New macro to display tracks reconstructed from tracking V1 on top of the ITS detailed...
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
a1f090e0 15#include <iostream.h>
78a228db 16#include <TFile.h>
a1f090e0 17#include <TMath.h>
18#include <math.h>
b0f5e3fc 19
20#include "AliITSClusterFinderSDD.h"
e8189707 21#include "AliITSMapA1.h"
22#include "AliITS.h"
78a228db 23#include "AliITSdigit.h"
24#include "AliITSRawCluster.h"
25#include "AliITSRecPoint.h"
26#include "AliITSsegmentation.h"
5dd4cc39 27#include "AliITSresponseSDD.h"
b0f5e3fc 28#include "AliRun.h"
29
b0f5e3fc 30ClassImp(AliITSClusterFinderSDD)
31
42da2935 32//______________________________________________________________________
33AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
34 AliITSresponse *response,
35 TClonesArray *digits,
36 TClonesArray *recp){
37 // standard constructor
78a228db 38
b0f5e3fc 39 fSegmentation=seg;
40 fResponse=response;
41 fDigits=digits;
42 fClusters=recp;
43 fNclusters= fClusters->GetEntriesFast();
b0f5e3fc 44 SetCutAmplitude();
45 SetDAnode();
46 SetDTime();
b0f5e3fc 47 SetMinPeak();
78a228db 48 SetMinNCells();
49 SetMaxNCells();
50 SetTimeCorr();
a1f090e0 51 SetMinCharge();
78a228db 52 fMap=new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
b0f5e3fc 53}
42da2935 54//______________________________________________________________________
55AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
56 // default constructor
b0f5e3fc 57
b0f5e3fc 58 fSegmentation=0;
59 fResponse=0;
60 fDigits=0;
61 fClusters=0;
62 fNclusters=0;
e8189707 63 fMap=0;
5dd4cc39 64 fCutAmplitude=0;
b0f5e3fc 65 SetDAnode();
66 SetDTime();
b0f5e3fc 67 SetMinPeak();
78a228db 68 SetMinNCells();
69 SetMaxNCells();
70 SetTimeCorr();
a1f090e0 71 SetMinCharge();
b0f5e3fc 72}
42da2935 73//____________________________________________________________________________
74AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
e8189707 75 // destructor
76
77 if(fMap) delete fMap;
e8189707 78}
42da2935 79//______________________________________________________________________
80void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
81 // set the signal threshold for cluster finder
82 Float_t baseline,noise,noise_after_el;
83
84 fResponse->GetNoiseParam(noise,baseline);
85 noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
8c4b9445 86 fCutAmplitude=(Int_t)((baseline + nsigma*noise_after_el));
5dd4cc39 87}
42da2935 88//______________________________________________________________________
89void AliITSClusterFinderSDD::Find1DClusters(){
90 // find 1D clusters
91 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
a1f090e0 92
42da2935 93 // retrieve the parameters
94 Int_t fNofMaps = fSegmentation->Npz();
95 Int_t fMaxNofSamples = fSegmentation->Npx();
96 Int_t fNofAnodes = fNofMaps/2;
97 Int_t dummy=0;
98 Float_t fTimeStep = fSegmentation->Dpx(dummy);
99 Float_t fSddLength = fSegmentation->Dx();
100 Float_t fDriftSpeed = fResponse->DriftSpeed();
101 Float_t anodePitch = fSegmentation->Dpz(dummy);
102
103 // map the signal
104 fMap->SetThreshold(fCutAmplitude);
105 fMap->FillMap();
a1f090e0 106
42da2935 107 Float_t noise;
108 Float_t baseline;
109 fResponse->GetNoiseParam(noise,baseline);
a1f090e0 110
42da2935 111 Int_t nofFoundClusters = 0;
112 Int_t i;
113 Float_t **dfadc = new Float_t*[fNofAnodes];
114 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
115 Float_t fadc = 0.;
116 Float_t fadc1 = 0.;
117 Float_t fadc2 = 0.;
118 Int_t j,k,idx,l,m;
119 for(j=0;j<2;j++) {
120 for(k=0;k<fNofAnodes;k++) {
121 idx = j*fNofAnodes+k;
122 // signal (fadc) & derivative (dfadc)
123 dfadc[k][255]=0.;
124 for(l=0; l<fMaxNofSamples; l++) {
125 fadc2=(Float_t)fMap->GetSignal(idx,l);
126 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
127 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
128 } // samples
129 } // anodes
130
131 for(k=0;k<fNofAnodes;k++) {
132 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
133 idx = j*fNofAnodes+k;
134 Int_t imax = 0;
135 Int_t imaxd = 0;
136 Int_t it=0;
137 while(it <= fMaxNofSamples-3) {
138 imax = it;
139 imaxd = it;
140 // maximum of signal
141 Float_t fadcmax = 0.;
142 Float_t dfadcmax = 0.;
143 Int_t lthrmina = 1;
144 Int_t lthrmint = 3;
145 Int_t lthra = 1;
