]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONv1.cxx
Switches for each station individually for debug and lego.
[u/mrichter/AliRoot.git] / MUON / AliMUONv1.cxx
CommitLineData
a9e2aefa 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
1e8fff9c 12 * about the suitability of this software for any purpeateose. It is *
a9e2aefa 13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
b17c0c87 18Revision 1.11 2000/10/22 16:44:01 morsch
19Update of slat geometry for stations 3,4,5 (A. deFalco)
20
f9f7c205 21Revision 1.10 2000/10/12 16:07:04 gosset
22StepManager:
23* SigGenCond only called for tracking chambers,
24 hence no more division by 0,
25 and may use last ALIROOT/dummies.C with exception handling;
26* "10" replaced by "AliMUONConstants::NTrackingCh()".
27
a75f073c 28Revision 1.9 2000/10/06 15:37:22 morsch
29Problems with variable redefinition in for-loop solved.
30Variable names starting with u-case letters changed to l-case.
31
6c5ddcfa 32Revision 1.8 2000/10/06 09:06:31 morsch
33Include Slat chambers (stations 3-5) into geometry (A. de Falco)
34
1e8fff9c 35Revision 1.7 2000/10/02 21:28:09 fca
36Removal of useless dependecies via forward declarations
37
94de3818 38Revision 1.6 2000/10/02 17:20:45 egangler
39Cleaning of the code (continued ) :
40-> coding conventions
41-> void Streamers
42-> some useless includes removed or replaced by "class" statement
43
8c449e83 44Revision 1.5 2000/06/28 15:16:35 morsch
45(1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there)
46to allow development of slat-muon chamber simulation and reconstruction code in the MUON
47framework. The changes should have no side effects (mostly dummy arguments).
48(2) Hit disintegration uses 3-dim hit coordinates to allow simulation
49of chambers with overlapping modules (MakePadHits, Disintegration).
50
802a864d 51Revision 1.4 2000/06/26 14:02:38 morsch
52Add class AliMUONConstants with MUON specific constants using static memeber data and access methods.
53
f665c1ea 54Revision 1.3 2000/06/22 14:10:05 morsch
55HP scope problems corrected (PH)
56
e17592e9 57Revision 1.2 2000/06/15 07:58:49 morsch
58Code from MUON-dev joined
59
a9e2aefa 60Revision 1.1.2.14 2000/06/14 14:37:25 morsch
61Initialization of TriggerCircuit added (PC)
62
63Revision 1.1.2.13 2000/06/09 21:55:47 morsch
64Most coding rule violations corrected.
65
66Revision 1.1.2.12 2000/05/05 11:34:29 morsch
67Log inside comments.
68
69Revision 1.1.2.11 2000/05/05 10:06:48 morsch
70Coding Rule violations regarding trigger section corrected (CP)
71Log messages included.
72*/
73
74/////////////////////////////////////////////////////////
75// Manager and hits classes for set:MUON version 0 //
76/////////////////////////////////////////////////////////
77
78#include <TTUBE.h>
79#include <TNode.h>
80#include <TRandom.h>
81#include <TLorentzVector.h>
82#include <iostream.h>
83
84#include "AliMUONv1.h"
85#include "AliRun.h"
86#include "AliMC.h"
94de3818 87#include "AliMagF.h"
a9e2aefa 88#include "AliCallf77.h"
89#include "AliConst.h"
90#include "AliMUONChamber.h"
91#include "AliMUONHit.h"
92#include "AliMUONPadHit.h"
f665c1ea 93#include "AliMUONConstants.h"
8c449e83 94#include "AliMUONTriggerCircuit.h"
a9e2aefa 95
96ClassImp(AliMUONv1)
97
98//___________________________________________
99AliMUONv1::AliMUONv1() : AliMUON()
100{
101// Constructor
102 fChambers = 0;
103}
104
105//___________________________________________
106AliMUONv1::AliMUONv1(const char *name, const char *title)
107 : AliMUON(name,title)
108{
109// Constructor
110}
111
112//___________________________________________
113void AliMUONv1::CreateGeometry()
114{
115//
116// Note: all chambers have the same structure, which could be
117// easily parameterised. This was intentionally not done in order
118// to give a starting point for the implementation of the actual
119// design of each station.
120 Int_t *idtmed = fIdtmed->GetArray()-1099;
121
122// Distance between Stations
123//
124 Float_t bpar[3];
125 Float_t tpar[3];
126 Float_t pgpar[10];
127 Float_t zpos1, zpos2, zfpos;
128 Float_t dframep=.001; // Value for station 3 should be 6 ...
129 Float_t dframep1=.001;
130// Bool_t frames=kTRUE;
131 Bool_t frames=kFALSE;
132
133 Float_t dframez=0.9;
134 Float_t dr;
135 Float_t dstation;
136
137//
138// Rotation matrices in the x-y plane
139 Int_t idrotm[1199];
140// phi= 0 deg
141 AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.);
142// phi= 90 deg
143 AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.);
144// phi= 180 deg
145 AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.);
146// phi= 270 deg
147 AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.);
148//
149 Float_t phi=2*TMath::Pi()/12/2;
150
151//
152// pointer to the current chamber
153// pointer to the current chamber
154 Int_t idAlu1=idtmed[1103];
155 Int_t idAlu2=idtmed[1104];
156// Int_t idAlu1=idtmed[1100];
157// Int_t idAlu2=idtmed[1100];
158 Int_t idAir=idtmed[1100];
159 Int_t idGas=idtmed[1105];
160
161
162 AliMUONChamber *iChamber, *iChamber1, *iChamber2;
b17c0c87 163 Int_t stations[5] = {1, 1, 1, 1, 1};
164
165 if (stations[0]) {
166
a9e2aefa 167//********************************************************************
168// Station 1 **
169//********************************************************************
170// CONCENTRIC
171 // indices 1 and 2 for first and second chambers in the station
172 // iChamber (first chamber) kept for other quanties than Z,
173 // assumed to be the same in both chambers
174 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0];
175 iChamber2 =(AliMUONChamber*) (*fChambers)[1];
176 zpos1=iChamber1->Z();
177 zpos2=iChamber2->Z();
178 dstation = zpos2 - zpos1;
179 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
180
181//
182// Mother volume
183 tpar[0] = iChamber->RInner()-dframep1;
184 tpar[1] = (iChamber->ROuter()+dframep1)/TMath::Cos(phi);
185 tpar[2] = dstation/4;
186
187 gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3);
188 gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3);
189 gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1e8fff9c 190 gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
a9e2aefa 191// Aluminium frames
192// Outer frames
193 pgpar[0] = 360/12/2;
194 pgpar[1] = 360.;
195 pgpar[2] = 12.;
196 pgpar[3] = 2;
197 pgpar[4] = -dframez/2;
198 pgpar[5] = iChamber->ROuter();
199 pgpar[6] = pgpar[5]+dframep1;
200 pgpar[7] = +dframez/2;
201 pgpar[8] = pgpar[5];
202 pgpar[9] = pgpar[6];
203 gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10);
204 gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10);
205 gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY");
206 gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY");
207 gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY");
208 gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY");
209//
210// Inner frame
211 tpar[0]= iChamber->RInner()-dframep1;
212 tpar[1]= iChamber->RInner();
213 tpar[2]= dframez/2;
214 gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3);
215 gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3);
216
217 gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY");
218 gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY");
219 gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY");
220 gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY");
221//
222// Frame Crosses
223 if (frames) {
224
225 bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2;
226 bpar[1] = dframep1/2;
227 bpar[2] = dframez/2;
228 gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3);
229 gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3);
230
231 gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
232 idrotm[1100],"ONLY");
233 gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
234 idrotm[1100],"ONLY");
235 gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
236 idrotm[1101],"ONLY");
237 gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
238 idrotm[1101],"ONLY");
239 gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
240 idrotm[1100],"ONLY");
241 gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
242 idrotm[1100],"ONLY");
243 gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
244 idrotm[1101],"ONLY");
245 gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
246 idrotm[1101],"ONLY");
247
248 gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
249 idrotm[1100],"ONLY");
250 gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
251 idrotm[1100],"ONLY");
252 gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
253 idrotm[1101],"ONLY");
254 gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
255 idrotm[1101],"ONLY");
256 gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
257 idrotm[1100],"ONLY");
258 gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
259 idrotm[1100],"ONLY");
260 gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
261 idrotm[1101],"ONLY");
262 gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
263 idrotm[1101],"ONLY");
264 }
265//
266// Chamber Material represented by Alu sheet
267 tpar[0]= iChamber->RInner();
268 tpar[1]= iChamber->ROuter();
269 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
270 gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3);
271 gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3);
272 gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY");
273 gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY");
274//
275// Sensitive volumes
276 // tpar[2] = iChamber->DGas();
277 tpar[2] = iChamber->DGas()/2;
278 gMC->Gsvolu("C01G", "TUBE", idtmed[1108], tpar, 3);
279 gMC->Gsvolu("C02G", "TUBE", idtmed[1108], tpar, 3);
280 gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY");
281 gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY");
282//
283// Frame Crosses to be placed inside gas
284 if (frames) {
285
286 dr = (iChamber->ROuter() - iChamber->RInner());
287 bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
288 bpar[1] = dframep1/2;
289 bpar[2] = iChamber->DGas()/2;
290 gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3);
291 gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3);
292
293 gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0,
294 idrotm[1100],"ONLY");
295 gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0,
296 idrotm[1100],"ONLY");
297 gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0,
298 idrotm[1101],"ONLY");
299 gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0,
300 idrotm[1101],"ONLY");
301
302 gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0,
303 idrotm[1100],"ONLY");
304 gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0,
305 idrotm[1100],"ONLY");
306 gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0,
307 idrotm[1101],"ONLY");
308 gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0,
309 idrotm[1101],"ONLY");
310 }
b17c0c87 311 }
312 if (stations[1]) {
313
a9e2aefa 314//********************************************************************
315// Station 2 **
316//********************************************************************
317 // indices 1 and 2 for first and second chambers in the station
318 // iChamber (first chamber) kept for other quanties than Z,
319 // assumed to be the same in both chambers
320 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2];
321 iChamber2 =(AliMUONChamber*) (*fChambers)[3];
