDy]*1000)) {
262 // the same segmentation
263 cout << " Same" << endl;
264 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
265 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
266 if (fPadIJ[0][i] != cath) continue;
267 if (fXyq[0][i] < xmin) xmin = fXyq[0][i];
268 if (fXyq[0][i] > xmax) xmax = fXyq[0][i];
269 if (fXyq[1][i] < ymin) ymin = fXyq[1][i];
270 if (fXyq[1][i] > ymax) ymax = fXyq[1][i];
271 }
272 xmin -= fXyq[3][minDx]; xmax += fXyq[3][minDx];
273 ymin -= fXyq[4][minDy]; ymax += fXyq[4][minDy];
274 nx = TMath::Nint ((xmax-xmin)/wxMin/2);
275 ny = TMath::Nint ((ymax-ymin)/wyMin/2);
276 sprintf(hName,"h%d",cath*2);
277 fHist[cath*2] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
278 cout << fHist[cath*2] << " " << fnPads[cath] << endl;
279 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
280 if (fPadIJ[0][i] != cath) continue;
281 fHist[cath*2]->Fill(fXyq[0][i],fXyq[1][i],fXyq[2][i]);
282 //cout << fXyq[0][i] << fXyq[1][i] << fXyq[2][i] << endl;
283 }
284 } else {
285 // different segmentation in the cluster
286 cout << " Different" << endl;
287 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
288 Int_t nOK = 0;
289 Int_t indx, locMin, locMax;
290 if (TMath::Nint(fXyq[3][minDx]*1000) != TMath::Nint(fXyq[3][maxDx]*1000)) {
291 // different segmentation along x
292 indx = 0;
293 locMin = minDx;
294 locMax = maxDx;
295 } else {
296 // different segmentation along y
297 indx = 1;
298 locMin = minDy;
299 locMax = maxDy;
300 }
301 Int_t loc = locMin;
302 for (Int_t i=0; i<2; i++) {
303 // loop over different pad sizes
304 if (i>0) loc = locMax;
305 padSize = TMath::Nint(fXyq[indx+3][loc]*1000);
306 xmin = 9999; xmax = -9999; ymin = 9999; ymax = -9999;
307 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
308 if (fPadIJ[0][j] != cath) continue;
309 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
310 nOK++;
311 xmin = TMath::Min (xmin,fXyq[0][j]);
312 xmax = TMath::Max (xmax,fXyq[0][j]);
313 ymin = TMath::Min (ymin,fXyq[1][j]);
314 ymax = TMath::Max (ymax,fXyq[1][j]);
315 }
316 xmin -= fXyq[3][loc]; xmax += fXyq[3][loc];
317 ymin -= fXyq[4][loc]; ymax += fXyq[4][loc];
318 nx = TMath::Nint ((xmax-xmin)/fXyq[3][loc]/2);
319 ny = TMath::Nint ((ymax-ymin)/fXyq[4][loc]/2);
320 sprintf(hName,"h%d",cath*2+i);
321 fHist[cath*2+i] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
322 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
323 if (fPadIJ[0][j] != cath) continue;
324 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
325 fHist[cath*2+i]->Fill(fXyq[0][j],fXyq[1][j],fXyq[2][j]);
326 }
327 } // for (Int_t i=0;
328 if (nOK != fnPads[cath]) cout << " *** Too many segmentations: nPads, nOK " << fnPads[cath] << " " << nOK << endl;
329 } // if (TMath::Nint(fXyq[3][minDx]*1000)
330 } // for (Int_t cath = 0;
331
332 // Draw histograms and coordinates
333 for (Int_t cath=0; cath<2; cath++) {
334 if (cath == 0) ModifyHistos();
335 if (fnPads[cath] == 0) continue; // cluster on one cathode only
336 if (fDraw) {
337 c1->cd(cath+1);
338 gPad->SetTheta(55);
339 gPad->SetPhi(30);
cd747ddb 340 Double_t x, y, x0, y0, r1=999, r2=0;
0df3ca52 341 if (fHist[cath*2+1]) {
342 //
343 x0 = fHist[cath*2]->GetXaxis()->GetXmin() - 1000*TMath::Cos(30*TMath::Pi()/180);
344 y0 = fHist[cath*2]->GetYaxis()->GetXmin() - 1000*TMath::Sin(30*TMath::Pi()/180);
345 r1 = 0;
346 Int_t ihist=cath*2;
347 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
348 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
349 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
350 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
351 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
352 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
353 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
354 r1 = TMath::Max (r1,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
355 }
356 }
357 }
358 ihist = cath*2 + 1 ;
359 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
360 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
361 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
362 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
363 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
364 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
365 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
366 r2 = TMath::Max (r2,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
367 }
368 }
369 }
370 cout << r1 << " " << r2 << endl;
371 } // if (fHist[cath*2+1])
372 if (r1 > r2) {
373 //fHist[cath*2]->Draw("lego1");
374 fHist[cath*2]->Draw("lego1Fb");
375 //if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBb");
376 if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBbFb");
377 } else {
378 //fHist[cath*2+1]->Draw("lego1");
379 fHist[cath*2+1]->Draw("lego1Fb");
380 //fHist[cath*2]->Draw("lego1SameAxisBb");
381 fHist[cath*2]->Draw("lego1SameAxisFbBb");
382 }
383 c1->Update();
384 } // if (fDraw)
385 } // for (Int_t cath = 0;
386
387 // Draw generated hits
388 Double_t xNDC[6];
389 hist = fHist[0] ? fHist[0] : fHist[2];
390 p2[2] = hist->GetMaximum();
391 view = 0;
392 if (c1) view = c1->Pad()->GetView();
393 cout << " *** GEANT hits *** " << endl;
394 fnMu = 0;
395 Int_t ix, iy, iok;
396 for (Int_t i=0; i<ntracks; i++) {
c1aed84f 397 treeH->GetEvent(i);
398 for (AliMUONHit* mHit=(AliMUONHit*)muon->FirstHit(-1);
0df3ca52 399 mHit;
c1aed84f 400 mHit=(AliMUONHit*)muon->NextHit()) {
0df3ca52 401 if (mHit->Chamber() != ch+1) continue; // chamber number
402 if (TMath::Abs(mHit->Z()-zpad0) > 1) continue; // different slat
403 p2[0] = p1[0] = mHit->X(); // x-pos of hit
404 p2[1] = p1[1] = mHit->Y(); // y-pos
405 if (p1[0] < hist->GetXaxis()->GetXmin() ||
406 p1[0] > hist->GetXaxis()->GetXmax()) continue;
407 if (p1[1] < hist->GetYaxis()->GetXmin() ||
408 p1[1] > hist->GetYaxis()->GetXmax()) continue;
409 // Check if track comes thru pads with signal
410 iok = 0;
411 for (Int_t ihist=0; ihist<4; ihist++) {
412 if (!fHist[ihist]) continue;
413 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
414 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
415 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
416 }
417 if (!iok) continue;
418 gStyle->SetLineColor(1);
419 if (TMath::Abs((Int_t)mHit->Particle()) == 13) {
420 gStyle->SetLineColor(4);
421 fnMu++;
422 if (fnMu <= 2) {
423 fxyMu[fnMu-1][0] = p1[0];
424 fxyMu[fnMu-1][1] = p1[1];
425 }
426 }
427 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mHit->Z());
428 if (view) {
429 view->WCtoNDC(p1, &xNDC[0]);
430 view->WCtoNDC(p2, &xNDC[3]);
431 for (Int_t ipad=1; ipad<3; ipad++) {
432 c1->cd(ipad);
433 //c1->DrawLine(xpad[0],xpad[1],xpad[3],xpad[4]);
434 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
435 line[nLine++]->Draw();
436 }
437 }
438 } // for (AliMUONHit* mHit=
439 } // for (Int_t i=0; i<ntracks;
440
441 // Draw reconstructed coordinates
c1aed84f 442 listMUONrawclust = muon->GetMUONData()->RawClusters(ch);
443 treeR->GetEvent(ch);
444 //cout << listMUONrawclust << " " << listMUONrawclust ->GetEntries() << endl;
0df3ca52 445 AliMUONRawCluster *mRaw;
446 gStyle->SetLineColor(3);
447 cout << " *** Reconstructed hits *** " << endl;
c1aed84f 448 for (Int_t i=0; i<listMUONrawclust ->GetEntries(); i++) {
449 mRaw = (AliMUONRawCluster*)listMUONrawclust ->UncheckedAt(i);
ba12c242 450 if (TMath::Abs(mRaw->GetZ(0)-zpad0) > 1) continue; // different slat
451 p2[0] = p1[0] = mRaw->GetX(0); // x-pos of hit
452 p2[1] = p1[1] = mRaw->GetY(0); // y-pos
0df3ca52 453 if (p1[0] < hist->GetXaxis()->GetXmin() ||
454 p1[0] > hist->GetXaxis()->GetXmax()) continue;
455 if (p1[1] < hist->GetYaxis()->GetXmin() ||
456 p1[1] > hist->GetYaxis()->GetXmax()) continue;
457 /*
c1aed84f 458 treeD->GetEvent(cath);
0df3ca52 459 cout << mRaw->fMultiplicity[0] << mRaw->fMultiplicity[1] << endl;
460 for (Int_t j=0; j<mRaw->fMultiplicity[cath]; j++) {
461 Int_t digit = mRaw->fIndexMap[j][cath];
462 cout << ((AliMUONDigit*)fMuonDigits->UncheckedAt(digit))->Signal() << endl;
463 }
464 */
465 // Check if track comes thru pads with signal
466 iok = 0;
467 for (Int_t ihist=0; ihist<4; ihist++) {
468 if (!fHist[ihist]) continue;
469 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
470 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
471 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
472 }
473 if (!iok) continue;
ba12c242 474 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mRaw->GetZ(0));
0df3ca52 475 if (view) {
476 view->WCtoNDC(p1, &xNDC[0]);
477 view->WCtoNDC(p2, &xNDC[3]);
478 for (Int_t ipad=1; ipad<3; ipad++) {
479 c1->cd(ipad);
480 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
481 line[nLine++]->Draw();
482 }
483 }
c1aed84f 484 } // for (Int_t i=0; i<listMUONrawclust ->GetEntries();
0df3ca52 485 if (fDraw) c1->Update();
486
487skip:
488 // Use MLEM for cluster finder
489 fZpad = zpad0;
490 Int_t nMax = 1, localMax[100], maxPos[100];
491 Double_t maxVal[100];
492
493 if (CheckPrecluster(nShown)) {
494 BuildPixArray();
495 if (fnPads[0]+fnPads[1] > 50) nMax = FindLocalMaxima(localMax, maxVal);
496 if (nMax > 1) TMath::Sort(nMax, maxVal, maxPos, kTRUE); // in decreasing order
497 for (Int_t i=0; i<nMax; i++) {
498 if (nMax > 1) FindCluster(localMax, maxPos[i]);
499 if (!MainLoop()) cout << " MainLoop failed " << endl;
500 if (i < nMax-1) {
501 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
502 if (fPadIJ[1][j] == 0) continue; // pad charge was not modified
503 fPadIJ[1][j] = 0;
504 fXyq[2][j] = fXyq[5][j]; // use backup charge value
505 }
506 }
507 }
508 }
509 if (fReco) goto next;
510
511 for (Int_t i=0; i<fnMu; i++) {
512 // Check again if muon come thru the used pads (due to extra splitting)
513 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
514 if (TMath::Abs(fxyMu[i][0]-fXyq[0][j])<fXyq[3][j] &&
515 TMath::Abs(fxyMu[i][1]-fXyq[1][j])<fXyq[4][j]) {
516 printf("%12.3e %12.3e %12.3e %12.3e\n",fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
517 if (lun) fprintf(lun,"%4d %2d %12.3e %12.3e %12.3e %12.3e\n",nev,ch,fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
518 break;
519 }
520 }
521 } // for (Int_t i=0; i<fnMu;
522
523 // What's next?
