]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - PWGGA/CaloTrackCorrelations/AliAnaParticleHadronCorrelation.h
RelVal: porting mergeMakeOCDB changes to CPass1
[u/mrichter/AliRoot.git] / PWGGA / CaloTrackCorrelations / AliAnaParticleHadronCorrelation.h
... / ...
CommitLineData
1#ifndef ALIANAPARTICLEHADRONCORRELATION_H
2#define ALIANAPARTICLEHADRONCORRELATION_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6//_________________________________________________________________________
7// Class that contains the algorithm for the analysis of
8// particle - hadron correlations
9// Particle (for example direct gamma) must be found in a previous analysis
10//
11//-- Author: Gustavo Conesa (LNF-INFN) (LPSC-IN2P3-CNRS)
12// Yaxian Mao (LPSC-IN2P3-CNRS) and (CNWU) first usable implementation.
13// Xiangrong Zhu (CNWU), implementtion of own mixing.
14//
15
16// --- Analysis system ---
17
18#include "AliAnaCaloTrackCorrBaseClass.h"
19class AliAODPWG4ParticleCorrelation ;
20
21class AliAnaParticleHadronCorrelation : public AliAnaCaloTrackCorrBaseClass {
22
23 public:
24
25 AliAnaParticleHadronCorrelation() ; // default ctor
26 virtual ~AliAnaParticleHadronCorrelation() ; // virtual dtor
27
28 // General methods
29
30 TObjString * GetAnalysisCuts();
31
32 TList * GetCreateOutputObjects();
33
34 void Init();
35
36 void InitParameters();
37
38 void FillEventMixPool() ;
39
40 void MakeAnalysisFillHistograms() ;
41
42 void Print(const Option_t * opt) const;
43
44 // Main analysis methods
45
46 Bool_t FindLeadingOppositeHadronInWindow(AliAODPWG4ParticleCorrelation * particle);
47
48 Bool_t GetDecayPhotonMomentum (AliAODPWG4Particle* trigger, TLorentzVector & mom1, TLorentzVector & mom2);
49
50 void MakeChargedCorrelation (AliAODPWG4ParticleCorrelation * particle) ;
51
52 void MakeNeutralCorrelation (AliAODPWG4ParticleCorrelation * particle) ;
53
54 void MakeMCChargedCorrelation (Int_t triggerMCLable, Int_t histoIndex) ;
55
56 void MakeChargedMixCorrelation(AliAODPWG4ParticleCorrelation * particle) ;
57
58 // Filling histogram methods
59
60 void FillChargedAngularCorrelationHistograms (Float_t ptAssoc, Float_t ptTrig, Int_t assocBin,
61 Float_t phiAssoc, Float_t phiTrig, Float_t deltaPhi,
62 Float_t etaAssoc, Float_t etaTrig,
63 Int_t decayTag, Float_t hmpidSignal, Int_t outTOF,
64 Int_t cenbin, Int_t mcTag);
65
66 void FillChargedEventMixPool();
67
68 Bool_t FillChargedMCCorrelationHistograms (Float_t mcAssocPt, Float_t mcAssocPhi, Float_t mcAssocEta,
69 Float_t mcTrigPt, Float_t mcTrigPhi, Float_t mcTrigEta, Int_t histoIndex);
70
71
72 void FillChargedMomentumImbalanceHistograms (Float_t ptTrig, Float_t ptAssoc,
73 Float_t deltaPhi, Int_t cenbin, Int_t charge,
74 Int_t assocBin, Int_t decayTag,
75 Int_t outTOF, Int_t mcTag );
76
77 void FillChargedUnderlyingEventHistograms (Float_t ptTrig, Float_t ptAssoc,
78 Float_t deltaPhi, Int_t cenbin, Int_t outTOF);
79
80 void FillChargedUnderlyingEventSidesHistograms(Float_t ptTrig, Float_t ptAssoc,
81 Float_t deltaPhi);
82
83 void FillDecayPhotonCorrelationHistograms (Float_t ptAssoc, Float_t phiAssoc,
84 TLorentzVector mom1, TLorentzVector mom2,
85 Bool_t bChargedOrNeutral);
86
87 void FillNeutralEventMixPool();
88
89
90 void FillNeutralUnderlyingEventSidesHistograms(Float_t ptTrig, Float_t ptAssoc,
91 Float_t zT, Float_t hbpZT,
92 Float_t deltaPhi);
93
94 Int_t GetMCTagHistogramIndex(Int_t tag);
95
96 Bool_t IsTriggerTheEventLeadingParticle();
97
98 // Parameter setter and getter
99
100 Float_t GetMinimumTriggerPt() const { return GetMinPt() ; }
101 Float_t GetMaximumTriggerPt() const { return GetMaxPt() ; }
102 void SetTriggerPtRange(Float_t min, Float_t max)
103 { SetMinPt(min), SetMaxPt(max) ; }
104
105
106 Float_t GetMaximumAssociatedPt() const { return fMaxAssocPt ; }
107 Float_t GetMinimumAssociatedPt() const { return fMinAssocPt ; }
108 void SetAssociatedPtRange(Float_t min, Float_t max)
109 { fMaxAssocPt = max ; fMinAssocPt = min ; }
110
111 Double_t GetDeltaPhiMaxCut() const { return fDeltaPhiMaxCut ; }
112 Double_t GetDeltaPhiMinCut() const { return fDeltaPhiMinCut ; }
113 void SetDeltaPhiCutRange(Double_t phimin, Double_t phimax)
114 { fDeltaPhiMaxCut = phimax ; fDeltaPhiMinCut = phimin ; }
115
116 // Leading Hadron
117 Double_t GetLeadHadronPhiMaxCut() const { return fMaxLeadHadPhi ; }
118 Double_t GetLeadHadronPhiMinCut() const { return fMinLeadHadPhi ; }
