]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/STEERBase/AliExternalTrackParam.cxx
Fix for Coverity defect 21184.
[u/mrichter/AliRoot.git] / STEER / STEERBase / AliExternalTrackParam.cxx
CommitLineData
51ad6848 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
49d13e89 20// Implementation of the external track parameterisation class. //
51ad6848 21// //
49d13e89 22// This parameterisation is used to exchange tracks between the detectors. //
23// A set of functions returning the position and the momentum of tracks //
24// in the global coordinate system as well as the track impact parameters //
25// are implemented.
26// Origin: I.Belikov, CERN, Jouri.Belikov@cern.ch //
51ad6848 27///////////////////////////////////////////////////////////////////////////////
86be8934 28#include <cassert>
29
30#include <TVectorD.h>
4b189f98 31#include <TMatrixDSym.h>
d46683db 32#include <TPolyMarker3D.h>
33#include <TVector3.h>
cfdb62d4 34#include <TMatrixD.h>
d46683db 35
51ad6848 36#include "AliExternalTrackParam.h"
58e536c5 37#include "AliVVertex.h"
6c94f330 38#include "AliLog.h"
51ad6848 39
40ClassImp(AliExternalTrackParam)
41
ed5f2849 42Double32_t AliExternalTrackParam::fgMostProbablePt=kMostProbablePt;
f2cef1b5 43Bool_t AliExternalTrackParam::fgUseLogTermMS = kFALSE;;
51ad6848 44//_____________________________________________________________________________
90e48c0c 45AliExternalTrackParam::AliExternalTrackParam() :
4f6e22bd 46 AliVTrack(),
90e48c0c 47 fX(0),
c9ec41e8 48 fAlpha(0)
51ad6848 49{
90e48c0c 50 //
51 // default constructor
52 //
c9ec41e8 53 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
54 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 55}
56
6c94f330 57//_____________________________________________________________________________
58AliExternalTrackParam::AliExternalTrackParam(const AliExternalTrackParam &track):
4f6e22bd 59 AliVTrack(track),
6c94f330 60 fX(track.fX),
61 fAlpha(track.fAlpha)
62{
63 //
64 // copy constructor
65 //
66 for (Int_t i = 0; i < 5; i++) fP[i] = track.fP[i];
67 for (Int_t i = 0; i < 15; i++) fC[i] = track.fC[i];
86be8934 68 CheckCovariance();
6c94f330 69}
70
def9660e 71//_____________________________________________________________________________
72AliExternalTrackParam& AliExternalTrackParam::operator=(const AliExternalTrackParam &trkPar)
73{
74 //
75 // assignment operator
76 //
77
78 if (this!=&trkPar) {
4f6e22bd 79 AliVTrack::operator=(trkPar);
def9660e 80 fX = trkPar.fX;
81 fAlpha = trkPar.fAlpha;
82
83 for (Int_t i = 0; i < 5; i++) fP[i] = trkPar.fP[i];
84 for (Int_t i = 0; i < 15; i++) fC[i] = trkPar.fC[i];
86be8934 85 CheckCovariance();
def9660e 86 }
87
88 return *this;
89}
90
51ad6848 91//_____________________________________________________________________________
92AliExternalTrackParam::AliExternalTrackParam(Double_t x, Double_t alpha,
93 const Double_t param[5],
90e48c0c 94 const Double_t covar[15]) :
4f6e22bd 95 AliVTrack(),
90e48c0c 96 fX(x),
c9ec41e8 97 fAlpha(alpha)
51ad6848 98{
90e48c0c 99 //
100 // create external track parameters from given arguments
101 //
c9ec41e8 102 for (Int_t i = 0; i < 5; i++) fP[i] = param[i];
103 for (Int_t i = 0; i < 15; i++) fC[i] = covar[i];
86be8934 104 CheckCovariance();
51ad6848 105}
106
4ec1ca0f 107//_____________________________________________________________________________
108void AliExternalTrackParam::CopyFromVTrack(const AliVTrack *vTrack)
109{
110 //
111 // Recreate TrackParams from VTrack
112 // This is not a copy contructor !
113 //
114 if (!vTrack) {
115 AliError("Source VTrack is NULL");
116 return;
117 }
118 if (this==vTrack) {
119 AliError("Copy of itself is requested");
120 return;
121 }
122 //
123 if (vTrack->InheritsFrom(AliExternalTrackParam::Class())) {
124 AliDebug(1,"Source itself is AliExternalTrackParam, using assignment operator");
125 *this = *(AliExternalTrackParam*)vTrack;
126 return;
127 }
128 //
129 AliVTrack::operator=( *vTrack );
130 //
131 Double_t xyz[3],pxpypz[3],cv[21];
132 vTrack->GetXYZ(xyz);
133 pxpypz[0]=vTrack->Px();
134 pxpypz[1]=vTrack->Py();
135 pxpypz[2]=vTrack->Pz();
136 vTrack->GetCovarianceXYZPxPyPz(cv);
137 Short_t sign = (Short_t)vTrack->Charge();
138 Set(xyz,pxpypz,cv,sign);
139}
140
4f6e22bd 141//_____________________________________________________________________________
142AliExternalTrackParam::AliExternalTrackParam(const AliVTrack *vTrack) :
143 AliVTrack(),
144 fX(0.),
145 fAlpha(0.)
146{
147 //
610e3088 148 // Constructor from virtual track,
149 // This is not a copy contructor !
4f6e22bd 150 //
610e3088 151
152 if (vTrack->InheritsFrom("AliExternalTrackParam")) {
153 AliError("This is not a copy constructor. Use AliExternalTrackParam(const AliExternalTrackParam &) !");
154 AliWarning("Calling the default constructor...");
155 AliExternalTrackParam();
156 return;
157 }
158
892be05f 159 Double_t xyz[3],pxpypz[3],cv[21];
160 vTrack->GetXYZ(xyz);
161 pxpypz[0]=vTrack->Px();
162 pxpypz[1]=vTrack->Py();
163 pxpypz[2]=vTrack->Pz();
4f6e22bd 164 vTrack->GetCovarianceXYZPxPyPz(cv);
165 Short_t sign = (Short_t)vTrack->Charge();
166
167 Set(xyz,pxpypz,cv,sign);
168}
169
90e48c0c 170//_____________________________________________________________________________
da4e3deb 171AliExternalTrackParam::AliExternalTrackParam(Double_t xyz[3],Double_t pxpypz[3],
172 Double_t cv[21],Short_t sign) :
4f6e22bd 173 AliVTrack(),
da4e3deb 174 fX(0.),
175 fAlpha(0.)
4f6e22bd 176{
177 //
178 // constructor from the global parameters
179 //
180
181 Set(xyz,pxpypz,cv,sign);
182}
183
184//_____________________________________________________________________________
185void AliExternalTrackParam::Set(Double_t xyz[3],Double_t pxpypz[3],
186 Double_t cv[21],Short_t sign)
da4e3deb 187{
188 //
189 // create external track parameters from the global parameters
190 // x,y,z,px,py,pz and their 6x6 covariance matrix
191 // A.Dainese 10.10.08
192
aff56ff7 193 // Calculate alpha: the rotation angle of the corresponding local system.
194 //
195 // For global radial position inside the beam pipe, alpha is the
196 // azimuthal angle of the momentum projected on (x,y).
197 //
c99948ce 198 // For global radial position outside the ITS, alpha is the
aff56ff7 199 // azimuthal angle of the centre of the TPC sector in which the point
200 // xyz lies
201 //
4349f5a4 202 const double kSafe = 1e-5;
aff56ff7 203 Double_t radPos2 = xyz[0]*xyz[0]+xyz[1]*xyz[1];
c99948ce 204 Double_t radMax = 45.; // approximately ITS outer radius
4349f5a4 205 if (radPos2 < radMax*radMax) { // inside the ITS
aff56ff7 206 fAlpha = TMath::ATan2(pxpypz[1],pxpypz[0]);
c99948ce 207 } else { // outside the ITS
aff56ff7 208 Float_t phiPos = TMath::Pi()+TMath::ATan2(-xyz[1], -xyz[0]);
209 fAlpha =
210 TMath::DegToRad()*(20*((((Int_t)(phiPos*TMath::RadToDeg()))/20))+10);
211 }
4349f5a4 212 //
213 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
214 // protection: avoid alpha being too close to 0 or +-pi/2
5123be3b 215 if (TMath::Abs(sn)<2*kSafe) {
216 if (fAlpha>0) fAlpha += fAlpha< TMath::Pi()/2. ? 2*kSafe : -2*kSafe;
217 else fAlpha += fAlpha>-TMath::Pi()/2. ? -2*kSafe : 2*kSafe;
4349f5a4 218 cs=TMath::Cos(fAlpha);
219 sn=TMath::Sin(fAlpha);
220 }
5123be3b 221 else if (TMath::Abs(cs)<2*kSafe) {
222 if (fAlpha>0) fAlpha += fAlpha> TMath::Pi()/2. ? 2*kSafe : -2*kSafe;
223 else fAlpha += fAlpha>-TMath::Pi()/2. ? 2*kSafe : -2*kSafe;
4349f5a4 224 cs=TMath::Cos(fAlpha);
8defb4a0 225 sn=TMath::Sin(fAlpha);
4349f5a4 226 }
da4e3deb 227 // Get the vertex of origin and the momentum
228 TVector3 ver(xyz[0],xyz[1],xyz[2]);
229 TVector3 mom(pxpypz[0],pxpypz[1],pxpypz[2]);
4349f5a4 230 //
231 // avoid momenta along axis
232 if (TMath::Abs(mom[0])<kSafe) mom[0] = TMath::Sign(kSafe*TMath::Abs(mom[1]), mom[0]);
233 if (TMath::Abs(mom[1])<kSafe) mom[1] = TMath::Sign(kSafe*TMath::Abs(mom[0]), mom[1]);
da4e3deb 234
235 // Rotate to the local coordinate system
236 ver.RotateZ(-fAlpha);
237 mom.RotateZ(-fAlpha);
238
239 // x of the reference plane
240 fX = ver.X();
241
242 Double_t charge = (Double_t)sign;
243
244 fP[0] = ver.Y();
245 fP[1] = ver.Z();
246 fP[2] = TMath::Sin(mom.Phi());
247 fP[3] = mom.Pz()/mom.Pt();
248 fP[4] = TMath::Sign(1/mom.Pt(),charge);
249
250 // Covariance matrix (formulas to be simplified)
251
752303df 252 if (TMath::Abs( 1-fP[2]) < kSafe) fP[2] = 1.- kSafe; //Protection
253 else if (TMath::Abs(-1-fP[2]) < kSafe) fP[2] =-1.+ kSafe; //Protection
254
da4e3deb 255 Double_t pt=1./TMath::Abs(fP[4]);
da4e3deb 256 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
257
258 Double_t m00=-sn;// m10=cs;
259 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
260 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
261 Double_t m35=pt, m45=-pt*pt*fP[3];
262
263 m43*=GetSign();
264 m44*=GetSign();
265 m45*=GetSign();
266
267 Double_t cv34 = TMath::Sqrt(cv[3 ]*cv[3 ]+cv[4 ]*cv[4 ]);
268 Double_t a1=cv[13]-cv[9]*(m23*m44+m43*m24)/m23/m43;
269 Double_t a2=m23*m24-m23*(m23*m44+m43*m24)/m43;
270 Double_t a3=m43*m44-m43*(m23*m44+m43*m24)/m23;
271 Double_t a4=cv[14]-2.*cv[9]*m24*m44/m23/m43;
272 Double_t a5=m24*m24-2.*m24*m44*m23/m43;
273 Double_t a6=m44*m44-2.*m24*m44*m43/m23;
274
275 fC[0 ] = cv[0 ]+cv[2 ];
276 fC[1 ] = TMath::Sign(cv34,cv[3 ]/m00);
277 fC[2 ] = cv[5 ];
5123be3b 278 fC[3 ] = (cv[10]*m43-cv[6]*m44)/(m24*m43-m23*m44)/m00;
da4e3deb 279 fC[10] = (cv[6]/m00-fC[3 ]*m23)/m43;
280 fC[6 ] = (cv[15]/m00-fC[10]*m45)/m35;
5123be3b 281 fC[4 ] = (cv[12]*m43-cv[8]*m44)/(m24*m43-m23*m44);
da4e3deb 282 fC[11] = (cv[8]-fC[4]*m23)/m43;
283 fC[7 ] = cv[17]/m35-fC[11]*m45/m35;
5123be3b 284 fC[5 ] = TMath::Abs((a4*a3-a6*a1)/(a5*a3-a6*a2));
285 fC[14] = TMath::Abs((a1-a2*fC[5])/a3);
da4e3deb 286 fC[12] = (cv[9]-fC[5]*m23*m23-fC[14]*m43*m43)/m23/m43;
287 Double_t b1=cv[18]-fC[12]*m23*m45-fC[14]*m43*m45;
288 Double_t b2=m23*m35;
289 Double_t b3=m43*m35;
290 Double_t b4=cv[19]-fC[12]*m24*m45-fC[14]*m44*m45;
291 Double_t b5=m24*m35;
292 Double_t b6=m44*m35;
293 fC[8 ] = (b4-b6*b1/b3)/(b5-b6*b2/b3);
294 fC[13] = b1/b3-b2*fC[8]/b3;
295 fC[9 ] = TMath::Abs((cv[20]-fC[14]*(m45*m45)-fC[13]*2.*m35*m45)/(m35*m35));
4f6e22bd 296
86be8934 297 CheckCovariance();
298
4f6e22bd 299 return;
da4e3deb 300}
301
51ad6848 302//_____________________________________________________________________________
c9ec41e8 303void AliExternalTrackParam::Reset() {
1530f89c 304 //
305 // Resets all the parameters to 0
306 //
c9ec41e8 307 fX=fAlpha=0.;
308 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
309 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 310}
311
3775b0ca 312//_____________________________________________________________________________
313void AliExternalTrackParam::AddCovariance(const Double_t c[15]) {
314 //
315 // Add "something" to the track covarince matrix.