146 Int_t lthrt = 0;
147 for(m=0;m<20;m++) {
148 Int_t id = it+m;
149 if(id>=fMaxNofSamples) break;
150 fadc=(float)fMap->GetSignal(idx,id);
151 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
152 if(fadc > (float)fCutAmplitude) {
153 lthrt++;
154 } // end if
155 if(dfadc[k][id] > dfadcmax) {
156 dfadcmax = dfadc[k][id];
157 imaxd = id;
158 } // end if
159 } // end for m
160 it = imaxd;
161 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
162 // cluster charge
163 Int_t tstart = it-2;
164 if(tstart < 0) tstart = 0;
165 Bool_t ilcl = 0;
166 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
167 if(ilcl) {
168 nofFoundClusters++;
169 Int_t tstop = tstart;
170 Float_t dfadcmin = 10000.;
171 Int_t ij;
172 for(ij=0; ij<20; ij++) {
173 if(tstart+ij > 255) { tstop = 255; break; }
174 fadc=(float)fMap->GetSignal(idx,tstart+ij);
175 if((dfadc[k][tstart+ij] < dfadcmin) &&
176 (fadc > fCutAmplitude)) {
177 tstop = tstart+ij+5;
178 if(tstop > 255) tstop = 255;
179 dfadcmin = dfadc[k][it+ij];
180 } // end if
181 } // end for ij
182
183 Float_t clusterCharge = 0.;
184 Float_t clusterAnode = k+0.5;
185 Float_t clusterTime = 0.;
186 Float_t clusterMult = 0.;
187 Float_t clusterPeakAmplitude = 0.;
188 Int_t its,peakpos=-1;
189 Float_t n, baseline;
190 fResponse->GetNoiseParam(n,baseline);
191 for(its=tstart; its<=tstop; its++) {
192 fadc=(float)fMap->GetSignal(idx,its);
193 if(fadc>baseline) fadc-=baseline;
194 else fadc=0.;
195 clusterCharge += fadc;
196 // as a matter of fact we should take the peak
197 // pos before FFT
198 // to get the list of tracks !!!
199 if(fadc > clusterPeakAmplitude) {
200 clusterPeakAmplitude = fadc;
201 //peakpos=fMap->GetHitIndex(idx,its);
202 Int_t shift=(int)(fTimeCorr/fTimeStep);
203 if(its>shift && its<(fMaxNofSamples-shift))
204 peakpos=fMap->GetHitIndex(idx,its+shift);
205 else peakpos=fMap->GetHitIndex(idx,its);
206 if(peakpos<0) peakpos=fMap->GetHitIndex(idx,its);
207 } // end if
208 clusterTime += fadc*its;
209 if(fadc > 0) clusterMult++;
210 if(its == tstop) {
211 clusterTime /= (clusterCharge/fTimeStep); // ns
212 if(clusterTime>fTimeCorr) clusterTime-=fTimeCorr;
213 //ns
214 } // end if
215 } // end for its
216
217 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
218 anodePitch;
219 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
220 clusterDriftPath = fSddLength-clusterDriftPath;
221 if(clusterCharge <= 0.) break;
222 AliITSRawClusterSDD clust(j+1,clusterAnode,clusterTime,
223 clusterCharge,
224 clusterPeakAmplitude,
225 peakpos,0.,0.,clusterDriftPath,
226 clusteranodePath,clusterMult,0,0,
227 0,0,0,0,0);
228 iTS->AddCluster(1,&clust);
229 it = tstop;
230 } // ilcl
231 it++;
232 } // while (samples)
233 } // anodes
234 } // detectors (2)
235 //fMap->ClearMap();
236
237 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
238 delete [] dfadc;
a1f090e0 239
42da2935 240 return;
a1f090e0 241}
42da2935 242//______________________________________________________________________
243void AliITSClusterFinderSDD::Find1DClustersE(){
24a1c341 244 // find 1D clusters
42da2935 245 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
246 // retrieve the parameters
247 Int_t fNofMaps = fSegmentation->Npz();
248 Int_t fMaxNofSamples = fSegmentation->Npx();
249 Int_t fNofAnodes = fNofMaps/2;
250 Int_t dummy=0;
251 Float_t fTimeStep = fSegmentation->Dpx( dummy );
252 Float_t fSddLength = fSegmentation->Dx();
253 Float_t fDriftSpeed = fResponse->DriftSpeed();
254 Float_t anodePitch = fSegmentation->Dpz( dummy );
255 Float_t n, baseline;
256 fResponse->GetNoiseParam( n, baseline );
257 // map the signal
258 fMap->SetThreshold( fCutAmplitude );
259 fMap->FillMap();
260 Int_t nClu = 0;
261 // cout << "Search cluster... "<< endl;
262 for( Int_t j=0; j<2; j++ ){
263 for( Int_t k=0; k<fNofAnodes; k++ ){
264 Int_t idx = j*fNofAnodes+k;
265 Bool_t on = kFALSE;
266 Int_t start = 0;
267 Int_t nTsteps = 0;
268 Float_t fmax = 0.;
269 Int_t lmax = 0;
270 Float_t charge = 0.;
271 Float_t time = 0.;
272 Float_t anode = k+0.5;
273 Int_t peakpos = -1;
274 for( Int_t l=0; l<fMaxNofSamples; l++ ){
275 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
276 if( fadc > 0.0 ){
277 if( on == kFALSE && l<fMaxNofSamples-4){
278 // star RawCluster (reset var.)