524 char command[8];
525 cout << " What is next? " << endl;
526 command[0] = ' ';
527 if (fDraw) gets(command);
528 if (command[0] == 'n' || command[0] == 'N') {nev++; goto newev;} // next event
529 else if (command[0] == 'q' || command[0] == 'Q') {fclose(lun); return;} // exit display
530 //else if (command[0] == 'r' || command[0] == 'R') goto redraw; // redraw points
531 else if (command[0] == 'c' || command[0] == 'C') {
532 // new chamber
533 sscanf(command+1,"%d",&ch);
534 goto newchamber;
535 }
536 else if (command[0] == 'e' || command[0] == 'E') {
537 // new event
538 sscanf(command+1,"%d",&nev);
539 goto newev;
540 }
541 else goto next; // Next cluster
542}
543
544//_____________________________________________________________________________
545void AliMUONClusterFinderAZ::ModifyHistos(void)
546{
547 // Modify histograms to bring them to the same size
548 Int_t nhist = 0;
549 Float_t hlim[4][4], hbin[4][4]; // first index - xmin, xmax, ymin, ymax
550 Float_t binMin[4] = {999,999,999,999};
551
552 for (Int_t i=0; i<4; i++) {
553 if (!fHist[i]) continue;
554 hlim[0][nhist] = fHist[i]->GetXaxis()->GetXmin(); // xmin
555 hlim[1][nhist] = fHist[i]->GetXaxis()->GetXmax(); // xmax
556 hlim[2][nhist] = fHist[i]->GetYaxis()->GetXmin(); // ymin
557 hlim[3][nhist] = fHist[i]->GetYaxis()->GetXmax(); // ymax
558 hbin[0][nhist] = hbin[1][nhist] = fHist[i]->GetXaxis()->GetBinWidth(1);
559 hbin[2][nhist] = hbin[3][nhist] = fHist[i]->GetYaxis()->GetBinWidth(1);
560 binMin[0] = TMath::Min(binMin[0],hbin[0][nhist]);
561 binMin[2] = TMath::Min(binMin[2],hbin[2][nhist]);
562 nhist++;
563 }
564 binMin[1] = binMin[0];
565 binMin[3] = binMin[2];
566 cout << " Nhist: " << nhist << endl;
567
568 Int_t imin, imax;
569 for (Int_t lim=0; lim<4; lim++) {
570 while (1) {
571 imin = TMath::LocMin(nhist,hlim[lim]);
572 imax = TMath::LocMax(nhist,hlim[lim]);
573 if (TMath::Abs(hlim[lim][imin]-hlim[lim][imax])<0.01*binMin[lim]) break;
574 if (lim == 0 || lim == 2) {
575 // find lower limit
576 hlim[lim][imax] -= hbin[lim][imax];
577 } else {
578 // find upper limit
579 hlim[lim][imin] += hbin[lim][imin];
580 }
581 } // while (1)
582 }
583
584 // Rebuild histograms
585 nhist = 0;
586 TH2F *hist = 0;
587 Int_t nx, ny;
cd747ddb 588 Double_t x, y, cont, cmax=0;
0df3ca52 589 char hName[4];
590 for (Int_t ihist=0; ihist<4; ihist++) {
591 if (!fHist[ihist]) continue;
592 nx = TMath::Nint((hlim[1][nhist]-hlim[0][nhist])/hbin[0][nhist]);
593 ny = TMath::Nint((hlim[3][nhist]-hlim[2][nhist])/hbin[2][nhist]);
594 //hist = new TH2F("h","hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
595 sprintf(hName,"hh%d",ihist);
596 hist = new TH2F(hName,"hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
597 for (Int_t i=1; i<=fHist[ihist]->GetNbinsX(); i++) {
598 x = fHist[ihist]->GetXaxis()->GetBinCenter(i);
599 for (Int_t j=1; j<=fHist[ihist]->GetNbinsY(); j++) {
600 y = fHist[ihist]->GetYaxis()->GetBinCenter(j);
601 cont = fHist[ihist]->GetCellContent(i,j);
602 hist->Fill(x,y,cont);
603 }
604 }
605 cmax = TMath::Max (cmax,hist->GetMaximum());
606 fHist[ihist]->Delete();
607 fHist[ihist] = new TH2F(*hist);
608 hist->Delete();
609 nhist++;
610 }
611 printf("%f \n",cmax);
612
613 for (Int_t ihist=0; ihist<4; ihist++) {
614 if (!fHist[ihist]) continue;
615 fHist[ihist]->SetMaximum(cmax);
616 }
617}
618
619//_____________________________________________________________________________
620void AliMUONClusterFinderAZ::AddPad(Int_t cath, Int_t digit)
621{
622 // Add pad to the cluster
623 AliMUONDigit *mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
624
625 Int_t charge = mdig->Signal();
626 // get the center of the pad
627 Float_t xpad, ypad, zpad;
628 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
629
630 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
631 Int_t nPads = fnPads[0] + fnPads[1];
632 fXyq[0][nPads] = xpad;
633 fXyq[1][nPads] = ypad;
634 fXyq[2][nPads] = charge;
635 fXyq[3][nPads] = fSegmentation[cath]->Dpx(isec)/2;
636 fXyq[4][nPads] = fSegmentation[cath]->Dpy(isec)/2;
637 fXyq[5][nPads] = digit;
638 fPadIJ[0][nPads] = cath;
639 fPadIJ[1][nPads] = 0;
640 fUsed[cath][digit] = kTRUE;
641 //cout << " bbb " << fXyq[cath][2][nPads] << " " << fXyq[cath][0][nPads] << " " << fXyq[cath][1][nPads] << " " << fXyq[cath][3][nPads] << " " << fXyq[cath][4][nPads] << " " << zpad << " " << nPads << endl;
642 fnPads[cath]++;
643
644 // Check neighbours
645 Int_t nn, ix, iy, xList[10], yList[10];
646 AliMUONDigit *mdig1;
647
648 Int_t ndigits = fMuonDigits->GetEntriesFast();
649 fSegmentation[cath]->Neighbours(mdig->PadX(),mdig->PadY(),&nn,xList,yList);
650 for (Int_t in=0; in<nn; in++) {
651 ix=xList[in];
652 iy=yList[in];
653 for (Int_t digit1 = 0; digit1 < ndigits; digit1++) {
654 if (digit1 == digit) continue;
655 mdig1 = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit1);
656 if (mdig1->Cathode() != cath) continue;
657 if (!fUsed[cath][digit1] && mdig1->PadX() == ix && mdig1->PadY() == iy) {
658 fUsed[cath][digit1] = kTRUE;
659 // Add pad - recursive call
660 AddPad(cath,digit1);
661 }
662 } //for (Int_t digit1 = 0;
663 } // for (Int_t in=0;
664}
665
666//_____________________________________________________________________________
667Bool_t AliMUONClusterFinderAZ::Overlap(Int_t cath, TObject *dig)
668{
669 // Check if the pad from one cathode overlaps with a pad
670 // in the precluster on the other cathode
671
672 AliMUONDigit *mdig = (AliMUONDigit*) dig;
673
674 Float_t xpad, ypad, zpad;
675 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
676 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
677
678 Float_t xy1[4], xy12[4];
679 xy1[0] = xpad - fSegmentation[cath]->Dpx(isec)/2;
680 xy1[1] = xy1[0] + fSegmentation[cath]->Dpx(isec);
681 xy1[2] = ypad - fSegmentation[cath]->Dpy(isec)/2;
682 xy1[3] = xy1[2] + fSegmentation[cath]->Dpy(isec);
683 //cout << " ok " << fnPads[0]+fnPads[1] << xy1[0] << xy1[1] << xy1[2] << xy1[3] << endl;
684
685 Int_t cath1 = TMath::Even(cath);
686 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
687 if (fPadIJ[0][i] != cath1) continue;
688 if (Overlap(xy1, i, xy12, 0)) return kTRUE;
689 }
690 return kFALSE;
691}
692
693//_____________________________________________________________________________
694Bool_t AliMUONClusterFinderAZ::Overlap(Float_t *xy1, Int_t iPad, Float_t *xy12, Int_t iSkip)
695{
696 // Check if the pads xy1 and iPad overlap and return overlap area
697
698 Float_t xy2[4];
699 xy2[0] = fXyq[0][iPad] - fXyq[3][iPad];
700 xy2[1] = fXyq[0][iPad] + fXyq[3][iPad];
701 if (xy1[0] > xy2[1]-1.e-4 || xy1[1] < xy2[0]+1.e-4) return kFALSE;
702 xy2[2] = fXyq[1][iPad] - fXyq[4][iPad];
703 xy2[3] = fXyq[1][iPad] + fXyq[4][iPad];
704 if (xy1[2] > xy2[3]-1.e-4 || xy1[3] < xy2[2]+1.e-4) return kFALSE;
705 if (!iSkip) return kTRUE; // just check overlap (w/out computing the area)
706 xy12[0] = TMath::Max (xy1[0],xy2[0]);
707 xy12[1] = TMath::Min (xy1[1],xy2[1]);
708 xy12[2] = TMath::Max (xy1[2],xy2[2]);
709 xy12[3] = TMath::Min (xy1[3],xy2[3]);
710 return kTRUE;
711}
712
713//_____________________________________________________________________________
714/*
715Bool_t AliMUONClusterFinderAZ::Overlap(Int_t i, Int_t j, Float_t *xy12, Int_t iSkip)
716{
717 // Check if the pads i and j overlap and return overlap area
718
719 Float_t xy1[4], xy2[4];
720 return Overlap(xy1, xy2, xy12, iSkip);
721}
722*/
723//_____________________________________________________________________________
724Bool_t AliMUONClusterFinderAZ::CheckPrecluster(Int_t *nShown)
725{
726 // Check precluster in order to attempt to simplify it (mostly for
727 // two-cathode preclusters)
728
729 Int_t i1, i2;
730 Float_t xy1[4], xy12[4];
731
732 Int_t npad = fnPads[0] + fnPads[1];
733
734 // If pads have the same size take average of pads on both cathodes
735 Int_t sameSize = (fnPads[0] && fnPads[1]) ? 1 : 0;
736 if (sameSize) {
737 Double_t xSize = -1, ySize = 0;
738 for (Int_t i=0; i<npad; i++) {
739 if (fXyq[2][i] < 0) continue;
740 if (xSize < 0) { xSize = fXyq[3][i]; ySize = fXyq[4][i]; }
741 if (TMath::Abs(xSize-fXyq[3][i]) > 1.e-4 || TMath::Abs(ySize-fXyq[4][i]) > 1.e-4) { sameSize = 0; break; }
742 }
743 } // if (sameSize)
744 if (sameSize && (fnPads[0] > 2 || fnPads[1] > 2)) {
745 nShown[0] += fnPads[0];
746 nShown[1] += fnPads[1];
747 fnPads[0] = fnPads[1] = 0;
748 Int_t div;
749 for (Int_t i=0; i<npad; i++) {
750 if (fXyq[2][i] < 0) continue; // used pad
751 fXyq[2][fnPads[0]] = fXyq[2][i];
752 div = 1;
753 for (Int_t j=i+1; j<npad; j++) {
754 if (fPadIJ[0][j] == fPadIJ[0][i]) continue; // same cathode
755 if (TMath::Abs(fXyq[0][j]-fXyq[0][i]) > 1.e-4) continue;
756 if (TMath::Abs(fXyq[1][j]-fXyq[1][i]) > 1.e-4) continue;
757 fXyq[2][fnPads[0]] += fXyq[2][j];
758 div = 2;
759 fXyq[2][j] = -2;
760 break;
761 }
762 fXyq[2][fnPads[0]] /= div;
763 fXyq[0][fnPads[0]] = fXyq[0][i];
764 fXyq[1][fnPads[0]] = fXyq[1][i];
765 fPadIJ[0][fnPads[0]++] = 0;
766 }
767 } // if (sameSize)
768
769 // Check if one-cathode precluster
770 i1 = fnPads[0]!=0 ? 0 : 1;
771 i2 = fnPads[1]!=0 ? 1 : 0;
772
773 if (i1 != i2) { // two-cathode
774
775 Int_t *flags = new Int_t[npad];
776 for (Int_t i=0; i<npad; i++) { flags[i] = 0; }
777
778 // Check pad overlaps
779 for (Int_t i=0; i<npad; i++) {
780 if (fPadIJ[0][i] != i1) continue;
781 xy1[0] = fXyq[0][i] - fXyq[3][i];
782 xy1[1] = fXyq[0][i] + fXyq[3][i];
783 xy1[2] = fXyq[1][i] - fXyq[4][i];
784 xy1[3] = fXyq[1][i] + fXyq[4][i];
785 for (Int_t j=0; j<npad; j++) {
786 if (fPadIJ[0][j] != i2) continue;
787 if (!Overlap(xy1, j, xy12, 0)) continue;
788 flags[i] = flags[j] = 1; // mark overlapped pads
789 } // for (Int_t j=0;
790 } // for (Int_t i=0;
791
792 // Check if all pads overlap
793 Int_t digit=0, cath, nFlags=0;
794 for (Int_t i=0; i<npad; i++) {nFlags += !flags[i];}
795 if (nFlags) cout << " nFlags = " << nFlags << endl;
796 //if (nFlags > 2 || (Float_t)nFlags / npad > 0.2) { // why 2 ??? - empirical choice
797 if (nFlags > 0) {
798 for (Int_t i=0; i<npad; i++) {
799 if (flags[i]) continue;
800 digit = TMath::Nint (fXyq[5][i]);
801 cath = fPadIJ[0][i];
802 fUsed[cath][digit] = kFALSE; // release pad
803 fXyq[2][i] = -2;
804 fnPads[cath]--;
805 }
806 } // if (nFlags > 2)
807
808 // Check correlations of cathode charges
809 if (fnPads[0] && fnPads[1]) { // two-cathode
810 Double_t sum[2]={0};
811 Int_t over[2] = {1, 1};
812 for (Int_t i=0; i<npad; i++) {
813 cath = fPadIJ[0][i];
814 if (fXyq[2][i] > 0) sum[cath] += fXyq[2][i];
815 if (fXyq[2][i] > fResponse->MaxAdc()-1) over[cath] = 0;
816 }
817 cout << " Total charge: " << sum[0] << " " << sum[1] << endl;
818 if ((over[0] || over[1]) && TMath::Abs(sum[0]-sum[1])/(sum[0]+sum[1])*2 > 1) { // 3 times difference
819 cout << " Release " << endl;
820 // Big difference
821 cath = sum[0]>sum[1] ? 0 : 1;
822 Int_t imax = 0;
823 Double_t cmax=-1;
824 Double_t *dist = new Double_t[npad];
825 for (Int_t i=0; i<npad; i++) {
826 if (fPadIJ[0][i] != cath) continue;
827 if (fXyq[2][i] < cmax) continue;
828 cmax = fXyq[2][i];
829 imax = i;
830 }
831 // Arrange pads according to their distance to the max,
832 // normalized to the pad size
833 for (Int_t i=0; i<npad; i++) {
834 dist[i] = 0;
835 if (fPadIJ[0][i] != cath) continue;
836 if (i == imax) continue;
837 if (fXyq[2][i] < 0) continue;
838 dist[i] = (fXyq[0][i]-fXyq[0][imax])*(fXyq[0][i]-fXyq[0][imax])/
839 fXyq[3][imax]/fXyq[3][imax]/4;
840 dist[i] += (fXyq[1][i]-fXyq[1][imax])*(fXyq[1][i]-fXyq[1][imax])/
841 fXyq[4][imax]/fXyq[4][imax]/4;
842 dist[i] = TMath::Sqrt (dist[i]);
843 }
844 TMath::Sort(npad, dist, flags, kFALSE); // in increasing order
845 Int_t indx;
846 Double_t xmax = -1;
847 for (Int_t i=0; i<npad; i++) {
848 indx = flags[i];
849 if (fPadIJ[0][indx] != cath) continue;
850 if (fXyq[2][indx] < 0) continue;
851 if (fXyq[2][indx] <= cmax || TMath::Abs(dist[indx]-xmax)<1.e-3) {
852 // Release pads
853 if (TMath::Abs(dist[indx]-xmax)<1.e-3)
cd747ddb 854 cmax = TMath::Max((Double_t)(fXyq[2][indx]),cmax);
0df3ca52 855 else cmax = fXyq[2][indx];
856 xmax = dist[indx];
857 digit = TMath::Nint (fXyq[5][indx]);
858 fUsed[cath][digit] = kFALSE;
859 fXyq[2][indx] = -2;
860 fnPads[cath]--;
861 // xmax = dist[i]; // Bug?