316 // May be needed to account for unknown mis-calibration/mis-alignment
317 //
318 fC[0] +=c[0];
319 fC[1] +=c[1]; fC[2] +=c[2];
320 fC[3] +=c[3]; fC[4] +=c[4]; fC[5] +=c[5];
321 fC[6] +=c[6]; fC[7] +=c[7]; fC[8] +=c[8]; fC[9] +=c[9];
322 fC[10]+=c[10]; fC[11]+=c[11]; fC[12]+=c[12]; fC[13]+=c[13]; fC[14]+=c[14];
86be8934 323 CheckCovariance();
3775b0ca 324}
325
326
c9ec41e8 327Double_t AliExternalTrackParam::GetP() const {
328 //---------------------------------------------------------------------
329 // This function returns the track momentum
330 // Results for (nearly) straight tracks are meaningless !
331 //---------------------------------------------------------------------
06fb4a2f 332 if (TMath::Abs(fP[4])<=kAlmost0) return kVeryBig;
c9ec41e8 333 return TMath::Sqrt(1.+ fP[3]*fP[3])/TMath::Abs(fP[4]);
51ad6848 334}
335
1d99986f 336Double_t AliExternalTrackParam::Get1P() const {
337 //---------------------------------------------------------------------
338 // This function returns the 1/(track momentum)
339 //---------------------------------------------------------------------
340 return TMath::Abs(fP[4])/TMath::Sqrt(1.+ fP[3]*fP[3]);
341}
342
c9ec41e8 343//_______________________________________________________________________
c7bafca9 344Double_t AliExternalTrackParam::GetD(Double_t x,Double_t y,Double_t b) const {
c9ec41e8 345 //------------------------------------------------------------------
346 // This function calculates the transverse impact parameter
347 // with respect to a point with global coordinates (x,y)
348 // in the magnetic field "b" (kG)
349 //------------------------------------------------------------------
5773defd 350 if (TMath::Abs(b) < kAlmost0Field) return GetLinearD(x,y);
1530f89c 351 Double_t rp4=GetC(b);
c9ec41e8 352
353 Double_t xt=fX, yt=fP[0];
354
355 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
356 Double_t a = x*cs + y*sn;
357 y = -x*sn + y*cs; x=a;
358 xt-=x; yt-=y;
359
bfd20868 360 sn=rp4*xt - fP[2]; cs=rp4*yt + TMath::Sqrt((1.- fP[2])*(1.+fP[2]));
361 a=2*(xt*fP[2] - yt*TMath::Sqrt((1.-fP[2])*(1.+fP[2])))-rp4*(xt*xt + yt*yt);
1530f89c 362 return -a/(1 + TMath::Sqrt(sn*sn + cs*cs));
363}
364
365//_______________________________________________________________________
366void AliExternalTrackParam::
367GetDZ(Double_t x, Double_t y, Double_t z, Double_t b, Float_t dz[2]) const {
368 //------------------------------------------------------------------
369 // This function calculates the transverse and longitudinal impact parameters
370 // with respect to a point with global coordinates (x,y)
371 // in the magnetic field "b" (kG)
372 //------------------------------------------------------------------
bfd20868 373 Double_t f1 = fP[2], r1 = TMath::Sqrt((1.-f1)*(1.+f1));
1530f89c 374 Double_t xt=fX, yt=fP[0];
375 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
376 Double_t a = x*cs + y*sn;
377 y = -x*sn + y*cs; x=a;
378 xt-=x; yt-=y;
379
380 Double_t rp4=GetC(b);
381 if ((TMath::Abs(b) < kAlmost0Field) || (TMath::Abs(rp4) < kAlmost0)) {
382 dz[0] = -(xt*f1 - yt*r1);
383 dz[1] = fP[1] + (dz[0]*f1 - xt)/r1*fP[3] - z;
384 return;
385 }
386
387 sn=rp4*xt - f1; cs=rp4*yt + r1;
388 a=2*(xt*f1 - yt*r1)-rp4*(xt*xt + yt*yt);
389 Double_t rr=TMath::Sqrt(sn*sn + cs*cs);
390 dz[0] = -a/(1 + rr);
bfd20868 391 Double_t f2 = -sn/rr, r2 = TMath::Sqrt((1.-f2)*(1.+f2));
1530f89c 392 dz[1] = fP[1] + fP[3]/rp4*TMath::ASin(f2*r1 - f1*r2) - z;
51ad6848 393}
394
49d13e89 395//_______________________________________________________________________
396Double_t AliExternalTrackParam::GetLinearD(Double_t xv,Double_t yv) const {
397 //------------------------------------------------------------------
398 // This function calculates the transverse impact parameter
399 // with respect to a point with global coordinates (xv,yv)
400 // neglecting the track curvature.
401 //------------------------------------------------------------------
402 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
403 Double_t x= xv*cs + yv*sn;
404 Double_t y=-xv*sn + yv*cs;
405
bfd20868 406 Double_t d = (fX-x)*fP[2] - (fP[0]-y)*TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
49d13e89 407
1530f89c 408 return -d;
49d13e89 409}
410
b8e07ed6 411Bool_t AliExternalTrackParam::CorrectForMeanMaterialdEdx
412(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
413 Double_t dEdx,
414 Bool_t anglecorr) {
116b445b 415 //------------------------------------------------------------------
416 // This function corrects the track parameters for the crossed material.
417 // "xOverX0" - X/X0, the thickness in units of the radiation length.
2b99ff83 418 // "xTimesRho" - is the product length*density (g/cm^2).
419 // It should be passed as negative when propagating tracks
420 // from the intreaction point to the outside of the central barrel.
116b445b 421 // "mass" - the mass of this particle (GeV/c^2).
b8e07ed6 422 // "dEdx" - mean enery loss (GeV/(g/cm^2)
423 // "anglecorr" - switch for the angular correction
116b445b 424 //------------------------------------------------------------------
425 Double_t &fP2=fP[2];
426 Double_t &fP3=fP[3];
427 Double_t &fP4=fP[4];
428
429 Double_t &fC22=fC[5];
430 Double_t &fC33=fC[9];
431 Double_t &fC43=fC[13];
432 Double_t &fC44=fC[14];
433
7dded1d5 434 //Apply angle correction, if requested
435 if(anglecorr) {
bfd20868 436 Double_t angle=TMath::Sqrt((1.+ fP3*fP3)/((1-fP2)*(1.+fP2)));
7dded1d5 437 xOverX0 *=angle;
438 xTimesRho *=angle;
439 }
440
116b445b 441 Double_t p=GetP();
442 Double_t p2=p*p;
443 Double_t beta2=p2/(p2 + mass*mass);
116b445b 444
9f2bec63 445 //Calculating the multiple scattering corrections******************
446 Double_t cC22 = 0.;
447 Double_t cC33 = 0.;
448 Double_t cC43 = 0.;
449 Double_t cC44 = 0.;
116b445b 450 if (xOverX0 != 0) {
f2cef1b5 451 //Double_t theta2=1.0259e-6*14*14/28/(beta2*p2)*TMath::Abs(d)*9.36*2.33;
452 Double_t theta2=0.0136*0.0136/(beta2*p2)*TMath::Abs(xOverX0);
453 if (GetUseLogTermMS()) {
454 double lt = 1+0.038*TMath::Log(TMath::Abs(xOverX0));
455 if (lt>0) theta2 *= lt*lt;
456 }
457 if(theta2>TMath::Pi()*TMath::Pi()) return kFALSE;
458 cC22 = theta2*((1.-fP2)*(1.+fP2))*(1. + fP3*fP3);
459 cC33 = theta2*(1. + fP3*fP3)*(1. + fP3*fP3);
460 cC43 = theta2*fP3*fP4*(1. + fP3*fP3);
461 cC44 = theta2*fP3*fP4*fP3*fP4;
116b445b 462 }
463
9f2bec63 464 //Calculating the energy loss corrections************************
465 Double_t cP4=1.;
116b445b 466 if ((xTimesRho != 0.) && (beta2 < 1.)) {
b8e07ed6 467 Double_t dE=dEdx*xTimesRho;
116b445b 468 Double_t e=TMath::Sqrt(p2 + mass*mass);
469 if ( TMath::Abs(dE) > 0.3*e ) return kFALSE; //30% energy loss is too much!
c9038cae 470 //cP4 = (1.- e/p2*dE);
76ece3d8 471 if ( (1.+ dE/p2*(dE + 2*e)) < 0. ) return kFALSE;
c9038cae 472 cP4 = 1./TMath::Sqrt(1.+ dE/p2*(dE + 2*e)); //A precise formula by Ruben !
9f2bec63 473 if (TMath::Abs(fP4*cP4)>100.) return kFALSE; //Do not track below 10 MeV/c
4b2fa3ce 474
116b445b 475
476 // Approximate energy loss fluctuation (M.Ivanov)
477 const Double_t knst=0.07; // To be tuned.
478 Double_t sigmadE=knst*TMath::Sqrt(TMath::Abs(dE));
9f2bec63 479 cC44 += ((sigmadE*e/p2*fP4)*(sigmadE*e/p2*fP4));
116b445b 480
481 }
482
9f2bec63 483 //Applying the corrections*****************************
484 fC22 += cC22;
485 fC33 += cC33;
486 fC43 += cC43;
487 fC44 += cC44;
488 fP4 *= cP4;
489
86be8934 490 CheckCovariance();
491
116b445b 492 return kTRUE;
493}
494
b8e07ed6 495Bool_t AliExternalTrackParam::CorrectForMeanMaterial
496(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
497 Bool_t anglecorr,
498 Double_t (*Bethe)(Double_t)) {
499 //------------------------------------------------------------------
500 // This function corrects the track parameters for the crossed material.
501 // "xOverX0" - X/X0, the thickness in units of the radiation length.
502 // "xTimesRho" - is the product length*density (g/cm^2).
2b99ff83 503 // It should be passed as negative when propagating tracks
504 // from the intreaction point to the outside of the central barrel.
b8e07ed6 505 // "mass" - the mass of this particle (GeV/c^2).
506 // "anglecorr" - switch for the angular correction
507 // "Bethe" - function calculating the energy loss (GeV/(g/cm^2))
508 //------------------------------------------------------------------
b8e07ed6 509 Double_t bg=GetP()/mass;
937a4c16 510 if (bg<kAlmost0) {
5c543565 511 AliDebug(2,Form("Non-positive beta*gamma = %e, mass = %e",bg,mass));
937a4c16
RS
512 return kFALSE;
513 }
b8e07ed6 514 Double_t dEdx=Bethe(bg);
515
516 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
517}
518
519Bool_t AliExternalTrackParam::CorrectForMeanMaterialZA
520(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
521 Double_t zOverA,
522 Double_t density,
523 Double_t exEnergy,
524 Double_t jp1,
525 Double_t jp2,
526 Bool_t anglecorr) {
527 //------------------------------------------------------------------
528 // This function corrects the track parameters for the crossed material
529 // using the full Geant-like Bethe-Bloch formula parameterization
530 // "xOverX0" - X/X0, the thickness in units of the radiation length.
531 // "xTimesRho" - is the product length*density (g/cm^2).
2b99ff83 532 // It should be passed as negative when propagating tracks
533 // from the intreaction point to the outside of the central barrel.
b8e07ed6 534 // "mass" - the mass of this particle (GeV/c^2).
535 // "density" - mean density (g/cm^3)
536 // "zOverA" - mean Z/A
537 // "exEnergy" - mean exitation energy (GeV)
538 // "jp1" - density effect first junction point
539 // "jp2" - density effect second junction point
540 // "anglecorr" - switch for the angular correction
541 //
542 // The default values of the parameters are for silicon
543 //
544 //------------------------------------------------------------------
545
546 Double_t bg=GetP()/mass;
547 Double_t dEdx=BetheBlochGeant(bg,density,jp1,jp2,exEnergy,zOverA);
548
549 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
550}
551
552
116b445b 553
ee5dba5e 554Bool_t AliExternalTrackParam::CorrectForMaterial
555(Double_t d, Double_t x0, Double_t mass, Double_t (*Bethe)(Double_t)) {
c7bafca9 556 //------------------------------------------------------------------
116b445b 557 // Deprecated function !
558 // Better use CorrectForMeanMaterial instead of it.
559 //
c7bafca9 560 // This function corrects the track parameters for the crossed material
561 // "d" - the thickness (fraction of the radiation length)
2b99ff83 562 // It should be passed as negative when propagating tracks
563 // from the intreaction point to the outside of the central barrel.
c7bafca9 564 // "x0" - the radiation length (g/cm^2)
565 // "mass" - the mass of this particle (GeV/c^2)
566 //------------------------------------------------------------------
c7bafca9 567
b8e07ed6 568 return CorrectForMeanMaterial(d,x0*d,mass,kTRUE,Bethe);
c7bafca9 569
c7bafca9 570}
571
9c56b409 572Double_t AliExternalTrackParam::BetheBlochAleph(Double_t bg,
573 Double_t kp1,
574 Double_t kp2,
575 Double_t kp3,
576 Double_t kp4,
577 Double_t kp5) {
578 //
579 // This is the empirical ALEPH parameterization of the Bethe-Bloch formula.
580 // It is normalized to 1 at the minimum.
581 //
582 // bg - beta*gamma
583 //
584 // The default values for the kp* parameters are for ALICE TPC.
585 // The returned value is in MIP units
586 //
587
588 Double_t beta = bg/TMath::Sqrt(1.+ bg*bg);
589
590 Double_t aa = TMath::Power(beta,kp4);
591 Double_t bb = TMath::Power(1./bg,kp5);
592
593 bb=TMath::Log(kp3+bb);
594
595 return (kp2-aa-bb)*kp1/aa;
596}
597
598Double_t AliExternalTrackParam::BetheBlochGeant(Double_t bg,
599 Double_t kp0,
600 Double_t kp1,
601 Double_t kp2,
602 Double_t kp3,
603 Double_t kp4) {
604 //
605 // This is the parameterization of the Bethe-Bloch formula inspired by Geant.