279 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
280 if( fadc1 < fadc ) continue;
281 start = l;
282 fmax = 0.;
283 lmax = 0;
284 time = 0.;
285 charge = 0.;
286 on = kTRUE;
287 nTsteps = 0;
288 } // end if on...
289 nTsteps++ ;
290 if( fadc > baseline ) fadc -= baseline;
291 else fadc=0.;
292 charge += fadc;
293 time += fadc*l;
294 if( fadc > fmax ){
295 fmax = fadc;
296 lmax = l;
297 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
298 if( l > shift && l < (fMaxNofSamples-shift) )
299 peakpos = fMap->GetHitIndex( idx, l+shift );
300 else
301 peakpos = fMap->GetHitIndex( idx, l );
302 if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
303 } // end if fadc
304 }else{ // end fadc>0
305 if( on == kTRUE ){
306 if( nTsteps > 2 ){
307 // min # of timesteps for a RawCluster
308 // Found a RawCluster...
309 Int_t stop = l-1;
310 time /= (charge/fTimeStep); // ns
311 // time = lmax*fTimeStep; // ns
312 if( time > fTimeCorr ) time -= fTimeCorr; // ns
313 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
314 Float_t driftPath = time*fDriftSpeed;
315 driftPath = fSddLength-driftPath;
316 AliITSRawClusterSDD clust(j+1,anode,time,charge,
317 fmax, peakpos,0.,0.,
318 driftPath,anodePath,
319 nTsteps,start,stop,
320 start, stop, 1, k, k );
321 iTS->AddCluster( 1, &clust );
322 // clust.PrintInfo();
323 nClu++;
324 } // end if nTsteps
325 on = kFALSE;
326 } // end if on==kTRUE
327 } // end if fadc>0
328 } // samples
a1f090e0 329 } // anodes
42da2935 330 } // wings
331 // cout << "# Rawclusters " << nClu << endl;
332 return;
a1f090e0 333}
42da2935 334//_______________________________________________________________________
335Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
336 Int_t *peakX, Int_t *peakZ,
337 Float_t *peakAmp, Float_t minpeak ){
338 // search peaks on a 2D cluster
339 Int_t npeak = 0; // # peaks
56fff130 340 Int_t i,j;
42da2935 341 // search peaks
342 for( Int_t z=1; z<zdim-1; z++ ){
343 for( Int_t x=2; x<xdim-3; x++ ){
344 Float_t sxz = spect[x*zdim+z];
345 Float_t sxz1 = spect[(x+1)*zdim+z];
346 Float_t sxz2 = spect[(x-1)*zdim+z];
347 // search a local max. in s[x,z]
348 if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
349 if( sxz >= spect[(x+1)*zdim+z ] && sxz >= spect[(x-1)*zdim+z ] &&
350 sxz >= spect[x*zdim +z+1] && sxz >= spect[x*zdim +z-1] &&
351 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
352 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
353 // peak found
354 peakX[npeak] = x;
355 peakZ[npeak] = z;
356 peakAmp[npeak] = sxz;
357 npeak++;
358 } // end if ....
359 } // end for x
360 } // end for z
361 // search groups of peaks with same amplitude.
362 Int_t *flag = new Int_t[npeak];
363 for( i=0; i<npeak; i++ ) flag[i] = 0;
364 for( i=0; i<npeak; i++ ){
365 for( j=0; j<npeak; j++ ){
366 if( i==j) continue;
367 if( flag[j] > 0 ) continue;
368 if( peakAmp[i] == peakAmp[j] &&
369 TMath::Abs(peakX[i]-peakX[j])<=1 &&
370 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
371 if( flag[i] == 0) flag[i] = i+1;
372 flag[j] = flag[i];
373 } // end if ...
374 } // end for j
375 } // end for i
376 // make average of peak groups
377 for( i=0; i<npeak; i++ ){
378 Int_t nFlag = 1;
379 if( flag[i] <= 0 ) continue;
380 for( j=0; j<npeak; j++ ){
381 if( i==j ) continue;
382 if( flag[j] != flag[i] ) continue;
383 peakX[i] += peakX[j];
384 peakZ[i] += peakZ[j];
385 nFlag++;
386 npeak--;
387 for( Int_t k=j; k<npeak; k++ ){
388 peakX[k] = peakX[k+1];
389 peakZ[k] = peakZ[k+1];
390 peakAmp[k] = peakAmp[k+1];
391 flag[k] = flag[k+1];
392 } // end for k
393 j--;
394 } // end for j
395 if( nFlag > 1 ){
396 peakX[i] /= nFlag;
397 peakZ[i] /= nFlag;
398 } // end fi nFlag
399 } // end for i
400 delete [] flag;
401 return( npeak );
a1f090e0 402}
42da2935 403//______________________________________________________________________
404void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
405 Float_t *spe, Float_t *integral){
24a1c341 406 // function used to fit the clusters
407 // par -> paramiters..