119 void SetLeadHadronPhiCut(Float_t min, Float_t max)
120 { fMaxLeadHadPhi = max ; fMinLeadHadPhi = min ; }
121
122 Double_t GetLeadHadronPtMinCut() const { return fMinLeadHadPt ; }
123 Double_t GetLeadHadronPtMaxCut() const { return fMaxLeadHadPt ; }
124 void SetLeadHadronPtCut(Float_t min, Float_t max)
125 { fMaxLeadHadPt = max ; fMinLeadHadPt = min ; }
126
127 Bool_t IsLeadHadronCutOn() const { return fSelectLeadingHadronAngle ; }
128 void SwitchOnLeadHadronSelection() { fSelectLeadingHadronAngle = kTRUE ; }
129 void SwitchOffLeadHadronSelection() { fSelectLeadingHadronAngle = kFALSE ; }
130
131 void SwitchOnFillLeadHadronHistograms() { fFillLeadHadOppositeHisto = kTRUE ; }
132 void SwitchOffFillLeadHadronHistograms(){ fFillLeadHadOppositeHisto = kFALSE ; }
133
134 // UE
135
136 Double_t GetUeDeltaPhiMaxCut() const { return fUeDeltaPhiMaxCut ; }
137 Double_t GetUeDeltaPhiMinCut() const { return fUeDeltaPhiMinCut ; }
138
139 void SetUeDeltaPhiCutRange(Double_t uephimin, Double_t uephimax)
140 { fUeDeltaPhiMaxCut = uephimax ; fUeDeltaPhiMinCut = uephimin ; }
141
142 Bool_t IsSeveralUEOn() const { return fMakeSeveralUE ; }
143 void SwitchOnSeveralUECalculation() { fMakeSeveralUE = kTRUE ; }
144 void SwitchOffSeveralUECalculation() { fMakeSeveralUE = kFALSE ; }
145
146 // Do trigger-neutral correlation
147 Bool_t DoNeutralCorr() const { return fNeutralCorr ; }
148 void SwitchOnNeutralCorr() { fNeutralCorr = kTRUE ; }
149 void SwitchOffNeutralCorr() { fNeutralCorr = kFALSE ; }
150
151 // Taking the absolute leading as the trigger or not
152 Bool_t DoAbsoluteLeading() const { return fMakeAbsoluteLeading ; }
153 void SwitchOnAbsoluteLeading() { fMakeAbsoluteLeading = kTRUE ; }
154 void SwitchOffAbsoluteLeading() { fMakeAbsoluteLeading = kFALSE ; }
155
156 // Taking the near side leading as the trigger or not
157 Bool_t DoNearSideLeading() const { return fMakeNearSideLeading ; }
158 void SwitchOnNearSideLeading() { fMakeNearSideLeading = kTRUE ; }
159 void SwitchOffNearSideLeading() { fMakeNearSideLeading = kFALSE ; }
160
161 // Do decay-hadron correlation if it is pi0 trigger
162 Bool_t IsPi0Trigger() const { return fPi0Trigger ; }
163 void SwitchOnPi0TriggerDecayCorr() { fPi0Trigger = kTRUE ; }
164 void SwitchOffPi0TriggerDecayCorr() { fPi0Trigger = kFALSE ; }
165
166 Bool_t IsDecayTrigger() const { return fDecayTrigger ; }
167 void SwitchOnDecayTriggerDecayCorr() { fDecayTrigger = kTRUE ; }
168 void SwitchOffDecayTriggerDecayCorr() { fDecayTrigger = kFALSE ; }
169 void SetNDecayBits(Int_t n) { fNDecayBits = n ; }
170 void SetDecayBits(Int_t i, UInt_t bit) { if(i < 4) fDecayBits[i] = bit ; }
171
172 Bool_t IsHMPIDCorrelation() const { return fHMPIDCorrelation ; }
173 void SwitchOnHMPIDCorrelation() { fHMPIDCorrelation = kTRUE ; }
174 void SwitchOffHMPIDCorrelation() { fHMPIDCorrelation = kFALSE ; }
175
176 void SwitchOnFillBradHistograms() { fFillBradHisto = kTRUE ; }
177 void SwitchOffFillBradHistograms() { fFillBradHisto = kFALSE ; }
178
179 Bool_t OnlyIsolated() const { return fSelectIsolated ; }
180 void SelectIsolated(Bool_t s) { fSelectIsolated = s ; }
181
182 void SetPi0AODBranchName(TString n) { fPi0AODBranchName = n ; }
183
184 void SetNAssocPtBins(Int_t n) ;
185 void SetAssocPtBinLimit(Int_t ibin, Float_t pt) ;
186
187 Bool_t IsMixStoredInReaderOn() const { return fUseMixStoredInReader ; }
188 void SwitchOnUseMixStoredInReader() { fUseMixStoredInReader = kTRUE ; }
189 void SwitchOffUseMixStoredInReader() { fUseMixStoredInReader = kFALSE; }
190
191 void SwitchOnFillNeutralInMixedEvent() { fFillNeutralEventMixPool = kTRUE ; }
192 void SwitchOffFillNeutralInMixedEvent(){ fFillNeutralEventMixPool = kFALSE ; }
193
194 void SetM02Cut(Float_t min=0, Float_t max=10) { fM02MinCut = min ; fM02MaxCut = max ; }
195
196 void SwitchOnCorrelationVzBin() { fCorrelVzBin = kTRUE ; }
197 void SwitchOffCorrelationVzBin() { fCorrelVzBin = kFALSE ; }
198
199 void SwitchOnFillPileUpHistograms() { fFillPileUpHistograms = kTRUE ; }
200 void SwitchOffFillPileUpHistograms() { fFillPileUpHistograms = kFALSE ; }
201
202 void SwitchOnFillHighMultiplicityHistograms() { fFillHighMultHistograms = kTRUE ; }
203 void SwitchOffFillHighMultiplicityHistograms(){ fFillHighMultHistograms = kFALSE ; }
204
205 void SwitchOnFillTriggerAODWithReferences() { fFillAODWithReferences = kTRUE ; }