862 }
863 else break;
864 }
865 delete [] dist; dist = 0;
866 } // TMath::Abs(sum[0]-sum[1])...
867 } // if (fnPads[0] && fnPads[1])
868 delete [] flags; flags = 0;
869 } // if (i1 != i2)
870
871 if (!sameSize) { nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; }
872
873 // Move released pads to the right
874 Int_t beg = 0, end = npad-1, padij;
875 Double_t xyq;
876 while (beg < end) {
877 if (fXyq[2][beg] > 0) { beg++; continue; }
878 for (Int_t j=end; j>beg; j--) {
879 if (fXyq[2][j] < 0) continue;
880 end = j - 1;
881 for (Int_t j1=0; j1<2; j1++) {
882 padij = fPadIJ[j1][beg];
883 fPadIJ[j1][beg] = fPadIJ[j1][j];
884 fPadIJ[j1][j] = padij;
885 }
886 for (Int_t j1=0; j1<6; j1++) {
887 xyq = fXyq[j1][beg];
888 fXyq[j1][beg] = fXyq[j1][j];
889 fXyq[j1][j] = xyq;
890 }
891 break;
892 } // for (Int_t j=end;
893 beg++;
894 } // while
895 npad = fnPads[0] + fnPads[1];
896 if (npad > 500) { cout << " ***** Too large cluster. Give up. " << npad << endl; return kFALSE; }
897 // Back up charge value
898 for (Int_t j=0; j<npad; j++) fXyq[5][j] = fXyq[2][j];
899
900 return kTRUE;
901}
902
903//_____________________________________________________________________________
904void AliMUONClusterFinderAZ::BuildPixArray()
905{
906 // Build pixel array for MLEM method
907
908 Int_t nPix=0, i1, i2;
909 Float_t xy1[4], xy12[4];
910 AliMUONPixel *pixPtr=0;
911
912 Int_t npad = fnPads[0] + fnPads[1];
913
914 // One cathode is empty
915 i1 = fnPads[0]!=0 ? 0 : 1;
916 i2 = fnPads[1]!=0 ? 1 : 0;
917
918 // Build array of pixels on anode plane
919 if (i1 == i2) { // one-cathode precluster
920 for (Int_t j=0; j<npad; j++) {
921 pixPtr = new AliMUONPixel();
922 for (Int_t i=0; i<2; i++) {
923 pixPtr->SetCoord(i, fXyq[i][j]); // pixel coordinates
924 pixPtr->SetSize(i, fXyq[i+3][j]); // pixel size
925 }
926 pixPtr->SetCharge(fXyq[2][j]); // charge
927 fPixArray->Add((TObject*)pixPtr);
928 nPix++;
929 }
930 } else { // two-cathode precluster
931 for (Int_t i=0; i<npad; i++) {
932 if (fPadIJ[0][i] != i1) continue;
933 xy1[0] = fXyq[0][i] - fXyq[3][i];
934 xy1[1] = fXyq[0][i] + fXyq[3][i];
935 xy1[2] = fXyq[1][i] - fXyq[4][i];
936 xy1[3] = fXyq[1][i] + fXyq[4][i];
937 for (Int_t j=0; j<npad; j++) {
938 if (fPadIJ[0][j] != i2) continue;
939 if (!Overlap(xy1, j, xy12, 1)) continue;
940 pixPtr = new AliMUONPixel();
941 for (Int_t k=0; k<2; k++) {
942 pixPtr->SetCoord(k, (xy12[2*k]+xy12[2*k+1])/2); // pixel coordinates
943 pixPtr->SetSize(k, xy12[2*k+1]-pixPtr->Coord(k)); // size
944 }
945 pixPtr->SetCharge(TMath::Min (fXyq[2][i],fXyq[2][j])); //charge
946 fPixArray->Add((TObject*)pixPtr);
947 nPix++;
948 } // for (Int_t j=0;
949 } // for (Int_t i=0;
950 } // else
951
952 Float_t wxmin=999, wymin=999;
953 for (Int_t i=0; i<npad; i++) {
954 if (fPadIJ[0][i] == i1) wymin = TMath::Min (wymin,fXyq[4][i]);
955 if (fPadIJ[0][i] == i2) wxmin = TMath::Min (wxmin,fXyq[3][i]);
956 }
957 cout << wxmin << " " << wymin << endl;
958
959 // Check if small pixel X-size
960 AjustPixel(wxmin, 0);
961 // Check if small pixel Y-size
962 AjustPixel(wymin, 1);
963 // Check if large pixel size
964 AjustPixel(wxmin, wymin);
965
966 // Remove discarded pixels
967 for (Int_t i=0; i<nPix; i++) {
968 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
969 //pixPtr->Print();
970 if (pixPtr->Charge() < 1) { fPixArray->RemoveAt(i); delete pixPtr; }// discarded pixel
971 }
972 fPixArray->Compress();
973 nPix = fPixArray->GetEntriesFast();
974
975 if (nPix > npad) {
976 cout << nPix << endl;
977 // Too many pixels - sort and remove pixels with the lowest signal
978 fPixArray->Sort();
979 for (Int_t i=npad; i<nPix; i++) {
980 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
981 //pixPtr->Print();
982 fPixArray->RemoveAt(i);
983 delete pixPtr;
984 }
985 nPix = npad;
986 } // if (nPix > npad)
987
988 // Set pixel charges to the same value (for MLEM)
989 for (Int_t i=0; i<nPix; i++) {
990 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
991 //pixPtr->SetCharge(10);
992 cout << i+1 << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(0) << " " << pixPtr->Size(1) << endl;
993 }
994}
995
996//_____________________________________________________________________________
997void AliMUONClusterFinderAZ::AjustPixel(Float_t width, Int_t ixy)
998{
999 // Check if some pixels have small size (ajust if necessary)
1000
1001 AliMUONPixel *pixPtr, *pixPtr1 = 0;
1002 Int_t ixy1 = TMath::Even(ixy);
1003 Int_t nPix = fPixArray->GetEntriesFast();
1004
1005 for (Int_t i=0; i<nPix; i++) {
1006 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1007 if (pixPtr->Charge() < 1) continue; // discarded pixel
1008 if (pixPtr->Size(ixy)-width < -1.e-4) {
1009 // try to merge
1010 cout << " Small X or Y: " << ixy << " " << pixPtr->Size(ixy) << " " << width << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << endl;
1011 for (Int_t j=i+1; j<nPix; j++) {
1012 pixPtr1 = (AliMUONPixel*) fPixArray->UncheckedAt(j);
1013 if (pixPtr1->Charge() < 1) continue; // discarded pixel
1014 if (TMath::Abs(pixPtr1->Size(ixy)-width) < 1.e-4) continue; // right size
1015 if (TMath::Abs(pixPtr1->Coord(ixy1)-pixPtr->Coord(ixy1)) > 1.e-4) continue; // different rows/columns
1016 if (TMath::Abs(pixPtr1->Coord(ixy)-pixPtr->Coord(ixy)) < 2*width) {
1017 // merge
1018 pixPtr->SetSize(ixy, width);
1019 pixPtr->SetCoord(ixy, (pixPtr->Coord(ixy)+pixPtr1->Coord(ixy))/2);
1020 pixPtr->SetCharge(TMath::Min (pixPtr->Charge(),pixPtr1->Charge()));
1021 pixPtr1->SetCharge(0);
1022 pixPtr1 = 0;
1023 break;
1024 }
1025 } // for (Int_t j=i+1;
1026 //if (!pixPtr1) { cout << " I am here!" << endl; pixPtr->SetSize(ixy, width); } // ???