322 zpos1=iChamber1->Z();
323 zpos2=iChamber2->Z();
324 dstation = zpos2 - zpos1;
325 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
326
327//
328// Mother volume
329 tpar[0] = iChamber->RInner()-dframep;
330 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
331 tpar[2] = dstation/4;
332
333 gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3);
334 gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3);
335 gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
336 gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 337
a9e2aefa 338// Aluminium frames
339// Outer frames
340 pgpar[0] = 360/12/2;
341 pgpar[1] = 360.;
342 pgpar[2] = 12.;
343 pgpar[3] = 2;
344 pgpar[4] = -dframez/2;
345 pgpar[5] = iChamber->ROuter();
346 pgpar[6] = pgpar[5]+dframep;
347 pgpar[7] = +dframez/2;
348 pgpar[8] = pgpar[5];
349 pgpar[9] = pgpar[6];
350 gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10);
351 gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10);
352 gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY");
353 gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY");
354 gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY");
355 gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY");
356//
357// Inner frame
358 tpar[0]= iChamber->RInner()-dframep;
359 tpar[1]= iChamber->RInner();
360 tpar[2]= dframez/2;
361 gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3);
362 gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3);
363
364 gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY");
365 gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY");
366 gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY");
367 gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY");
368//
369// Frame Crosses
370 if (frames) {
371
372 bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2;
373 bpar[1] = dframep/2;
374 bpar[2] = dframez/2;
375 gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3);
376 gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3);
377
378 gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
379 idrotm[1100],"ONLY");
380 gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
381 idrotm[1100],"ONLY");
382 gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
383 idrotm[1101],"ONLY");
384 gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
385 idrotm[1101],"ONLY");
386 gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
387 idrotm[1100],"ONLY");
388 gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
389 idrotm[1100],"ONLY");
390 gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
391 idrotm[1101],"ONLY");
392 gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
393 idrotm[1101],"ONLY");
394
395 gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
396 idrotm[1100],"ONLY");
397 gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
398 idrotm[1100],"ONLY");
399 gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
400 idrotm[1101],"ONLY");
401 gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
402 idrotm[1101],"ONLY");
403 gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
404 idrotm[1100],"ONLY");
405 gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
406 idrotm[1100],"ONLY");
407 gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
408 idrotm[1101],"ONLY");
409 gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
410 idrotm[1101],"ONLY");
411 }
412//
413// Chamber Material represented by Alu sheet
414 tpar[0]= iChamber->RInner();
415 tpar[1]= iChamber->ROuter();
416 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
417 gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3);
418 gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3);
419 gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY");
420 gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY");
421//
422// Sensitive volumes
423 // tpar[2] = iChamber->DGas();
424 tpar[2] = iChamber->DGas()/2;
425 gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3);
426 gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3);
427 gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY");
428 gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY");
429
430 if (frames) {
431//
432// Frame Crosses to be placed inside gas
433 dr = (iChamber->ROuter() - iChamber->RInner());
434 bpar[0] = TMath::Sqrt(dr*dr-dframep*dframep/4)/2;
435 bpar[1] = dframep/2;
436 bpar[2] = iChamber->DGas()/2;
437 gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3);
438 gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3);
439
440 gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0,
441 idrotm[1100],"ONLY");
442 gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0,
443 idrotm[1100],"ONLY");
444 gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0,
445 idrotm[1101],"ONLY");
446 gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0,
447 idrotm[1101],"ONLY");
448
449 gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0,
450 idrotm[1100],"ONLY");
451 gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0,
452 idrotm[1100],"ONLY");
453 gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0,
454 idrotm[1101],"ONLY");
455 gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0,
456 idrotm[1101],"ONLY");
457 }
b17c0c87 458 }
1e8fff9c 459 // define the id of tracking media:
460 Int_t idCopper = idtmed[1110];
461 Int_t idGlass = idtmed[1111];
462 Int_t idCarbon = idtmed[1112];
463 Int_t idRoha = idtmed[1113];
464
1e8fff9c 465 // sensitive area: 40*40 cm**2
6c5ddcfa 466 const Float_t sensLength = 40.;
467 const Float_t sensHeight = 40.;
468 const Float_t sensWidth = 0.5; // according to TDR fig 2.120
469 const Int_t sensMaterial = idGas;
1e8fff9c 470 const Float_t yOverlap = 1.5;
471
472 // PCB dimensions in cm; width: 30 mum copper
6c5ddcfa 473 const Float_t pcbLength = sensLength;
474 const Float_t pcbHeight = 60.;
475 const Float_t pcbWidth = 0.003;
476 const Int_t pcbMaterial = idCopper;
1e8fff9c 477
478 // Insulating material: 200 mum glass fiber glued to pcb
6c5ddcfa 479 const Float_t insuLength = pcbLength;
480 const Float_t insuHeight = pcbHeight;
481 const Float_t insuWidth = 0.020;
482 const Int_t insuMaterial = idGlass;
1e8fff9c 483
484 // Carbon fiber panels: 200mum carbon/epoxy skin
6c5ddcfa 485 const Float_t panelLength = sensLength;
486 const Float_t panelHeight = sensHeight;
487 const Float_t panelWidth = 0.020;
488 const Int_t panelMaterial = idCarbon;
1e8fff9c 489
490 // rohacell between the two carbon panels
6c5ddcfa 491 const Float_t rohaLength = sensLength;
492 const Float_t rohaHeight = sensHeight;
493 const Float_t rohaWidth = 0.5;
494 const Int_t rohaMaterial = idRoha;
1e8fff9c 495
496 // Frame around the slat: 2 sticks along length,2 along height
497 // H: the horizontal ones
6c5ddcfa 498 const Float_t hFrameLength = pcbLength;
499 const Float_t hFrameHeight = 1.5;
500 const Float_t hFrameWidth = sensWidth;
501 const Int_t hFrameMaterial = idGlass;
1e8fff9c 502
503 // V: the vertical ones
6c5ddcfa 504 const Float_t vFrameLength = 4.0;
505 const Float_t vFrameHeight = sensHeight + hFrameHeight;
506 const Float_t vFrameWidth = sensWidth;
507 const Int_t vFrameMaterial = idGlass;
1e8fff9c 508
509 // B: the horizontal border filled with rohacell
6c5ddcfa 510 const Float_t bFrameLength = hFrameLength;
511 const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight;
512 const Float_t bFrameWidth = hFrameWidth;
513 const Int_t bFrameMaterial = idRoha;
1e8fff9c 514
515 // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper)
6c5ddcfa 516 const Float_t nulocLength = 2.5;
517 const Float_t nulocHeight = 7.5;
518 const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite;
519 const Int_t nulocMaterial = idCopper;
1e8fff9c 520
521 // Gassiplex package
6c5ddcfa 522 const Float_t gassiLength = 1.0;
523 const Float_t gassiHeight = 1.0;
524 const Float_t gassiWidth = 0.15; // check it !!!
525 const Int_t gassiMaterial = idGlass;
1e8fff9c 526
6c5ddcfa 527 const Float_t slatHeight = pcbHeight;
528 const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth +
529 2.* panelWidth + rohaWidth);
530 const Int_t slatMaterial = idAir;
531 const Float_t dSlatLength = vFrameLength; // border on left and right
1e8fff9c 532
1e8fff9c 533 Float_t spar[3];
b17c0c87 534 Int_t i, j;
535
536 Float_t sensPar[3] = { sensLength/2., sensHeight/2., sensWidth/2. };
537 Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., pcbWidth/2. };
538 Float_t insupar[3] = { insuLength/2., insuHeight/2., insuWidth/2. };
539 Float_t panelpar[3] = { panelLength/2., panelHeight/2., panelWidth/2. };
540 Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. };
541 Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.};
542 Float_t hFramepar[3]={hFrameLength/2., hFrameHeight/2., hFrameWidth/2.};
543 Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.};
544 Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.};
545 Float_t gassipar[3]={gassiLength/2., gassiHeight/2., gassiWidth/2.};
546 Float_t xx;
547 Float_t xxmax = (bFrameLength - nulocLength)/2.;
548 Int_t index=0;
549
550 if (stations[2]) {
551
552//********************************************************************
553// Station 3 **
554//********************************************************************
555 // indices 1 and 2 for first and second chambers in the station
556 // iChamber (first chamber) kept for other quanties than Z,
557 // assumed to be the same in both chambers
558 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4];
559 iChamber2 =(AliMUONChamber*) (*fChambers)[5];
560 zpos1=iChamber1->Z();
561 zpos2=iChamber2->Z();
562 dstation = zpos2 - zpos1;
563
564 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
565//
566// Mother volume
567 tpar[0] = iChamber->RInner()-dframep;
568 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
569 tpar[2] = dstation/4;
570 gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3);
571 gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3);
572 gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
573 gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
574
575 // volumes for slat geometry (xx=5,..,10 chamber id):
576 // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes
577 // SxxG --> Sensitive volume (gas)
578 // SxxP --> PCB (copper)
579 // SxxI --> Insulator (vetronite)
580 // SxxC --> Carbon panel
581 // SxxR --> Rohacell
582 // SxxH, SxxV --> Horizontal and Vertical frames (vetronite)
583
584 // slat dimensions: slat is a MOTHER volume!!! made of air
585
586
587 const Int_t nSlats3 = 4; // number of slats per quadrant
588 const Int_t nPCB3[nSlats3] = {3,4,3,2}; // n PCB per slat
589 Float_t slatLength3[nSlats3];
590
591 // create and position the slat (mother) volumes
592
6c5ddcfa 593 char volNam5[5];
f9f7c205 594 char volDiv5[5];
6c5ddcfa 595 char volNam6[5];
f9f7c205 596 char volDiv6[5];
597 Float_t xSlat3;
b17c0c87 598
6c5ddcfa 599 for (i = 0; i<nSlats3; i++){
f9f7c205 600 slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength;
601 xSlat3 = slatLength3[i]/2. - vFrameLength/2.;
602 if (i==0) xSlat3 += 40.;
603
604 Float_t ySlat31 = sensHeight * (i+0.5) - yOverlap * i - yOverlap/2.;
605 Float_t ySlat32 = -sensHeight * (i+0.5) + yOverlap * i + yOverlap/2.;
606 spar[0] = slatLength3[i]/2.;
607 spar[1] = slatHeight/2.;
608 spar[2] = slatWidth/2.;
609 // zSlat to be checked (odd downstream or upstream?)