606 //
607 // bg - beta*gamma
608 // kp0 - density [g/cm^3]
609 // kp1 - density effect first junction point
610 // kp2 - density effect second junction point
611 // kp3 - mean excitation energy [GeV]
612 // kp4 - mean Z/A
613 //
614 // The default values for the kp* parameters are for silicon.
615 // The returned value is in [GeV/(g/cm^2)].
616 //
617
618 const Double_t mK = 0.307075e-3; // [GeV*cm^2/g]
619 const Double_t me = 0.511e-3; // [GeV/c^2]
620 const Double_t rho = kp0;
621 const Double_t x0 = kp1*2.303;
622 const Double_t x1 = kp2*2.303;
623 const Double_t mI = kp3;
624 const Double_t mZA = kp4;
625 const Double_t bg2 = bg*bg;
626 const Double_t maxT= 2*me*bg2; // neglecting the electron mass
627
628 //*** Density effect
629 Double_t d2=0.;
630 const Double_t x=TMath::Log(bg);
631 const Double_t lhwI=TMath::Log(28.816*1e-9*TMath::Sqrt(rho*mZA)/mI);
632 if (x > x1) {
633 d2 = lhwI + x - 0.5;
634 } else if (x > x0) {
635 const Double_t r=(x1-x)/(x1-x0);
636 d2 = lhwI + x - 0.5 + (0.5 - lhwI - x0)*r*r*r;
637 }
638
639 return mK*mZA*(1+bg2)/bg2*
640 (0.5*TMath::Log(2*me*bg2*maxT/(mI*mI)) - bg2/(1+bg2) - d2);
641}
642
d46683db 643Double_t AliExternalTrackParam::BetheBlochSolid(Double_t bg) {
ee5dba5e 644 //------------------------------------------------------------------
d46683db 645 // This is an approximation of the Bethe-Bloch formula,
646 // reasonable for solid materials.
647 // All the parameters are, in fact, for Si.
9b655cba 648 // The returned value is in [GeV/(g/cm^2)]
ee5dba5e 649 //------------------------------------------------------------------
a821848c 650
9c56b409 651 return BetheBlochGeant(bg);
d46683db 652}
ee5dba5e 653
d46683db 654Double_t AliExternalTrackParam::BetheBlochGas(Double_t bg) {
655 //------------------------------------------------------------------
656 // This is an approximation of the Bethe-Bloch formula,
657 // reasonable for gas materials.
658 // All the parameters are, in fact, for Ne.
9b655cba 659 // The returned value is in [GeV/(g/cm^2)]
d46683db 660 //------------------------------------------------------------------
661
662 const Double_t rho = 0.9e-3;
663 const Double_t x0 = 2.;
664 const Double_t x1 = 4.;
665 const Double_t mI = 140.e-9;
666 const Double_t mZA = 0.49555;
667
9c56b409 668 return BetheBlochGeant(bg,rho,x0,x1,mI,mZA);
ee5dba5e 669}
670
49d13e89 671Bool_t AliExternalTrackParam::Rotate(Double_t alpha) {
672 //------------------------------------------------------------------
673 // Transform this track to the local coord. system rotated
674 // by angle "alpha" (rad) with respect to the global coord. system.
675 //------------------------------------------------------------------
dfcef74c 676 if (TMath::Abs(fP[2]) >= kAlmost1) {
677 AliError(Form("Precondition is not satisfied: |sin(phi)|>1 ! %f",fP[2]));
678 return kFALSE;
679 }
680
49d13e89 681 if (alpha < -TMath::Pi()) alpha += 2*TMath::Pi();
682 else if (alpha >= TMath::Pi()) alpha -= 2*TMath::Pi();
683
684 Double_t &fP0=fP[0];
685 Double_t &fP2=fP[2];
686 Double_t &fC00=fC[0];
687 Double_t &fC10=fC[1];
688 Double_t &fC20=fC[3];
689 Double_t &fC21=fC[4];
690 Double_t &fC22=fC[5];
691 Double_t &fC30=fC[6];
692 Double_t &fC32=fC[8];
693 Double_t &fC40=fC[10];
694 Double_t &fC42=fC[12];
695
696 Double_t x=fX;
697 Double_t ca=TMath::Cos(alpha-fAlpha), sa=TMath::Sin(alpha-fAlpha);
bfd20868 698 Double_t sf=fP2, cf=TMath::Sqrt((1.- fP2)*(1.+fP2)); // Improve precision
07dfd570 699 // RS: check if rotation does no invalidate track model (cos(local_phi)>=0, i.e. particle
700 // direction in local frame is along the X axis
701 if ((cf*ca+sf*sa)<0) {
1450dc8a 702 AliDebug(1,Form("Rotation failed: local cos(phi) would become %.2f",cf*ca+sf*sa));
07dfd570 703 return kFALSE;
704 }
705 //
dfcef74c 706 Double_t tmp=sf*ca - cf*sa;
6e50abb1 707
7248cf51 708 if (TMath::Abs(tmp) >= kAlmost1) {
709 if (TMath::Abs(tmp) > 1.+ Double_t(FLT_EPSILON))
710 AliWarning(Form("Rotation failed ! %.10e",tmp));
0b69bbb2 711 return kFALSE;
712 }
49d13e89 713 fAlpha = alpha;
714 fX = x*ca + fP0*sa;
715 fP0= -x*sa + fP0*ca;
dfcef74c 716 fP2= tmp;
49d13e89 717
06fb4a2f 718 if (TMath::Abs(cf)<kAlmost0) {
719 AliError(Form("Too small cosine value %f",cf));
720 cf = kAlmost0;
721 }
722
49d13e89 723 Double_t rr=(ca+sf/cf*sa);
724
725 fC00 *= (ca*ca);
726 fC10 *= ca;
727 fC20 *= ca*rr;
728 fC21 *= rr;
729 fC22 *= rr*rr;
730 fC30 *= ca;
731 fC32 *= rr;
732 fC40 *= ca;
733 fC42 *= rr;
734
86be8934 735 CheckCovariance();
736
49d13e89 737 return kTRUE;
738}
739
2d2fd909 740Bool_t AliExternalTrackParam::Invert() {
741 //------------------------------------------------------------------
742 // Transform this track to the local coord. system rotated by 180 deg.
743 //------------------------------------------------------------------
744 fX = -fX;
745 fAlpha += TMath::Pi();
746 while (fAlpha < -TMath::Pi()) fAlpha += 2*TMath::Pi();
747 while (fAlpha >= TMath::Pi()) fAlpha -= 2*TMath::Pi();
748 //
749 fP[0] = -fP[0];
6e50abb1 750 //fP[2] = -fP[2];
2d2fd909 751 fP[3] = -fP[3];
752 fP[4] = -fP[4];
753 //
6e50abb1 754 fC[1] = -fC[1]; // since the fP1 and fP2 are not inverted, their covariances with others change sign
755 fC[3] = -fC[3];
2d2fd909 756 fC[7] = -fC[7];
6e50abb1 757 fC[8] = -fC[8];
2d2fd909 758 fC[11] = -fC[11];
6e50abb1 759 fC[12] = -fC[12];
2d2fd909 760 //
761 return kTRUE;
762}
763
49d13e89 764Bool_t AliExternalTrackParam::PropagateTo(Double_t xk, Double_t b) {
765 //----------------------------------------------------------------
766 // Propagate this track to the plane X=xk (cm) in the field "b" (kG)
767 //----------------------------------------------------------------
49d13e89 768 Double_t dx=xk-fX;
e421f556 769 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
18ebc5ef 770
1530f89c 771 Double_t crv=GetC(b);
5773defd 772 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
773
2de63fc5 774 Double_t x2r = crv*dx;
775 Double_t f1=fP[2], f2=f1 + x2r;
bbefa4c4 776 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 777 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
4349f5a4 778 if (TMath::Abs(fP[4])< kAlmost0) return kFALSE;
49d13e89 779
780 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
781 Double_t
782 &fC00=fC[0],
783 &fC10=fC[1], &fC11=fC[2],
784 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
785 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
786 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
787
bfd20868 788 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
4349f5a4 789 if (TMath::Abs(r1)<kAlmost0) return kFALSE;
790 if (TMath::Abs(r2)<kAlmost0) return kFALSE;
49d13e89 791
792 fX=xk;
2de63fc5 793 double dy2dx = (f1+f2)/(r1+r2);
794 fP0 += dx*dy2dx;
795 if (TMath::Abs(x2r)<0.05) {
796 fP1 += dx*(r2 + f2*dy2dx)*fP3; // Many thanks to P.Hristov !
797 fP2 += x2r;
798 }
799 else {
800 // for small dx/R the linear apporximation of the arc by the segment is OK,
801 // but at large dx/R the error is very large and leads to incorrect Z propagation
802 // angle traversed delta = 2*asin(dist_start_end / R / 2), hence the arc is: R*deltaPhi
803 // The dist_start_end is obtained from sqrt(dx^2+dy^2) = x/(r1+r2)*sqrt(2+f1*f2+r1*r2)
804 // Similarly, the rotation angle in linear in dx only for dx<<R
805 double chord = dx*TMath::Sqrt(1+dy2dx*dy2dx); // distance from old position to new one
806 double rot = 2*TMath::ASin(0.5*chord*crv); // angular difference seen from the circle center
807 fP1 += rot/crv*fP3;
808 fP2 = TMath::Sin(rot + TMath::ASin(fP2));
809 }
49d13e89 810
811 //f = F - 1
e804766b 812 /*
49d13e89 813 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
814 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
815 Double_t f12= dx*fP3*f1/(r1*r1*r1);
816 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
817 Double_t f13= dx/r1;
818 Double_t f24= dx; f24*=cc;
e804766b 819 */
820 Double_t rinv = 1./r1;
821 Double_t r3inv = rinv*rinv*rinv;
822 Double_t f24= x2r/fP4;
823 Double_t f02= dx*r3inv;
824 Double_t f04=0.5*f24*f02;
825 Double_t f12= f02*fP3*f1;
826 Double_t f14=0.5*f24*f02*fP3*f1;
827 Double_t f13= dx*rinv;
828
49d13e89 829 //b = C*ft
830 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
831 Double_t b02=f24*fC40;
832 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
833 Double_t b12=f24*fC41;
834 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
835 Double_t b22=f24*fC42;
836 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
837 Double_t b42=f24*fC44;
838 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
839 Double_t b32=f24*fC43;
840
841 //a = f*b = f*C*ft
842 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
843 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
844 Double_t a22=f24*b42;
845
846 //F*C*Ft = C + (b + bt + a)
847 fC00 += b00 + b00 + a00;
848 fC10 += b10 + b01 + a01;
849 fC20 += b20 + b02 + a02;
850 fC30 += b30;
851 fC40 += b40;
852 fC11 += b11 + b11 + a11;
853 fC21 += b21 + b12 + a12;
854 fC31 += b31;
855 fC41 += b41;
856 fC22 += b22 + b22 + a22;
857 fC32 += b32;
858 fC42 += b42;
859
86be8934 860 CheckCovariance();
861
49d13e89 862 return kTRUE;
863}
864
599b440e 865Bool_t AliExternalTrackParam::PropagateParamOnlyTo(Double_t xk, Double_t b) {
866 //----------------------------------------------------------------
867 // Propagate this track to the plane X=xk (cm) in the field "b" (kG)
868 // Only parameters are propagated, not the matrix. To be used for small
869 // distances only (<mm, i.e. misalignment)
870 //----------------------------------------------------------------
871 Double_t dx=xk-fX;
872 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
873
874 Double_t crv=GetC(b);
875 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
876
877 Double_t x2r = crv*dx;
878 Double_t f1=fP[2], f2=f1 + x2r;
879 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
880 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
881 if (TMath::Abs(fP[4])< kAlmost0) return kFALSE;
882
883 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
884 if (TMath::Abs(r1)<kAlmost0) return kFALSE;
885 if (TMath::Abs(r2)<kAlmost0) return kFALSE;
886
887 fX=xk;
888 double dy2dx = (f1+f2)/(r1+r2);
889 fP[0] += dx*dy2dx;
890 fP[1] += dx*(r2 + f2*dy2dx)*fP[3]; // Many thanks to P.Hristov !
891 fP[2] += x2r;
892
893 return kTRUE;
894}
895
9f2bec63 896Bool_t
897AliExternalTrackParam::Propagate(Double_t alpha, Double_t x, Double_t b) {
898 //------------------------------------------------------------------
899 // Transform this track to the local coord. system rotated
900 // by angle "alpha" (rad) with respect to the global coord. system,
901 // and propagate this track to the plane X=xk (cm) in the field "b" (kG)
902 //------------------------------------------------------------------
903
904 //Save the parameters
905 Double_t as=fAlpha;
906 Double_t xs=fX;
907 Double_t ps[5], cs[15];
908 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
909 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
910
911 if (Rotate(alpha))
912 if (PropagateTo(x,b)) return kTRUE;
913
914 //Restore the parameters, if the operation failed
915 fAlpha=as;
916 fX=xs;
917 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
918 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
919 return kFALSE;
920}
921
266a0f9b 922Bool_t AliExternalTrackParam::PropagateBxByBz
923(Double_t alpha, Double_t x, Double_t b[3]) {
924 //------------------------------------------------------------------
925 // Transform this track to the local coord. system rotated
926 // by angle "alpha" (rad) with respect to the global coord. system,
927 // and propagate this track to the plane X=xk (cm),
928 // taking into account all three components of the B field, "b[3]" (kG)
929 //------------------------------------------------------------------
930
931 //Save the parameters
932 Double_t as=fAlpha;
933 Double_t xs=fX;
934 Double_t ps[5], cs[15];
935 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
936 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
937
938 if (Rotate(alpha))
939 if (PropagateToBxByBz(x,b)) return kTRUE;
940
941 //Restore the parameters, if the operation failed
942 fAlpha=as;
943 fX=xs;
944 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
945 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
946 return kFALSE;
947}
948
9f2bec63 949
052daaff 950void AliExternalTrackParam::Propagate(Double_t len, Double_t x[3],
951Double_t p[3], Double_t bz) const {
952 //+++++++++++++++++++++++++++++++++++++++++
953 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
954 // Extrapolate track along simple helix in magnetic field
955 // Arguments: len -distance alogn helix, [cm]
956 // bz - mag field, [kGaus]
957 // Returns: x and p contain extrapolated positon and momentum
958 // The momentum returned for straight-line tracks is meaningless !