1027 //else if (pixPtr1->Charge() > 0.5 || i == nPix-1) {
1028 if (pixPtr1 || i == nPix-1) {
1029 // edge pixel - just increase its size
1030 cout << " Edge ..." << endl;
1031 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1032 // ???if (fPadIJ[0][j] != i1) continue;
1033 if (TMath::Abs(pixPtr->Coord(ixy1)-fXyq[ixy1][j]) > 1.e-4) continue;
1034 if (pixPtr->Coord(ixy) < fXyq[ixy][j])
1035 pixPtr->Shift(ixy, -pixPtr->Size(ixy));
1036 else pixPtr->Shift(ixy, pixPtr->Size(ixy));
1037 pixPtr->SetSize(ixy, width);
1038 break;
1039 }
1040 }
1041 } // if (pixPtr->Size(ixy)-width < -1.e-4)
1042 } // for (Int_t i=0; i<nPix;
1043 return;
1044}
1045
1046//_____________________________________________________________________________
1047void AliMUONClusterFinderAZ::AjustPixel(Float_t wxmin, Float_t wymin)
1048{
1049 // Check if some pixels have large size (ajust if necessary)
1050
1051 Int_t nx, ny;
1052 Int_t nPix = fPixArray->GetEntriesFast();
1053 AliMUONPixel *pixPtr, *pixPtr1, pix;
1054
1055 // Check if large pixel size
1056 for (Int_t i=0; i<nPix; i++) {
1057 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1058 if (pixPtr->Charge() < 1) continue; // discarded pixel
1059 if (pixPtr->Size(0)-wxmin > 1.e-4 || pixPtr->Size(1)-wymin > 1.e-4) {
1060 cout << " Different " << pixPtr->Size(0) << " " << wxmin << " " << pixPtr->Size(1) << " " << wymin << endl;
1061 pix = *pixPtr;
1062 nx = TMath::Nint (pix.Size(0)/wxmin);
1063 ny = TMath::Nint (pix.Size(1)/wymin);
1064 pix.Shift(0, -pix.Size(0)-wxmin);
1065 pix.Shift(1, -pix.Size(1)-wymin);
1066 pix.SetSize(0, wxmin);
1067 pix.SetSize(1, wymin);
1068 for (Int_t ii=0; ii<nx; ii++) {
1069 pix.Shift(0, wxmin*2);
1070 for (Int_t jj=0; jj<ny; jj++) {
1071 pix.Shift(1, wymin*2);
1072 pixPtr1 = new AliMUONPixel(pix);
1073 fPixArray->Add((TObject*)pixPtr1);
1074 }
1075 }
1076 pixPtr->SetCharge(0);
1077 }
1078 } // for (Int_t i=0; i<nPix;
1079 return;
1080}
1081
1082//_____________________________________________________________________________
1083Bool_t AliMUONClusterFinderAZ::MainLoop()
1084{
1085 // Repeat MLEM algorithm until pixel size becomes sufficiently small
1086
1087 TH2D *mlem;
1088
1089 Int_t ix, iy;
1090 //Int_t nn, xList[10], yList[10];
1091 Int_t nPix = fPixArray->GetEntriesFast();
1092 Int_t npadTot = fnPads[0] + fnPads[1], npadOK = 0;
1093 AliMUONPixel *pixPtr = 0;
1094 Double_t *coef = 0, *probi = 0;
1095 for (Int_t i=0; i<npadTot; i++) if (fPadIJ[1][i] == 0) npadOK++;
1096
1097 while (1) {
1098
1099 mlem = (TH2D*) gROOT->FindObject("mlem");
1100 if (mlem) mlem->Delete();
1101 // Calculate coefficients
1102 cout << " nPix, npadTot, npadOK " << nPix << " " << npadTot << " " << npadOK << endl;
1103
1104 // Calculate coefficients and pixel visibilities
1105 coef = new Double_t [npadTot*nPix];
1106 probi = new Double_t [nPix];
1107 Int_t indx = 0, cath;
1108 for (Int_t ipix=0; ipix<nPix; ipix++) {
1109 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1110 probi[ipix] = 0;
1111 for (Int_t j=0; j<npadTot; j++) {
1112 if (fPadIJ[1][j] < 0) { coef[j*nPix+ipix] = 0; continue; }
1113 cath = fPadIJ[0][j];
1114 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
1115 fSegmentation[cath]->SetPad(ix,iy);
1116 /*
1117 fSegmentation[cath]->Neighbours(ix,iy,&nn,xList,yList);
1118 if (nn != 4) {
1119 cout << nn << ": ";
1120 for (Int_t i=0; i<nn; i++) {cout << xList[i] << " " << yList[i] << ", ";}
1121 cout << endl;
1122 }
1123 */
1124 Double_t sum = 0;
1125 fSegmentation[cath]->SetHit(pixPtr->Coord(0),pixPtr->Coord(1),fZpad);
1126 sum += fResponse->IntXY(fSegmentation[cath]);
1127 indx = j*nPix + ipix;
1128 coef[indx] = sum;
1129 probi[ipix] += coef[indx];
1130 //cout << j << " " << ipix << " " << coef[indx] << endl;
1131 } // for (Int_t j=0;
1132 //cout << " prob: " << probi[ipix] << endl;
1133 if (probi[ipix] < 0.01) pixPtr->SetCharge(0); // "invisible" pixel
1134 } // for (Int_t ipix=0;
1135
1136 // MLEM algorithm
1137 Mlem(coef, probi);
1138
cd747ddb 1139 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 1140 for (Int_t ipix=0; ipix<nPix; ipix++) {
1141 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1142 for (Int_t i=0; i<4; i++)
1143 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1144 //cout << ipix+1; pixPtr->Print();
1145 }
1146 for (Int_t i=0; i<4; i++) {
1147 xylim[i] -= pixPtr->Size(i/2); cout << (i%2 ? -1 : 1)*xylim[i] << " "; }
1148 cout << endl;
1149
1150 // Ajust histogram to approximately the same limits as for the pads
1151 // (for good presentation)
1152 //*
1153 Float_t xypads[4];
1154 if (fHist[0]) {
1155 xypads[0] = fHist[0]->GetXaxis()->GetXmin();
1156 xypads[1] = -fHist[0]->GetXaxis()->GetXmax();
1157 xypads[2] = fHist[0]->GetYaxis()->GetXmin();
1158 xypads[3] = -fHist[0]->GetYaxis()->GetXmax();
1159 for (Int_t i=0; i<4; i++) {
1160 while(1) {
1161 if (xylim[i] < xypads[i]) break;
1162 xylim[i] -= 2*pixPtr->Size(i/2);
1163 }
1164 }
1165 } // if (fHist[0])
1166 //*/
1167
1168 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
1169 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
1170 mlem = new TH2D("mlem","mlem",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
1171 for (Int_t ipix=0; ipix<nPix; ipix++) {
1172 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1173 mlem->Fill(pixPtr->Coord(0),pixPtr->Coord(1),pixPtr->Charge());
1174 }
1175 //gPad->GetCanvas()->cd(3);
1176 if (fDraw) {
1177 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1178 gPad->SetTheta(55);
1179 gPad->SetPhi(30);
1180 mlem->Draw("lego1Fb");
1181 gPad->Update();
1182 gets((char*)&ix);
1183 }
1184
1185 // Check if the total charge of pixels is too low
1186 Double_t qTot = 0;
1187 for (Int_t i=0; i<nPix; i++) {
1188 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1189 qTot += pixPtr->Charge();
1190 }
1191 if (qTot < 1.e-4 || npadOK < 3 && qTot < 50) {
1192 delete [] coef; delete [] probi; coef = 0; probi = 0;
1193 fPixArray->Delete();
1194 return kFALSE;
1195 }
1196
1197 // Plot data - expectation
1198 /*
1199 Double_t x, y, cont;
1200 for (Int_t j=0; j<npadTot; j++) {
1201 Double_t sum1 = 0;
1202 for (Int_t i=0; i<nPix; i++) {
1203 // Caculate expectation
1204 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1205 sum1 += pixPtr->Charge()*coef[j*nPix+i];
1206 }
1207 sum1 = TMath::Min (sum1,(Double_t)fResponse->MaxAdc());
1208 x = fXyq[0][j];
1209 y = fXyq[1][j];
1210 cath = fPadIJ[0][j];
1211 Int_t ihist = cath*2;
1212 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1213 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1214 cont = fHist[ihist]->GetCellContent(ix,iy);
1215 if (cont == 0 && fHist[ihist+1]) {
1216 ihist += 1;
1217 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1218 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1219 }
1220 fHist[ihist]->SetBinContent(ix,iy,fXyq[2][j]-sum1);
1221 }
1222 ((TCanvas*)gROOT->FindObject("c1"))->cd(1);
1223 //gPad->SetTheta(55);
1224 //gPad->SetPhi(30);
1225 //mlem->Draw("lego1");
1226 gPad->Modified();
1227 ((TCanvas*)gROOT->FindObject("c1"))->cd(2);
1228 gPad->Modified();
1229 */
1230
1231 // Calculate position of the center-of-gravity around the maximum pixel
1232 Double_t xyCOG[2];
1233 FindCOG(mlem, xyCOG);
1234
1235 if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.07 && pixPtr->Size(0) > pixPtr->Size(1)) break;
1236 //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) >= 0.07 || pixPtr->Size(0) < pixPtr->Size(1)) {
1237 // Sort pixels according to the charge
1238 fPixArray->Sort();
1239 /*
1240 for (Int_t i=0; i<nPix; i++) {
1241 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1242 cout << i+1; pixPtr->Print();
1243 }
1244 */
1245 Double_t pixMin = 0.01*((AliMUONPixel*)fPixArray->UncheckedAt(0))->Charge();
1246 pixMin = TMath::Min (pixMin,50.);
1247
1248 // Decrease pixel size and shift pixels to make them centered at
1249 // the maximum one
1250 indx = (pixPtr->Size(0)>pixPtr->Size(1)) ? 0 : 1;
1251 Double_t width = 0, shift[2]={0};
1252 ix = 1;
1253 for (Int_t i=0; i<4; i++) xylim[i] = 999;
1254 Int_t nPix1 = nPix; nPix = 0;
1255 for (Int_t ipix=0; ipix<nPix1; ipix++) {
1256 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1257 if (nPix >= npadOK) { // too many pixels already
1258 fPixArray->RemoveAt(ipix);
1259 delete pixPtr;
1260 continue;
1261 }
1262 if (pixPtr->Charge() < pixMin) { // low charge
1263 fPixArray->RemoveAt(ipix);
1264 delete pixPtr;
1265 continue;
1266 }
1267 for (Int_t i=0; i<2; i++) {
1268 if (!i) {
1269 pixPtr->SetCharge(10);
1270 pixPtr->SetSize(indx, pixPtr->Size(indx)/2);
1271 width = -pixPtr->Size(indx);
1272 pixPtr->Shift(indx, width);
1273 // Shift pixel position
1274 if (ix) {
1275 ix = 0;
1276 for (Int_t j=0; j<2; j++) {
1277 shift[j] = pixPtr->Coord(j) - xyCOG[j];
1278 shift[j] -= ((Int_t)(shift[j]/pixPtr->Size(j)/2))*pixPtr->Size(j)*2;
1279 }
1280 //cout << ipix << " " << i << " " << shift[0] << " " << shift[1] << endl;
1281 } // if (ix)
1282 pixPtr->Shift(0, -shift[0]);
1283 pixPtr->Shift(1, -shift[1]);
1284 } else {
1285 pixPtr = new AliMUONPixel(*pixPtr);
1286 pixPtr->Shift(indx, -2*width);
1287 fPixArray->Add((TObject*)pixPtr);
1288 } // else
1289 //pixPtr->Print();
1290 for (Int_t i=0; i<4; i++)
1291 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1292 } // for (Int_t i=0; i<2;
1293 nPix += 2;
1294 } // for (Int_t ipix=0;
1295
1296 fPixArray->Compress();
1297 nPix = fPixArray->GetEntriesFast();
1298
1299 // Remove excessive pixels
1300 if (nPix > npadOK) {
1301 for (Int_t ipix=npadOK; ipix<nPix; ipix++) {
1302 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1303 fPixArray->RemoveAt(ipix);
1304 delete pixPtr;
1305 }
1306 } else {
1307 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(0);
1308 // add pixels if the maximum is at the limit of pixel area
1309 // start from Y-direction
1310 Int_t j = 0;
1311 for (Int_t i=3; i>-1; i--) {
1312 if (nPix < npadOK &&
1313 TMath::Abs((i%2 ? -1 : 1)*xylim[i]-xyCOG[i/2]) < pixPtr->Size(i/2)) {
1314 pixPtr = new AliMUONPixel(*pixPtr);
1315 pixPtr->SetCoord(i/2, xyCOG[i/2]+(i%2 ? 2:-2)*pixPtr->Size(i/2));
1316 j = TMath::Even (i/2);
1317 pixPtr->SetCoord(j, xyCOG[j]);
1318 fPixArray->Add((TObject*)pixPtr);
1319 nPix++;
1320 }
1321 }
1322 } // else
1323
1324 fPixArray->Compress();
1325 nPix = fPixArray->GetEntriesFast();
1326 delete [] coef; delete [] probi; coef = 0; probi = 0;
1327 } // while (1)
1328
1329 // remove pixels with low signal or low visibility
1330 // Cuts are empirical !!!