610 Float_t zSlat = (i%2 ==0)? -slatWidth/2. : slatWidth/2.;
611 sprintf(volNam5,"S05%d",i);
612 gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar,3);
613 gMC->Gspos(volNam5, i*4+1,"C05M", xSlat3, ySlat31, zSlat, 0, "ONLY");
614 gMC->Gspos(volNam5, i*4+2,"C05M",-xSlat3, ySlat31, zSlat, 0, "ONLY");
615 gMC->Gspos(volNam5, i*4+3,"C05M", xSlat3, ySlat32,-zSlat, 0, "ONLY");
616 gMC->Gspos(volNam5, i*4+4,"C05M",-xSlat3, ySlat32,-zSlat, 0, "ONLY");
617 sprintf(volNam6,"S06%d",i);
618 gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3);
619 gMC->Gspos(volNam6, i*4+1,"C06M", xSlat3, ySlat31, zSlat, 0, "ONLY");
620 gMC->Gspos(volNam6, i*4+2,"C06M",-xSlat3, ySlat31, zSlat, 0, "ONLY");
621 gMC->Gspos(volNam6, i*4+3,"C06M", xSlat3, ySlat32,-zSlat, 0, "ONLY");
622 gMC->Gspos(volNam6, i*4+4,"C06M",-xSlat3, ySlat32,-zSlat, 0, "ONLY");
623 // 1st pcb in 1st slat made by some rectangular divisions
624/*
625 if (i==0) {
626 Int_t ndiv=8;
627 Double_t dydiv= sensHeight/ndiv;
628 Double_t ydiv = -dydiv;
629 for (Int_t idiv=0;idiv<ndiv; idiv++){
630 ydiv+= dydiv;
631 Float_t xdiv =0;
632 if (ydiv<30) xdiv= 30. * TMath::Sin( TMath::ACos(ydiv/30.) );
633 spar[0] = (pcbLength-xdiv)/2.;
634 spar[1] = dydiv/2.;
635 spar[2] = slatWidth/2.;
636
637 sprintf(volDiv5,"D05%d",idiv);
638 sprintf(volDiv6,"D06%d",idiv);
639
640 gMC->Gsvolu(volDiv5,"BOX",sensMaterial,spar,3);
641 Float_t xvol=(pcbLength+xdiv)/2.;
642 Float_t yvol=ydiv+dydiv/2.;
643 gMC->Gspos(volDiv5, 1,"C05M", xvol, yvol, zSlat, 0, "ONLY");
644 gMC->Gspos(volDiv5, 2,"C05M",-xvol, yvol, zSlat, 0, "ONLY");
645 gMC->Gspos(volDiv5, 3,"C05M", xvol,-yvol,-zSlat, 0, "ONLY");
646 gMC->Gspos(volDiv5, 4,"C05M",-xvol,-yvol,-zSlat, 0, "ONLY");
647 gMC->Gspos(volDiv6, 1,"C06M", xvol, yvol, zSlat, 0, "ONLY");
648 gMC->Gspos(volDiv6, 2,"C06M",-xvol, yvol, zSlat, 0, "ONLY");
649 gMC->Gspos(volDiv6, 3,"C06M", xvol,-yvol,-zSlat, 0, "ONLY");
650 gMC->Gspos(volDiv6, 4,"C06M",-xvol,-yvol,-zSlat, 0, "ONLY");
651 }
652 }
653 */
1e8fff9c 654 }
a9e2aefa 655
1e8fff9c 656 // create the sensitive volumes (subdivided as the PCBs),
b17c0c87 657
6c5ddcfa 658 gMC->Gsvolu("S05G","BOX",sensMaterial,sensPar,3);
659 gMC->Gsvolu("S06G","BOX",sensMaterial,sensPar,3);
1e8fff9c 660
661 // create the PCB volume
b17c0c87 662
6c5ddcfa 663 gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3);
664 gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3);
1e8fff9c 665
666 // create the insulating material volume
b17c0c87 667
6c5ddcfa 668 gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3);
669 gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3);
1e8fff9c 670
671 // create the panel volume
b17c0c87 672
6c5ddcfa 673 gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3);
674 gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3);
1e8fff9c 675
676 // create the rohacell volume
b17c0c87 677
6c5ddcfa 678 gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3);
679 gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3);
1e8fff9c 680
681 // create the vertical frame volume
b17c0c87 682
6c5ddcfa 683 gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3);
684 gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 685
686 // create the horizontal frame volume
b17c0c87 687
6c5ddcfa 688 gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3);
689 gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 690
691 // create the horizontal border volume
b17c0c87 692
6c5ddcfa 693 gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3);
694 gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3);
1e8fff9c 695
b17c0c87 696 index=0;
6c5ddcfa 697 for (i = 0; i<nSlats3; i++){
698 sprintf(volNam5,"S05%d",i);
699 sprintf(volNam6,"S06%d",i);
f9f7c205 700 Float_t xvFrame = (slatLength3[i] - vFrameLength)/2.;
6c5ddcfa 701 gMC->Gspos("S05V",2*i-1,volNam5, xvFrame, 0., 0. , 0, "ONLY");
702 gMC->Gspos("S05V",2*i ,volNam5,-xvFrame, 0., 0. , 0, "ONLY");
703 gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY");
704 gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY");
705 for (j=0; j<nPCB3[i]; j++){
1e8fff9c 706 index++;
6c5ddcfa 707 Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5);
1e8fff9c 708 Float_t yy = 0.;
709 Float_t zSens = 0.;
6c5ddcfa 710 gMC->Gspos("S05G",index,volNam5, xx, yy, zSens , 0, "ONLY");
711 gMC->Gspos("S06G",index,volNam6, xx, yy, zSens , 0, "ONLY");
712 Float_t zPCB = (sensWidth+pcbWidth)/2.;
713 gMC->Gspos("S05P",2*index-1,volNam5, xx, yy, zPCB , 0, "ONLY");
714 gMC->Gspos("S05P",2*index ,volNam5, xx, yy,-zPCB , 0, "ONLY");
715 gMC->Gspos("S06P",2*index-1,volNam6, xx, yy, zPCB , 0, "ONLY");
716 gMC->Gspos("S06P",2*index ,volNam6, xx, yy,-zPCB , 0, "ONLY");
717 Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB;
718 gMC->Gspos("S05I",2*index-1,volNam5, xx, yy, zInsu , 0, "ONLY");
719 gMC->Gspos("S05I",2*index ,volNam5, xx, yy,-zInsu , 0, "ONLY");
720 gMC->Gspos("S06I",2*index-1,volNam6, xx, yy, zInsu , 0, "ONLY");
721 gMC->Gspos("S06I",2*index ,volNam6, xx, yy,-zInsu , 0, "ONLY");
722 Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu;
723 gMC->Gspos("S05C",4*index-3,volNam5, xx, yy, zPanel1 , 0, "ONLY");
724 gMC->Gspos("S05C",4*index-2,volNam5, xx, yy,-zPanel1 , 0, "ONLY");
725 gMC->Gspos("S06C",4*index-3,volNam6, xx, yy, zPanel1 , 0, "ONLY");
726 gMC->Gspos("S06C",4*index-2,volNam6, xx, yy,-zPanel1 , 0, "ONLY");
727 Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1;
728 gMC->Gspos("S05R",2*index-1,volNam5, xx, yy, zRoha , 0, "ONLY");
729 gMC->Gspos("S05R",2*index ,volNam5, xx, yy,-zRoha , 0, "ONLY");
730 gMC->Gspos("S06R",2*index-1,volNam6, xx, yy, zRoha , 0, "ONLY");
731 gMC->Gspos("S06R",2*index ,volNam6, xx, yy,-zRoha , 0, "ONLY");
732 Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha;
733 gMC->Gspos("S05C",4*index-1,volNam5, xx, yy, zPanel2 , 0, "ONLY");
734 gMC->Gspos("S05C",4*index ,volNam5, xx, yy,-zPanel2 , 0, "ONLY");
735 gMC->Gspos("S06C",4*index-1,volNam6, xx, yy, zPanel2 , 0, "ONLY");
736 gMC->Gspos("S06C",4*index ,volNam6, xx, yy,-zPanel2 , 0, "ONLY");
737 Float_t yframe = (sensHeight + hFrameHeight)/2.;
738 gMC->Gspos("S05H",2*index-1,volNam5, xx, yframe, 0. , 0, "ONLY");
739 gMC->Gspos("S05H",2*index ,volNam5, xx,-yframe, 0. , 0, "ONLY");
740 gMC->Gspos("S06H",2*index-1,volNam6, xx, yframe, 0. , 0, "ONLY");
741 gMC->Gspos("S06H",2*index ,volNam6, xx,-yframe, 0. , 0, "ONLY");
742 Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe;
743 gMC->Gspos("S05B",2*index-1,volNam5, xx, yborder, 0. , 0, "ONLY");
744 gMC->Gspos("S05B",2*index ,volNam5, xx,-yborder, 0. , 0, "ONLY");
745 gMC->Gspos("S06B",2*index-1,volNam6, xx, yborder, 0. , 0, "ONLY");
746 gMC->Gspos("S06B",2*index ,volNam6, xx,-yborder, 0. , 0, "ONLY");
1e8fff9c 747 }
a9e2aefa 748 }
a9e2aefa 749
1e8fff9c 750 // create the NULOC volume and position it in the horizontal frame
b17c0c87 751
6c5ddcfa 752 gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3);
753 gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3);
1e8fff9c 754
b17c0c87 755
6c5ddcfa 756 index = 0;
b17c0c87 757
6c5ddcfa 758
759 for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) {
1e8fff9c 760 index++;
6c5ddcfa 761 gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
762 gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY");
763 gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
764 gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY");
1e8fff9c 765 }
766
767 // create the gassiplex volume
b17c0c87 768
6c5ddcfa 769 gMC->Gsvolu("S05E","BOX",gassiMaterial,gassipar,3);
770 gMC->Gsvolu("S06E","BOX",gassiMaterial,gassipar,3);
1e8fff9c 771
772
773 // position 4 gassiplex in the nuloc
774
6c5ddcfa 775 gMC->Gspos("S05E",1,"S05N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY");
776 gMC->Gspos("S05E",2,"S05N", 0., - nulocHeight/8., 0. , 0, "ONLY");
777 gMC->Gspos("S05E",3,"S05N", 0., nulocHeight/8., 0. , 0, "ONLY");
778 gMC->Gspos("S05E",4,"S05N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY");
779 gMC->Gspos("S06E",1,"S06N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY");
780 gMC->Gspos("S06E",2,"S06N", 0., - nulocHeight/8., 0. , 0, "ONLY");
781 gMC->Gspos("S06E",3,"S06N", 0., nulocHeight/8., 0. , 0, "ONLY");
782 gMC->Gspos("S06E",4,"S06N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY");
b17c0c87 783 }
784 if (stations[3]) {
785
a9e2aefa 786
787//********************************************************************
788// Station 4 **
789//********************************************************************
790 // indices 1 and 2 for first and second chambers in the station
791 // iChamber (first chamber) kept for other quanties than Z,
792 // assumed to be the same in both chambers