206 void SwitchOffFillTriggerAODWithReferences() { fFillAODWithReferences = kFALSE ; }
207
208 void SwitchOnCheckNeutralClustersForLeading() { fCheckLeadingWithNeutralClusters = kTRUE ; }
209 void SwitchOffCheckNeutralClustersForLeading(){ fCheckLeadingWithNeutralClusters = kFALSE ; }
210
211 void SwitchOnFillEtaGapHistograms() { fFillEtaGapsHisto = kTRUE ; }
212 void SwitchOffFillEtaGapHistograms() { fFillEtaGapsHisto = kFALSE ; }
213
214 void SwitchOnFillPtImbalancePerPtABinHistograms() { fFillMomImbalancePtAssocBinsHisto = kTRUE ; }
215 void SwitchOffFillPtImbalancePerPtABinHistograms() { fFillMomImbalancePtAssocBinsHisto = kFALSE ; }
216
217 void SetMCGenType(Int_t min = 0, Int_t max = 6) { if(min >= 0 && min < 7) fMCGenTypeMin = min ;
218 if(max >= 0 && max < 7) fMCGenTypeMax = max ; }
219
220 private:
221
222 Bool_t fFillAODWithReferences; // Add to the trigger particle AOD the reference to the tracks or neutrals in correlation.
223 Bool_t fCheckLeadingWithNeutralClusters;// Compare the trigger candidate to Leading pT with the clusters pT, by default only charged
224 Float_t fMaxAssocPt ; // Maximum associated hadron pt
225 Float_t fMinAssocPt ; // Minimum associated hadron pt
226 Double_t fDeltaPhiMaxCut ; // Minimum Delta Phi Gamma-Hadron
227 Double_t fDeltaPhiMinCut ; // Maximum Delta Phi Gamma-Hadron
228 Bool_t fSelectIsolated ; // Select only trigger particles isolated
229 Bool_t fMakeSeveralUE ; // Do analysis for several underlying events contribution
230 Double_t fUeDeltaPhiMaxCut ; // Minimum Delta Phi Gamma-Underlying Hadron
231 Double_t fUeDeltaPhiMinCut ; // Maximum Delta Phi Gamma-Underlying Hadron
232 TString fPi0AODBranchName; // Name of AOD branch with pi0, not trigger
233 Bool_t fNeutralCorr ; // switch the analysis with neutral particles
234 Bool_t fPi0Trigger ; // switch the analysis with decay photon from pi0 trigger
235 Bool_t fDecayTrigger ; // switch the analysis with decay photon from photon trigger
236 Int_t fNDecayBits ; // in case of study of decay triggers, select the decay bit
237 UInt_t fDecayBits[4] ; // in case of study of decay triggers, select the decay bit
238 Bool_t fMakeAbsoluteLeading ; // requesting absolute leading triggers
239 Bool_t fMakeNearSideLeading ; // requesting near side leading (+-90ยบ from trigger particle) triggers
240 Int_t fLeadingTriggerIndex ; // Store here per event the trigger index, to avoid too many loops
241 Bool_t fHMPIDCorrelation ; // Correlate with particles on HMPID or its acceptance
242 Bool_t fFillBradHisto ; // DPhi histograms calculated differently
243 Int_t fNAssocPtBins ; // Number of associated pT bins under study
244 Float_t fAssocPtBinLimit[20] ; // Associated pT under study
245 Bool_t fCorrelVzBin ; // Fill one histogram per vz bin
246
247 TList ** fListMixTrackEvents ; //![GetNCentrBin()*GetNZvertBin()*GetNRPBin()] Containers for tracks in stored events for mixing
248 TList ** fListMixCaloEvents ; //![GetNCentrBin()*GetNZvertBin()*GetNRPBin()] Containers for calo clusters in stored events for mixing
249
250 Bool_t fUseMixStoredInReader; // Signal if in the current event the pool was filled
251 Bool_t fFillNeutralEventMixPool; // Add clusters to pool if requested
252
253 Float_t fM02MaxCut ; // Study photon clusters with l0 smaller than cut
254 Float_t fM02MinCut ; // Study photon clusters with l0 larger than cut
255
256 Bool_t fFillPileUpHistograms; // Fill pile-up related histograms
257 Bool_t fFillHighMultHistograms; // Histograms with centrality and event plane for triggers pT
258
259 Bool_t fSelectLeadingHadronAngle; // Select events with leading particle within a range
260 Bool_t fFillLeadHadOppositeHisto; // Fill histograms for leading hadrons in opposite side of trigger
261
262 Float_t fMinLeadHadPhi; // Minimum angle between the trigger and leading hadron
263 Float_t fMaxLeadHadPhi; // Maximum ange between the trigger and leading hadron
264 Float_t fMinLeadHadPt; // Minimum pT of leading hadron
265 Float_t fMaxLeadHadPt; // Maximum pT of leading hadron
266
267 Bool_t fFillEtaGapsHisto; // Fill azimuthal correlation histograms in 2 eta gaps, |eta|>0.8 and |eta|<0.01
268 Bool_t fFillMomImbalancePtAssocBinsHisto; // momentum imbalance histograms in bins of pT associated
269
270 Int_t fMCGenTypeMin; // Of the 7 possible types, select those between fMCGenTypeMin and fMCGenTypeMax