1331 Double_t thresh = TMath::Max (mlem->GetMaximum()/100.,1.);
1332 thresh = TMath::Min (thresh,50.);
1333 Double_t cmax = -1, charge = 0;
1334 for (Int_t i=0; i<nPix; i++) cmax = TMath::Max (cmax,probi[i]);
1335 // Mark pixels which should be removed
1336 for (Int_t i=0; i<nPix; i++) {
1337 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1338 charge = pixPtr->Charge();
1339 if (charge < thresh) pixPtr->SetCharge(-charge);
1340 else if (cmax > 1.91) {
1341 if (probi[i] < 1.9) pixPtr->SetCharge(-charge);
1342 }
1343 else if (probi[i] < cmax*0.9) pixPtr->SetCharge(-charge);
1344 }
1345 // Move charge of removed pixels to their nearest neighbour (to keep total charge the same)
1346 Int_t near = 0;
1347 for (Int_t i=0; i<nPix; i++) {
1348 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1349 charge = pixPtr->Charge();
1350 if (charge > 0) continue;
1351 near = FindNearest(pixPtr);
1352 pixPtr->SetCharge(0);
1353 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(near);
1354 pixPtr->SetCharge(pixPtr->Charge() - charge);
1355 }
1356 // Update histogram
1357 for (Int_t i=0; i<nPix; i++) {
1358 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1359 ix = mlem->GetXaxis()->FindBin(pixPtr->Coord(0));
1360 iy = mlem->GetYaxis()->FindBin(pixPtr->Coord(1));
1361 mlem->SetBinContent(ix, iy, pixPtr->Charge());
1362 }
1363 if (fDraw) {
1364 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1365 gPad->SetTheta(55);
1366 gPad->SetPhi(30);
1367 mlem->Draw("lego1Fb");
1368 gPad->Update();
1369 }
1370
1371 fxyMu[0][6] = fxyMu[1][6] = 9999;
1372 // Try to split into clusters
1373 Bool_t ok = kTRUE;
1374 if (mlem->GetSum() < 1) ok = kFALSE;
1375 else Split(mlem, coef);
1376 delete [] coef; delete [] probi; coef = 0; probi = 0;
1377 fPixArray->Delete();
1378 return ok;
1379}
1380
1381//_____________________________________________________________________________
1382void AliMUONClusterFinderAZ::Mlem(Double_t *coef, Double_t *probi)
1383{
1384 // Use MLEM to find pixel charges
1385
1386 Int_t nPix = fPixArray->GetEntriesFast();
1387 Int_t npad = fnPads[0] + fnPads[1];
1388 Double_t *probi1 = new Double_t [nPix];
1389 Int_t indx, indx1;
1390 AliMUONPixel *pixPtr;
1391
1392 for (Int_t iter=0; iter<15; iter++) {
1393 // Do iterations
1394 for (Int_t ipix=0; ipix<nPix; ipix++) {
1395 // Correct each pixel
1396 if (probi[ipix] < 0.01) continue; // skip "invisible" pixel
1397 Double_t sum = 0;
1398 probi1[ipix] = probi[ipix];
1399 for (Int_t j=0; j<npad; j++) {
1400 if (fPadIJ[1][j] < 0) continue;
1401 Double_t sum1 = 0;
1402 indx1 = j*nPix;
1403 indx = indx1 + ipix;
1404 for (Int_t i=0; i<nPix; i++) {
1405 // Caculate expectation
1406 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1407 sum1 += pixPtr->Charge()*coef[indx1+i];
1408 } // for (Int_t i=0;
1409 if (fXyq[2][j] > fResponse->MaxAdc()-1 && sum1 > fResponse->MaxAdc()) { probi1[ipix] -= coef[indx]; continue; } // correct for pad charge overflows
1410 //cout << sum1 << " " << fXyq[2][j] << " " << coef[j*nPix+ipix] << endl;
1411 if (coef[indx] > 1.e-6) sum += fXyq[2][j]*coef[indx]/sum1;
1412 } // for (Int_t j=0;
1413 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1414 if (probi1[ipix] > 1.e-6) pixPtr->SetCharge(pixPtr->Charge()*sum/probi1[ipix]);
1415 } // for (Int_t ipix=0;
1416 } // for (Int_t iter=0;
1417 delete [] probi1;
1418 return;
1419}
1420
1421//_____________________________________________________________________________
1422void AliMUONClusterFinderAZ::FindCOG(TH2D *mlem, Double_t *xyc)
1423{
1424 // Calculate position of the center-of-gravity around the maximum pixel
1425
1426 Int_t ixmax, iymax, ix, nsumx=0, nsumy=0, nsum=0;
1427 Int_t i1 = -9, j1 = -9;
1428 mlem->GetMaximumBin(ixmax,iymax,ix);
1429 Int_t nx = mlem->GetNbinsX();
1430 Int_t ny = mlem->GetNbinsY();
1431 Double_t thresh = mlem->GetMaximum()/10;
1432 Double_t x, y, cont, xq=0, yq=0, qq=0;
1433
1434 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1435 y = mlem->GetYaxis()->GetBinCenter(i);
1436 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1437 cont = mlem->GetCellContent(j,i);
1438 if (cont < thresh) continue;
1439 if (i != i1) {i1 = i; nsumy++;}
1440 if (j != j1) {j1 = j; nsumx++;}
1441 x = mlem->GetXaxis()->GetBinCenter(j);
1442 xq += x*cont;
1443 yq += y*cont;
1444 qq += cont;
1445 nsum++;
1446 }
1447 }
1448
1449 Double_t cmax = 0;
1450 Int_t i2 = 0, j2 = 0;
1451 x = y = 0;
1452 if (nsumy == 1) {
1453 // one bin in Y - add one more (with the largest signal)
1454 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1455 if (i == iymax) continue;
1456 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1457 cont = mlem->GetCellContent(j,i);
1458 if (cont > cmax) {
1459 cmax = cont;
1460 x = mlem->GetXaxis()->GetBinCenter(j);
1461 y = mlem->GetYaxis()->GetBinCenter(i);
1462 i2 = i;
1463 j2 = j;
1464 }
1465 }
1466 }
1467 xq += x*cmax;
1468 yq += y*cmax;
1469 qq += cmax;
1470 if (i2 != i1) nsumy++;
1471 if (j2 != j1) nsumx++;
1472 nsum++;
1473 } // if (nsumy == 1)
1474
1475 if (nsumx == 1) {
1476 // one bin in X - add one more (with the largest signal)
1477 cmax = x = y = 0;
1478 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1479 if (j == ixmax) continue;
1480 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1481 cont = mlem->GetCellContent(j,i);
1482 if (cont > cmax) {
1483 cmax = cont;
1484 x = mlem->GetXaxis()->GetBinCenter(j);
1485 y = mlem->GetYaxis()->GetBinCenter(i);
1486 i2 = i;
1487 j2 = j;
1488 }
1489 }
1490 }
1491 xq += x*cmax;
1492 yq += y*cmax;
1493 qq += cmax;
1494 if (i2 != i1) nsumy++;
1495 if (j2 != j1) nsumx++;
1496 nsum++;
1497 } // if (nsumx == 1)
1498
1499 xyc[0] = xq/qq; xyc[1] = yq/qq;
1500 cout << xyc[0] << " " << xyc[1] << " " << qq << " " << nsum << " " << nsumx << " " << nsumy << endl;
1501 return;
1502}
1503
1504//_____________________________________________________________________________
1505Int_t AliMUONClusterFinderAZ::FindNearest(AliMUONPixel *pixPtr0)
1506{
1507 // Find the pixel nearest to the given one
1508 // (algorithm may be not very efficient)
1509
1510 Int_t nPix = fPixArray->GetEntriesFast(), imin = 0;
1511 Double_t rmin = 99999, dx = 0, dy = 0, r = 0;
1512 Double_t xc = pixPtr0->Coord(0), yc = pixPtr0->Coord(1);
1513 AliMUONPixel *pixPtr;
1514
1515 for (Int_t i=0; i<nPix; i++) {
1516 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1517 if (pixPtr->Charge() < 0.5) continue;
1518 dx = (xc - pixPtr->Coord(0)) / pixPtr->Size(0);
1519 dy = (yc - pixPtr->Coord(1)) / pixPtr->Size(1);
1520 r = dx *dx + dy * dy;
1521 if (r < rmin) { rmin = r; imin = i; }
1522 }
1523 return imin;
1524}
1525
1526//_____________________________________________________________________________
1527void AliMUONClusterFinderAZ::Split(TH2D *mlem, Double_t *coef)
1528{
1529 // The main steering function to work with clusters of pixels in anode
1530 // plane (find clusters, decouple them from each other, merge them (if
1531 // necessary), pick up coupled pads, call the fitting function)
1532
1533 Int_t nx = mlem->GetNbinsX();
1534 Int_t ny = mlem->GetNbinsY();
1535 Int_t nPix = fPixArray->GetEntriesFast();
1536
1537 Bool_t *used = new Bool_t[ny*nx];
1538 Double_t cont;
1539 Int_t nclust = 0, indx, indx1;
1540
1541 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
1542
1543 TObjArray *clusters[200]={0};
1544 TObjArray *pix;
1545
1546 // Find clusters of histogram bins (easier to work in 2-D space)
1547 for (Int_t i=1; i<=ny; i++) {
1548 for (Int_t j=1; j<=nx; j++) {
1549 indx = (i-1)*nx + j - 1;
1550 if (used[indx]) continue;
1551 cont = mlem->GetCellContent(j,i);
1552 if (cont < 0.5) continue;
1553 pix = new TObjArray(20);
1554 used[indx] = 1;
1555 pix->Add(BinToPix(mlem,j,i));
1556 AddBin(mlem, i, j, 0, used, pix); // recursive call
1557 clusters[nclust++] = pix;
1558 if (nclust > 200) { cout << " Too many clusters " << endl; ::exit(0); }
1559 } // for (Int_t j=1; j<=nx; j++) {
1560 } // for (Int_t i=1; i<=ny;
1561 cout << nclust << endl;
1562 delete [] used; used = 0;
1563
1564 // Compute couplings between clusters and clusters to pads
1565 Int_t npad = fnPads[0] + fnPads[1];
1566
1567 // Exclude pads with overflows
1568 for (Int_t j=0; j<npad; j++) {
1569 if (fXyq[2][j] > fResponse->MaxAdc()-1) fPadIJ[1][j] = -9;
1570 else fPadIJ[1][j] = 0;
1571 }
1572
1573 // Compute couplings of clusters to pads
c1aed84f 1574 TMatrixD *aijclupad = new TMatrixD(nclust,npad);
1575 *aijclupad = 0;
0df3ca52 1576 Int_t npxclu;
1577 for (Int_t iclust=0; iclust<nclust; iclust++) {
1578 pix = clusters[iclust];
1579 npxclu = pix->GetEntriesFast();
1580 for (Int_t i=0; i<npxclu; i++) {
1581 indx = fPixArray->IndexOf(pix->UncheckedAt(i));
1582 for (Int_t j=0; j<npad; j++) {
1583 // Exclude overflows
1584 if (fPadIJ[1][j] < 0) continue;
1585 if (coef[j*nPix+indx] < kCouplMin) continue;
c1aed84f 1586 (*aijclupad)(iclust,j) += coef[j*nPix+indx];
0df3ca52 1587 }
1588 }
1589 }
1590 // Compute couplings between clusters
c1aed84f 1591 TMatrixD *aijcluclu = new TMatrixD(nclust,nclust);
1592 *aijcluclu = 0;
0df3ca52 1593 for (Int_t iclust=0; iclust<nclust; iclust++) {
1594 for (Int_t j=0; j<npad; j++) {
1595 // Exclude overflows
1596 if (fPadIJ[1][j] < 0) continue;
c1aed84f 1597 if ((*aijclupad)(iclust,j) < kCouplMin) continue;
0df3ca52 1598 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
c1aed84f 1599 if ((*aijclupad)(iclust1,j) < kCouplMin) continue;
1600 (*aijcluclu)(iclust,iclust1) +=
1601 TMath::Sqrt ((*aijclupad)(iclust,j)*(*aijclupad)(iclust1,j));
0df3ca52 1602 }
1603 }
1604 }
1605 for (Int_t iclust=0; iclust<nclust; iclust++) {
1606 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
c1aed84f 1607 (*aijcluclu)(iclust1,iclust) = (*aijcluclu)(iclust,iclust1);
0df3ca52 1608 }
1609 }
1610
c1aed84f 1611 if (nclust > 1) aijcluclu->Print();
0df3ca52 1612
1613 // Find groups of coupled clusters
1614 used = new Bool_t[nclust];
1615 for (Int_t i=0; i<nclust; i++) used[i] = kFALSE;
1616 Int_t *clustNumb = new Int_t[nclust];
1617 Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
1618 Double_t parOk[8];
1619
1620 for (Int_t igroup=0; igroup<nclust; igroup++) {
1621 if (used[igroup]) continue;
1622 used[igroup] = kTRUE;
1623 clustNumb[0] = igroup;
1624 nCoupled = 1;
1625 // Find group of coupled clusters
c1aed84f 1626 AddCluster(igroup, nclust, aijcluclu, used, clustNumb, nCoupled); // recursive
0df3ca52 1627 cout << " nCoupled: " << nCoupled << endl;
1628 for (Int_t i=0; i<nCoupled; i++) cout << clustNumb[i] << " "; cout << endl;
1629
1630 while (nCoupled > 0) {
1631
1632 if (nCoupled < 4) {
1633 nForFit = nCoupled;
1634 for (Int_t i=0; i<nCoupled; i++) clustFit[i] = clustNumb[i];
1635 } else {
1636 // Too many coupled clusters to fit - try to decouple them
1637 // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
1638 // all the others in the group
1639 for (Int_t j=0; j<3; j++) minGroup[j] = -1;
c1aed84f 1640 Double_t coupl = MinGroupCoupl(nCoupled, clustNumb, aijcluclu, minGroup);
0df3ca52 1641
1642 // Flag clusters for fit
1643 nForFit = 0;
1644 while (minGroup[nForFit] >= 0 && nForFit < 3) {
1645 cout << clustNumb[minGroup[nForFit]] << " ";
1646 clustFit[nForFit] = clustNumb[minGroup[nForFit]];
1647 clustNumb[minGroup[nForFit]] -= 999;
1648 nForFit++;
1649 }
1650 cout << nForFit << " " << coupl << endl;
1651 } // else
1652
1653 // Select pads for fit.