793 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6];
794 iChamber2 =(AliMUONChamber*) (*fChambers)[7];
795 zpos1=iChamber1->Z();
796 zpos2=iChamber2->Z();
797 dstation = zpos2 - zpos1;
798 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
799
800//
801// Mother volume
802 tpar[0] = iChamber->RInner()-dframep;
803 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
1e8fff9c 804 tpar[2] = 3.252;
a9e2aefa 805
806 gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3);
807 gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3);
808 gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
809 gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 810
a9e2aefa 811
f9f7c205 812 const Int_t nSlats4 = 6; // number of slats per quadrant
813 const Int_t nPCB4[nSlats4] = {4,5,5,4,3,2}; // n PCB per slat
1e8fff9c 814
815 // slat dimensions: slat is a MOTHER volume!!! made of air
6c5ddcfa 816 Float_t slatLength4[nSlats4];
1e8fff9c 817
818 // create and position the slat (mother) volumes
819
6c5ddcfa 820 char volNam7[5];
821 char volNam8[5];
1e8fff9c 822 Float_t xSlat4;
f9f7c205 823 Float_t ySlat4;
1e8fff9c 824
825
6c5ddcfa 826 for (i = 0; i<nSlats4; i++){
827 slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength;
f9f7c205 828 xSlat4 = slatLength4[i]/2. - vFrameLength/2.;
829 if (i==0) xSlat4 += 37.5;
f9f7c205 830 ySlat4 = sensHeight * i - yOverlap *i;
a9e2aefa 831
6c5ddcfa 832 spar[0] = slatLength4[i]/2.;
833 spar[1] = slatHeight/2.;
834 spar[2] = slatWidth/2.;
1e8fff9c 835 // zSlat to be checked (odd downstream or upstream?)
6c5ddcfa 836 Float_t zSlat = (i%2 ==0)? slatWidth/2. : -slatWidth/2.;
837 sprintf(volNam7,"S07%d",i);
838 gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3);
f9f7c205 839 gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat4, zSlat, 0, "ONLY");
840 gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat4, zSlat, 0, "ONLY");
841 if (i>0) {
842 gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4,-ySlat4, zSlat, 0, "ONLY");
843 gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4,-ySlat4, zSlat, 0, "ONLY");
844 }
6c5ddcfa 845 sprintf(volNam8,"S08%d",i);
846 gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3);
f9f7c205 847 gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat4, zSlat, 0, "ONLY");
848 gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat4, zSlat, 0, "ONLY");
849 if (i>0) {
850 gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4,-ySlat4, zSlat, 0, "ONLY");
851 gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4,-ySlat4, zSlat, 0, "ONLY");
852 }
a9e2aefa 853 }
854
1e8fff9c 855 // create the sensitive volumes (subdivided as the PCBs),
856
6c5ddcfa 857 gMC->Gsvolu("S07G","BOX",sensMaterial,sensPar,3);
858 gMC->Gsvolu("S08G","BOX",sensMaterial,sensPar,3);
a9e2aefa 859
1e8fff9c 860 // create the PCB volume
861
6c5ddcfa 862 gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3);
863 gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3);
1e8fff9c 864
865 // create the insulating material volume
866
6c5ddcfa 867 gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3);
868 gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3);
1e8fff9c 869
870 // create the panel volume
871
6c5ddcfa 872 gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3);
873 gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3);
1e8fff9c 874
875 // create the rohacell volume
876
6c5ddcfa 877 gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3);
878 gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3);
1e8fff9c 879
880 // create the vertical frame volume
881
6c5ddcfa 882 gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3);
883 gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 884
885 // create the horizontal frame volume
886
6c5ddcfa 887 gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3);
888 gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 889
890 // create the horizontal border volume
891
6c5ddcfa 892 gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3);
893 gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3);
1e8fff9c 894
6c5ddcfa 895 for (i = 0; i<nSlats4; i++){
896 sprintf(volNam7,"S07%d",i);
897 sprintf(volNam8,"S08%d",i);
898 Float_t xvFrame = (slatLength4[i] - vFrameLength)/2.;
899 gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY");
900 gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY");
901 gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY");
902 gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY");
903 for (j=0; j<nPCB4[i]; j++){
1e8fff9c 904 index++;
6c5ddcfa 905 Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5);
1e8fff9c 906 Float_t yy = 0.;
907 Float_t zSens = 0.;
6c5ddcfa 908 gMC->Gspos("S07G",index,volNam7, xx, yy, zSens , 0, "ONLY");
909 gMC->Gspos("S08G",index,volNam8, xx, yy, zSens , 0, "ONLY");
910 Float_t zPCB = (sensWidth+pcbWidth)/2.;
911 gMC->Gspos("S07P",2*index-1,volNam7, xx, yy, zPCB , 0, "ONLY");
912 gMC->Gspos("S07P",2*index ,volNam7, xx, yy,-zPCB , 0, "ONLY");
913 gMC->Gspos("S08P",2*index-1,volNam8, xx, yy, zPCB , 0, "ONLY");
914 gMC->Gspos("S08P",2*index ,volNam8, xx, yy,-zPCB , 0, "ONLY");
915 Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB;
916 gMC->Gspos("S07I",2*index-1,volNam7, xx, yy, zInsu , 0, "ONLY");
917 gMC->Gspos("S07I",2*index ,volNam7, xx, yy,-zInsu , 0, "ONLY");
918 gMC->Gspos("S08I",2*index-1,volNam8, xx, yy, zInsu , 0, "ONLY");
919 gMC->Gspos("S08I",2*index ,volNam8, xx, yy,-zInsu , 0, "ONLY");
920 Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu;
921 gMC->Gspos("S07C",4*index-3,volNam7, xx, yy, zPanel1 , 0, "ONLY");
922 gMC->Gspos("S07C",4*index-2,volNam7, xx, yy,-zPanel1 , 0, "ONLY");
923 gMC->Gspos("S08C",4*index-3,volNam8, xx, yy, zPanel1 , 0, "ONLY");
924 gMC->Gspos("S08C",4*index-2,volNam8, xx, yy,-zPanel1 , 0, "ONLY");
925 Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1;
926 gMC->Gspos("S07R",2*index-1,volNam7, xx, yy, zRoha , 0, "ONLY");
927 gMC->Gspos("S07R",2*index ,volNam7, xx, yy,-zRoha , 0, "ONLY");
928 gMC->Gspos("S08R",2*index-1,volNam8, xx, yy, zRoha , 0, "ONLY");
929 gMC->Gspos("S08R",2*index ,volNam8, xx, yy,-zRoha , 0, "ONLY");
930 Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha;
931 gMC->Gspos("S07C",4*index-1,volNam7, xx, yy, zPanel2 , 0, "ONLY");
932 gMC->Gspos("S07C",4*index ,volNam7, xx, yy,-zPanel2 , 0, "ONLY");
933 gMC->Gspos("S08C",4*index-1,volNam8, xx, yy, zPanel2 , 0, "ONLY");
934 gMC->Gspos("S08C",4*index ,volNam8, xx, yy,-zPanel2 , 0, "ONLY");
935 Float_t yframe = (sensHeight + hFrameHeight)/2.;
936 gMC->Gspos("S07H",2*index-1,volNam7, xx, yframe, 0. , 0, "ONLY");
937 gMC->Gspos("S07H",2*index ,volNam7, xx,-yframe, 0. , 0, "ONLY");
938 gMC->Gspos("S08H",2*index-1,volNam8, xx, yframe, 0. , 0, "ONLY");
939 gMC->Gspos("S08H",2*index ,volNam8, xx,-yframe, 0. , 0, "ONLY");
940 Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe;
941 gMC->Gspos("S07B",2*index-1,volNam7, xx, yborder, 0. , 0, "ONLY");
942 gMC->Gspos("S07B",2*index ,volNam7, xx,-yborder, 0. , 0, "ONLY");
943 gMC->Gspos("S08B",2*index-1,volNam8, xx, yborder, 0. , 0, "ONLY");
944 gMC->Gspos("S08B",2*index ,volNam8, xx,-yborder, 0. , 0, "ONLY");
1e8fff9c 945 }
a9e2aefa 946 }
1e8fff9c 947
948 // create the NULOC volume and position it in the horizontal frame
949
6c5ddcfa 950 gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3);
951 gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3);
1e8fff9c 952
953
954 index = 0;
6c5ddcfa 955 for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) {
1e8fff9c 956 index++;
6c5ddcfa 957 gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
958 gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY");
959 gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
960 gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY");
1e8fff9c 961 }
962
963 // create the gassiplex volume
964
6c5ddcfa 965 gMC->Gsvolu("S07E","BOX",gassiMaterial,gassipar,3);
966 gMC->Gsvolu("S08E","BOX",gassiMaterial,gassipar,3);
1e8fff9c 967
968
969 // position 4 gassiplex in the nuloc
970
6c5ddcfa 971 gMC->Gspos("S07E",1,"S07N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY");
972 gMC->Gspos("S07E",2,"S07N", 0., - nulocHeight/8., 0. , 0, "ONLY");
973 gMC->Gspos("S07E",3,"S07N", 0., nulocHeight/8., 0. , 0, "ONLY");
974 gMC->Gspos("S07E",4,"S07N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY");
975 gMC->Gspos("S08E",1,"S08N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY");
976 gMC->Gspos("S08E",2,"S08N", 0., - nulocHeight/8., 0. , 0, "ONLY");
977 gMC->Gspos("S08E",3,"S08N", 0., nulocHeight/8., 0. , 0, "ONLY");
978 gMC->Gspos("S08E",4,"S08N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY");