271 Int_t fMCGenTypeMax; // Of the 7 possible types, select those between fMCGenTypeMin and fMCGenTypeMax
272
273 //Histograms
274
275 //trigger particles
276 TH1F * fhPtTriggerInput; //! pT distribution of trigger particles before selection
277 TH1F * fhPtTriggerSSCut; //! pT distribution of trigger particles after shower shape selection
278 TH1F * fhPtTriggerIsoCut; //! pT distribution of trigger particles after isolation cut selection
279 TH1F * fhPtTriggerFidCut; //! pT distribution of trigger particles after fiducial selection
280 TH1F * fhPtTrigger; //! pT distribution of trigger particles
281 TH1F * fhPtTriggerVtxBC0; //! pT distribution of trigger particles
282 TH1F * fhPtTriggerPileUp[7]; //! pT distribution of trigger particles
283 TH2F * fhPtTriggerVzBin; //! pT distribution of trigger particles vs vz bin
284 TH2F * fhPtTriggerBin; //! pT distribution of trigger particles, vs mixing bin
285 TH2F * fhPhiTrigger; //! phi distribution vs pT of trigger particles
286 TH2F * fhEtaTrigger; //! eta distribution vs pT of trigger particles
287
288 TH1F * fhPtTriggerMC[7]; //! pT distribution of trigger particles, check the origin of the cluster : "Photon","Pi0","Pi0Decay","EtaDecay","OtherDecay","Electron","Hadron"
289
290 TH1F * fhPtDecayTrigger[4]; //! pT distribution of trigger particles, tagged as decay
291 TH1F * fhPtDecayTriggerMC[4][7]; //! pT distribution of trigger particles, tagged as decay, check the origin of the cluster
292
293 TH2F * fhPtTriggerCentrality; //! pT distribution of trigger particles vs centrality
294 TH2F * fhPtTriggerEventPlane; //! pT distribution of trigger particles vs centrality
295 TH2F * fhTriggerEventPlaneCentrality; //! event plane vs centrality for trigger particles
296
297 TH1F * fhPtTriggerMixed; //! pT distribution of trigger particles, used in mixing
298 TH2F * fhPtTriggerMixedVzBin; //! pT distribution of trigger particles, used in mixing, vs vz bin
299 TH2F * fhPtTriggerMixedBin; //! pT distribution of trigger particles vs mixing bin
300 TH2F * fhPhiTriggerMixed; //! phi distribution vs pT of trigger particles, used in mixing
301 TH2F * fhEtaTriggerMixed; //! eta distribution vs pT of trigger particles, used in mixing
302
303 // Leading hadron in the opposite side of the trigger
304 TH2F * fhPtLeadingOppositeHadron; //! pT trigger : pT distribution of leading hadron oposite to trigger
305 TH2F * fhPtDiffPhiLeadingOppositeHadron; //! pT trigger : difference phi distribution of leading hadron oposite and trigger
306 TH2F * fhPtDiffEtaLeadingOppositeHadron; //! pT trigger: difference eta distribution of leading hadron oposite and trigger
307 TH1F * fhPtNoLeadingOppositeHadron; //! pT trigger for events without opposite hadrons
308 TH2F * fhEtaPhiNoLeadingOppositeHadron; //! location of trigger when no hadron is found on the opposite side
309
310 //trigger-charged histograms
311 TH2F * fhDeltaPhiDeltaEtaCharged ; //! differences of eta and phi between trigger and charged hadrons
312 TH2F * fhPhiCharged ; //! Phi distribution of charged particles
313 TH2F * fhEtaCharged ; //! Eta distribution of charged particles
314 TH2F * fhDeltaPhiCharged ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT
315 TH2F * fhDeltaEtaCharged ; //! Difference of charged particle eta and trigger particle eta as function of trigger particle pT
316 TH2F * fhDeltaPhiChargedPt ; //! Difference of charged particle phi and trigger particle phi as function of charged particle pT
317 TH2F * fhDeltaPhiUeChargedPt ; //! Difference of charged particle from underlying events phi and trigger particle phi as function of charged particle pT
318 TH1F * fhUePart; //! UE particles distribution vs pt trig
319 TH2F * fhXECharged ; //! Trigger particle -charged hadron momentum imbalance histogram
320 TH2F * fhXECharged_Cone2 ; //! Trigger particle -charged hadron momentum imbalance histogram in cone2 (5pi/6-7pi/6)
321 TH2F * fhXEUeCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
322 TH2F * fhXEPosCharged ; //! Trigger particle -positive charged hadron momentum imbalance histogram
323 TH2F * fhXENegCharged ; //! Trigger particle -negative charged hadron momentum imbalance histogram
324 TH2F * fhPtHbpXECharged ; //! Trigger particle -charged hadron momentum HBP histogram
325 TH2F * fhPtHbpXECharged_Cone2 ; //! Trigger particle -charged hadron momentum HBP histogram in cone2 (5pi/6-7pi/6)