959 //+++++++++++++++++++++++++++++++++++++++++
960 GetXYZ(x);
961
2258e165 962 if (OneOverPt() < kAlmost0 || TMath::Abs(bz) < kAlmost0Field || GetC(bz) < kAlmost0){ //straight-line tracks
052daaff 963 Double_t unit[3]; GetDirection(unit);
964 x[0]+=unit[0]*len;
965 x[1]+=unit[1]*len;
966 x[2]+=unit[2]*len;
967
968 p[0]=unit[0]/kAlmost0;
969 p[1]=unit[1]/kAlmost0;
970 p[2]=unit[2]/kAlmost0;
971 } else {
972 GetPxPyPz(p);
973 Double_t pp=GetP();
974 Double_t a = -kB2C*bz*GetSign();
975 Double_t rho = a/pp;
976 x[0] += p[0]*TMath::Sin(rho*len)/a - p[1]*(1-TMath::Cos(rho*len))/a;
977 x[1] += p[1]*TMath::Sin(rho*len)/a + p[0]*(1-TMath::Cos(rho*len))/a;
978 x[2] += p[2]*len/pp;
979
980 Double_t p0=p[0];
981 p[0] = p0 *TMath::Cos(rho*len) - p[1]*TMath::Sin(rho*len);
982 p[1] = p[1]*TMath::Cos(rho*len) + p0 *TMath::Sin(rho*len);
983 }
984}
985
986Bool_t AliExternalTrackParam::Intersect(Double_t pnt[3], Double_t norm[3],
987Double_t bz) const {
988 //+++++++++++++++++++++++++++++++++++++++++
989 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
990 // Finds point of intersection (if exists) of the helix with the plane.
991 // Stores result in fX and fP.
992 // Arguments: planePoint,planeNorm - the plane defined by any plane's point
993 // and vector, normal to the plane
994 // Returns: kTrue if helix intersects the plane, kFALSE otherwise.
995 //+++++++++++++++++++++++++++++++++++++++++
996 Double_t x0[3]; GetXYZ(x0); //get track position in MARS
997
998 //estimates initial helix length up to plane
999 Double_t s=
1000 (pnt[0]-x0[0])*norm[0] + (pnt[1]-x0[1])*norm[1] + (pnt[2]-x0[2])*norm[2];
1001 Double_t dist=99999,distPrev=dist;
1002 Double_t x[3],p[3];
1003 while(TMath::Abs(dist)>0.00001){
1004 //calculates helix at the distance s from x0 ALONG the helix
1005 Propagate(s,x,p,bz);
1006
1007 //distance between current helix position and plane
1008 dist=(x[0]-pnt[0])*norm[0]+(x[1]-pnt[1])*norm[1]+(x[2]-pnt[2])*norm[2];
1009
1010 if(TMath::Abs(dist) >= TMath::Abs(distPrev)) {return kFALSE;}
1011 distPrev=dist;
1012 s-=dist;
1013 }
1014 //on exit pnt is intersection point,norm is track vector at that point,
1015 //all in MARS
1016 for (Int_t i=0; i<3; i++) {pnt[i]=x[i]; norm[i]=p[i];}
1017 return kTRUE;
1018}
1019
49d13e89 1020Double_t
1021AliExternalTrackParam::GetPredictedChi2(Double_t p[2],Double_t cov[3]) const {
1022 //----------------------------------------------------------------
1023 // Estimate the chi2 of the space point "p" with the cov. matrix "cov"
1024 //----------------------------------------------------------------
1025 Double_t sdd = fC[0] + cov[0];
1026 Double_t sdz = fC[1] + cov[1];
1027 Double_t szz = fC[2] + cov[2];
1028 Double_t det = sdd*szz - sdz*sdz;
1029
1030 if (TMath::Abs(det) < kAlmost0) return kVeryBig;
1031
1032 Double_t d = fP[0] - p[0];
1033 Double_t z = fP[1] - p[1];
1034
1035 return (d*szz*d - 2*d*sdz*z + z*sdd*z)/det;
1036}
1037
4b189f98 1038Double_t AliExternalTrackParam::
1039GetPredictedChi2(Double_t p[3],Double_t covyz[3],Double_t covxyz[3]) const {
1040 //----------------------------------------------------------------
1041 // Estimate the chi2 of the 3D space point "p" and
1e023a36 1042 // the full covariance matrix "covyz" and "covxyz"
4b189f98 1043 //
1044 // Cov(x,x) ... : covxyz[0]
1045 // Cov(y,x) ... : covxyz[1] covyz[0]
1046 // Cov(z,x) ... : covxyz[2] covyz[1] covyz[2]
1047 //----------------------------------------------------------------
1048
1049 Double_t res[3] = {
1050 GetX() - p[0],
1051 GetY() - p[1],
1052 GetZ() - p[2]
1053 };
1054
1055 Double_t f=GetSnp();
1056 if (TMath::Abs(f) >= kAlmost1) return kVeryBig;
bfd20868 1057 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
4b189f98 1058 Double_t a=f/r, b=GetTgl()/r;
1059
1060 Double_t s2=333.*333.; //something reasonably big (cm^2)
1061
1062 TMatrixDSym v(3);
1063 v(0,0)= s2; v(0,1)= a*s2; v(0,2)= b*s2;;
1064 v(1,0)=a*s2; v(1,1)=a*a*s2 + GetSigmaY2(); v(1,2)=a*b*s2 + GetSigmaZY();
1065 v(2,0)=b*s2; v(2,1)=a*b*s2 + GetSigmaZY(); v(2,2)=b*b*s2 + GetSigmaZ2();
1066
1067 v(0,0)+=covxyz[0]; v(0,1)+=covxyz[1]; v(0,2)+=covxyz[2];
1068 v(1,0)+=covxyz[1]; v(1,1)+=covyz[0]; v(1,2)+=covyz[1];
1069 v(2,0)+=covxyz[2]; v(2,1)+=covyz[1]; v(2,2)+=covyz[2];
1070
1071 v.Invert();
1072 if (!v.IsValid()) return kVeryBig;
1073
1074 Double_t chi2=0.;
1075 for (Int_t i = 0; i < 3; i++)
1076 for (Int_t j = 0; j < 3; j++) chi2 += res[i]*res[j]*v(i,j);
1077
1078 return chi2;
acdfbc78 1079}
1080
1081Double_t AliExternalTrackParam::
1082GetPredictedChi2(const AliExternalTrackParam *t) const {
1083 //----------------------------------------------------------------
1084 // Estimate the chi2 (5 dof) of this track with respect to the track
1085 // given by the argument.
1086 // The two tracks must be in the same reference system
1087 // and estimated at the same reference plane.
1088 //----------------------------------------------------------------
1089
1090 if (TMath::Abs(1. - t->GetAlpha()/GetAlpha()) > FLT_EPSILON) {
1091 AliError("The reference systems of the tracks differ !");
1092 return kVeryBig;
1093 }
1094 if (TMath::Abs(1. - t->GetX()/GetX()) > FLT_EPSILON) {
1095 AliError("The reference of the tracks planes differ !");
1096 return kVeryBig;
1097 }
1098
1099 TMatrixDSym c(5);
1100 c(0,0)=GetSigmaY2();
1101 c(1,0)=GetSigmaZY(); c(1,1)=GetSigmaZ2();
1102 c(2,0)=GetSigmaSnpY(); c(2,1)=GetSigmaSnpZ(); c(2,2)=GetSigmaSnp2();
1103 c(3,0)=GetSigmaTglY(); c(3,1)=GetSigmaTglZ(); c(3,2)=GetSigmaTglSnp(); c(3,3)=GetSigmaTgl2();
1104 c(4,0)=GetSigma1PtY(); c(4,1)=GetSigma1PtZ(); c(4,2)=GetSigma1PtSnp(); c(4,3)=GetSigma1PtTgl(); c(4,4)=GetSigma1Pt2();
1105
1106 c(0,0)+=t->GetSigmaY2();
1107 c(1,0)+=t->GetSigmaZY(); c(1,1)+=t->GetSigmaZ2();
1108 c(2,0)+=t->GetSigmaSnpY();c(2,1)+=t->GetSigmaSnpZ();c(2,2)+=t->GetSigmaSnp2();
1109 c(3,0)+=t->GetSigmaTglY();c(3,1)+=t->GetSigmaTglZ();c(3,2)+=t->GetSigmaTglSnp();c(3,3)+=t->GetSigmaTgl2();
1110 c(4,0)+=t->GetSigma1PtY();c(4,1)+=t->GetSigma1PtZ();c(4,2)+=t->GetSigma1PtSnp();c(4,3)+=t->GetSigma1PtTgl();c(4,4)+=t->GetSigma1Pt2();
1111 c(0,1)=c(1,0);
1112 c(0,2)=c(2,0); c(1,2)=c(2,1);
1113 c(0,3)=c(3,0); c(1,3)=c(3,1); c(2,3)=c(3,2);
1114 c(0,4)=c(4,0); c(1,4)=c(4,1); c(2,4)=c(4,2); c(3,4)=c(4,3);
1115
1116 c.Invert();
1117 if (!c.IsValid()) return kVeryBig;
1118
1119
1120 Double_t res[5] = {
1121 GetY() - t->GetY(),
1122 GetZ() - t->GetZ(),
1123 GetSnp() - t->GetSnp(),
1124 GetTgl() - t->GetTgl(),
1125 GetSigned1Pt() - t->GetSigned1Pt()
1126 };
4b189f98 1127
acdfbc78 1128 Double_t chi2=0.;
1129 for (Int_t i = 0; i < 5; i++)
1130 for (Int_t j = 0; j < 5; j++) chi2 += res[i]*res[j]*c(i,j);
4b189f98 1131
acdfbc78 1132 return chi2;
4b189f98 1133}
1134
1e023a36 1135Bool_t AliExternalTrackParam::
1136PropagateTo(Double_t p[3],Double_t covyz[3],Double_t covxyz[3],Double_t bz) {
1137 //----------------------------------------------------------------
1138 // Propagate this track to the plane
1139 // the 3D space point "p" (with the covariance matrix "covyz" and "covxyz")
1140 // belongs to.
1141 // The magnetic field is "bz" (kG)
1142 //
1143 // The track curvature and the change of the covariance matrix
1144 // of the track parameters are negleted !
1145 // (So the "step" should be small compared with 1/curvature)
1146 //----------------------------------------------------------------
1147
1148 Double_t f=GetSnp();
1149 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
bfd20868 1150 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
1e023a36 1151 Double_t a=f/r, b=GetTgl()/r;
1152
1153 Double_t s2=333.*333.; //something reasonably big (cm^2)
1154
1155 TMatrixDSym tV(3);
1156 tV(0,0)= s2; tV(0,1)= a*s2; tV(0,2)= b*s2;
1157 tV(1,0)=a*s2; tV(1,1)=a*a*s2; tV(1,2)=a*b*s2;
1158 tV(2,0)=b*s2; tV(2,1)=a*b*s2; tV(2,2)=b*b*s2;
1159
1160 TMatrixDSym pV(3);
1161 pV(0,0)=covxyz[0]; pV(0,1)=covxyz[1]; pV(0,2)=covxyz[2];
1162 pV(1,0)=covxyz[1]; pV(1,1)=covyz[0]; pV(1,2)=covyz[1];
1163 pV(2,0)=covxyz[2]; pV(2,1)=covyz[1]; pV(2,2)=covyz[2];
1164
1165 TMatrixDSym tpV(tV);
1166 tpV+=pV;
1167 tpV.Invert();
1168 if (!tpV.IsValid()) return kFALSE;
1169
1170 TMatrixDSym pW(3),tW(3);
1171 for (Int_t i=0; i<3; i++)
1172 for (Int_t j=0; j<3; j++) {
1173 pW(i,j)=tW(i,j)=0.;
1174 for (Int_t k=0; k<3; k++) {
1175 pW(i,j) += tV(i,k)*tpV(k,j);
1176 tW(i,j) += pV(i,k)*tpV(k,j);
1177 }
1178 }
1179
1180 Double_t t[3] = {GetX(), GetY(), GetZ()};
1181
1182 Double_t x=0.;
1183 for (Int_t i=0; i<3; i++) x += (tW(0,i)*t[i] + pW(0,i)*p[i]);
1184 Double_t crv=GetC(bz);
1185 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1186 f += crv*(x-fX);
1187 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
1188 fX=x;
1189
1190 fP[0]=0.;
1191 for (Int_t i=0; i<3; i++) fP[0] += (tW(1,i)*t[i] + pW(1,i)*p[i]);
1192 fP[1]=0.;
1193 for (Int_t i=0; i<3; i++) fP[1] += (tW(2,i)*t[i] + pW(2,i)*p[i]);
1194
1195 return kTRUE;
1196}
1197
e23a38cb 1198Double_t *AliExternalTrackParam::GetResiduals(
1199Double_t *p,Double_t *cov,Bool_t updated) const {
1200 //------------------------------------------------------------------
1201 // Returns the track residuals with the space point "p" having
1202 // the covariance matrix "cov".
1203 // If "updated" is kTRUE, the track parameters expected to be updated,
1204 // otherwise they must be predicted.