b17c0c87 979
980 }
981 if (stations[4]) {
982
1e8fff9c 983
a9e2aefa 984//********************************************************************
985// Station 5 **
986//********************************************************************
987 // indices 1 and 2 for first and second chambers in the station
988 // iChamber (first chamber) kept for other quanties than Z,
989 // assumed to be the same in both chambers
990 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8];
991 iChamber2 =(AliMUONChamber*) (*fChambers)[9];
992 zpos1=iChamber1->Z();
993 zpos2=iChamber2->Z();
994 dstation = zpos2 - zpos1;
995 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
996
997//
998// Mother volume
999 tpar[0] = iChamber->RInner()-dframep;
1000 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
1001 tpar[2] = dstation/4;
1002
1003 gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3);
1004 gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3);
1005 gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1006 gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
a9e2aefa 1007
a9e2aefa 1008
1e8fff9c 1009 const Int_t nSlats5 = 7; // number of slats per quadrant
f9f7c205 1010 const Int_t nPCB5[nSlats5] = {7,7,6,6,5,4,2}; // n PCB per slat
1e8fff9c 1011
1012 // slat dimensions: slat is a MOTHER volume!!! made of air
6c5ddcfa 1013 Float_t slatLength5[nSlats5];
6c5ddcfa 1014 char volNam9[5];
1015 char volNam10[5];
f9f7c205 1016 Float_t xSlat5;
1017 Float_t ySlat5;
1e8fff9c 1018
6c5ddcfa 1019 for (i = 0; i<nSlats5; i++){
1020 slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength;
f9f7c205 1021 xSlat5 = slatLength5[i]/2. + vFrameLength/2.;
1022 if (i==0) xSlat5 += 37.5;
1023 ySlat5 = sensHeight * i - yOverlap * i;
6c5ddcfa 1024 spar[0] = slatLength5[i]/2.;
1025 spar[1] = slatHeight/2.;
1026 spar[2] = slatWidth/2.;
1e8fff9c 1027 // zSlat to be checked (odd downstream or upstream?)
6c5ddcfa 1028 Float_t zSlat = (i%2 ==0)? -slatWidth/2. : slatWidth/2.;
1029 sprintf(volNam9,"S09%d",i);
1030 gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3);
f9f7c205 1031 gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5, ySlat5, zSlat, 0, "ONLY");
1032 gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5, ySlat5, zSlat, 0, "ONLY");
1033 if (i>0) {
b17c0c87 1034 gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5,-ySlat5, zSlat, 0, "ONLY");
1035 gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5,-ySlat5, zSlat, 0, "ONLY");
f9f7c205 1036 }
6c5ddcfa 1037 sprintf(volNam10,"S10%d",i);
1038 gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3);
f9f7c205 1039 gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5, ySlat5, zSlat, 0, "ONLY");
1040 gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5, ySlat5, zSlat, 0, "ONLY");
1041 if (i>0) {
b17c0c87 1042 gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5,-ySlat5, zSlat, 0, "ONLY");
1043 gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5,-ySlat5, zSlat, 0, "ONLY");
f9f7c205 1044 }
a9e2aefa 1045 }
1046
1e8fff9c 1047 // create the sensitive volumes (subdivided as the PCBs),
1048
6c5ddcfa 1049 gMC->Gsvolu("S09G","BOX",sensMaterial,sensPar,3);
1050 gMC->Gsvolu("S10G","BOX",sensMaterial,sensPar,3);
a9e2aefa 1051
1e8fff9c 1052 // create the PCB volume
1053
6c5ddcfa 1054 gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3);
1055 gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3);
1e8fff9c 1056
1057 // create the insulating material volume
1058
6c5ddcfa 1059 gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3);
1060 gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3);
1e8fff9c 1061
1062 // create the panel volume
1063
6c5ddcfa 1064 gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3);
1065 gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3);
1e8fff9c 1066
1067 // create the rohacell volume
1068
6c5ddcfa 1069 gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3);
1070 gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3);
1e8fff9c 1071
1072 // create the vertical frame volume
1073
6c5ddcfa 1074 gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3);
1075 gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 1076
1077 // create the horizontal frame volume
1078
6c5ddcfa 1079 gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3);
1080 gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 1081
1082 // create the horizontal border volume
1083
6c5ddcfa 1084 gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3);
1085 gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3);
1e8fff9c 1086
1087
6c5ddcfa 1088 for (i = 0; i<nSlats5; i++){
1089 sprintf(volNam9,"S09%d",i);
1090 sprintf(volNam10,"S10%d",i);
1091 Float_t xvFrame = (slatLength5[i] - vFrameLength)/2.;
1092 gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY");
1093 gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY");
1094 gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY");
1095 gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY");
1096 for (j=0; j<nPCB5[i]; j++){
1e8fff9c 1097 index++;
6c5ddcfa 1098 Float_t xx = sensLength * (-nPCB5[i]/2.+j+.5);
1e8fff9c 1099 Float_t yy = 0.;
1100 Float_t zSens = 0.;
6c5ddcfa 1101 gMC->Gspos("S09G",index,volNam9, xx, yy, zSens , 0, "ONLY");
1102 gMC->Gspos("S10G",index,volNam10, xx, yy, zSens , 0, "ONLY");
1103 Float_t zPCB = (sensWidth+pcbWidth)/2.;
1104 gMC->Gspos("S09P",2*index-1,volNam9, xx, yy, zPCB , 0, "ONLY");
1105 gMC->Gspos("S09P",2*index ,volNam9, xx, yy,-zPCB , 0, "ONLY");
1106 gMC->Gspos("S10P",2*index-1,volNam10, xx, yy, zPCB , 0, "ONLY");
1107 gMC->Gspos("S10P",2*index ,volNam10, xx, yy,-zPCB , 0, "ONLY");
1108 Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB;
1109 gMC->Gspos("S09I",2*index-1,volNam9, xx, yy, zInsu , 0, "ONLY");
1110 gMC->Gspos("S09I",2*index ,volNam9, xx, yy,-zInsu , 0, "ONLY");
1111 gMC->Gspos("S10I",2*index-1,volNam10, xx, yy, zInsu , 0, "ONLY");
1112 gMC->Gspos("S10I",2*index ,volNam10, xx, yy,-zInsu , 0, "ONLY");
1113 Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu;
1114 gMC->Gspos("S09C",4*index-3,volNam9, xx, yy, zPanel1 , 0, "ONLY");
1115 gMC->Gspos("S09C",4*index-2,volNam9, xx, yy,-zPanel1 , 0, "ONLY");
1116 gMC->Gspos("S10C",4*index-3,volNam10, xx, yy, zPanel1 , 0, "ONLY");
1117 gMC->Gspos("S10C",4*index-2,volNam10, xx, yy,-zPanel1 , 0, "ONLY");
1118 Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1;
1119 gMC->Gspos("S09R",2*index-1,volNam9, xx, yy, zRoha , 0, "ONLY");
1120 gMC->Gspos("S09R",2*index ,volNam9, xx, yy,-zRoha , 0, "ONLY");
1121 gMC->Gspos("S10R",2*index-1,volNam10, xx, yy, zRoha , 0, "ONLY");
1122 gMC->Gspos("S10R",2*index ,volNam10, xx, yy,-zRoha , 0, "ONLY");
1123 Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha;
1124 gMC->Gspos("S09C",4*index-1,volNam9, xx, yy, zPanel2 , 0, "ONLY");
1125 gMC->Gspos("S09C",4*index ,volNam9, xx, yy,-zPanel2 , 0, "ONLY");
1126 gMC->Gspos("S10C",4*index-1,volNam10, xx, yy, zPanel2 , 0, "ONLY");
1127 gMC->Gspos("S10C",4*index ,volNam10, xx, yy,-zPanel2 , 0, "ONLY");
1128 Float_t yframe = (sensHeight + hFrameHeight)/2.;
1129 gMC->Gspos("S09H",2*index-1,volNam9, xx, yframe, 0. , 0, "ONLY");
1130 gMC->Gspos("S09H",2*index ,volNam9, xx,-yframe, 0. , 0, "ONLY");
1131 gMC->Gspos("S10H",2*index-1,volNam10, xx, yframe, 0. , 0, "ONLY");
1132 gMC->Gspos("S10H",2*index ,volNam10, xx,-yframe, 0. , 0, "ONLY");
1133 Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe;
1134 gMC->Gspos("S09B",2*index-1,volNam9, xx, yborder, 0. , 0, "ONLY");
1135 gMC->Gspos("S09B",2*index ,volNam9, xx,-yborder, 0. , 0, "ONLY");
1136 gMC->Gspos("S10B",2*index-1,volNam10, xx, yborder, 0. , 0, "ONLY");
1137 gMC->Gspos("S10B",2*index ,volNam10, xx,-yborder, 0. , 0, "ONLY");
1e8fff9c 1138 }
1139 }
1140
1141 // create the NULOC volume and position it in the horizontal frame
1142
6c5ddcfa 1143 gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3);
1144 gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3);
1e8fff9c 1145
1146 index = 0;
6c5ddcfa 1147 for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) {
1e8fff9c 1148 index++;
6c5ddcfa 1149 gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1150 gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY");
1151 gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1152 gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY");
a9e2aefa 1153 }
1154
1e8fff9c 1155 // create the gassiplex volume
1156
6c5ddcfa 1157 gMC->Gsvolu("S09E","BOX",gassiMaterial,gassipar,3);
1158 gMC->Gsvolu("S10E","BOX",gassiMaterial,gassipar,3);
1e8fff9c 1159
1160
1161 // position 4 gassiplex in the nuloc
1162
6c5ddcfa 1163 gMC->Gspos("S09E",1,"S09N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY");