c1aed84f 1654 if (SelectPad(nCoupled, nForFit, clustNumb, clustFit, aijclupad) < 3 && nCoupled > 1) {
0df3ca52 1655 // Deselect pads
1656 for (Int_t j=0; j<npad; j++) if (TMath::Abs(fPadIJ[1][j]) == 1) fPadIJ[1][j] = 0;
1657 // Merge the failed cluster candidates (with too few pads to fit) with
1658 // the one with the strongest coupling
c1aed84f 1659 Merge(nForFit, nCoupled, clustNumb, clustFit, clusters, aijcluclu, aijclupad);
0df3ca52 1660 } else {
1661 // Do the fit
1662 nfit = Fit(nForFit, clustFit, clusters, parOk);
1663 }
1664
1665 // Subtract the fitted charges from pads with strong coupling and/or
1666 // return pads for further use
1667 UpdatePads(nfit, parOk);
1668
1669 // Mark used pads
1670 for (Int_t j=0; j<npad; j++) {if (fPadIJ[1][j] == 1) fPadIJ[1][j] = -1;}
1671
1672 // Sort the clusters (move to the right the used ones)
1673 Int_t beg = 0, end = nCoupled - 1;
1674 while (beg < end) {
1675 if (clustNumb[beg] >= 0) { beg++; continue; }
1676 for (Int_t j=end; j>beg; j--) {
1677 if (clustNumb[j] < 0) continue;
1678 end = j - 1;
1679 indx = clustNumb[beg];
1680 clustNumb[beg] = clustNumb[j];
1681 clustNumb[j] = indx;
1682 break;
1683 }
1684 beg++;
1685 }
1686
1687 nCoupled -= nForFit;
1688 if (nCoupled > 3) {
1689 // Remove couplings of used clusters
1690 for (Int_t iclust=nCoupled; iclust<nCoupled+nForFit; iclust++) {
1691 indx = clustNumb[iclust] + 999;
1692 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1693 indx1 = clustNumb[iclust1];
c1aed84f 1694 (*aijcluclu)(indx,indx1) = (*aijcluclu)(indx1,indx) = 0;
0df3ca52 1695 }
1696 }
1697
1698 // Update the remaining clusters couplings (exclude couplings from
1699 // the used pads)
1700 for (Int_t j=0; j<npad; j++) {
1701 if (fPadIJ[1][j] != -1) continue;
1702 for (Int_t iclust=0; iclust<nCoupled; iclust++) {
1703 indx = clustNumb[iclust];
c1aed84f 1704 if ((*aijclupad)(indx,j) < kCouplMin) continue;
0df3ca52 1705 for (Int_t iclust1=iclust+1; iclust1<nCoupled; iclust1++) {
1706 indx1 = clustNumb[iclust1];
c1aed84f 1707 if ((*aijclupad)(indx1,j) < kCouplMin) continue;
0df3ca52 1708 // Check this
c1aed84f 1709 (*aijcluclu)(indx,indx1) -=
1710 TMath::Sqrt ((*aijclupad)(indx,j)*(*aijclupad)(indx1,j));
1711 (*aijcluclu)(indx1,indx) = (*aijcluclu)(indx,indx1);
0df3ca52 1712 }
1713 }
1714 fPadIJ[1][j] = -9;
1715 } // for (Int_t j=0; j<npad;
1716 } // if (nCoupled > 3)
1717 } // while (nCoupled > 0)
1718 } // for (Int_t igroup=0; igroup<nclust;
1719
c1aed84f 1720 //delete aij_clu; aij_clu = 0; delete aijclupad; aijclupad = 0;
1721 aijcluclu->Delete(); aijclupad->Delete();
0df3ca52 1722 for (Int_t iclust=0; iclust<nclust; iclust++) {
1723 pix = clusters[iclust];
1724 pix->Clear();
1725 delete pix; pix = 0;
1726 }
1727 delete [] clustNumb; clustNumb = 0; delete [] used; used = 0;
1728}
1729
1730//_____________________________________________________________________________
1731void AliMUONClusterFinderAZ::AddBin(TH2D *mlem, Int_t ic, Int_t jc, Int_t mode, Bool_t *used, TObjArray *pix)
1732{
1733 // Add a bin to the cluster
1734
1735 Int_t nx = mlem->GetNbinsX();
1736 Int_t ny = mlem->GetNbinsY();
1737 Double_t cont1, cont = mlem->GetCellContent(jc,ic);
1738 AliMUONPixel *pixPtr = 0;
1739
1740 for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) {
1741 for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) {
1742 if (i != ic && j != jc) continue;
1743 if (used[(i-1)*nx+j-1]) continue;
1744 cont1 = mlem->GetCellContent(j,i);
1745 if (mode && cont1 > cont) continue;
1746 used[(i-1)*nx+j-1] = kTRUE;
1747 if (cont1 < 0.5) continue;
1748 if (pix) pix->Add(BinToPix(mlem,j,i));
1749 else {
1750 pixPtr = new AliMUONPixel (mlem->GetXaxis()->GetBinCenter(j),
1751 mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
1752 fPixArray->Add((TObject*)pixPtr);
1753 }
1754 AddBin(mlem, i, j, mode, used, pix); // recursive call
1755 }
1756 }
1757}
1758
1759//_____________________________________________________________________________
1760TObject* AliMUONClusterFinderAZ::BinToPix(TH2D *mlem, Int_t jc, Int_t ic)
1761{
1762 // Translate histogram bin to pixel
1763
1764 Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
1765 Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
1766
1767 Int_t nPix = fPixArray->GetEntriesFast();
1768 AliMUONPixel *pixPtr;
1769
1770 // Compare pixel and bin positions
1771 for (Int_t i=0; i<nPix; i++) {
1772 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1773 if (pixPtr->Charge() < 0.5) continue;
1774 if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4) return (TObject*) pixPtr;
1775 }
1776 cout << " Something wrong ??? " << endl;
1777 return NULL;
1778}
1779
1780//_____________________________________________________________________________
c1aed84f 1781void AliMUONClusterFinderAZ::AddCluster(Int_t ic, Int_t nclust, TMatrixD *aijcluclu, Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
0df3ca52 1782{
1783 // Add a cluster to the group of coupled clusters
1784
1785 for (Int_t i=0; i<nclust; i++) {
1786 if (used[i]) continue;
c1aed84f 1787 if ((*aijcluclu)(i,ic) < kCouplMin) continue;
0df3ca52 1788 used[i] = kTRUE;
1789 clustNumb[nCoupled++] = i;
c1aed84f 1790 AddCluster(i, nclust, aijcluclu, used, clustNumb, nCoupled);
0df3ca52 1791 }
1792}
1793
1794//_____________________________________________________________________________
c1aed84f 1795Double_t AliMUONClusterFinderAZ::MinGroupCoupl(Int_t nCoupled, Int_t *clustNumb, TMatrixD *aijcluclu, Int_t *minGroup)
0df3ca52 1796{
1797 // Find group of clusters with minimum coupling to all the others
1798
1799 Int_t i123max = TMath::Min(3,nCoupled/2);
1800 Int_t indx, indx1, indx2, indx3, nTot = 0;
1801 Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1802
1803 for (Int_t i123=1; i123<=i123max; i123++) {
1804
1805 if (i123 == 1) {
1806 coupl1 = new Double_t [nCoupled];
1807 for (Int_t i=0; i<nCoupled; i++) coupl1[i] = 0;
1808 }
1809 else if (i123 == 2) {
1810 nTot = nCoupled*nCoupled;
1811 coupl2 = new Double_t [nTot];
1812 for (Int_t i=0; i<nTot; i++) coupl2[i] = 9999;
1813 } else {
1814 nTot = nTot*nCoupled;
1815 coupl3 = new Double_t [nTot];
1816 for (Int_t i=0; i<nTot; i++) coupl3[i] = 9999;
1817 } // else
1818
1819 for (Int_t i=0; i<nCoupled; i++) {
1820 indx1 = clustNumb[i];
1821 for (Int_t j=i+1; j<nCoupled; j++) {
1822 indx2 = clustNumb[j];
1823 if (i123 == 1) {
c1aed84f 1824 coupl1[i] += (*aijcluclu)(indx1,indx2);
1825 coupl1[j] += (*aijcluclu)(indx1,indx2);
0df3ca52 1826 }
1827 else if (i123 == 2) {
1828 indx = i*nCoupled + j;
1829 coupl2[indx] = coupl1[i] + coupl1[j];
c1aed84f 1830 coupl2[indx] -= 2 * ((*aijcluclu)(indx1,indx2));
0df3ca52 1831 } else {
1832 for (Int_t k=j+1; k<nCoupled; k++) {
1833 indx3 = clustNumb[k];
1834 indx = i*nCoupled*nCoupled + j*nCoupled + k;
1835 coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
c1aed84f 1836 coupl3[indx] -= 2 * ((*aijcluclu)(indx1,indx3)+(*aijcluclu)(indx2,indx3));
0df3ca52 1837 }
1838 } // else
1839 } // for (Int_t j=i+1;
1840 } // for (Int_t i=0;
1841 } // for (Int_t i123=1;
1842
1843 // Find minimum coupling
1844 Double_t couplMin = 9999;
1845 Int_t locMin = 0;
1846
1847 for (Int_t i123=1; i123<=i123max; i123++) {
1848 if (i123 == 1) {
1849 locMin = TMath::LocMin(nCoupled, coupl1);
1850 couplMin = coupl1[locMin];
1851 minGroup[0] = locMin;
1852 delete [] coupl1; coupl1 = 0;
1853 }
1854 else if (i123 == 2) {
1855 locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1856 if (coupl2[locMin] < couplMin) {
1857 couplMin = coupl2[locMin];
1858 minGroup[0] = locMin/nCoupled;
1859 minGroup[1] = locMin%nCoupled;
1860 }
1861 delete [] coupl2; coupl2 = 0;
1862 } else {
1863 locMin = TMath::LocMin(nTot, coupl3);
1864 if (coupl3[locMin] < couplMin) {
1865 couplMin = coupl3[locMin];
1866 minGroup[0] = locMin/nCoupled/nCoupled;
1867 minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1868 minGroup[2] = locMin%nCoupled;
1869 }
1870 delete [] coupl3; coupl3 = 0;
1871 } // else
1872 } // for (Int_t i123=1;
1873 return couplMin;
1874}
1875
1876//_____________________________________________________________________________
c1aed84f 1877Int_t AliMUONClusterFinderAZ::SelectPad(Int_t nCoupled, Int_t nForFit, Int_t *clustNumb, Int_t *clustFit, TMatrixD *aijclupad)
0df3ca52 1878{
1879 // Select pads for fit. If too many coupled clusters, find pads giving
1880 // the strongest coupling with the rest of clusters and exclude them from the fit.