408 // par[0] number of peaks.
409 // for each peak i=1, ..., par[0]
410 // par[i] = Ampl.
411 // par[i+1] = xpos
412 // par[i+2] = zpos
413 // par[i+3] = tau
414 // par[i+4] = sigma.
24a1c341 415 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
416 const Int_t knParam = 5;
417 Int_t npeak = (Int_t)par[0];
42da2935 418
24a1c341 419 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
42da2935 420
24a1c341 421 Int_t k = 1;
42da2935 422 for( Int_t i=0; i<npeak; i++ ){
24a1c341 423 if( integral != 0 ) integral[i] = 0.;
424 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
425 Float_t T2 = par[k+3]; // PASCAL
426 if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
42da2935 427 for( Int_t z=0; z<zdim; z++ ){
428 for( Int_t x=0; x<xdim; x++ ){
24a1c341 429 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
430 Float_t x2 = 0.;
431 Float_t signal = 0.;
42da2935 432 if( electronics == 1 ){ // PASCAL
24a1c341 433 x2 = (x-par[k+1]+T2)/T2;
42da2935 434 signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
435 // signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
436 }else if( electronics == 2 ) { // OLA
437 x2 = (x-par[k+1])*(x-par[k+1])/T2;
438 signal = par[k] * exp( -x2 - z2 );
439 } else {
440 cout << "Wrong SDD Electronics =" << electronics << endl;
441 // exit( 1 );
442 } // end if electronicx
24a1c341 443 spe[x*zdim+z] += signal;
444 if( integral != 0 ) integral[i] += signal;
42da2935 445 } // end for x
446 } // end for z
24a1c341 447 k += knParam;
42da2935 448 } // end for i
24a1c341 449 return;
a1f090e0 450}
42da2935 451//__________________________________________________________________________
452Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
453 Float_t *speFit ){
454 // EVALUATES UNNORMALIZED CHI-SQUARED
455 Float_t chi2 = 0.;
456 for( Int_t z=0; z<zdim; z++ ){
457 for( Int_t x=1; x<xdim-1; x++ ){
458 Int_t index = x*zdim+z;
459 Float_t tmp = spe[index] - speFit[index];
460 chi2 += tmp*tmp;
461 } // end for x
462 } // end for z
463 return( chi2 );
a1f090e0 464}
42da2935 465//_______________________________________________________________________
466void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
467 Float_t *prm0,Float_t *steprm,
468 Float_t *chisqr,Float_t *spe,
469 Float_t *speFit ){
470 //
471 Int_t k, nnn, mmm, i;
472 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
473 const Int_t knParam = 5;
474 Int_t npeak = (Int_t)param[0];
475 for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
476 for( k=1; k<(npeak*knParam+1); k++ ){
477 p1 = param[k];
478 delta = steprm[k];
479 d1 = delta;
480 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
481 if( fabs( p1 ) > 1.0E-6 )
482 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
483 else delta = (Float_t)1.0E-4;
484 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
485 PeakFunc( xdim, zdim, param, speFit );
486 chisq1 = ChiSqr( xdim, zdim, spe, speFit );
487 p2 = p1+delta;
488 param[k] = p2;
489 PeakFunc( xdim, zdim, param, speFit );
490 chisq2 = ChiSqr( xdim, zdim, spe, speFit );
491 if( chisq1 < chisq2 ){
492 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
493 delta = -delta;
494 t = p1;
495 p1 = p2;
496 p2 = t;
497 t = chisq1;
498 chisq1 = chisq2;
499 chisq2 = t;
500 } // end if
501 i = 1; nnn = 0;
502 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
503 nnn++;
504 p3 = p2 + delta;
505 mmm = nnn - (nnn/5)*5; // multiplo de 5
506 if( mmm == 0 ){
a1f090e0 507 d1 = delta;
42da2935 508 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
509 delta *= 5;
510 } // end if
511 param[k] = p3;
512 // Constrain paramiters
513 Int_t kpos = (k-1) % knParam;
514 switch( kpos ){
515 case 0 :
516 if( param[k] <= 20 ) param[k] = fMinPeak;
517 case 1 :
518 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
519 case 2 :
520 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
521 case 3 :
522 if( param[k] < .5 ) param[k] = .5;
523 case 4 :
524 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
525 }; // end switch
526 PeakFunc( xdim, zdim, param, speFit );
527 chisq3 = ChiSqr( xdim, zdim, spe, speFit );
528 if( chisq3 < chisq2 && nnn < 50 ){
529 p1 = p2;
530 p2 = p3;
531 chisq1 = chisq2;
532 chisq2 = chisq3;
533 }else i=0;
a1f090e0 534 } while( i );
42da2935 535 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
536 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
537 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
538 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
539 else p0 = 10000;
540 //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