1205 //------------------------------------------------------------------
1206 static Double_t res[2];
1207
1208 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1209 if (updated) {
1210 r00-=fC[0]; r01-=fC[1]; r11-=fC[2];
1211 } else {
1212 r00+=fC[0]; r01+=fC[1]; r11+=fC[2];
1213 }
1214 Double_t det=r00*r11 - r01*r01;
1215
1216 if (TMath::Abs(det) < kAlmost0) return 0;
1217
1218 Double_t tmp=r00; r00=r11/det; r11=tmp/det;
f0fbf964 1219
1220 if (r00 < 0.) return 0;
1221 if (r11 < 0.) return 0;
1222
e23a38cb 1223 Double_t dy = fP[0] - p[0];
1224 Double_t dz = fP[1] - p[1];
1225
1226 res[0]=dy*TMath::Sqrt(r00);
1227 res[1]=dz*TMath::Sqrt(r11);
1228
1229 return res;
1230}
1231
49d13e89 1232Bool_t AliExternalTrackParam::Update(Double_t p[2], Double_t cov[3]) {
1233 //------------------------------------------------------------------
1234 // Update the track parameters with the space point "p" having
1235 // the covariance matrix "cov"
1236 //------------------------------------------------------------------
1237 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
1238 Double_t
1239 &fC00=fC[0],
1240 &fC10=fC[1], &fC11=fC[2],
1241 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
1242 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
1243 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
1244
1245 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1246 r00+=fC00; r01+=fC10; r11+=fC11;
1247 Double_t det=r00*r11 - r01*r01;
1248
1249 if (TMath::Abs(det) < kAlmost0) return kFALSE;
1250
1251
1252 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
1253
1254 Double_t k00=fC00*r00+fC10*r01, k01=fC00*r01+fC10*r11;
1255 Double_t k10=fC10*r00+fC11*r01, k11=fC10*r01+fC11*r11;
1256 Double_t k20=fC20*r00+fC21*r01, k21=fC20*r01+fC21*r11;
1257 Double_t k30=fC30*r00+fC31*r01, k31=fC30*r01+fC31*r11;
1258 Double_t k40=fC40*r00+fC41*r01, k41=fC40*r01+fC41*r11;
1259
1260 Double_t dy=p[0] - fP0, dz=p[1] - fP1;
1261 Double_t sf=fP2 + k20*dy + k21*dz;
1262 if (TMath::Abs(sf) > kAlmost1) return kFALSE;
1263
1264 fP0 += k00*dy + k01*dz;
1265 fP1 += k10*dy + k11*dz;
1266 fP2 = sf;
1267 fP3 += k30*dy + k31*dz;
1268 fP4 += k40*dy + k41*dz;
1269
1270 Double_t c01=fC10, c02=fC20, c03=fC30, c04=fC40;
1271 Double_t c12=fC21, c13=fC31, c14=fC41;
1272
1273 fC00-=k00*fC00+k01*fC10; fC10-=k00*c01+k01*fC11;
1274 fC20-=k00*c02+k01*c12; fC30-=k00*c03+k01*c13;
1275 fC40-=k00*c04+k01*c14;
1276
1277 fC11-=k10*c01+k11*fC11;
1278 fC21-=k10*c02+k11*c12; fC31-=k10*c03+k11*c13;
1279 fC41-=k10*c04+k11*c14;
1280
1281 fC22-=k20*c02+k21*c12; fC32-=k20*c03+k21*c13;
1282 fC42-=k20*c04+k21*c14;
1283
1284 fC33-=k30*c03+k31*c13;
1285 fC43-=k30*c04+k31*c14;
599b440e 1286
49d13e89 1287 fC44-=k40*c04+k41*c14;
1288
86be8934 1289 CheckCovariance();
1290
49d13e89 1291 return kTRUE;
1292}
1293
c7bafca9 1294void
1295AliExternalTrackParam::GetHelixParameters(Double_t hlx[6], Double_t b) const {
1296 //--------------------------------------------------------------------
1297 // External track parameters -> helix parameters
1298 // "b" - magnetic field (kG)
1299 //--------------------------------------------------------------------
1300 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1301
1530f89c 1302 hlx[0]=fP[0]; hlx[1]=fP[1]; hlx[2]=fP[2]; hlx[3]=fP[3];
c7bafca9 1303
1304 hlx[5]=fX*cs - hlx[0]*sn; // x0
1305 hlx[0]=fX*sn + hlx[0]*cs; // y0
1306//hlx[1]= // z0
1307 hlx[2]=TMath::ASin(hlx[2]) + fAlpha; // phi0
1308//hlx[3]= // tgl
1530f89c 1309 hlx[4]=GetC(b); // C
c7bafca9 1310}
1311
1312
1313static void Evaluate(const Double_t *h, Double_t t,
1314 Double_t r[3], //radius vector
1315 Double_t g[3], //first defivatives
1316 Double_t gg[3]) //second derivatives
1317{
1318 //--------------------------------------------------------------------
1319 // Calculate position of a point on a track and some derivatives
1320 //--------------------------------------------------------------------
1321 Double_t phase=h[4]*t+h[2];
1322 Double_t sn=TMath::Sin(phase), cs=TMath::Cos(phase);
1323
ba4550c4 1324 r[0] = h[5];
1325 r[1] = h[0];
1326 if (TMath::Abs(h[4])>kAlmost0) {
1327 r[0] += (sn - h[6])/h[4];
1328 r[1] -= (cs - h[7])/h[4];
1329 }
c7bafca9 1330 r[2] = h[1] + h[3]*t;
1331
1332 g[0] = cs; g[1]=sn; g[2]=h[3];
1333
1334 gg[0]=-h[4]*sn; gg[1]=h[4]*cs; gg[2]=0.;
1335}
1336
1337Double_t AliExternalTrackParam::GetDCA(const AliExternalTrackParam *p,
1338Double_t b, Double_t &xthis, Double_t &xp) const {
1339 //------------------------------------------------------------
1340 // Returns the (weighed !) distance of closest approach between
1341 // this track and the track "p".
1342 // Other returned values:
1343 // xthis, xt - coordinates of tracks' reference planes at the DCA
1344 //-----------------------------------------------------------
1345 Double_t dy2=GetSigmaY2() + p->GetSigmaY2();
1346 Double_t dz2=GetSigmaZ2() + p->GetSigmaZ2();
1347 Double_t dx2=dy2;
1348
c7bafca9 1349 Double_t p1[8]; GetHelixParameters(p1,b);
1350 p1[6]=TMath::Sin(p1[2]); p1[7]=TMath::Cos(p1[2]);
1351 Double_t p2[8]; p->GetHelixParameters(p2,b);
1352 p2[6]=TMath::Sin(p2[2]); p2[7]=TMath::Cos(p2[2]);
1353
1354
1355 Double_t r1[3],g1[3],gg1[3]; Double_t t1=0.;
1356 Evaluate(p1,t1,r1,g1,gg1);
1357 Double_t r2[3],g2[3],gg2[3]; Double_t t2=0.;
1358 Evaluate(p2,t2,r2,g2,gg2);
1359
1360 Double_t dx=r2[0]-r1[0], dy=r2[1]-r1[1], dz=r2[2]-r1[2];
1361 Double_t dm=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1362
1363 Int_t max=27;
1364 while (max--) {
1365 Double_t gt1=-(dx*g1[0]/dx2 + dy*g1[1]/dy2 + dz*g1[2]/dz2);
1366 Double_t gt2=+(dx*g2[0]/dx2 + dy*g2[1]/dy2 + dz*g2[2]/dz2);
1367 Double_t h11=(g1[0]*g1[0] - dx*gg1[0])/dx2 +
1368 (g1[1]*g1[1] - dy*gg1[1])/dy2 +
1369 (g1[2]*g1[2] - dz*gg1[2])/dz2;
1370 Double_t h22=(g2[0]*g2[0] + dx*gg2[0])/dx2 +
1371 (g2[1]*g2[1] + dy*gg2[1])/dy2 +
1372 (g2[2]*g2[2] + dz*gg2[2])/dz2;
1373 Double_t h12=-(g1[0]*g2[0]/dx2 + g1[1]*g2[1]/dy2 + g1[2]*g2[2]/dz2);
1374
1375 Double_t det=h11*h22-h12*h12;
1376
1377 Double_t dt1,dt2;
1378 if (TMath::Abs(det)<1.e-33) {
1379 //(quasi)singular Hessian
1380 dt1=-gt1; dt2=-gt2;
1381 } else {
1382 dt1=-(gt1*h22 - gt2*h12)/det;
1383 dt2=-(h11*gt2 - h12*gt1)/det;
1384 }
1385
1386 if ((dt1*gt1+dt2*gt2)>0) {dt1=-dt1; dt2=-dt2;}
1387
1388 //check delta(phase1) ?
1389 //check delta(phase2) ?
1390
1391 if (TMath::Abs(dt1)/(TMath::Abs(t1)+1.e-3) < 1.e-4)
1392 if (TMath::Abs(dt2)/(TMath::Abs(t2)+1.e-3) < 1.e-4) {
1393 if ((gt1*gt1+gt2*gt2) > 1.e-4/dy2/dy2)
358f16ae 1394 AliDebug(1," stopped at not a stationary point !");
c7bafca9 1395 Double_t lmb=h11+h22; lmb=lmb-TMath::Sqrt(lmb*lmb-4*det);
1396 if (lmb < 0.)
358f16ae 1397 AliDebug(1," stopped at not a minimum !");
c7bafca9 1398 break;
1399 }
1400
1401 Double_t dd=dm;
1402 for (Int_t div=1 ; ; div*=2) {
1403 Evaluate(p1,t1+dt1,r1,g1,gg1);
1404 Evaluate(p2,t2+dt2,r2,g2,gg2);
1405 dx=r2[0]-r1[0]; dy=r2[1]-r1[1]; dz=r2[2]-r1[2];
1406 dd=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1407 if (dd<dm) break;
1408 dt1*=0.5; dt2*=0.5;
1409 if (div>512) {
358f16ae 1410 AliDebug(1," overshoot !"); break;
c7bafca9 1411 }
1412 }
1413 dm=dd;
1414
1415 t1+=dt1;
1416 t2+=dt2;
1417
1418 }
1419
358f16ae 1420 if (max<=0) AliDebug(1," too many iterations !");
c7bafca9 1421
1422 Double_t cs=TMath::Cos(GetAlpha());
1423 Double_t sn=TMath::Sin(GetAlpha());
1424 xthis=r1[0]*cs + r1[1]*sn;
1425
1426 cs=TMath::Cos(p->GetAlpha());
1427 sn=TMath::Sin(p->GetAlpha());
1428 xp=r2[0]*cs + r2[1]*sn;
1429
1430 return TMath::Sqrt(dm*TMath::Sqrt(dy2*dz2));
1431}
1432
1433Double_t AliExternalTrackParam::
1434PropagateToDCA(AliExternalTrackParam *p, Double_t b) {
1435 //--------------------------------------------------------------
1436 // Propagates this track and the argument track to the position of the
1437 // distance of closest approach.
1438 // Returns the (weighed !) distance of closest approach.
1439 //--------------------------------------------------------------
1440 Double_t xthis,xp;
1441 Double_t dca=GetDCA(p,b,xthis,xp);
1442
1443 if (!PropagateTo(xthis,b)) {
1444 //AliWarning(" propagation failed !");
1445 return 1e+33;
1446 }
1447
1448 if (!p->PropagateTo(xp,b)) {
1449 //AliWarning(" propagation failed !";
1450 return 1e+33;
1451 }
1452
1453 return dca;
1454}
1455
1456
58e536c5 1457Bool_t AliExternalTrackParam::PropagateToDCA(const AliVVertex *vtx,
e99a34df 1458Double_t b, Double_t maxd, Double_t dz[2], Double_t covar[3]) {
f76701bf 1459 //
e99a34df 1460 // Propagate this track to the DCA to vertex "vtx",
f76701bf 1461 // if the (rough) transverse impact parameter is not bigger then "maxd".
1462 // Magnetic field is "b" (kG).
1463 //
1464 // a) The track gets extapolated to the DCA to the vertex.
1465 // b) The impact parameters and their covariance matrix are calculated.
1466 //
1467 // In the case of success, the returned value is kTRUE
1468 // (otherwise, it's kFALSE)
1469 //
1470 Double_t alpha=GetAlpha();
1471 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1472 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
58e536c5 1473 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1474 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
f76701bf 1475 x-=xv; y-=yv;
1476
1477 //Estimate the impact parameter neglecting the track curvature
bfd20868 1478 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
f76701bf 1479 if (d > maxd) return kFALSE;
1480
1481 //Propagate to the DCA
2258e165 1482 Double_t crv=GetC(b);
e99a34df 1483 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1484
bfd20868 1485 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1486 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
e99a34df 1487 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1488 else cs=1.;
f76701bf 1489
1490 x = xv*cs + yv*sn;
1491 yv=-xv*sn + yv*cs; xv=x;
1492
1493 if (!Propagate(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
266a0f9b 1494
1495 if (dz==0) return kTRUE;
1496 dz[0] = GetParameter()[0] - yv;
1497 dz[1] = GetParameter()[1] - zv;
1498
1499 if (covar==0) return kTRUE;
1500 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
1501
1502 //***** Improvements by A.Dainese
1503 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1504 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1505 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1506 covar[1] = GetCovariance()[1]; // between (x,y) and z
1507 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1508 //*****
1509
1510 return kTRUE;
1511}
1512
1513Bool_t AliExternalTrackParam::PropagateToDCABxByBz(const AliVVertex *vtx,
1514Double_t b[3], Double_t maxd, Double_t dz[2], Double_t covar[3]) {
1515 //
1516 // Propagate this track to the DCA to vertex "vtx",
1517 // if the (rough) transverse impact parameter is not bigger then "maxd".
1518 //
1519 // This function takes into account all three components of the magnetic
1520 // field given by the b[3] arument (kG)
1521 //
1522 // a) The track gets extapolated to the DCA to the vertex.
1523 // b) The impact parameters and their covariance matrix are calculated.