1164 gMC->Gspos("S09E",2,"S09N", 0., - nulocHeight/8., 0. , 0, "ONLY");
1165 gMC->Gspos("S09E",3,"S09N", 0., nulocHeight/8., 0. , 0, "ONLY");
1166 gMC->Gspos("S09E",4,"S09N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY");
1167 gMC->Gspos("S10E",1,"S10N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY");
1168 gMC->Gspos("S10E",2,"S10N", 0., - nulocHeight/8., 0. , 0, "ONLY");
1169 gMC->Gspos("S10E",3,"S10N", 0., nulocHeight/8., 0. , 0, "ONLY");
1170 gMC->Gspos("S10E",4,"S10N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY");
b17c0c87 1171 }
1172
1e8fff9c 1173
a9e2aefa 1174///////////////////////////////////////
1175// GEOMETRY FOR THE TRIGGER CHAMBERS //
1176///////////////////////////////////////
1177
1178// 03/00 P. Dupieux : introduce a slighly more realistic
1179// geom. of the trigger readout planes with
1180// 2 Zpos per trigger plane (alternate
1181// between left and right of the trigger)
1182
1183// Parameters of the Trigger Chambers
1184
1185
1186 const Float_t kXMC1MIN=34.;
1187 const Float_t kXMC1MED=51.;
1188 const Float_t kXMC1MAX=272.;
1189 const Float_t kYMC1MIN=34.;
1190 const Float_t kYMC1MAX=51.;
1191 const Float_t kRMIN1=50.;
1192 const Float_t kRMAX1=62.;
1193 const Float_t kRMIN2=50.;
1194 const Float_t kRMAX2=66.;
1195
1196// zposition of the middle of the gas gap in mother vol
1197 const Float_t kZMCm=-3.6;
1198 const Float_t kZMCp=+3.6;
1199
1200
1201// TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1
1202
1203 // iChamber 1 and 2 for first and second chambers in the station
1204 // iChamber (first chamber) kept for other quanties than Z,
1205 // assumed to be the same in both chambers
1206 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10];
1207 iChamber2 =(AliMUONChamber*) (*fChambers)[11];
1208
1209 // 03/00
1210 // zpos1 and zpos2 are now the middle of the first and second
1211 // plane of station 1 :
1212 // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm
1213 // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm
1214 //
1215 // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps)
1216 // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps)
1217 // rem : the total thickness accounts for 1 mm of al on both
1218 // side of the RPCs (see zpos1 and zpos2), as previously
1219
1220 zpos1=iChamber1->Z();
1221 zpos2=iChamber2->Z();
1222
1223
1224// Mother volume definition
1225 tpar[0] = iChamber->RInner();
1226 tpar[1] = iChamber->ROuter();
1227 tpar[2] = 4.0;
1228 gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3);
1229 gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3);
1230
1231// Definition of the flange between the beam shielding and the RPC
1232 tpar[0]= kRMIN1;
1233 tpar[1]= kRMAX1;
1234 tpar[2]= 4.0;
1235
1236 gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al
1237 gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY");
1238 gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY");
1239
1240
1241// FIRST PLANE OF STATION 1
1242
1243// ratios of zpos1m/zpos1p and inverse for first plane
1244 Float_t zmp=(zpos1-3.6)/(zpos1+3.6);
1245 Float_t zpm=1./zmp;
1246
1247
1248// Definition of prototype for chambers in the first plane
1249
1250 tpar[0]= 0.;
1251 tpar[1]= 0.;
1252 tpar[2]= 0.;
1253
1254 gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al
1255 gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1256 gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1257
1258// chamber type A
1259 tpar[0] = -1.;
1260 tpar[1] = -1.;
1261
1262 const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.;
1263 const Float_t kYMC1Am=0.;
1264 const Float_t kYMC1Ap=0.;
1265
1266 tpar[2] = 0.1;
1267 gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3);
1268 tpar[2] = 0.3;
1269 gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3);
1270
1271 tpar[2] = 0.4;
1272 tpar[0] = (kXMC1MAX-kXMC1MED)/2.;
1273 tpar[1] = kYMC1MIN;
1274
1275 gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3);
1276 gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3);
1277
1278// chamber type B
1279 Float_t tpar1save=tpar[1];
1280 Float_t y1msave=kYMC1Am;
1281 Float_t y1psave=kYMC1Ap;
1282
1283 tpar[0] = (kXMC1MAX-kXMC1MIN)/2.;
1284 tpar[1] = (kYMC1MAX-kYMC1MIN)/2.;
1285
1286 const Float_t kXMC1B=kXMC1MIN+tpar[0];
1287 const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1];
1288 const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1];
1289
1290 gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3);
1291 gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3);
1292 gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3);
1293 gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3);
1294
1295// chamber type C (end of type B !!)
1296 tpar1save=tpar[1];
1297 y1msave=kYMC1Bm;
1298 y1psave=kYMC1Bp;
1299
1300 tpar[0] = kXMC1MAX/2;
1301 tpar[1] = kYMC1MAX/2;
1302
1303 const Float_t kXMC1C=tpar[0];
1304// warning : same Z than type B
1305 const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1];
1306 const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1];
1307
1308 gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3);
1309 gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3);
1310 gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3);
1311 gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3);
1312
1313// chamber type D, E and F (same size)
1314 tpar1save=tpar[1];
1315 y1msave=kYMC1Cm;
1316 y1psave=kYMC1Cp;
1317
1318 tpar[0] = kXMC1MAX/2.;
1319 tpar[1] = kYMC1MIN;
1320
1321 const Float_t kXMC1D=tpar[0];
1322 const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1];
1323 const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1];
1324
1325 gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3);
1326 gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3);
1327 gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3);
1328 gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3);
1329
1330
1331 tpar1save=tpar[1];
1332 y1msave=kYMC1Dm;
1333 y1psave=kYMC1Dp;
1334 const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1];
1335 const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1];
1336
1337 gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3);
1338 gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3);
1339 gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3);
1340 gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3);
1341
1342 tpar1save=tpar[1];
1343 y1msave=kYMC1Em;
1344 y1psave=kYMC1Ep;
1345 const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1];
1346 const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1];
1347
1348 gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3);
1349 gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3);
1350 gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3);
1351 gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3);
1352
1353// Positioning first plane in ALICE
1354 gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY");
1355
1356// End of geometry definition for the first plane of station 1
1357
1358
1359
1360// SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1
1361
1362 const Float_t kZ12=zpos2/zpos1;
1363
1364// Definition of prototype for chambers in the second plane of station 1
1365
1366 tpar[0]= 0.;
1367 tpar[1]= 0.;
1368 tpar[2]= 0.;
1369
1370 gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al
1371 gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1372 gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1373
1374// chamber type A
1375 tpar[0] = -1.;
1376 tpar[1] = -1.;
1377
1378 const Float_t kXMC2A=kXMC1A*kZ12;
1379 const Float_t kYMC2Am=0.;
1380 const Float_t kYMC2Ap=0.;
1381
1382 tpar[2] = 0.1;
1383 gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3);
1384 tpar[2] = 0.3;
1385 gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3);
1386
1387 tpar[2] = 0.4;
1388 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12;
1389 tpar[1] = kYMC1MIN*kZ12;
1390
1391 gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3);
1392 gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3);
1393
1394
1395// chamber type B
1396
1397 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12;
1398 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12;
1399
1400 const Float_t kXMC2B=kXMC1B*kZ12;
1401 const Float_t kYMC2Bp=kYMC1Bp*kZ12;
1402 const Float_t kYMC2Bm=kYMC1Bm*kZ12;
1403 gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3);
1404 gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3);
1405 gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3);
1406 gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3);
1407
1408
1409// chamber type C (end of type B !!)