541 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
542 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
543 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
544 //if( fabs( p2-p0 ) > dp ) p0 = p2;
545 param[k] = p0;
546 // Constrain paramiters
547 Int_t kpos = (k-1) % knParam;
548 switch( kpos ){
549 case 0 :
550 if( param[k] <= 20 ) param[k] = fMinPeak;
551 case 1 :
552 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
553 case 2 :
554 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
555 case 3 :
556 if( param[k] < .5 ) param[k] = .5;
557 case 4 :
558 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
559 }; // end switch
a1f090e0 560 PeakFunc( xdim, zdim, param, speFit );
42da2935 561 chisqt = ChiSqr( xdim, zdim, spe, speFit );
562 // DO NOT ALLOW ERRONEOUS INTERPOLATION
563 if( chisqt <= *chisqr ) *chisqr = chisqt;
564 else param[k] = prm0[k];
565 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
566 steprm[k] = (param[k]-prm0[k])/5;
567 if( steprm[k] >= d1 ) steprm[k] = d1/5;
568 } // end for k
569 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
570 PeakFunc( xdim, zdim, param, speFit );
571 *chisqr = ChiSqr( xdim, zdim, spe, speFit );
572 return;
a1f090e0 573}
42da2935 574//_________________________________________________________________________
575Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim,
576 Float_t *param, Float_t *spe,
577 Int_t *niter, Float_t *chir ){
578 // fit method from Comput. Phys. Commun 46(1987) 149
579 const Float_t kchilmt = 0.01; // relative accuracy
580 const Int_t knel = 3; // for parabolic minimization
581 const Int_t knstop = 50; // Max. iteration number
582 const Int_t knParam = 5;
583 Int_t npeak = (Int_t)param[0];
584 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
585 if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
586 Float_t degFree = (xdim*zdim - npeak*knParam)-1;
587 Int_t n, k, iterNum = 0;
588 Float_t *prm0 = new Float_t[npeak*knParam+1];
589 Float_t *step = new Float_t[npeak*knParam+1];
590 Float_t *schi = new Float_t[npeak*knParam+1];
591 Float_t *sprm[3];
592 sprm[0] = new Float_t[npeak*knParam+1];
593 sprm[1] = new Float_t[npeak*knParam+1];
594 sprm[2] = new Float_t[npeak*knParam+1];
595 Float_t chi0, chi1, reldif, a, b, prmin, dp;
596 Float_t *speFit = new Float_t[ xdim*zdim ];
597 PeakFunc( xdim, zdim, param, speFit );
598 chi0 = ChiSqr( xdim, zdim, spe, speFit );
599 chi1 = chi0;
600 for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
601 for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
602 step[k] = param[k] / 20.0 ;
a1f090e0 603 step[k+1] = param[k+1] / 50.0;
42da2935 604 step[k+2] = param[k+2] / 50.0;
a1f090e0 605 step[k+3] = param[k+3] / 20.0;
606 step[k+4] = param[k+4] / 20.0;
42da2935 607 } // end for k
608 Int_t out = 0;
609 do{
610 iterNum++;
a1f090e0 611 chi0 = chi1;
24a1c341 612 Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
a1f090e0 613 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
42da2935 614 // EXIT conditions
615 if( reldif < (float) kchilmt ){
616 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
617 *niter = iterNum;
618 out = 0;
619 break;
620 } // end if
621 if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
622 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
623 *niter = iterNum;
624 out = 0;
625 break;
626 } // end if
627 if( iterNum > 5*knstop ){
628 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
629 *niter = iterNum;
630 out = 1;
631 break;
632 } // end if
24a1c341 633 if( iterNum <= knel ) continue;
24a1c341 634 n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
a1f090e0 635 if( n > 3 || n == 0 ) continue;
636 schi[n-1] = chi1;
24a1c341 637 for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
a1f090e0 638 if( n != 3 ) continue;
42da2935 639 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
640 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
641 for( k=1; k<(npeak*knParam+1); k++ ){
642 Float_t tmp0 = sprm[0][k];
643 Float_t tmp1 = sprm[1][k];
644 Float_t tmp2 = sprm[2][k];
645 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
646 a += (schi[2]*(tmp0-tmp1));
647 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
648 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
649 (tmp0*tmp0-tmp1*tmp1)));
650 if ((double)a < 1.0E-6) prmin = 0;
651 else prmin = (float) (0.5*b/a);
652 dp = 5*(tmp2-tmp0);
653 if (fabs(prmin-tmp2) > fabs(dp)) prmin = tmp2+dp;
654 param[k] = prmin;
655 step[k] = dp/10; // OPTIMIZE SEARCH STEP
656 } // end for k