1524 //
1525 // In the case of success, the returned value is kTRUE
1526 // (otherwise, it's kFALSE)
1527 //
1528 Double_t alpha=GetAlpha();
1529 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1530 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
1531 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1532 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
1533 x-=xv; y-=yv;
1534
1535 //Estimate the impact parameter neglecting the track curvature
bfd20868 1536 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
266a0f9b 1537 if (d > maxd) return kFALSE;
1538
1539 //Propagate to the DCA
8567bf39 1540 Double_t crv=GetC(b[2]);
1541 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
266a0f9b 1542
bfd20868 1543 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1544 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
266a0f9b 1545 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1546 else cs=1.;
1547
1548 x = xv*cs + yv*sn;
1549 yv=-xv*sn + yv*cs; xv=x;
1550
1551 if (!PropagateBxByBz(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
e99a34df 1552
1553 if (dz==0) return kTRUE;
1554 dz[0] = GetParameter()[0] - yv;
1555 dz[1] = GetParameter()[1] - zv;
1556
1557 if (covar==0) return kTRUE;
58e536c5 1558 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
e99a34df 1559
1560 //***** Improvements by A.Dainese
1561 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1562 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1563 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1564 covar[1] = GetCovariance()[1]; // between (x,y) and z
1565 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1566 //*****
1567
29fbcc93 1568 return kTRUE;
f76701bf 1569}
1570
b1149664 1571void AliExternalTrackParam::GetDirection(Double_t d[3]) const {
1572 //----------------------------------------------------------------
1573 // This function returns a unit vector along the track direction
1574 // in the global coordinate system.
1575 //----------------------------------------------------------------
1576 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1577 Double_t snp=fP[2];
bfd20868 1578 Double_t csp =TMath::Sqrt((1.-snp)*(1.+snp));
b1149664 1579 Double_t norm=TMath::Sqrt(1.+ fP[3]*fP[3]);
1580 d[0]=(csp*cs - snp*sn)/norm;
1581 d[1]=(snp*cs + csp*sn)/norm;
1582 d[2]=fP[3]/norm;
1583}
1584
c683ddc2 1585Bool_t AliExternalTrackParam::GetPxPyPz(Double_t p[3]) const {
c9ec41e8 1586 //---------------------------------------------------------------------
1587 // This function returns the global track momentum components
1588 // Results for (nearly) straight tracks are meaningless !
1589 //---------------------------------------------------------------------
1590 p[0]=fP[4]; p[1]=fP[2]; p[2]=fP[3];
1591 return Local2GlobalMomentum(p,fAlpha);
1592}
a5e407e9 1593
def9660e 1594Double_t AliExternalTrackParam::Px() const {
957fb479 1595 //---------------------------------------------------------------------
1596 // Returns x-component of momentum
1597 // Result for (nearly) straight tracks is meaningless !
1598 //---------------------------------------------------------------------
def9660e 1599
957fb479 1600 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1601 GetPxPyPz(p);
1602
1603 return p[0];
1604}
1605
1606Double_t AliExternalTrackParam::Py() const {
957fb479 1607 //---------------------------------------------------------------------
1608 // Returns y-component of momentum
1609 // Result for (nearly) straight tracks is meaningless !
1610 //---------------------------------------------------------------------
def9660e 1611
957fb479 1612 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1613 GetPxPyPz(p);
1614
1615 return p[1];
1616}
1617
c683ddc2 1618Double_t AliExternalTrackParam::Xv() const {
1619 //---------------------------------------------------------------------
1620 // Returns x-component of first track point
1621 //---------------------------------------------------------------------
1622
1623 Double_t r[3]={0.,0.,0.};
1624 GetXYZ(r);
1625
1626 return r[0];
1627}
1628
1629Double_t AliExternalTrackParam::Yv() const {
1630 //---------------------------------------------------------------------
1631 // Returns y-component of first track point
1632 //---------------------------------------------------------------------
1633
1634 Double_t r[3]={0.,0.,0.};
1635 GetXYZ(r);
1636
1637 return r[1];
1638}
1639
def9660e 1640Double_t AliExternalTrackParam::Theta() const {
1641 // return theta angle of momentum
1642
7cdd0c20 1643 return 0.5*TMath::Pi() - TMath::ATan(fP[3]);
def9660e 1644}
1645
1646Double_t AliExternalTrackParam::Phi() const {
957fb479 1647 //---------------------------------------------------------------------
1648 // Returns the azimuthal angle of momentum
1649 // 0 <= phi < 2*pi
1650 //---------------------------------------------------------------------
def9660e 1651
957fb479 1652 Double_t phi=TMath::ASin(fP[2]) + fAlpha;
1653 if (phi<0.) phi+=2.*TMath::Pi();
1654 else if (phi>=2.*TMath::Pi()) phi-=2.*TMath::Pi();
1655
1656 return phi;
def9660e 1657}
1658
1659Double_t AliExternalTrackParam::M() const {
1660 // return particle mass
1661
1662 // No mass information available so far.
1663 // Redifine in derived class!
1664
1665 return -999.;
1666}
1667
1668Double_t AliExternalTrackParam::E() const {
1669 // return particle energy
1670
1671 // No PID information available so far.
1672 // Redifine in derived class!
1673
1674 return -999.;
1675}
1676
1677Double_t AliExternalTrackParam::Eta() const {
1678 // return pseudorapidity
1679
1680 return -TMath::Log(TMath::Tan(0.5 * Theta()));
1681}
1682
1683Double_t AliExternalTrackParam::Y() const {
1684 // return rapidity
1685
1686 // No PID information available so far.
1687 // Redifine in derived class!
1688
1689 return -999.;
1690}
1691
c9ec41e8 1692Bool_t AliExternalTrackParam::GetXYZ(Double_t *r) const {
1693 //---------------------------------------------------------------------
1694 // This function returns the global track position
1695 //---------------------------------------------------------------------
1696 r[0]=fX; r[1]=fP[0]; r[2]=fP[1];
1697 return Local2GlobalPosition(r,fAlpha);
51ad6848 1698}
1699
c9ec41e8 1700Bool_t AliExternalTrackParam::GetCovarianceXYZPxPyPz(Double_t cv[21]) const {
1701 //---------------------------------------------------------------------
1702 // This function returns the global covariance matrix of the track params
1703 //
1704 // Cov(x,x) ... : cv[0]
1705 // Cov(y,x) ... : cv[1] cv[2]
1706 // Cov(z,x) ... : cv[3] cv[4] cv[5]
1707 // Cov(px,x)... : cv[6] cv[7] cv[8] cv[9]
1708 // Cov(py,x)... : cv[10] cv[11] cv[12] cv[13] cv[14]
1709 // Cov(pz,x)... : cv[15] cv[16] cv[17] cv[18] cv[19] cv[20]
a5e407e9 1710 //
c9ec41e8 1711 // Results for (nearly) straight tracks are meaningless !
1712 //---------------------------------------------------------------------
e421f556 1713 if (TMath::Abs(fP[4])<=kAlmost0) {
c9ec41e8 1714 for (Int_t i=0; i<21; i++) cv[i]=0.;
1715 return kFALSE;
a5e407e9 1716 }
49d13e89 1717 if (TMath::Abs(fP[2]) > kAlmost1) {
c9ec41e8 1718 for (Int_t i=0; i<21; i++) cv[i]=0.;
1719 return kFALSE;
1720 }
1721 Double_t pt=1./TMath::Abs(fP[4]);
1722 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
92934324 1723 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
c9ec41e8 1724
1725 Double_t m00=-sn, m10=cs;
1726 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
1727 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
1728 Double_t m35=pt, m45=-pt*pt*fP[3];
1729
854d5d49 1730 m43*=GetSign();
1731 m44*=GetSign();
1732 m45*=GetSign();
1733
c9ec41e8 1734 cv[0 ] = fC[0]*m00*m00;
1735 cv[1 ] = fC[0]*m00*m10;
1736 cv[2 ] = fC[0]*m10*m10;
1737 cv[3 ] = fC[1]*m00;
1738 cv[4 ] = fC[1]*m10;
1739 cv[5 ] = fC[2];
1740 cv[6 ] = m00*(fC[3]*m23 + fC[10]*m43);
1741 cv[7 ] = m10*(fC[3]*m23 + fC[10]*m43);
1742 cv[8 ] = fC[4]*m23 + fC[11]*m43;
1743 cv[9 ] = m23*(fC[5]*m23 + fC[12]*m43) + m43*(fC[12]*m23 + fC[14]*m43);
1744 cv[10] = m00*(fC[3]*m24 + fC[10]*m44);
1745 cv[11] = m10*(fC[3]*m24 + fC[10]*m44);
1746 cv[12] = fC[4]*m24 + fC[11]*m44;
1747 cv[13] = m23*(fC[5]*m24 + fC[12]*m44) + m43*(fC[12]*m24 + fC[14]*m44);
1748 cv[14] = m24*(fC[5]*m24 + fC[12]*m44) + m44*(fC[12]*m24 + fC[14]*m44);
1749 cv[15] = m00*(fC[6]*m35 + fC[10]*m45);
1750 cv[16] = m10*(fC[6]*m35 + fC[10]*m45);
1751 cv[17] = fC[7]*m35 + fC[11]*m45;
1752 cv[18] = m23*(fC[8]*m35 + fC[12]*m45) + m43*(fC[13]*m35 + fC[14]*m45);
1753 cv[19] = m24*(fC[8]*m35 + fC[12]*m45) + m44*(fC[13]*m35 + fC[14]*m45);
1754 cv[20] = m35*(fC[9]*m35 + fC[13]*m45) + m45*(fC[13]*m35 + fC[14]*m45);
51ad6848 1755
c9ec41e8 1756 return kTRUE;
51ad6848 1757}
1758
51ad6848 1759
c9ec41e8 1760Bool_t
1761AliExternalTrackParam::GetPxPyPzAt(Double_t x, Double_t b, Double_t *p) const {
1762 //---------------------------------------------------------------------
1763 // This function returns the global track momentum extrapolated to
1764 // the radial position "x" (cm) in the magnetic field "b" (kG)
1765 //---------------------------------------------------------------------
c9ec41e8 1766 p[0]=fP[4];
1530f89c 1767 p[1]=fP[2]+(x-fX)*GetC(b);
c9ec41e8 1768 p[2]=fP[3];
1769 return Local2GlobalMomentum(p,fAlpha);
51ad6848 1770}
1771
7cf7bb6c 1772Bool_t
1773AliExternalTrackParam::GetYAt(Double_t x, Double_t b, Double_t &y) const {
1774 //---------------------------------------------------------------------
1775 // This function returns the local Y-coordinate of the intersection
1776 // point between this track and the reference plane "x" (cm).
1777 // Magnetic field "b" (kG)
1778 //---------------------------------------------------------------------
1779 Double_t dx=x-fX;
1780 if(TMath::Abs(dx)<=kAlmost0) {y=fP[0]; return kTRUE;}
1781
1530f89c 1782 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
7cf7bb6c 1783
1784 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1785 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1786
60e55aee 1787 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
7cf7bb6c 1788 y = fP[0] + dx*(f1+f2)/(r1+r2);
1789 return kTRUE;
1790}
1791
6c94f330 1792Bool_t
1793AliExternalTrackParam::GetZAt(Double_t x, Double_t b, Double_t &z) const {
1794 //---------------------------------------------------------------------
1795 // This function returns the local Z-coordinate of the intersection
1796 // point between this track and the reference plane "x" (cm).
1797 // Magnetic field "b" (kG)
1798 //---------------------------------------------------------------------
1799 Double_t dx=x-fX;
1800 if(TMath::Abs(dx)<=kAlmost0) {z=fP[1]; return kTRUE;}
1801
2258e165 1802 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
6c94f330 1803
1804 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1805 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1806
60e55aee 1807 Double_t r1=sqrt((1.-f1)*(1.+f1)), r2=sqrt((1.-f2)*(1.+f2));
6c94f330 1808 z = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3]; // Many thanks to P.Hristov !
1809 return kTRUE;
1810}
1811
c9ec41e8 1812Bool_t
1813AliExternalTrackParam::GetXYZAt(Double_t x, Double_t b, Double_t *r) const {
1814 //---------------------------------------------------------------------
1815 // This function returns the global track position extrapolated to
1816 // the radial position "x" (cm) in the magnetic field "b" (kG)
1817 //---------------------------------------------------------------------
c9ec41e8 1818 Double_t dx=x-fX;
e421f556 1819 if(TMath::Abs(dx)<=kAlmost0) return GetXYZ(r);
1820
1530f89c 1821 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
c9ec41e8 1822
e421f556 1823 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 1824 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
c9ec41e8 1825
60e55aee 1826 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
c9ec41e8 1827 r[0] = x;
1828 r[1] = fP[0] + dx*(f1+f2)/(r1+r2);
f90a11c9 1829 r[2] = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3];//Thanks to Andrea & Peter
1830
c9ec41e8 1831 return Local2GlobalPosition(r,fAlpha);
51ad6848 1832}
1833
51ad6848 1834//_____________________________________________________________________________
1835void AliExternalTrackParam::Print(Option_t* /*option*/) const
1836{
1837// print the parameters and the covariance matrix
1838
1839 printf("AliExternalTrackParam: x = %-12g alpha = %-12g\n", fX, fAlpha);
1840 printf(" parameters: %12g %12g %12g %12g %12g\n",
c9ec41e8 1841 fP[0], fP[1], fP[2], fP[3], fP[4]);
1842 printf(" covariance: %12g\n", fC[0]);
1843 printf(" %12g %12g\n", fC[1], fC[2]);
1844 printf(" %12g %12g %12g\n", fC[3], fC[4], fC[5]);
51ad6848 1845 printf(" %12g %12g %12g %12g\n",
c9ec41e8 1846 fC[6], fC[7], fC[8], fC[9]);
51ad6848 1847 printf(" %12g %12g %12g %12g %12g\n",
c9ec41e8 1848 fC[10], fC[11], fC[12], fC[13], fC[14]);
51ad6848 1849}
5b77d93c 1850
c194ba83 1851Double_t AliExternalTrackParam::GetSnpAt(Double_t x,Double_t b) const {
1852 //
1853 // Get sinus at given x
1854 //
1530f89c 1855 Double_t crv=GetC(b);
c194ba83 1856 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1857 Double_t dx = x-fX;
1858 Double_t res = fP[2]+dx*crv;
1859 return res;
1860}
bf00ebb8 1861
1862Bool_t AliExternalTrackParam::GetDistance(AliExternalTrackParam *param2, Double_t x, Double_t dist[3], Double_t bz){
1863 //------------------------------------------------------------------------
1864 // Get the distance between two tracks at the local position x
1865 // working in the local frame of this track.