326 TH2F * fhPtHbpXEUeCharged ; //! Trigger particle -underlying charged hadron momentum HBP histogram
327 TH2F * fhZTCharged ; //! Trigger particle -charged hadron momentum imbalance histogram
328 TH2F * fhZTUeCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
329 TH2F * fhZTPosCharged ; //! Trigger particle -positive charged hadron momentum imbalance histogram
330 TH2F * fhZTNegCharged ; //! Trigger particle -negative charged hadron momentum imbalance histogram
331 TH2F * fhPtHbpZTCharged ; //! Trigger particle -charged hadron momentum HBP histogram
332 TH2F * fhPtHbpZTUeCharged ; //! Trigger particle -underlying charged hadron momentum HBP histogram
333
334 TH2F * fhXEChargedMC[7] ; //! Trigger particle -charged hadron momentum imbalance histogram, check the origin of the cluster : decay photon (pi0, eta, other), merged photon (pi0), hadron, rest of photons (prompt, FSR, ISR)
335 TH2F * fhDeltaPhiChargedMC[7] ; //! Trigger particle -charged hadron delta phi histogram, check the origin of the cluster : decay photon (pi0, eta, other), merged photon (pi0), hadron, rest of photons (prompt, FSR, ISR)
336
337 TH2F * fhDeltaPhiDeltaEtaChargedPtA3GeV;//! differences of eta and phi between trigger and charged hadrons, pTa > 3 GeV
338 TH2F * fhDeltaPhiChargedPtA3GeV ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT, pTa > 3 GeV
339 TH2F * fhDeltaEtaChargedPtA3GeV ; //! Difference of charged particle eta and trigger particle eta as function of trigger particle pT, pTa > 3 GeV
340
341 // Events tagged as pileup by SDD,EMCal, or combination
342 TH2F * fhDeltaPhiChargedPileUp[7] ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT
343 TH2F * fhDeltaEtaChargedPileUp[7] ; //! Difference of charged particle eta and trigger particle eta as function of trigger particle pT
344 TH2F * fhDeltaPhiChargedPtA3GeVPileUp[7] ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT, pTa > 3 GeV
345 TH2F * fhDeltaEtaChargedPtA3GeVPileUp[7] ; //! Difference of charged particle eta and trigger particle eta as function of trigger particle pT, pTa > 3 GeV
346 TH2F * fhXEChargedPileUp[7] ; //! Trigger particle -charged hadron momentum imbalance histogram
347 TH2F * fhXEUeChargedPileUp[7] ; //! Trigger particle -charged hadron momentum imbalance histogram
348 TH2F * fhZTChargedPileUp[7] ; //! Trigger particle -charged hadron momentum imbalance histogram
349 TH2F * fhZTUeChargedPileUp[7] ; //! Trigger particle -charged hadron momentum imbalance histogram
350 TH2F * fhPtTrigChargedPileUp[7] ; //! trigger and correlated particl pt, to be used for mean value for kt
351
352 TH2F * fhDeltaPhiChargedOtherBC ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT
353 TH2F * fhDeltaPhiChargedPtA3GeVOtherBC ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT, pTa > 3 GeV
354 TH2F * fhXEChargedOtherBC ; //! Trigger particle -charged hadron momentum imbalance histogram
355 TH2F * fhXEUeChargedOtherBC ; //! Trigger particle -charged hadron momentum imbalance histogram
356 TH2F * fhZTChargedOtherBC ; //! Trigger particle -charged hadron momentum imbalance histogram
357 TH2F * fhZTUeChargedOtherBC ; //! Trigger particle -charged hadron momentum imbalance histogram
358 TH2F * fhPtTrigChargedOtherBC ; //! trigger and correlated particl pt, to be used for mean value for kt
359
360 TH2F * fhDeltaPhiChargedBC0 ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT
361 TH2F * fhDeltaPhiChargedPtA3GeVBC0 ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT, pTa > 3 GeV
362 TH2F * fhXEChargedBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
363 TH2F * fhXEUeChargedBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
364 TH2F * fhZTChargedBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
365 TH2F * fhZTUeChargedBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
366 TH2F * fhPtTrigChargedBC0 ; //! trigger and correlated particl pt, to be used for mean value for kt
367
368 TH2F * fhDeltaPhiChargedVtxBC0 ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT
369 TH2F * fhDeltaPhiChargedPtA3GeVVtxBC0 ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT, pTa > 3 GeV
370 TH2F * fhXEChargedVtxBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
371 TH2F * fhXEUeChargedVtxBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
372 TH2F * fhZTChargedVtxBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
373 TH2F * fhZTUeChargedVtxBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
374 TH2F * fhPtTrigChargedVtxBC0 ; //! trigger and correlated particl pt, to be used for mean value for kt
375
376 //if several UE calculation is on, most useful for jet-jet events contribution
377 TH2F * fhDeltaPhiUeLeftCharged ; //! Difference of charged particle from underlying events phi and trigger particle phi as function of charged particle pT
378 TH2F * fhDeltaPhiUeLeftUpCharged; //! Difference of charged particle from underlying events phi and trigger particle phi
379 TH2F * fhDeltaPhiUeRightUpCharged; //! Difference of charged particle from underlying events phi and trigger particle phi
380 TH2F * fhDeltaPhiUeLeftDownCharged; //! Difference of charged particle from underlying events phi and trigger particle phi
381 TH2F * fhDeltaPhiUeRightDownCharged; //! Difference of charged particle from underlying events phi and trigger particle phi
382 TH2F * fhXEUeLeftCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
383 TH2F * fhXEUeLeftUpCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
384 TH2F * fhXEUeRightUpCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
385 TH2F * fhXEUeLeftDownCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
386 TH2F * fhXEUeRightDownCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
387 TH2F * fhPtHbpXEUeLeftCharged ; //! Trigger particle -underlying charged hadron momentum HBP histogram
388 TH2F * fhZTUeLeftCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
389 TH2F * fhPtHbpZTUeLeftCharged ; //! Trigger particle -underlying charged hadron momentum HBP histogram
390
391 //for pout and kt extraction
392 TH2F * fhPtTrigPout ; //! Pout =associated pt*sin(delta phi) distribution vs trigger pt
393 TH2F * fhPtTrigCharged ; //! trigger and correlated particl pt, to be used for mean value for kt
394
395 //if different multiplicity analysis asked
396 TH2F ** fhDeltaPhiChargedMult ; //![GetNCentrBin()] differences of phi between trigger and charged hadrons: multiplicity bin
397 TH2F ** fhDeltaEtaChargedMult ; //![GetNCentrBin()] differences of eta between trigger and charged hadrons: multiplicity bin
398 TH2F ** fhXEMult ; //![GetNCentrBin()] Trigger particle -charged hadron momentum imbalance histogram: multiplicity bin
399 TH2F ** fhXEUeMult ; //![GetNCentrBin()] Trigger particle -UE charged hadron momentum imbalance histogram: multiplicity bin
400 TH2F ** fhZTMult ; //![GetNCentrBin()] Trigger particle -charged hadron momentum imbalance histogram: multiplicity bin
401 TH2F ** fhZTUeMult ; //![GetNCentrBin()] Trigger particle -UE charged hadron momentum imbalance histogram: multiplicity bin
402
403 TH2F * fhAssocPtBkg; //! Trigger pT vs associated pT for background
404 TH2F ** fhDeltaPhiDeltaEtaAssocPtBin; //![fNAssocPtBins*GetNZvertBin()] Difference of charged particle phi and trigger particle phi as function eta difference, for different associated bins
405 TH2F ** fhDeltaPhiAssocPtBin; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs dPhi for different associated pt and vz bins
406 TH2F ** fhDeltaPhiAssocPtBinDEta08; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs dPhi for different associated pt and vz bins for Delta eta > 0.8
407 TH2F ** fhDeltaPhiAssocPtBinDEta0 ; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs dPhi for different associated pt and vz bins for Delta eta = 0
408 TH2F ** fhDeltaPhiAssocPtBinHMPID; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs dPhi for different associated pt and vz bins, track with HMPID
409 TH2F ** fhDeltaPhiAssocPtBinHMPIDAcc; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs dPhi for different associated pt and vz bins, track with HMPIDAcc
410 TH2F ** fhDeltaPhiBradAssocPtBin; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs dPhi Brad (?) for different associated pt bins
411 TH2F * fhDeltaPhiBrad; //! Trigger pT vs dPhi Brad (?) for different associated pt bins
412 TH2F ** fhXEAssocPtBin ; //![fNAssocPtBins] Trigger pT vs xE for different associated pt bins
413 TH2F ** fhZTAssocPtBin ; //![fNAssocPtBins] Trigger pT vs zT for different associated pt bins
414 TH2F ** fhXEVZ ; //![GetNZvertBin()] Trigger pT vs xE for different vz bins
415 TH2F ** fhZTVZ ; //![GetNZvertBin()] Trigger pT vs zT for different vz bins
416
417 //trigger-neutral histograms