657 } while( kTRUE );
658 delete [] prm0;
659 delete [] step;
660 delete [] schi;
661 delete [] sprm[0];
662 delete [] sprm[1];
663 delete [] sprm[2];
664 delete [] speFit;
665 return( out );
a1f090e0 666}
42da2935 667//______________________________________________________________________
668void AliITSClusterFinderSDD::ResolveClustersE(){
669 // The function to resolve clusters if the clusters overlapping exists
24a1c341 670 Int_t i;
42da2935 671 static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
672 // get number of clusters for this module
673 Int_t nofClusters = fClusters->GetEntriesFast();
674 nofClusters -= fNclusters;
675 Int_t fNofMaps = fSegmentation->Npz();
676 Int_t fNofAnodes = fNofMaps/2;
677 Int_t fMaxNofSamples = fSegmentation->Npx();
678 Int_t dummy=0;
679 Double_t fTimeStep = fSegmentation->Dpx( dummy );
680 Double_t fSddLength = fSegmentation->Dx();
681 Double_t fDriftSpeed = fResponse->DriftSpeed();
682 Double_t anodePitch = fSegmentation->Dpz( dummy );
683 Float_t n, baseline;
684 fResponse->GetNoiseParam( n, baseline );
685 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
686 // fill Map of signals
687 fMap->FillMap();
688 for( Int_t j=0; j<nofClusters; j++ ){
689 // get cluster information
690 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
691 Int_t astart = clusterJ->Astart();
692 Int_t astop = clusterJ->Astop();
693 Int_t tstart = clusterJ->Tstartf();
694 Int_t tstop = clusterJ->Tstopf();
695 Int_t wing = (Int_t)clusterJ->W();
696 if( wing == 2 ){
697 astart += fNofAnodes;
698 astop += fNofAnodes;
699 } // end if
700 Int_t xdim = tstop-tstart+3;
701 Int_t zdim = astop-astart+3;
702 Float_t *sp = new Float_t[ xdim*zdim+1 ];
703 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
704 // make a local map from cluster region
705 for( Int_t ianode=astart; ianode<=astop; ianode++ ){
706 for( Int_t itime=tstart; itime<=tstop; itime++ ){
707 Float_t fadc = fMap->GetSignal( ianode, itime );
708 if( fadc > baseline ) fadc -= (Double_t)baseline;
709 else fadc = 0.;
710 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
711 sp[index] = fadc;
712 } // time loop
713 } // anode loop
714 // search peaks on cluster
715 const Int_t kNp = 150;
716 Int_t peakX1[kNp];
717 Int_t peakZ1[kNp];
718 Float_t peakAmp1[kNp];
719 Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
720 // if multiple peaks, split cluster
721 if( npeak >= 1 ){
722 // cout << "npeak " << npeak << endl;
723 // clusterJ->PrintInfo();
724 Float_t *par = new Float_t[npeak*5+1];
725 par[0] = (Float_t)npeak;
726 // Initial paramiters in cell dimentions
727 Int_t k1 = 1;
728 for( i=0; i<npeak; i++ ){
729 par[k1] = peakAmp1[i];
730 par[k1+1] = peakX1[i]; // local time pos. [timebin]
731 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
732 if( electronics == 1 )
733 par[k1+3] = 2.; // PASCAL
734 else if( electronics == 2 )
735 par[k1+3] = 0.7; // tau [timebin] OLA
736 par[k1+4] = .4; // sigma [anodepich]
737 k1+=5;
738 } // end for i
739 Int_t niter;
740 Float_t chir;
741 NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
742 Float_t peakX[kNp];
743 Float_t peakZ[kNp];
744 Float_t sigma[kNp];
745 Float_t tau[kNp];
746 Float_t peakAmp[kNp];
747 Float_t integral[kNp];
748 //get integrals => charge for each peak
749 PeakFunc( xdim, zdim, par, sp, integral );
750 k1 = 1;
751 for( i=0; i<npeak; i++ ){
752 peakAmp[i] = par[k1];
753 peakX[i] = par[k1+1];
754 peakZ[i] = par[k1+2];
755 tau[i] = par[k1+3];
756 sigma[i] = par[k1+4];
757 k1+=5;
758 } // end for i
759 // calculate paramiter for new clusters
760 for( i=0; i<npeak; i++ ){
761 AliITSRawClusterSDD clusterI( *clusterJ );
762 Int_t newAnode = peakZ1[i]-1 + astart;
763 Int_t newiTime = peakX1[i]-1 + tstart;
764 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
765 if(newiTime>shift&&newiTime<(fMaxNofSamples-shift)) shift = 0;
766 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
767 clusterI.SetPeakPos( peakpos );
768 clusterI.SetPeakAmpl( peakAmp1[i] );
769 Float_t newAnodef = peakZ[i] - 0.5 + astart;
770 Float_t newiTimef = peakX[i] - 1 + tstart;
771 if( wing == 2 ) newAnodef -= fNofAnodes;
772 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
773 newiTimef *= fTimeStep;
774 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
775 if( electronics == 1 ){
776 newiTimef *= 0.999438; // PASCAL
777 newiTimef += (6./fDriftSpeed - newiTimef/3000.);
778 }else if( electronics == 2 )
779 newiTimef *= 0.99714; // OLA
780 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