1866 // Origin : Marian.Ivanov@cern.ch
1867 //-----------------------------------------------------------------------
1868 Double_t xyz[3];
1869 Double_t xyz2[3];
1870 xyz[0]=x;
1871 if (!GetYAt(x,bz,xyz[1])) return kFALSE;
1872 if (!GetZAt(x,bz,xyz[2])) return kFALSE;
1873 //
1874 //
1875 if (TMath::Abs(GetAlpha()-param2->GetAlpha())<kAlmost0){
1876 xyz2[0]=x;
1877 if (!param2->GetYAt(x,bz,xyz2[1])) return kFALSE;
1878 if (!param2->GetZAt(x,bz,xyz2[2])) return kFALSE;
1879 }else{
1880 //
1881 Double_t xyz1[3];
1882 Double_t dfi = param2->GetAlpha()-GetAlpha();
1883 Double_t ca = TMath::Cos(dfi), sa = TMath::Sin(dfi);
1884 xyz2[0] = xyz[0]*ca+xyz[1]*sa;
1885 xyz2[1] = -xyz[0]*sa+xyz[1]*ca;
1886 //
1887 xyz1[0]=xyz2[0];
1888 if (!param2->GetYAt(xyz2[0],bz,xyz1[1])) return kFALSE;
1889 if (!param2->GetZAt(xyz2[0],bz,xyz1[2])) return kFALSE;
1890 //
1891 xyz2[0] = xyz1[0]*ca-xyz1[1]*sa;
1892 xyz2[1] = +xyz1[0]*sa+xyz1[1]*ca;
1893 xyz2[2] = xyz1[2];
1894 }
1895 dist[0] = xyz[0]-xyz2[0];
1896 dist[1] = xyz[1]-xyz2[1];
1897 dist[2] = xyz[2]-xyz2[2];
1898
1899 return kTRUE;
1900}
0c19adf7 1901
1902
1903//
1904// Draw functionality.
1905// Origin: Marian Ivanov, Marian.Ivanov@cern.ch
1906//
1907
1908void AliExternalTrackParam::DrawTrack(Float_t magf, Float_t minR, Float_t maxR, Float_t stepR){
1909 //
1910 // Draw track line
1911 //
1912 if (minR>maxR) return ;
1913 if (stepR<=0) return ;
1914 Int_t npoints = TMath::Nint((maxR-minR)/stepR)+1;
1915 if (npoints<1) return;
1916 TPolyMarker3D *polymarker = new TPolyMarker3D(npoints);
1917 FillPolymarker(polymarker, magf,minR,maxR,stepR);
1918 polymarker->Draw();
1919}
1920
1921//
1922void AliExternalTrackParam::FillPolymarker(TPolyMarker3D *pol, Float_t magF, Float_t minR, Float_t maxR, Float_t stepR){
1923 //
1924 // Fill points in the polymarker
1925 //
1926 Int_t counter=0;
1927 for (Double_t r=minR; r<maxR; r+=stepR){
1928 Double_t point[3];
1929 GetXYZAt(r,magF,point);
1930 pol->SetPoint(counter,point[0],point[1], point[2]);
047640da 1931 // printf("xyz\t%f\t%f\t%f\n",point[0], point[1],point[2]);
0c19adf7 1932 counter++;
1933 }
1934}
0e8460af 1935
1936Int_t AliExternalTrackParam::GetIndex(Int_t i, Int_t j) const {
1937 //
1938 Int_t min = TMath::Min(i,j);
1939 Int_t max = TMath::Max(i,j);
1940
1941 return min+(max+1)*max/2;
1942}
8b6e3369 1943
1944
1945void AliExternalTrackParam::g3helx3(Double_t qfield,
1946 Double_t step,
1947 Double_t vect[7]) {
1948/******************************************************************
1949 * *
1950 * GEANT3 tracking routine in a constant field oriented *
1951 * along axis 3 *
1952 * Tracking is performed with a conventional *
1953 * helix step method *
1954 * *
1955 * Authors R.Brun, M.Hansroul ********* *
1956 * Rewritten V.Perevoztchikov *
1957 * *
1958 * Rewritten in C++ by I.Belikov *
1959 * *
1960 * qfield (kG) - particle charge times magnetic field *
1961 * step (cm) - step length along the helix *
1962 * vect[7](cm,GeV/c) - input/output x, y, z, px/p, py/p ,pz/p, p *
1963 * *
1964 ******************************************************************/
1965 const Int_t ix=0, iy=1, iz=2, ipx=3, ipy=4, ipz=5, ipp=6;
bfd20868 1966 const Double_t kOvSqSix=TMath::Sqrt(1./6.);
8b6e3369 1967
1968 Double_t cosx=vect[ipx], cosy=vect[ipy], cosz=vect[ipz];
1969
1970 Double_t rho = qfield*kB2C/vect[ipp];
1971 Double_t tet = rho*step;
1972
1973 Double_t tsint, sintt, sint, cos1t;
2de63fc5 1974 if (TMath::Abs(tet) > 0.03) {
8b6e3369 1975 sint = TMath::Sin(tet);
1976 sintt = sint/tet;
1977 tsint = (tet - sint)/tet;
1978 Double_t t=TMath::Sin(0.5*tet);
1979 cos1t = 2*t*t/tet;
1980 } else {
1981 tsint = tet*tet/6.;
bfd20868 1982 sintt = (1.-tet*kOvSqSix)*(1.+tet*kOvSqSix); // 1.- tsint;
8b6e3369 1983 sint = tet*sintt;
1984 cos1t = 0.5*tet;
1985 }
1986
1987 Double_t f1 = step*sintt;
1988 Double_t f2 = step*cos1t;
1989 Double_t f3 = step*tsint*cosz;
1990 Double_t f4 = -tet*cos1t;
1991 Double_t f5 = sint;
1992
1993 vect[ix] += f1*cosx - f2*cosy;
1994 vect[iy] += f1*cosy + f2*cosx;
1995 vect[iz] += f1*cosz + f3;
1996
1997 vect[ipx] += f4*cosx - f5*cosy;
1998 vect[ipy] += f4*cosy + f5*cosx;
1999
2000}
2001
2002Bool_t AliExternalTrackParam::PropagateToBxByBz(Double_t xk, const Double_t b[3]) {
2003 //----------------------------------------------------------------
2004 // Extrapolate this track to the plane X=xk in the field b[].
2005 //
2006 // X [cm] is in the "tracking coordinate system" of this track.
2007 // b[]={Bx,By,Bz} [kG] is in the Global coordidate system.
2008 //----------------------------------------------------------------
2009
2010 Double_t dx=xk-fX;
2011 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
7e1b73dd 2012 if (TMath::Abs(fP[4])<=kAlmost0) return kFALSE;
ef3508c5 2013 // Do not propagate tracks outside the ALICE detector
2014 if (TMath::Abs(dx)>1e5 ||
2015 TMath::Abs(GetY())>1e5 ||
2016 TMath::Abs(GetZ())>1e5) {
2017 AliWarning(Form("Anomalous track, target X:%f",xk));
2018 Print();
2019 return kFALSE;
2020 }
8b6e3369 2021
2022 Double_t crv=GetC(b[2]);
2023 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
2024
2de63fc5 2025 Double_t x2r = crv*dx;
2026 Double_t f1=fP[2], f2=f1 + x2r;
8b6e3369 2027 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
2028 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
2029
2030
2031 // Estimate the covariance matrix
2032 Double_t &fP3=fP[3], &fP4=fP[4];
2033 Double_t
2034 &fC00=fC[0],
2035 &fC10=fC[1], &fC11=fC[2],
2036 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
2037 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
2038 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
2039
bfd20868 2040 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
8b6e3369 2041
2042 //f = F - 1
e804766b 2043 /*
8b6e3369 2044 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
2045 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
2046 Double_t f12= dx*fP3*f1/(r1*r1*r1);
2047 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
2048 Double_t f13= dx/r1;
2049 Double_t f24= dx; f24*=cc;
e804766b 2050 */
2051 Double_t rinv = 1./r1;
2052 Double_t r3inv = rinv*rinv*rinv;
2053 Double_t f24= x2r/fP4;
2054 Double_t f02= dx*r3inv;
2055 Double_t f04=0.5*f24*f02;
2056 Double_t f12= f02*fP3*f1;
2057 Double_t f14=0.5*f24*f02*fP3*f1;
2058 Double_t f13= dx*rinv;
2059
8b6e3369 2060 //b = C*ft
2061 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
2062 Double_t b02=f24*fC40;
2063 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
2064 Double_t b12=f24*fC41;
2065 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
2066 Double_t b22=f24*fC42;
2067 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
2068 Double_t b42=f24*fC44;
2069 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
2070 Double_t b32=f24*fC43;
2071
2072 //a = f*b = f*C*ft
2073 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
2074 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
2075 Double_t a22=f24*b42;
2076
2077 //F*C*Ft = C + (b + bt + a)
2078 fC00 += b00 + b00 + a00;
2079 fC10 += b10 + b01 + a01;
2080 fC20 += b20 + b02 + a02;
2081 fC30 += b30;
2082 fC40 += b40;
2083 fC11 += b11 + b11 + a11;
2084 fC21 += b21 + b12 + a12;
2085 fC31 += b31;
2086 fC41 += b41;
2087 fC22 += b22 + b22 + a22;
2088 fC32 += b32;
2089 fC42 += b42;
2090
86be8934 2091 CheckCovariance();
8b6e3369 2092
2093 // Appoximate step length
2de63fc5 2094 double dy2dx = (f1+f2)/(r1+r2);
2095 Double_t step = (TMath::Abs(x2r)<0.05) ? dx*TMath::Abs(r2 + f2*dy2dx) // chord
2096 : 2.*TMath::ASin(0.5*dx*TMath::Sqrt(1.+dy2dx*dy2dx)*crv)/crv; // arc
8b6e3369 2097 step *= TMath::Sqrt(1.+ GetTgl()*GetTgl());
2098
8b6e3369 2099 // Get the track's (x,y,z) and (px,py,pz) in the Global System
2100 Double_t r[3]; GetXYZ(r);
2101 Double_t p[3]; GetPxPyPz(p);
2102 Double_t pp=GetP();
2103 p[0] /= pp;
2104 p[1] /= pp;
2105 p[2] /= pp;
2106
2107
2108 // Rotate to the system where Bx=By=0.
2109 Double_t bt=TMath::Sqrt(b[0]*b[0] + b[1]*b[1]);
2110 Double_t cosphi=1., sinphi=0.;
2111 if (bt > kAlmost0) {cosphi=b[0]/bt; sinphi=b[1]/bt;}
2112 Double_t bb=TMath::Sqrt(b[0]*b[0] + b[1]*b[1] + b[2]*b[2]);
2113 Double_t costet=1., sintet=0.;
2114 if (bb > kAlmost0) {costet=b[2]/bb; sintet=bt/bb;}
2115 Double_t vect[7];
2116
2117 vect[0] = costet*cosphi*r[0] + costet*sinphi*r[1] - sintet*r[2];
2118 vect[1] = -sinphi*r[0] + cosphi*r[1];
2119 vect[2] = sintet*cosphi*r[0] + sintet*sinphi*r[1] + costet*r[2];
2120
2121 vect[3] = costet*cosphi*p[0] + costet*sinphi*p[1] - sintet*p[2];
2122 vect[4] = -sinphi*p[0] + cosphi*p[1];
2123 vect[5] = sintet*cosphi*p[0] + sintet*sinphi*p[1] + costet*p[2];
2124
2125 vect[6] = pp;
2126
2127
2128 // Do the helix step
2129 g3helx3(GetSign()*bb,step,vect);
2130
2131
2132 // Rotate back to the Global System
2133 r[0] = cosphi*costet*vect[0] - sinphi*vect[1] + cosphi*sintet*vect[2];
2134 r[1] = sinphi*costet*vect[0] + cosphi*vect[1] + sinphi*sintet*vect[2];
2135 r[2] = -sintet*vect[0] + costet*vect[2];
2136
2137 p[0] = cosphi*costet*vect[3] - sinphi*vect[4] + cosphi*sintet*vect[5];
2138 p[1] = sinphi*costet*vect[3] + cosphi*vect[4] + sinphi*sintet*vect[5];
2139 p[2] = -sintet*vect[3] + costet*vect[5];
2140
2141
2142 // Rotate back to the Tracking System
2143 Double_t cosalp = TMath::Cos(fAlpha);
2144 Double_t sinalp =-TMath::Sin(fAlpha);
2145
2146 Double_t
2147 t = cosalp*r[0] - sinalp*r[1];
2148 r[1] = sinalp*r[0] + cosalp*r[1];
2149 r[0] = t;
2150
2151 t = cosalp*p[0] - sinalp*p[1];
2152 p[1] = sinalp*p[0] + cosalp*p[1];
2153 p[0] = t;
2154
2155
2156 // Do the final correcting step to the target plane (linear approximation)
2157 Double_t x=r[0], y=r[1], z=r[2];
2158 if (TMath::Abs(dx) > kAlmost0) {
2159 if (TMath::Abs(p[0]) < kAlmost0) return kFALSE;
2160 dx = xk - r[0];
2161 x += dx;
2162 y += p[1]/p[0]*dx;
2163 z += p[2]/p[0]*dx;
2164 }
2165
2166
2167 // Calculate the track parameters
2168 t=TMath::Sqrt(p[0]*p[0] + p[1]*p[1]);
2169 fX = x;
2170 fP[0] = y;
2171 fP[1] = z;
2172 fP[2] = p[1]/t;
2173 fP[3] = p[2]/t;
2174 fP[4] = GetSign()/(t*pp);
2175
2176 return kTRUE;
2177}
2178
cfdb62d4 2179Bool_t AliExternalTrackParam::Translate(Double_t *vTrasl,Double_t *covV){
2180 //
2181 //Translation: in the event mixing, the tracks can be shifted
2182 //of the difference among primary vertices (vTrasl) and
2183 //the covariance matrix is changed accordingly
2184 //(covV = covariance of the primary vertex).