418 TH2F * fhDeltaPhiDeltaEtaNeutral ; //! differences of eta and phi between trigger and neutral hadrons (pi0)
419 TH2F * fhPhiNeutral ; //! Phi distribution of neutral particles
420 TH2F * fhEtaNeutral ; //! Eta distribution of neutral particles
421 TH2F * fhDeltaPhiNeutral ; //! Difference of neutral particle phi and trigger particle phi as function of trigger particle pT
422 TH2F * fhDeltaEtaNeutral ; //! Difference of neutral particle eta and trigger particle eta as function of trigger particle pT
423 TH2F * fhDeltaPhiNeutralPt ; //! Difference of neutral particle phi and trigger particle phi as function of neutral particle particle pT
424 TH2F * fhDeltaPhiUeNeutralPt ; //! Difference of neutral particle phi and trigger particle phi as function of neutral particle particle pT
425 TH2F * fhXENeutral ; //! Trigger particle - neutral hadron momentum imbalance histogram
426 TH2F * fhXEUeNeutral ; //! Trigger particle - neutral hadron momentum imbalance histogram
427 TH2F * fhPtHbpXENeutral ; //! Trigger particle - neutral particle momentum HBP histogram
428 TH2F * fhPtHbpXEUeNeutral ; //! Trigger particle - underlying neutral hadron momentum HBP histogram
429 TH2F * fhZTNeutral ; //! Trigger particle - neutral hadron momentum imbalance histogram
430 TH2F * fhZTUeNeutral ; //! Trigger particle - neutral hadron momentum imbalance histogram
431 TH2F * fhPtHbpZTNeutral ; //! Trigger particle - neutral particle momentum HBP histogram
432 TH2F * fhPtHbpZTUeNeutral ; //! Trigger particle - underlying neutral hadron momentum HBP histogram
433
434 // If several UE calculation is on,
435 TH2F * fhDeltaPhiUeLeftNeutral ; //! Difference of charged particle from underlying events phi and trigger particle phi as function of neutral particle pT
436 TH2F * fhXEUeLeftNeutral ; //! Trigger particle -underlying neutral hadron momentum imbalance histogram
437 TH2F * fhPtHbpXEUeLeftNeutral ; //! Trigger particle -underlying neutral hadron momentum HBP histogram
438 TH2F * fhZTUeLeftNeutral ; //! Trigger particle -underlying neutral hadron momentum imbalance histogram
439 TH2F * fhPtHbpZTUeLeftNeutral ; //! Trigger particle -underlying neutral hadron momentum HBP histogram
440
441 // Pi0/Eta trigger correlation, recover input photons
442 TH2F * fhPtPi0DecayRatio ; //! for pi0 trigger pt and ratio of decay photon pt
443 TH2F * fhDeltaPhiPi0DecayCharged ; //! Difference of charged particle phi and decay photon from pi0/eta trigger
444 TH2F * fhXEPi0DecayCharged ; //! Trigger particle (decay from pi0/eta trigger)-charged hadron momentum imbalance histogram
445 TH2F * fhZTPi0DecayCharged ; //! Trigger particle (decay from pi0/eta trigger)-charged hadron momentum imbalance histogram
446
447 TH2F * fhDeltaPhiPi0DecayNeutral ; //! Difference of neutral particle phi and decay photon from pi0/eta trigger
448 TH2F * fhXEPi0DecayNeutral ; //! Trigger particle (decay from pi0/eta trigger)-neutral hadron momentum imbalance histogram
449 TH2F * fhZTPi0DecayNeutral ; //! Trigger particle (decay from pi0/eta trigger)-neutral hadron momentum imbalance histogram
450
451 // Decay photon trigger correlation
452 TH2F * fhDeltaPhiDecayCharged[4] ; //! Difference of charged particle phi and photon decay trigger
453 TH2F * fhXEDecayCharged[4] ; //! Trigger particle (decay from pi0)-charged hadron momentum imbalance histogram
454 TH2F * fhZTDecayCharged[4] ; //! Trigger particle (decay from pi0)-charged hadron momentum imbalance histogram
455 TH2F ** fhDeltaPhiDecayChargedAssocPtBin;//![fNAssocPtBins*GetNZvertBin()] Tagged as decay (fDecayBits[0]) Trigger pT vs dPhi for different associated pt bins
456
457 // If the data is MC, correlation with generated particles
458 // check the origin of the cluster : decay photon (pi0, eta, other), merged photon (pi0),
459 // hadron, rest of photons (prompt, FSR, ISR)
460 TH1F * fhMCPtTrigger[7]; //! MC pure pT distribution of trigger particles
461 TH2F * fhMCPhiTrigger[7]; //! MC pure Phi distribution of trigger particles
462 TH2F * fhMCEtaTrigger[7]; //! MC pure Eta distribution of trigger particles
463 TH1F * fhMCPtTriggerNotLeading[7]; //! MC pure pT distribution of trigger not leading particles
464 TH2F * fhMCPhiTriggerNotLeading[7]; //! MC pure Phi distribution of trigger not leading particles
465 TH2F * fhMCEtaTriggerNotLeading[7]; //! MC pure Eta distribution of trigger not leading particles