781 Float_t sign = ( wing == 1 ) ? -1. : 1.;
782 clusterI.SetX( driftPath*sign * 0.0001 );
783 clusterI.SetZ( anodePath * 0.0001 );
784 clusterI.SetAnode( newAnodef );
785 clusterI.SetTime( newiTimef );
786 clusterI.SetAsigma( sigma[i]*anodePitch );
787 clusterI.SetTsigma( tau[i]*fTimeStep );
788 clusterI.SetQ( integral[i] );
789 // clusterI.PrintInfo();
790 iTS->AddCluster( 1, &clusterI );
791 } // end for i
792 fClusters->RemoveAt( j );
793 delete [] par;
794 } else cout <<" --- Peak not found!!!! minpeak=" << fMinPeak<<
795 " cluster peak=" << clusterJ->PeakAmpl() << endl << endl;
796 delete [] sp;
797 } // cluster loop
798 fClusters->Compress();
799 fMap->ClearMap();
a1f090e0 800}
42da2935 801//________________________________________________________________________
802void AliITSClusterFinderSDD::GroupClusters(){
803 // group clusters
804 Int_t dummy=0;
805 Float_t fTimeStep = fSegmentation->Dpx(dummy);
806 // get number of clusters for this module
807 Int_t nofClusters = fClusters->GetEntriesFast();
808 nofClusters -= fNclusters;
809 AliITSRawClusterSDD *clusterI;
810 AliITSRawClusterSDD *clusterJ;
811 Int_t *label = new Int_t [nofClusters];
812 Int_t i,j;
813 for(i=0; i<nofClusters; i++) label[i] = 0;
814 for(i=0; i<nofClusters; i++) {
815 if(label[i] != 0) continue;
816 for(j=i+1; j<nofClusters; j++) {
817 if(label[j] != 0) continue;
818 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
819 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
820 // 1.3 good
821 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
822 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
823 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
824 if(!pair) continue;
825 // clusterI->PrintInfo();
826 // clusterJ->PrintInfo();
827 clusterI->Add(clusterJ);
828 label[j] = 1;
829 fClusters->RemoveAt(j);
830 j=i; // <- Ernesto
831 } // J clusters
832 label[i] = 1;
833 } // I clusters
834 fClusters->Compress();
835
836 delete [] label;
837 return;
b0f5e3fc 838}
42da2935 839//________________________________________________________________________
840void AliITSClusterFinderSDD::SelectClusters(){
841 // get number of clusters for this module
842 Int_t nofClusters = fClusters->GetEntriesFast();
b0f5e3fc 843
42da2935 844 nofClusters -= fNclusters;
845 Int_t i;
846 for(i=0; i<nofClusters; i++) {
847 AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
848 Int_t rmflg = 0;
849 Float_t wy = 0.;
850 if(clusterI->Anodes() != 0.) {
851 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
852 } // end if
853 Int_t amp = (Int_t) clusterI->PeakAmpl();
854 Int_t cha = (Int_t) clusterI->Q();
855 if(amp < fMinPeak) rmflg = 1;
856 if(cha < fMinCharge) rmflg = 1;
857 if(wy < fMinNCells) rmflg = 1;
858 //if(wy > fMaxNCells) rmflg = 1;
859 if(rmflg) fClusters->RemoveAt(i);
860 } // I clusters
861 fClusters->Compress();
862 return;
b0f5e3fc 863}
42da2935 864//__________________________________________________________________________
865void AliITSClusterFinderSDD::ResolveClusters(){
866 // The function to resolve clusters if the clusters overlapping exists
867/* AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
868 // get number of clusters for this module
869 Int_t nofClusters = fClusters->GetEntriesFast();
870 nofClusters -= fNclusters;
871 //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
872 // <<fNclusters<<endl;
873 Int_t fNofMaps = fSegmentation->Npz();
874 Int_t fNofAnodes = fNofMaps/2;
875 Int_t dummy=0;
876 Double_t fTimeStep = fSegmentation->Dpx(dummy);
877 Double_t fSddLength = fSegmentation->Dx();
878 Double_t fDriftSpeed = fResponse->DriftSpeed();
879 Double_t anodePitch = fSegmentation->Dpz(dummy);
880 Float_t n, baseline;
881 fResponse->GetNoiseParam(n,baseline);
882 Float_t dzz_1A = anodePitch * anodePitch / 12;
883 // fill Map of signals
a1f090e0 884 fMap->FillMap();
42da2935 885 Int_t j,i,ii,ianode,anode,itime;
886 Int_t wing,astart,astop,tstart,tstop,nanode;
887 Double_t fadc,ClusterTime;
888 Double_t q[400],x[400],z[400]; // digit charges and coordinates
889 for(j=0; j<nofClusters; j++) {
890 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
891 Int_t ndigits = 0;
892 astart=clusterJ->Astart();
893 astop=clusterJ->Astop();
894 tstart=clusterJ->Tstartf();
895 tstop=clusterJ->Tstopf();
896 nanode=clusterJ->Anodes(); // <- Ernesto
897 wing=(Int_t)clusterJ->W();
898 if(wing == 2) {
899 astart += fNofAnodes;
900 astop += fNofAnodes;
901 } // end if
902 // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
903 // <<tstart<<","<<tstop<<endl;
904 // clear the digit arrays