2185 //Origin: "Romita, Rossella" <R.Romita@gsi.de>
2186 //
2187 TVector3 translation;
2188 // vTrasl coordinates in the local system
2189 translation.SetXYZ(vTrasl[0],vTrasl[1],vTrasl[2]);
2190 translation.RotateZ(-fAlpha);
2191 translation.GetXYZ(vTrasl);
2192
2193 //compute the new x,y,z of the track
5a87bb3d 2194 Double_t newX=fX-vTrasl[0];
2195 Double_t newY=fP[0]-vTrasl[1];
2196 Double_t newZ=fP[1]-vTrasl[2];
cfdb62d4 2197
2198 //define the new parameters
5a87bb3d 2199 Double_t newParam[5];
2200 newParam[0]=newY;
2201 newParam[1]=newZ;
2202 newParam[2]=fP[2];
2203 newParam[3]=fP[3];
2204 newParam[4]=fP[4];
cfdb62d4 2205
2206 // recompute the covariance matrix:
2207 // 1. covV in the local system
2208 Double_t cosRot=TMath::Cos(fAlpha), sinRot=TMath::Sin(fAlpha);
2209 TMatrixD qQi(3,3);
2210 qQi(0,0) = cosRot;
2211 qQi(0,1) = sinRot;
2212 qQi(0,2) = 0.;
2213 qQi(1,0) = -sinRot;
2214 qQi(1,1) = cosRot;
2215 qQi(1,2) = 0.;
2216 qQi(2,0) = 0.;
2217 qQi(2,1) = 0.;
2218 qQi(2,2) = 1.;
2219 TMatrixD uUi(3,3);
2220 uUi(0,0) = covV[0];
2221 uUi(0,0) = covV[0];
2222 uUi(1,0) = covV[1];
2223 uUi(0,1) = covV[1];
2224 uUi(2,0) = covV[3];
2225 uUi(0,2) = covV[3];
2226 uUi(1,1) = covV[2];
2227 uUi(2,2) = covV[5];
2228 uUi(1,2) = covV[4];
2229 if(uUi.Determinant() <= 0.) {return kFALSE;}
2230 TMatrixD uUiQi(uUi,TMatrixD::kMult,qQi);
2231 TMatrixD m(qQi,TMatrixD::kTransposeMult,uUiQi);
2232
2233 //2. compute the new covariance matrix of the track
2234 Double_t sigmaXX=m(0,0);
2235 Double_t sigmaXZ=m(2,0);
2236 Double_t sigmaXY=m(1,0);
2237 Double_t sigmaYY=GetSigmaY2()+m(1,1);
2238 Double_t sigmaYZ=fC[1]+m(1,2);
2239 Double_t sigmaZZ=fC[2]+m(2,2);
2240 Double_t covarianceYY=sigmaYY + (-1.)*((sigmaXY*sigmaXY)/sigmaXX);
2241 Double_t covarianceYZ=sigmaYZ-(sigmaXZ*sigmaXY/sigmaXX);
2242 Double_t covarianceZZ=sigmaZZ-((sigmaXZ*sigmaXZ)/sigmaXX);
2243
2244 Double_t newCov[15];
2245 newCov[0]=covarianceYY;
2246 newCov[1]=covarianceYZ;
2247 newCov[2]=covarianceZZ;
2248 for(Int_t i=3;i<15;i++){
2249 newCov[i]=fC[i];
2250 }
2251
2252 // set the new parameters
2253
5a87bb3d 2254 Set(newX,fAlpha,newParam,newCov);
cfdb62d4 2255
2256 return kTRUE;
2257 }
86be8934 2258
2259void AliExternalTrackParam::CheckCovariance() {
2260
2261 // This function forces the diagonal elements of the covariance matrix to be positive.
2262 // In case the diagonal element is bigger than the maximal allowed value, it is set to
2263 // the limit and the off-diagonal elements that correspond to it are set to zero.
32e55f82 2264 fC[0] = TMath::Abs(fC[0]);
2265 if (fC[0]>kC0max) {
2266 double scl = TMath::Sqrt(kC0max/fC[0]);
2267 fC[0] = kC0max;
2268 fC[1] *= scl;
2269 fC[3] *= scl;
2270 fC[6] *= scl;
2271 fC[10] *= scl;
2272 }
2273 fC[2] = TMath::Abs(fC[2]);
2274 if (fC[2]>kC2max) {
2275 double scl = TMath::Sqrt(kC2max/fC[2]);
2276 fC[2] = kC2max;
2277 fC[1] *= scl;
2278 fC[4] *= scl;
2279 fC[7] *= scl;
2280 fC[11] *= scl;
2281 }
2282 fC[5] = TMath::Abs(fC[5]);
2283 if (fC[5]>kC5max) {
2284 double scl = TMath::Sqrt(kC5max/fC[5]);
2285 fC[5] = kC5max;
2286 fC[3] *= scl;
2287 fC[4] *= scl;
2288 fC[8] *= scl;
2289 fC[12] *= scl;
2290 }
2291 fC[9] = TMath::Abs(fC[9]);
2292 if (fC[9]>kC9max) {
2293 double scl = TMath::Sqrt(kC9max/fC[9]);
2294 fC[9] = kC9max;
2295 fC[6] *= scl;
2296 fC[7] *= scl;
2297 fC[8] *= scl;
2298 fC[13] *= scl;
2299 }
2300 fC[14] = TMath::Abs(fC[14]);
2301 if (fC[14]>kC14max) {
2302 double scl = TMath::Sqrt(kC14max/fC[14]);
2303 fC[14] = kC14max;
2304 fC[10] *= scl;
2305 fC[11] *= scl;
2306 fC[12] *= scl;
2307 fC[13] *= scl;
2308 }
2309
86be8934 2310 // The part below is used for tests and normally is commented out
2311// TMatrixDSym m(5);
2312// TVectorD eig(5);
2313
2314// m(0,0)=fC[0];
2315// m(1,0)=fC[1]; m(1,1)=fC[2];
2316// m(2,0)=fC[3]; m(2,1)=fC[4]; m(2,2)=fC[5];
2317// m(3,0)=fC[6]; m(3,1)=fC[7]; m(3,2)=fC[8]; m(3,3)=fC[9];
2318// m(4,0)=fC[10]; m(4,1)=fC[11]; m(4,2)=fC[12]; m(4,3)=fC[13]; m(4,4)=fC[14];
2319
2320// m(0,1)=m(1,0);
2321// m(0,2)=m(2,0); m(1,2)=m(2,1);
2322// m(0,3)=m(3,0); m(1,3)=m(3,1); m(2,3)=m(3,2);
2323// m(0,4)=m(4,0); m(1,4)=m(4,1); m(2,4)=m(4,2); m(3,4)=m(4,3);
2324// m.EigenVectors(eig);
2325
2326// // assert(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0);
2327// if (!(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0)) {
2328// AliWarning("Negative eigenvalues of the covariance matrix!");
2329// this->Print();
2330// eig.Print();
2331// }
2332}
4c3dc2a0 2333
2334Bool_t AliExternalTrackParam::ConstrainToVertex(const AliVVertex* vtx, Double_t b[3])
2335{
2336 // Constrain TPC inner params constrained
2337 //
2338 if (!vtx)
2339 return kFALSE;
2340
2341 Double_t dz[2], cov[3];
2342 if (!PropagateToDCABxByBz(vtx, b, 3, dz, cov))
2343 return kFALSE;
2344
2345 Double_t covar[6];
2346 vtx->GetCovarianceMatrix(covar);
2347
2348 Double_t p[2]= { fP[0] - dz[0], fP[1] - dz[1] };
2349 Double_t c[3]= { covar[2], 0., covar[5] };
2350
2351 Double_t chi2C = GetPredictedChi2(p,c);
2352 if (chi2C>kVeryBig)
2353 return kFALSE;
2354
2355 if (!Update(p,c))
2356 return kFALSE;
2357
2358 return kTRUE;
2359}
70580f26 2360
2361//___________________________________________________________________________________________
2362Bool_t AliExternalTrackParam::GetXatLabR(Double_t r,Double_t &x, Double_t bz, Int_t dir) const
2363{
2364 // Get local X of the track position estimated at the radius lab radius r.
2365 // The track curvature is accounted exactly
2366 //
2367 // The flag "dir" can be used to remove the ambiguity of which intersection to take (out of 2 possible)
2368 // 0 - take the intersection closest to the current track position
2369 // >0 - go along the track (increasing fX)
2370 // <0 - go backward (decreasing fX)
2371 //
2372 const Double_t &fy=fP[0], &sn = fP[2];
2373 //
2374 double crv = GetC(bz);
2375 if (TMath::Abs(crv)<=kAlmost0) { // this is a straight track
2376 if (TMath::Abs(sn)>=kAlmost1) { // || to Y axis
2377 double det = (r-fX)*(r+fX);
2378 if (det<0) return kFALSE; // does not reach raduis r
2379 x = fX;
2380 if (dir==0) return kTRUE;
2381 det = TMath::Sqrt(det);
2382 if (dir>0) { // along the track direction
2383 if (sn>0) {if (fy>det) return kFALSE;} // track is along Y axis and above the circle
2384 else {if (fy<-det) return kFALSE;} // track is against Y axis amd belo the circle
2385 }
e804766b 2386 else { // agains track direction
70580f26 2387 if (sn>0) {if (fy<-det) return kFALSE;} // track is along Y axis
2388 else if (fy>det) return kFALSE; // track is against Y axis
2389 }
2390 }
2391 else if (TMath::Abs(sn)<=kAlmost0) { // || to X axis
2392 double det = (r-fy)*(r+fy);
2393 if (det<0) return kFALSE; // does not reach raduis r
2394 det = TMath::Sqrt(det);
2395 if (!dir) {
2396 x = fX>0 ? det : -det; // choose the solution requiring the smalest step
2397 return kTRUE;
2398 }
2399 else if (dir>0) { // along the track direction
2400 if (fX > det) return kFALSE; // current point is in on the right from the circle
2401 else if (fX <-det) x = -det; // on the left
2402 else x = det; // within the circle
2403 }
2404 else { // against the track direction
2405 if (fX <-det) return kFALSE;
2406 else if (fX > det) x = det;
2407 else x = -det;
2408 }
2409 }
2410 else { // general case of straight line
2411 double cs = TMath::Sqrt((1-sn)*(1+sn));
2412 double xsyc = fX*sn-fy*cs;
2413 double det = (r-xsyc)*(r+xsyc);
2414 if (det<0) return kFALSE; // does not reach raduis r
2415 det = TMath::Sqrt(det);
2416 double xcys = fX*cs+fy*sn;
2417 double t = -xcys;
2418 if (dir==0) t += t>0 ? -det:det; // chose the solution requiring the smalest step
2419 else if (dir>0) { // go in increasing fX direction. ( t+-det > 0)
2420 if (t>=-det) t += -det; // take minimal step giving t>0
2421 else return kFALSE; // both solutions have negative t
2422 }
2423 else { // go in increasing fX direction. (t+-det < 0)
2424 if (t<det) t -= det; // take minimal step giving t<0
2425 else return kFALSE; // both solutions have positive t
2426 }
2427 x = fX + cs*t;
2428 }
2429 }
2430 else { // helix
2431 // get center of the track circle
2432 double tR = 1./crv; // track radius (for the moment signed)
2433 double cs = TMath::Sqrt((1-sn)*(1+sn));
2434 double x0 = fX - sn*tR;
2435 double y0 = fy + cs*tR;
2436 double r0 = TMath::Sqrt(x0*x0+y0*y0);
2437 // printf("Xc:%+e Yc:%+e\n",x0,y0);
2438 //
2439 if (r0<=kAlmost0) return kFALSE; // the track is concentric to circle
2440 tR = TMath::Abs(tR);
2441 double tR2r0 = tR/r0;
2442 double g = 0.5*(r*r/(r0*tR) - tR2r0 - 1./tR2r0);
2443 double det = (1.-g)*(1.+g);
2444 if (det<0) return kFALSE; // does not reach raduis r
2445 det = TMath::Sqrt(det);
2446 //
2447 // the intersection happens in 2 points: {x0+tR*C,y0+tR*S}
2448 // with C=f*c0+-|s0|*det and S=f*s0-+c0 sign(s0)*det
2449 // where s0 and c0 make direction for the circle center (=x0/r0 and y0/r0)
2450 //
2451 double tmp = 1.+g*tR2r0;
2452 x = x0*tmp;
2453 double y = y0*tmp;
2454 if (TMath::Abs(y0)>kAlmost0) { // when y0==0 the x,y is unique
2455 double dfx = tR2r0*TMath::Abs(y0)*det;
2456 double dfy = tR2r0*x0*TMath::Sign(det,y0);
2457 if (dir==0) { // chose the one which corresponds to smallest step
2458 double delta = (x-fX)*dfx-(y-fy)*dfy; // the choice of + in C will lead to smaller step if delta<0
2459 if (delta<0) x += dfx;
2460 else x -= dfx;
2461 }
2462 else if (dir>0) { // along track direction: x must be > fX
2463 x -= dfx; // try the smallest step (dfx is positive)
2464 if (x<fX && (x+=dfx+dfx)<fX) return kFALSE;
2465 }
2466 else { // backward: x must be < fX
2467 x += dfx; // try the smallest step (dfx is positive)
2468 if (x>fX && (x-=dfx+dfx)>fX) return kFALSE;
2469 }
2470 }
2471 else { // special case: track touching the circle just in 1 point
2472 if ( (dir>0&&x<fX) || (dir<0&&x>fX) ) return kFALSE;
2473 }
2474 }
2475 //
2476 return kTRUE;
2477}