1410
1411 tpar[0] = (kXMC1MAX/2)*kZ12;
1412 tpar[1] = (kYMC1MAX/2)*kZ12;
1413
1414 const Float_t kXMC2C=kXMC1C*kZ12;
1415 const Float_t kYMC2Cp=kYMC1Cp*kZ12;
1416 const Float_t kYMC2Cm=kYMC1Cm*kZ12;
1417 gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3);
1418 gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3);
1419 gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3);
1420 gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3);
1421
1422// chamber type D, E and F (same size)
1423
1424 tpar[0] = (kXMC1MAX/2.)*kZ12;
1425 tpar[1] = kYMC1MIN*kZ12;
1426
1427 const Float_t kXMC2D=kXMC1D*kZ12;
1428 const Float_t kYMC2Dp=kYMC1Dp*kZ12;
1429 const Float_t kYMC2Dm=kYMC1Dm*kZ12;
1430 gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3);
1431 gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3);
1432 gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3);
1433 gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3);
1434
1435 const Float_t kYMC2Ep=kYMC1Ep*kZ12;
1436 const Float_t kYMC2Em=kYMC1Em*kZ12;
1437 gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3);
1438 gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3);
1439 gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3);
1440 gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3);
1441
1442
1443 const Float_t kYMC2Fp=kYMC1Fp*kZ12;
1444 const Float_t kYMC2Fm=kYMC1Fm*kZ12;
1445 gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3);
1446 gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3);
1447 gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3);
1448 gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3);
1449
1450// Positioning second plane of station 1 in ALICE
1451
1452 gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY");
1453
1454// End of geometry definition for the second plane of station 1
1455
1456
1457
1458// TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2
1459
1460 // 03/00
1461 // zpos3 and zpos4 are now the middle of the first and second
1462 // plane of station 2 :
1463 // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm
1464 // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm
1465 //
1466 // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps)
1467 // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps)
1468 // rem : the total thickness accounts for 1 mm of al on both
1469 // side of the RPCs (see zpos3 and zpos4), as previously
1470 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12];
1471 iChamber2 =(AliMUONChamber*) (*fChambers)[13];
1472 Float_t zpos3=iChamber1->Z();
1473 Float_t zpos4=iChamber2->Z();
1474
1475
1476// Mother volume definition
1477 tpar[0] = iChamber->RInner();
1478 tpar[1] = iChamber->ROuter();
1479 tpar[2] = 4.0;
1480
1481 gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3);
1482 gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3);
1483
1484// Definition of the flange between the beam shielding and the RPC
1485// ???? interface shielding
1486
1487 tpar[0]= kRMIN2;
1488 tpar[1]= kRMAX2;
1489 tpar[2]= 4.0;
1490
1491 gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al
1492 gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY");
1493 gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY");
1494
1495
1496
1497// FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1
1498
1499 const Float_t kZ13=zpos3/zpos1;
1500
1501// Definition of prototype for chambers in the first plane of station 2
1502 tpar[0]= 0.;
1503 tpar[1]= 0.;
1504 tpar[2]= 0.;
1505
1506 gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al
1507 gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1508 gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1509
1510
1511// chamber type A
1512 tpar[0] = -1.;
1513 tpar[1] = -1.;
1514
1515 const Float_t kXMC3A=kXMC1A*kZ13;
1516 const Float_t kYMC3Am=0.;
1517 const Float_t kYMC3Ap=0.;
1518
1519 tpar[2] = 0.1;
1520 gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3);
1521 tpar[2] = 0.3;
1522 gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3);
1523
1524 tpar[2] = 0.4;
1525 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13;
1526 tpar[1] = kYMC1MIN*kZ13;
1527 gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3);
1528 gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3);
1529
1530
1531// chamber type B
1532 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13;
1533 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13;
1534
1535 const Float_t kXMC3B=kXMC1B*kZ13;
1536 const Float_t kYMC3Bp=kYMC1Bp*kZ13;
1537 const Float_t kYMC3Bm=kYMC1Bm*kZ13;
1538 gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3);
1539 gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3);
1540 gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3);
1541 gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3);
1542
1543
1544// chamber type C (end of type B !!)
1545 tpar[0] = (kXMC1MAX/2)*kZ13;
1546 tpar[1] = (kYMC1MAX/2)*kZ13;
1547
1548 const Float_t kXMC3C=kXMC1C*kZ13;
1549 const Float_t kYMC3Cp=kYMC1Cp*kZ13;
1550 const Float_t kYMC3Cm=kYMC1Cm*kZ13;
1551 gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3);
1552 gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3);
1553 gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3);
1554 gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3);
1555
1556
1557// chamber type D, E and F (same size)
1558
1559 tpar[0] = (kXMC1MAX/2.)*kZ13;
1560 tpar[1] = kYMC1MIN*kZ13;
1561
1562 const Float_t kXMC3D=kXMC1D*kZ13;
1563 const Float_t kYMC3Dp=kYMC1Dp*kZ13;
1564 const Float_t kYMC3Dm=kYMC1Dm*kZ13;
1565 gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3);
1566 gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3);
1567 gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3);
1568 gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3);
1569
1570 const Float_t kYMC3Ep=kYMC1Ep*kZ13;
1571 const Float_t kYMC3Em=kYMC1Em*kZ13;
1572 gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3);
1573 gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3);
1574 gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3);
1575 gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3);
1576
1577 const Float_t kYMC3Fp=kYMC1Fp*kZ13;
1578 const Float_t kYMC3Fm=kYMC1Fm*kZ13;
1579 gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3);
1580 gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3);
1581 gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3);
1582 gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3);
1583
1584
1585// Positioning first plane of station 2 in ALICE
1586
1587 gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY");
1588
1589// End of geometry definition for the first plane of station 2
1590
1591
1592
1593
1594// SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1
1595
1596 const Float_t kZ14=zpos4/zpos1;
1597
1598// Definition of prototype for chambers in the second plane of station 2
1599
1600 tpar[0]= 0.;
1601 tpar[1]= 0.;
1602 tpar[2]= 0.;
1603
1604 gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al
1605 gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1606 gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1607
1608// chamber type A
1609 tpar[0] = -1.;
1610 tpar[1] = -1.;
1611
1612 const Float_t kXMC4A=kXMC1A*kZ14;
1613 const Float_t kYMC4Am=0.;
1614 const Float_t kYMC4Ap=0.;
1615
1616 tpar[2] = 0.1;
1617 gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3);
1618 tpar[2] = 0.3;
1619 gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3);
1620
1621 tpar[2] = 0.4;
1622 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14;
1623 tpar[1] = kYMC1MIN*kZ14;
1624 gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3);
1625 gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3);
1626
1627
1628// chamber type B
1629 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14;
1630 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14;
1631
1632 const Float_t kXMC4B=kXMC1B*kZ14;
1633 const Float_t kYMC4Bp=kYMC1Bp*kZ14;
1634 const Float_t kYMC4Bm=kYMC1Bm*kZ14;
1635 gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3);
1636 gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3);
1637 gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3);
1638 gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3);
1639
1640
1641// chamber type C (end of type B !!)
1642 tpar[0] =(kXMC1MAX/2)*kZ14;
1643 tpar[1] = (kYMC1MAX/2)*kZ14;
1644
1645 const Float_t kXMC4C=kXMC1C*kZ14;
1646 const Float_t kYMC4Cp=kYMC1Cp*kZ14;
1647 const Float_t kYMC4Cm=kYMC1Cm*kZ14;
1648 gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3);
1649 gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3);
1650 gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3);
1651 gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3);
1652
1653
1654// chamber type D, E and F (same size)
1655 tpar[0] = (kXMC1MAX/2.)*kZ14;
1656 tpar[1] = kYMC1MIN*kZ14;
1657
1658 const Float_t kXMC4D=kXMC1D*kZ14;
1659 const Float_t kYMC4Dp=kYMC1Dp*kZ14;
1660 const Float_t kYMC4Dm=kYMC1Dm*kZ14;
1661 gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3);
1662 gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3);
1663 gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3);
1664 gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3);
1665
1666 const Float_t kYMC4Ep=kYMC1Ep*kZ14;
1667 const Float_t kYMC4Em=kYMC1Em*kZ14;
1668 gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3);
1669 gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3);
1670 gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3);
1671 gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3);
1672
1673 const Float_t kYMC4Fp=kYMC1Fp*kZ14;
1674 const Float_t kYMC4Fm=kYMC1Fm*kZ14;
1675 gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3);
1676 gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3);
1677 gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3);
1678 gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3);
1679
1680
1681// Positioning second plane of station 2 in ALICE
1682
1683 gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY");
1684
1685// End of geometry definition for the second plane of station 2
1686
1687// End of trigger geometry definition
1688
1689}
1690
1691
1692
1693//___________________________________________
1694void AliMUONv1::CreateMaterials()
1695{
1696 // *** DEFINITION OF AVAILABLE MUON MATERIALS ***
1697 //
1698 // Ar-CO2 gas
1699 Float_t ag1[3] = { 39.95,12.01,16. };
1700 Float_t zg1[3] = { 18.,6.,8. };
1701 Float_t wg1[3] = { .8,.0667,.13333 };
1702 Float_t dg1 = .001821;
1703 //
1704 // Ar-buthane-freon gas -- trigger chambers
1705 Float_t atr1[4] = { 39.95,12.01,1.01,19. };
1706 Float_t ztr1[4] = { 18.,6.,1.,9. };
1707 Float_t wtr1[4] = { .56,.1262857,.2857143,.028 };
1708 Float_t dtr1 = .002599;
1709 //
1710 // Ar-CO2 gas
1711 Float_t agas[3] = { 39.95,12.01,16. };
1712 Float_t zgas[3] = { 18.,6.,8. };
1713 Float_t wgas[3] = { .74,.086684,.173316 };
1714 Float_t dgas = .0018327;
1715 //
1716 // Ar-Isobutane gas (80%+20%) -- tracking
1717 Float_t ag[3] = { 39.95,12.01,1.01 };
1718 Float_t zg[3] = { 18.,6.,1. };
1719 Float_t wg[3] = { .8,.057,.143 };
1720 Float_t dg = .0019596;
1721 //
1722 // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger
1723 Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
1724 Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
1725 Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
1726 Float_t dtrig = .0031463;
1727 //
1728 // bakelite
1729
1730 Float_t abak[3] = {12.01 , 1.01 , 16.};
1731 Float_t zbak[3] = {6. , 1. , 8.};
1732 Float_t wbak[3] = {6. , 6. , 1.};
1733 Float_t dbak = 1.4;
1734
1735 Float_t epsil, stmin, deemax, tmaxfd, stemax;
1736
1737 Int_t iSXFLD = gAlice->Field()->Integ();
1738 Float_t sXMGMX = gAlice->Field()->Max();
1739 //
1740 // --- Define the various materials for GEANT ---
1741 AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1742 AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1743 AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500);
1744 AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
1745 AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
1746 AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
1747 AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
1748 AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
1749 AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
1e8fff9c 1750 // materials for slat:
1751 // Sensitive area: gas (already defined)
1752 // PCB: copper
1753 // insulating material and frame: vetronite
1754 // walls: carbon, rohacell, carbon
1755 Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.};
1756 Float_t zglass[5]={ 6., 14., 8., 5., 11.};
1757 Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01};
1758 Float_t dglass=1.74;
1759
1760 // rohacell: C9 H13 N1 O2
1761 Float_t arohac[4] = {12.01, 1.01, 14.010, 16.};
1762 Float_t zrohac[4] = { 6., 1., 7., 8.};
1763 Float_t wrohac[4] = { 9., 13., 1., 2.};
1764 Float_t drohac = 0.03;
1765
1766 AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.);
1767 AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass);
1768 AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9);
1769 AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac);
1770
a9e2aefa 1771
1772 epsil = .001; // Tracking precision,
1773 stemax = -1.; // Maximum displacement for multiple scat
1774 tmaxfd = -20.; // Maximum angle due to field deflection
1775 deemax = -.3; // Maximum fractional energy loss, DLS
1776 stmin = -.8;
1777 //
1778 // Air
1779 AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1780 //
1781 // Aluminum
1782
1783 AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1784 fMaxDestepAlu, epsil, stmin);
1785 AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1786 fMaxDestepAlu, epsil, stmin);
1787 //
1788 // Ar-isoC4H10 gas
1789
1790 AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1791 fMaxDestepGas, epsil, stmin);
1792//
1793 // Ar-Isobuthane-Forane-SF6 gas
1794
1795 AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1796
1797 AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1798 fMaxDestepAlu, epsil, stmin);
1799
1800 AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1801 fMaxDestepAlu, epsil, stmin);
1e8fff9c 1802 // tracking media for slats: check the parameters!!