1881
1882 Int_t npad = fnPads[0] + fnPads[1];
c1aed84f 1883 Double_t *padpix = 0;
0df3ca52 1884
1885 if (nCoupled > 3) {
c1aed84f 1886 padpix = new Double_t[npad];
1887 for (Int_t i=0; i<npad; i++) padpix[i] = 0;
0df3ca52 1888 }
1889
1890 Int_t nOK = 0, indx, indx1;
1891 for (Int_t iclust=0; iclust<nForFit; iclust++) {
1892 indx = clustFit[iclust];
1893 for (Int_t j=0; j<npad; j++) {
1894 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
c1aed84f 1895 if ((*aijclupad)(indx,j) < kCouplMin) continue;
0df3ca52 1896 fPadIJ[1][j] = 1; // pad to be used in fit
1897 nOK++;
1898 if (nCoupled > 3) {
1899 // Check other clusters
1900 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1901 indx1 = clustNumb[iclust1];
1902 if (indx1 < 0) continue;
c1aed84f 1903 if ((*aijclupad)(indx1,j) < kCouplMin) continue;
1904 padpix[j] += (*aijclupad)(indx1,j);
0df3ca52 1905 }
1906 } // if (nCoupled > 3)
1907 } // for (Int_t j=0; j<npad;
1908 } // for (Int_t iclust=0; iclust<nForFit
1909 if (nCoupled < 4) return nOK;
1910
1911 Double_t aaa = 0;
1912 for (Int_t j=0; j<npad; j++) {
c1aed84f 1913 if (padpix[j] < kCouplMin) continue;
1914 cout << j << " " << padpix[j] << " ";
0df3ca52 1915 cout << fXyq[0][j] << " " << fXyq[1][j] << endl;
c1aed84f 1916 aaa += padpix[j];
0df3ca52 1917 fPadIJ[1][j] = -1; // exclude pads with strong coupling to the other clusters
1918 nOK--;
1919 }
c1aed84f 1920 delete [] padpix; padpix = 0;
0df3ca52 1921 return nOK;
1922}
1923
1924//_____________________________________________________________________________
c1aed84f 1925void AliMUONClusterFinderAZ::Merge(Int_t nForFit, Int_t nCoupled, Int_t *clustNumb, Int_t *clustFit, TObjArray **clusters, TMatrixD *aijcluclu, TMatrixD *aijclupad)
0df3ca52 1926{
1927 // Merge the group of clusters with the one having the strongest coupling with them
1928
1929 Int_t indx, indx1, npxclu, npxclu1, imax=0;
1930 TObjArray *pix, *pix1;
1931 Double_t couplMax;
1932
1933 for (Int_t icl=0; icl<nForFit; icl++) {
1934 indx = clustFit[icl];
1935 pix = clusters[indx];
1936 npxclu = pix->GetEntriesFast();
1937 couplMax = -1;
1938 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1939 indx1 = clustNumb[icl1];
1940 if (indx1 < 0) continue;
c1aed84f 1941 if ((*aijcluclu)(indx,indx1) > couplMax) {
1942 couplMax = (*aijcluclu)(indx,indx1);
0df3ca52 1943 imax = indx1;
1944 }
1945 } // for (Int_t icl1=0;
1946 /*if (couplMax < kCouplMin) {
1947 cout << " Oops " << couplMax << endl;
c1aed84f 1948 aijcluclu->Print();
0df3ca52 1949 cout << icl << " " << indx << " " << npxclu << " " << nLinks << endl;
1950 ::exit(0);
1951 }*/
1952 // Add to it
1953 pix1 = clusters[imax];
1954 npxclu1 = pix1->GetEntriesFast();
1955 // Add pixels
1956 for (Int_t i=0; i<npxclu; i++) { pix1->Add(pix->UncheckedAt(i)); pix->RemoveAt(i); }
1957 cout << " New number of pixels: " << npxclu1 << " " << pix1->GetEntriesFast() << endl;
1958 //Add cluster-to-cluster couplings
c1aed84f 1959 //aijcluclu->Print();
0df3ca52 1960 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1961 indx1 = clustNumb[icl1];
1962 if (indx1 < 0 || indx1 == imax) continue;
c1aed84f 1963 (*aijcluclu)(indx1,imax) += (*aijcluclu)(indx,indx1);
1964 (*aijcluclu)(imax,indx1) = (*aijcluclu)(indx1,imax);
0df3ca52 1965 }
c1aed84f 1966 (*aijcluclu)(indx,imax) = (*aijcluclu)(imax,indx) = 0;
1967 //aijcluclu->Print();
0df3ca52 1968 //Add cluster-to-pad couplings
1969 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1970 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
c1aed84f 1971 (*aijclupad)(imax,j) += (*aijclupad)(indx,j);
1972 (*aijclupad)(indx,j) = 0;
0df3ca52 1973 }
1974 } // for (Int_t icl=0; icl<nForFit;
1975}
1976
1977//_____________________________________________________________________________
1978Int_t AliMUONClusterFinderAZ::Fit(Int_t nfit, Int_t *clustFit, TObjArray **clusters, Double_t *parOk)
1979{
1980 // Find selected clusters to selected pad charges
1981
1982 TH2D *mlem = (TH2D*) gROOT->FindObject("mlem");
1983 //Int_t nx = mlem->GetNbinsX();
1984 //Int_t ny = mlem->GetNbinsY();
1985 Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
1986 Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
1987 Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
1988 Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
1989 //Double_t qmin = 0, qmax = 1;
1990 Double_t step[3]={0.01,0.002,0.02};
1991
1992 Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8];
1993 TObjArray *pix;
1994 Int_t npxclu;
1995
1996 // Number of pads to use
1997 Int_t npads = 0;
1998 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {if (fPadIJ[1][i] == 1) npads++;}
1999 for (Int_t i=0; i<nfit; i++) {cout << i+1 << " " << clustFit[i] << " ";}
2000 cout << nfit << endl;
2001 cout << " Number of pads to fit: " << npads << endl;
2002 fNpar = 0;
2003 fQtot = 0;
2004 if (npads < 2) return 0;
2005
2006 // Take cluster maxima as fitting seeds
2007 AliMUONPixel *pixPtr;
2008 Double_t xyseed[3][2], qseed[3];
2009 for (Int_t ifit=1; ifit<=nfit; ifit++) {
2010 cmax = 0;
2011 pix = clusters[clustFit[ifit-1]];
2012 npxclu = pix->GetEntriesFast();
2013 for (Int_t clu=0; clu<npxclu; clu++) {
2014 pixPtr = (AliMUONPixel*) pix->UncheckedAt(clu);
2015 cont = pixPtr->Charge();
2016 fQtot += cont;
2017 if (cont > cmax) {
2018 cmax = cont;
2019 xseed = pixPtr->Coord(0);
2020 yseed = pixPtr->Coord(1);
2021 }
2022 }
2023 xyseed[ifit-1][0] = xseed;
2024 xyseed[ifit-1][1] = yseed;
2025 qseed[ifit-1] = cmax;
2026 } // for (Int_t ifit=1;
2027
2028 Int_t nDof, maxSeed[3];
2029 Double_t fmin, chi2o = 9999, chi2n;
2030
2031 // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
2032 // lower, try 3-track (if number of pads is sufficient).
2033
2034 TMath::Sort(nfit, qseed, maxSeed, kTRUE); // in decreasing order
2035 nfit = TMath::Min (nfit, (npads + 1) / 3);
2036
2037 Double_t *gin = 0, func0, func1, param[8], param0[2][8], deriv[2][8], step0[8];
2038 Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0;
2039 Double_t delta[8], scMax, dder[8], estim, shiftSave = 0;
2040 Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail;
2041
2042 for (Int_t iseed=0; iseed<nfit; iseed++) {
2043
2044 for (Int_t j=0; j<3; j++) step0[fNpar+j] = shift[fNpar+j] = step[j];
2045 param[fNpar] = xyseed[maxSeed[iseed]][0];
2046 parmin[fNpar] = xmin;
2047 parmax[fNpar++] = xmax;
2048 param[fNpar] = xyseed[maxSeed[iseed]][1];
2049 parmin[fNpar] = ymin;
2050 parmax[fNpar++] = ymax;
2051 if (fNpar > 2) {
2052 param[fNpar] = fNpar == 4 ? 0.5 : 0.3;
2053 parmin[fNpar] = 0;
2054 parmax[fNpar++] = 1;
2055 }
2056
2057 // Try new algorithm
2058 min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
2059
2060 while (1) {
2061 max = !min;
2062 fcn1(fNpar, gin, func0, param, 1); nCall++;
2063 //cout << " Func: " << func0 << endl;
2064
2065 func2[max] = func0;
2066 for (Int_t j=0; j<fNpar; j++) {
2067 param0[max][j] = param[j];
2068 delta[j] = step0[j];
2069 param[j] += delta[j] / 10;
2070 if (j > 0) param[j-1] -= delta[j-1] / 10;
2071 fcn1(fNpar, gin, func1, param, 1); nCall++;
2072 deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
2073 //cout << j << " " << deriv[max][j] << endl;
2074 dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
2075 (param0[0][j] - param0[1][j]) : 0; // second derivative
2076 }
2077 param[fNpar-1] -= delta[fNpar-1] / 10;
2078 if (nCall > 2000) ::exit(0);
2079
2080 min = func2[0] < func2[1] ? 0 : 1;
2081 nFail = min == max ? 0 : nFail + 1;
2082
2083 stepMax = derMax = estim = 0;
2084 for (Int_t j=0; j<fNpar; j++) {
2085 // Estimated distance to minimum
2086 shift0 = shift[j];
2087 if (nLoop == 1) shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
2088 else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3) shift[j] = 0;
2089 else if (deriv[min][j]*deriv[!min][j] > 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])
2090 || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) {
2091 shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
2092 if (min == max) {
2093 if (memory[j] > 1) { shift[j] *= 2; } //cout << " Memory " << memory[j] << " " << shift[j] << endl; }
2094 memory[j]++;
2095 }
2096 } else {
2097 shift[j] = -deriv[min][j] / dder[j];
2098 memory[j] = 0;
2099 }
2100 if (TMath::Abs(shift[j])/step0[j] > estim) {
2101 estim = TMath::Abs(shift[j])/step0[j];
2102 iestMax = j;
2103 }
2104
2105 // Too big step
2106 if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
2107
2108 // Failed to improve minimum
2109 if (min != max) {
2110 memory[j] = 0;
2111 param[j] = param0[min][j];
2112 if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j]) shift[j] = (shift[j] + shift0) / 2;
2113 else shift[j] /= -2;
2114 }
2115
2116 // Too big step
2117 if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
2118 shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
2119
2120 // Introduce step relaxation factor
2121 if (memory[j] < 3) {
2122 scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
2123 if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
2124 shift[j] = TMath::Sign (shift0*scMax, shift[j]);
2125 }
2126 param[j] += shift[j];
2127
2128 //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
2129 stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
2130 if (TMath::Abs(deriv[min][j]) > derMax) {
2131 idMax = j;
2132 derMax = TMath::Abs (deriv[min][j]);
2133 }
2134 } // for (Int_t j=0; j<fNpar;
2135 //cout << max << " " << func2[min] << " " << derMax << " " << stepMax << " " << estim << " " << iestMax << " " << nCall << endl;
2136 if (estim < 1 && derMax < 2 || nLoop > 100) break; // minimum was found
2137
2138 nLoop++;
2139 // Check for small step
2140 if (shift[idMax] == 0) { shift[idMax] = step0[idMax]/10; param[idMax] += shift[idMax]; continue; }
2141 if (!memory[idMax] && derMax > 0.5 && nLoop > 10) {
2142 //cout << " ok " << deriv[min][idMax] << " " << deriv[!min][idMax] << " " << dder[idMax]*shift[idMax] << " " << shift[idMax] << endl;
2143 if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10) {
2144 if (min == max) dder[idMax] = -dder[idMax];
2145 shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
2146 param[idMax] += shift[idMax];
2147 stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
2148 //cout << shift[idMax] << " " << param[idMax] << endl;
2149 if (min == max) shiftSave = shift[idMax];
2150 }
2151 if (nFail > 10) {
2152 param[idMax] -= shift[idMax];
2153 shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
2154 param[idMax] += shift[idMax];
2155 //cout << shift[idMax] << endl;
2156 }
2157 }
2158 } // while (1)
2159 fmin = func2[min];
2160
2161 nDof = npads - fNpar;
2162 chi2n = nDof ? fmin/nDof : 0;
2163
2164 if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; }
2165 // Save parameters and errors
2166 for (Int_t i=0; i<fNpar; i++) {
2167 parOk[i] = param0[min][i];
2168 errOk[i] = fmin;
2169 }
2170
2171 cout << chi2o << " " << chi2n << endl;
2172 chi2o = chi2n;
2173 if (fmin < 0.1) break; // !!!???