466 TH2F * fhMCEtaCharged[7]; //! MC pure particles charged primary pt vs eta (both associated)
467 TH2F * fhMCPhiCharged[7]; //! MC pure particles charged primary pt vs phi (both associated)
468 TH2F * fhMCDeltaEtaCharged[7]; //! MC pure particles charged trigger primary pt vs delta eta (associated-trigger)
469 TH2F * fhMCDeltaPhiCharged[7]; //! MC pure particles charged trigger primary pt vs delta phi (associated-trigger)
470 TH2F * fhMCDeltaPhiDeltaEtaCharged[7]; //! MC pure particles charged associated primary pt vs delta phi (associated-trigger), in away side
471 TH2F * fhMCDeltaPhiChargedPt[7]; //! MC pure particles charged delta phi vs delta eta (associated-trigger)
472 TH2F * fhMCPtXECharged[7]; //! MC pure particles charged trigger primary pt vs xE
473 TH2F * fhMCPtXEUeCharged[7]; //! MC pure particles charged trigger primary pt vs xE (underlying event)
474 TH2F * fhMCPtXEUeLeftCharged[7]; //! MC pure particles charged trigger primary pt vs xE (underlying event,left cone)
475 TH2F * fhMCPtHbpXECharged[7]; //! MC pure particles charged trigger primary pt vs ln(1/xE)
476 TH2F * fhMCPtHbpXEUeCharged[7]; //! MC pure particles charged trigger primary pt vs ln(1/xE) (underlying event)
477 TH2F * fhMCPtHbpXEUeLeftCharged[7]; //! MC pure particles charged trigger primary pt vs ln(1/xE) (underlying event, left cone)
478 TH1F * fhMCUePart[7]; //! MC pure UE particles distribution vs pt trig
479 TH2F * fhMCPtZTCharged[7]; //! MC pure particles charged trigger primary pt vs zT
480 TH2F * fhMCPtZTUeCharged[7]; //! MC pure particles charged trigger primary pt vs zT (underlying event)
481 TH2F * fhMCPtZTUeLeftCharged[7]; //! MC pure particles charged trigger primary pt vs zT (underlying event, left cone)
482 TH2F * fhMCPtHbpZTCharged[7]; //! MC pure particles charged trigger primary pt vs ln(1/zT)
483 TH2F * fhMCPtHbpZTUeCharged[7]; //! MC pure particles charged trigger primary pt vs ln(1/zT) (underlying event)
484 TH2F * fhMCPtHbpZTUeLeftCharged[7]; //! MC pure particles charged trigger primary pt vs ln(1/zT) (underlying event, left cone)
485 TH2F * fhMCPtTrigPout[7]; //! MC pure particles charged trigger primary pt vs pOut
486 TH2F * fhMCPtAssocDeltaPhi[7]; //! MC pure particles charged associated primary pt vs delta phi (associated-trigger)
487
488 // Mixing
489 TH1I * fhNEventsTrigger; //! number of analyzed triggered events
490 TH2F * fhNtracksMB; //! total number of tracks in MB events
491 TH2F * fhNclustersMB; //! total number of clusters in MB events
492 TH2F * fhMixDeltaPhiCharged ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT
493 TH2F * fhMixDeltaPhiDeltaEtaCharged ; //! Difference of charged particle phi and trigger particle phi as function eta difference
494 TH2F * fhMixXECharged; //! xE for mixed event
495 TH2F * fhMixXEUeCharged; //! xE for mixed event in Ue region
496 TH2F * fhMixHbpXECharged; //! ln(1/xE) for mixed event
497 TH2F ** fhMixDeltaPhiChargedAssocPtBin; //![fNAssocPtBins*GetNZvertBin()] Difference of charged particle phi and trigger particle phi as function of trigger particle pT, for different associated bins
498 TH2F ** fhMixDeltaPhiChargedAssocPtBinDEta08; //![fNAssocPtBins*GetNZvertBin()] Difference of charged particle phi and trigger particle phi as function of trigger particle pT, for different associated bins, delta eta > 0.8
499 TH2F ** fhMixDeltaPhiChargedAssocPtBinDEta0; //![fNAssocPtBins*GetNZvertBin()] Difference of charged particle phi and trigger particle phi as function of trigger particle pT, for different associated bins, delta eta = 0
500 TH2F ** fhMixDeltaPhiDeltaEtaChargedAssocPtBin; //![fNAssocPtBins*GetNZvertBin()] Difference of charged particle phi and trigger particle phi as function eta difference, for different associated bins
501
502 TH1I * fhEventBin; //! Number of triggers in a particular event bin (cen,vz,rp)
503 TH1I * fhEventMixBin; //! Number of triggers mixed in a particular bin (cen,vz,rp)
504 TH1I * fhEventMBBin; //! Number of MB events in a particular bin (cen,vz,rp)
505
506 AliAnaParticleHadronCorrelation( const AliAnaParticleHadronCorrelation & ph) ; // cpy ctor
507 AliAnaParticleHadronCorrelation & operator = (const AliAnaParticleHadronCorrelation & ph) ; // cpy assignment
508
509 ClassDef(AliAnaParticleHadronCorrelation,35)
510} ;
511
512
513#endif //ALIANAPARTICLEHADRONCORRELATION_H
514
515
516