1803 AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd,
1804 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1805 AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd,
1806 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1807 AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd,
1808 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1809 AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd,
1810 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
a9e2aefa 1811}
1812
1813//___________________________________________
1814
1815void AliMUONv1::Init()
1816{
1817 //
1818 // Initialize Tracking Chambers
1819 //
1820
1821 printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n");
e17592e9 1822 Int_t i;
f665c1ea 1823 for (i=0; i<AliMUONConstants::NCh(); i++) {
a9e2aefa 1824 ( (AliMUONChamber*) (*fChambers)[i])->Init();
1825 }
1826
1827 //
1828 // Set the chamber (sensitive region) GEANT identifier
1829 AliMC* gMC = AliMC::GetMC();
1830 ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G"));
1831 ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G"));
b17c0c87 1832
a9e2aefa 1833 ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G"));
1834 ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G"));
b17c0c87 1835
1e8fff9c 1836 ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G"));
1837 ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G"));
b17c0c87 1838
1e8fff9c 1839 ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G"));
1840 ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G"));
b17c0c87 1841
1e8fff9c 1842 ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G"));
1843 ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G"));
b17c0c87 1844
a9e2aefa 1845 ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A"));
1846 ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A"));
1847 ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A"));
1848 ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A"));
1849
1850 printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n");
1851
1852 //cp
1853 printf("\n\n\n Start Init for Trigger Circuits\n\n\n");
f665c1ea 1854 for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) {
a9e2aefa 1855 ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i);
1856 }
1857 printf(" Finished Init for Trigger Circuits\n\n\n");
1858 //cp
1859
1860}
1861
1862//___________________________________________
1863void AliMUONv1::StepManager()
1864{
1865 Int_t copy, id;
1866 static Int_t idvol;
1867 static Int_t vol[2];
1868 Int_t ipart;
1869 TLorentzVector pos;
1870 TLorentzVector mom;
1871 Float_t theta,phi;
1872 Float_t destep, step;
1873
1e8fff9c 1874 static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength;
a9e2aefa 1875 const Float_t kBig=1.e10;
a9e2aefa 1876 // modifs perso
1877 static Float_t hits[15];
1878
1879 TClonesArray &lhits = *fHits;
1880
1881 //
1882 // Set maximum step size for gas
1883 // numed=gMC->GetMedium();
1884 //
1885 // Only charged tracks
1886 if( !(gMC->TrackCharge()) ) return;
1887 //
1888 // Only gas gap inside chamber
1889 // Tag chambers and record hits when track enters
1890 idvol=-1;
1891 id=gMC->CurrentVolID(copy);
1892
f665c1ea 1893 for (Int_t i=1; i<=AliMUONConstants::NCh(); i++) {
a9e2aefa 1894 if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){
1895 vol[0]=i;
1896 idvol=i-1;
1897 }
1898 }
1899 if (idvol == -1) return;
1900 //
1901 // Get current particle id (ipart), track position (pos) and momentum (mom)
1902 gMC->TrackPosition(pos);
1903 gMC->TrackMomentum(mom);
1904
1905 ipart = gMC->TrackPid();
1906 //Int_t ipart1 = gMC->IdFromPDG(ipart);
1907 //printf("ich, ipart %d %d \n",vol[0],ipart1);
1908
1909 //
1910 // momentum loss and steplength in last step
1911 destep = gMC->Edep();
1912 step = gMC->TrackStep();
1913
1914 //
1915 // record hits when track enters ...
1916 if( gMC->IsTrackEntering()) {
1917 gMC->SetMaxStep(fMaxStepGas);
1918 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
1919 Double_t rt = TMath::Sqrt(tc);
1920 Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]);
1921 Double_t tx=mom[0]/pmom;
1922 Double_t ty=mom[1]/pmom;
1923 Double_t tz=mom[2]/pmom;
1924 Double_t s=((AliMUONChamber*)(*fChambers)[idvol])
1925 ->ResponseModel()
1926 ->Pitch()/tz;
1927 theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
1928 phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
1929 hits[0] = Float_t(ipart); // Geant3 particle type
1930 hits[1] = pos[0]+s*tx; // X-position for hit
1931 hits[2] = pos[1]+s*ty; // Y-position for hit
1932 hits[3] = pos[2]+s*tz; // Z-position for hit
1933 hits[4] = theta; // theta angle of incidence
1934 hits[5] = phi; // phi angle of incidence
1935 hits[8] = (Float_t) fNPadHits; // first padhit
1936 hits[9] = -1; // last pad hit
1937
1938 // modifs perso
1939 hits[10] = mom[3]; // hit momentum P
1940 hits[11] = mom[0]; // Px/P
1941 hits[12] = mom[1]; // Py/P
1942 hits[13] = mom[2]; // Pz/P
1943 // fin modifs perso
1944 tof=gMC->TrackTime();
1945 hits[14] = tof; // Time of flight
1946 // phi angle of incidence
1947 tlength = 0;
1948 eloss = 0;
1949 eloss2 = 0;
1950 xhit = pos[0];
1951 yhit = pos[1];
1e8fff9c 1952 zhit = pos[2];
a9e2aefa 1953 // Only if not trigger chamber
1e8fff9c 1954
1955
1956
1957
a75f073c 1958 if(idvol<AliMUONConstants::NTrackingCh()) {
a9e2aefa 1959 //
1960 // Initialize hit position (cursor) in the segmentation model
1961 ((AliMUONChamber*) (*fChambers)[idvol])
1962 ->SigGenInit(pos[0], pos[1], pos[2]);
1963 } else {
1964 //geant3->Gpcxyz();
1965 //printf("In the Trigger Chamber #%d\n",idvol-9);
1966 }
1967 }
1968 eloss2+=destep;
1969
1970 //
1971 // Calculate the charge induced on a pad (disintegration) in case
1972 //
1973 // Mip left chamber ...
1974 if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1975 gMC->SetMaxStep(kBig);
1976 eloss += destep;
1977 tlength += step;
1978
802a864d 1979 Float_t x0,y0,z0;
1980 Float_t localPos[3];
1981 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
802a864d 1982 gMC->Gmtod(globalPos,localPos,1);
1983
a75f073c 1984 if(idvol<AliMUONConstants::NTrackingCh()) {
a9e2aefa 1985// tracking chambers
1986 x0 = 0.5*(xhit+pos[0]);
1987 y0 = 0.5*(yhit+pos[1]);
1e8fff9c 1988 z0 = 0.5*(zhit+pos[2]);
1989 // z0 = localPos[2];
a9e2aefa 1990 } else {
1991// trigger chambers
1992 x0=xhit;
1993 y0=yhit;
1e8fff9c 1994// z0=yhit;
802a864d 1995 z0=0.;
a9e2aefa 1996 }
1997
1e8fff9c 1998
802a864d 1999 if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol);
a9e2aefa 2000
2001
2002 hits[6]=tlength;
2003 hits[7]=eloss2;
2004 if (fNPadHits > (Int_t)hits[8]) {
2005 hits[8]= hits[8]+1;
2006 hits[9]= (Float_t) fNPadHits;
2007 }
2008
2009 new(lhits[fNhits++])
2010 AliMUONHit(fIshunt,gAlice->CurrentTrack(),vol,hits);
2011 eloss = 0;
2012 //
2013 // Check additional signal generation conditions
2014 // defined by the segmentation
a75f073c 2015 // model (boundary crossing conditions)
2016 // only for tracking chambers
a9e2aefa 2017 } else if
a75f073c 2018 ((idvol < AliMUONConstants::NTrackingCh()) &&
2019 ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2]))
a9e2aefa 2020 {
2021 ((AliMUONChamber*) (*fChambers)[idvol])
2022 ->SigGenInit(pos[0], pos[1], pos[2]);
802a864d 2023
2024 Float_t localPos[3];
2025 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
2026 gMC->Gmtod(globalPos,localPos,1);
2027
2028
a75f073c 2029 if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh())
1e8fff9c 2030 MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol);
a9e2aefa 2031 xhit = pos[0];
2032 yhit = pos[1];
1e8fff9c 2033 zhit = pos[2];
a9e2aefa 2034 eloss = destep;
2035 tlength += step ;
2036 //
2037 // nothing special happened, add up energy loss
2038 } else {
2039 eloss += destep;
2040 tlength += step ;
2041 }
2042}
2043
2044