2174 } // for (Int_t iseed=0;
2175
2176 for (Int_t i=0; i<fNpar; i++) {
2177 if (i == 4 || i == 7) continue;
2178 cout << parOk[i] << " " << errOk[i] << endl;
2179 }
2180 nfit = (fNpar + 1) / 3;
2181 Double_t rad;
2182 Int_t indx, imax;
2183 if (fReco) {
2184 for (Int_t j=0; j<nfit; j++) {
2185 indx = j<2 ? j*2 : j*2+1;
2186 AddRawCluster (parOk[indx], parOk[indx+1], errOk[indx]);
2187 }
2188 return nfit;
2189 }
2190 for (Int_t i=0; i<fnMu; i++) {
2191 cmax = fxyMu[i][6];
2192 for (Int_t j=0; j<nfit; j++) {
2193 indx = j<2 ? j*2 : j*2+1;
2194 rad = (fxyMu[i][0]-parOk[indx])*(fxyMu[i][0]-parOk[indx]) +
2195 (fxyMu[i][1]-parOk[indx+1])*(fxyMu[i][1]-parOk[indx+1]);
2196 if (rad < cmax) {
2197 cmax = rad;
2198 imax = indx;
2199 fxyMu[i][6] = cmax;
2200 fxyMu[i][2] = parOk[imax] - fxyMu[i][0];
2201 fxyMu[i][4] = parOk[imax+1] - fxyMu[i][1];
2202 fxyMu[i][3] = errOk[imax];
2203 fxyMu[i][5] = errOk[imax+1];
2204 }
2205 }
2206 }
2207 return nfit;
2208}
2209
2210//_____________________________________________________________________________
9e993f2a 2211void AliMUONClusterFinderAZ::fcn1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
0df3ca52 2212{
2213 // Fit for one track
2214 AliMUONClusterFinderAZ& c = *(AliMUONClusterFinderAZ::fgClusterFinder);
2215
2216 Int_t cath, ix, iy, indx, npads=0;
2217 Double_t charge, delta, coef=0, chi2=0;
2218 for (Int_t j=0; j<c.fnPads[0]+c.fnPads[1]; j++) {
2219 if (c.fPadIJ[1][j] != 1) continue;
2220 cath = c.fPadIJ[0][j];
2221 npads++;
2222 c.fSegmentation[cath]->GetPadI(c.fXyq[0][j],c.fXyq[1][j],c.fZpad,ix,iy);
2223 c.fSegmentation[cath]->SetPad(ix,iy);
2224 charge = 0;
2225 for (Int_t i=c.fNpar/3; i>=0; i--) { // sum over tracks
2226 indx = i<2 ? 2*i : 2*i+1;
2227 c.fSegmentation[cath]->SetHit(par[indx],par[indx+1],c.fZpad);
2228 //charge += c.fResponse->IntXY(c.fSegmentation[cath])*par[icl*3+2];
2229 if (c.fNpar == 2) coef = 1;
2230 else coef = i==c.fNpar/3 ? par[indx+2] : 1-coef;
2231 //coef = TMath::Max (coef, 0.);
2232 if (c.fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2233 //coef = TMath::Max (coef, 0.);
2234 charge += c.fResponse->IntXY(c.fSegmentation[cath])*coef;
2235 }
2236 charge *= c.fQtot;
2237 //if (c.fXyq[2][j] > c.fResponse->MaxAdc()-1 && charge >
2238 // c.fResponse->MaxAdc()) charge = c.fResponse->MaxAdc();
2239 delta = charge - c.fXyq[2][j];
2240 delta /= TMath::Sqrt ((Double_t)c.fXyq[2][j]);
2241 //chi2 += TMath::Abs(delta);
2242 chi2 += delta*delta;
2243 } // for (Int_t j=0;
2244 f = chi2;
2245 Double_t qAver = c.fQtot/npads; //(c.fnPads[0]+c.fnPads[1]);
2246 f = chi2/qAver;
2247}
2248
2249//_____________________________________________________________________________
6aaf81e6 2250void AliMUONClusterFinderAZ::UpdatePads(Int_t /*nfit*/, Double_t *par)
0df3ca52 2251{
2252 // Subtract the fitted charges from pads with strong coupling
2253
2254 Int_t cath, ix, iy, indx;
2255 Double_t charge, coef=0;
2256 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2257 if (fPadIJ[1][j] != -1) continue;
2258 if (fNpar != 0) {
2259 cath = fPadIJ[0][j];
2260 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
2261 fSegmentation[cath]->SetPad(ix,iy);
2262 charge = 0;
2263 for (Int_t i=fNpar/3; i>=0; i--) { // sum over tracks
2264 indx = i<2 ? 2*i : 2*i+1;
2265 fSegmentation[cath]->SetHit(par[indx],par[indx+1],fZpad);
2266 if (fNpar == 2) coef = 1;
2267 else coef = i==fNpar/3 ? par[indx+2] : 1-coef;
2268 if (fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2269 charge += fResponse->IntXY(fSegmentation[cath])*coef;
2270 }
2271 charge *= fQtot;
2272 fXyq[2][j] -= charge;
2273 } // if (fNpar != 0)
2274 if (fXyq[2][j] > fResponse->ZeroSuppression()) fPadIJ[1][j] = 0; // return pad for further using
2275 } // for (Int_t j=0;
2276}
2277
2278//_____________________________________________________________________________
6aaf81e6 2279Bool_t AliMUONClusterFinderAZ::TestTrack(Int_t /*t*/) {
0df3ca52 2280// Test if track was user selected
2281 return kTRUE;
2282 /*
2283 if (fTrack[0]==-1 || fTrack[1]==-1) {
2284 return kTRUE;
2285 } else if (t==fTrack[0] || t==fTrack[1]) {
2286 return kTRUE;
2287 } else {
2288 return kFALSE;
2289 }
2290 */
2291}
2292
2293//_____________________________________________________________________________
2294void AliMUONClusterFinderAZ::AddRawCluster(Double_t x, Double_t y, Double_t fmin)
2295{
2296 //
2297 // Add a raw cluster copy to the list
2298 //
2299 AliMUONRawCluster cnew;
2300 AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON");
2301 //pMUON->AddRawCluster(fInput->Chamber(),c);
2302
2303 Int_t cath;
2304 for (cath=0; cath<2; cath++) {
ba12c242 2305 cnew.SetX(cath, x);
2306 cnew.SetY(cath, y);
2307 cnew.SetZ(cath, fZpad);
2308 cnew.SetCharge(cath, 100);
9e993f2a 2309 cnew.SetPeakSignal(cath,20);
2310 cnew.SetMultiplicity(cath, 5);
3b5272e3 2311 cnew.SetNcluster(cath, 1);
2312 cnew.SetChi2(cath, fmin); //0.1;
0df3ca52 2313 /*
2314 cnew.fMultiplicity[cath]=c->fMultiplicity[cath];
2315 for (i=0; i<fMul[cath]; i++) {
2316 cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath];
2317 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
2318 }
2319 fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath);
2320 fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]);
2321 FillCluster(&cnew,cath);
2322 */
2323 }
2324 //cnew.fClusterType=cnew.PhysicsContribution();
ce3f5e87 2325 pMUON->GetMUONData()->AddRawCluster(AliMUONClusterInput::Instance()->Chamber(),cnew);
0df3ca52 2326 //fNPeaks++;
2327}
2328
2329//_____________________________________________________________________________
2330Int_t AliMUONClusterFinderAZ::FindLocalMaxima(Int_t *localMax, Double_t *maxVal)
2331{
2332 // Find local maxima in pixel space for large preclusters in order to
2333 // try to split them into smaller pieces (to speed up the MLEM procedure)
2334
2335 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2336 if (hist) hist->Delete();
2337
cd747ddb 2338 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 2339 Int_t nPix = fPixArray->GetEntriesFast();
2340 AliMUONPixel *pixPtr = 0;
2341 for (Int_t ipix=0; ipix<nPix; ipix++) {
2342 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2343 for (Int_t i=0; i<4; i++)
2344 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
2345 }
2346 for (Int_t i=0; i<4; i++) xylim[i] -= pixPtr->Size(i/2);
2347
2348 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
2349 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
2350 hist = new TH2D("anode","anode",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
2351 for (Int_t ipix=0; ipix<nPix; ipix++) {
2352 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2353 hist->Fill(pixPtr->Coord(0), pixPtr->Coord(1), pixPtr->Charge());
2354 }
2355 if (fDraw) {
2356 ((TCanvas*)gROOT->FindObject("c2"))->cd();
2357 gPad->SetTheta(55);
2358 gPad->SetPhi(30);
2359 hist->Draw("lego1Fb");
2360 gPad->Update();
2361 int ia;
2362 cin >> ia;
2363 }
2364
2365 Int_t nMax = 0, indx;
2366 Int_t *isLocalMax = new Int_t[ny*nx];
2367 for (Int_t i=0; i<ny*nx; i++) isLocalMax[i] = 0;
2368
2369 for (Int_t i=1; i<=ny; i++) {
2370 indx = (i-1) * nx;
2371 for (Int_t j=1; j<=nx; j++) {
2372 if (hist->GetCellContent(j,i) < 0.5) continue;
2373 //if (isLocalMax[indx+j-1] < 0) continue;
2374 if (isLocalMax[indx+j-1] != 0) continue;
2375 FlagLocalMax(hist, i, j, isLocalMax);
2376 }
2377 }
2378
2379 for (Int_t i=1; i<=ny; i++) {
2380 indx = (i-1) * nx;
2381 for (Int_t j=1; j<=nx; j++) {
2382 if (isLocalMax[indx+j-1] > 0) {
2383 localMax[nMax] = indx + j - 1;
2384 maxVal[nMax++] = hist->GetCellContent(j,i);
2385 }
2386 if (nMax > 99) { cout << " Too many local maxima !!!" << endl; ::exit(0); }
2387 }
2388 }
2389 cout << " Local max: " << nMax << endl;
2390 delete [] isLocalMax; isLocalMax = 0;
2391 return nMax;
2392}
2393
2394//_____________________________________________________________________________
2395void AliMUONClusterFinderAZ::FlagLocalMax(TH2D *hist, Int_t i, Int_t j, Int_t *isLocalMax)
2396{
2397 // Flag pixels (whether or not local maxima)
2398
2399 Int_t nx = hist->GetNbinsX();
2400 Int_t ny = hist->GetNbinsY();
2401 Int_t cont = TMath::Nint (hist->GetCellContent(j,i));
2402 Int_t cont1 = 0;
2403
2404 for (Int_t i1=i-1; i1<i+2; i1++) {
2405 if (i1 < 1 || i1 > ny) continue;
2406 for (Int_t j1=j-1; j1<j+2; j1++) {
2407 if (j1 < 1 || j1 > nx) continue;
2408 if (i == i1 && j == j1) continue;
2409 cont1 = TMath::Nint (hist->GetCellContent(j1,i1));
2410 if (cont < cont1) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2411 else if (cont > cont1) isLocalMax[(i1-1)*nx+j1-1] = -1;
2412 else { // the same charge
2413 isLocalMax[(i-1)*nx+j-1] = 1;
2414 if (isLocalMax[(i1-1)*nx+j1-1] == 0) {
2415 FlagLocalMax(hist, i1, j1, isLocalMax);
2416 if (isLocalMax[(i1-1)*nx+j1-1] < 0) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2417 else isLocalMax[(i1-1)*nx+j1-1] = -1;
2418 }
2419 }
2420 }
2421 }
2422 isLocalMax[(i-1)*nx+j-1] = 1; // local maximum
2423}
2424
2425//_____________________________________________________________________________
2426void AliMUONClusterFinderAZ::FindCluster(Int_t *localMax, Int_t iMax)
2427{
2428 // Find pixel cluster around local maximum #iMax and pick up pads
2429 // overlapping with it
2430
2431 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2432 Int_t nx = hist->GetNbinsX();
2433 Int_t ny = hist->GetNbinsY();
2434 Int_t ic = localMax[iMax] / nx + 1;
2435 Int_t jc = localMax[iMax] % nx + 1;
2436 Bool_t *used = new Bool_t[ny*nx];
2437 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
2438
2439 // Drop all pixels from the array - pick up only the ones from the cluster
2440 fPixArray->Delete();
2441
2442 Double_t wx = hist->GetXaxis()->GetBinWidth(1)/2;
2443 Double_t wy = hist->GetYaxis()->GetBinWidth(1)/2;
2444 Double_t yc = hist->GetYaxis()->GetBinCenter(ic);
2445 Double_t xc = hist->GetXaxis()->GetBinCenter(jc);
2446 Double_t cont = hist->GetCellContent(jc,ic);
2447 AliMUONPixel *pixPtr = new AliMUONPixel (xc, yc, wx, wy, cont);
2448 fPixArray->Add((TObject*)pixPtr);
2449 used[(ic-1)*nx+jc-1] = kTRUE;
2450 AddBin(hist, ic, jc, 1, used, (TObjArray*)0); // recursive call
2451
2452 Int_t nPix = fPixArray->GetEntriesFast(), npad = fnPads[0] + fnPads[1];
2453 for (Int_t i=0; i<nPix; i++) {
2454 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(0,wx);
2455 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(1,wy);
2456 }
2457 cout << iMax << " " << nPix << endl;
2458
2459 Float_t xy[4], xy12[4];
2460 // Pick up pads which overlap with found pixels
2461 for (Int_t i=0; i<npad; i++) fPadIJ[1][i] = -1;
2462 for (Int_t i=0; i<nPix; i++) {
2463 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
2464 for (Int_t j=0; j<4; j++)
2465 xy[j] = pixPtr->Coord(j/2) + (j%2 ? 1 : -1)*pixPtr->Size(j/2);
2466 for (Int_t j=0; j<npad; j++)
2467 if (Overlap(xy, j, xy12, 0)) fPadIJ[1][j] = 0; // flag for use
2468 }
2469
2470 delete [] used; used = 0;
2471}