905 for(ii=0; ii<400; ii++) {
906 q[ii] = 0.;
907 x[ii] = 0.;
908 z[ii] = 0.;
909 } // end for ii
910
911 for(ianode=astart; ianode<=astop; ianode++) {
912 for(itime=tstart; itime<=tstop; itime++) {
913 fadc=fMap->GetSignal(ianode,itime);
914 if(fadc>baseline) {
915 fadc-=(Double_t)baseline;
916 q[ndigits] = fadc*(fTimeStep/160); // KeV
917 anode = ianode;
918 if(wing == 2) anode -= fNofAnodes;
919 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
920 ClusterTime = itime*fTimeStep;
921 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
922 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
923 if(wing == 1) x[ndigits] *= (-1);
924 // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
925 // <<fadc<<endl;
926 // cout<<"wing,anode,ndigits,charge ="<<wing<<","
927 // <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
928 ndigits++;
929 continue;
930 } // end if
931 fadc=0;
932 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
933 } // time loop
934 } // anode loop
935 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
936 // Fit cluster to resolve for two separate ones --------------------
937 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
938 Double_t dxx=0., dzz=0., dxz=0.;
939 Double_t scl = 0., tmp, tga, elps = -1.;
940 Double_t xfit[2], zfit[2], qfit[2];
941 Double_t pitchz = anodePitch*1.e-4; // cm
942 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
943 Double_t sigma2;
944 Int_t nfhits;
945 Int_t nbins = ndigits;
946 Int_t separate = 0;
947 // now, all lengths are in microns
948 for (ii=0; ii<nbins; ii++) {
949 qq += q[ii];
950 xm += x[ii]*q[ii];
951 zm += z[ii]*q[ii];
952 xx += x[ii]*x[ii]*q[ii];
953 zz += z[ii]*z[ii]*q[ii];
954 xz += x[ii]*z[ii]*q[ii];
955 } // end for ii
956 xm /= qq;
957 zm /= qq;
958 xx /= qq;
959 zz /= qq;
960 xz /= qq;
961 dxx = xx - xm*xm;
962 dzz = zz - zm*zm;
963 dxz = xz - xm*zm;
964
965 // shrink the cluster in the time direction proportionaly to the
966 // dxx/dzz, which lineary depends from the drift path
a1f090e0 967 // new Ernesto........
42da2935 968 if( nanode == 1 ){
969 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
970 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
971 } // end if
972 if( nanode == 2 ){
973 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
974 } // end if
975 if( nanode == 3 ){
976 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
977 } // end if
978 if( nanode > 3 ){
979 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
980 } // end if
981 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
982 // <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
983 // old Boris.........
984 // tmp=29730. - 585.*fabs(xm/1000.);
985 // scl=TMath::Sqrt(tmp/130000.);
a1f090e0 986
42da2935 987 xm *= scl;
988 xx *= scl*scl;
989 xz *= scl;
990
991 dxx = xx - xm*xm;
992 // dzz = zz - zm*zm;
993 dxz = xz - xm*zm;
994 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
995 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
996 // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
a1f090e0 997
42da2935 998 if (dxx < 0.) dxx=0.;
999 // the data if no cluster overlapping (the coordunates are in cm)
1000 nfhits = 1;
1001 xfit[0] = xm*1.e-4;
1002 zfit[0] = zm*1.e-4;
1003 qfit[0] = qq;
1004 // if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
a1f090e0 1005
42da2935 1006 if (nbins >= 7) {
1007 if (dxz==0.) tga=0.;
1008 else {
1009 tmp=0.5*(dzz-dxx)/dxz;
1010 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) :
1011 tmp+TMath::Sqrt(tmp*tmp+1);
1012 } // end if dxz
1013 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1014 // change from microns to cm
1015 xm *= 1.e-4;
1016 zm *= 1.e-4;
1017 zz *= 1.e-8;
1018 xx *= 1.e-8;
1019 xz *= 1.e-8;
1020 dxz *= 1.e-8;
1021 dxx *= 1.e-8;
1022 dzz *= 1.e-8;
1023 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1024 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1025 for (i=0; i<nbins; i++) {
1026 x[i] = x[i] *= scl;
1027 x[i] = x[i] *= 1.e-4;
1028 z[i] = z[i] *= 1.e-4;
1029 } // end for i
1030 // cout<<"!!! elps ="<<elps<<endl;
1031 if (elps < 0.3) { // try to separate hits
1032 separate = 1;
1033 tmp=atan(tga);
1034 Double_t cosa=cos(tmp),sina=sin(tmp);
1035 Double_t a1=0., x1=0., xxx=0.;
1036 for (i=0; i<nbins; i++) {
1037 tmp=x[i]*cosa + z[i]*sina;
1038 if (q[i] > a1) {
1039 a1=q[i];
1040 x1=tmp;
1041 } // end if
1042 xxx += tmp*tmp*tmp*q[i];
1043 } // end for i
1044 xxx /= qq;
1045 Double_t z12=-sina*xm + cosa*zm;
1046 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1047 xm=cosa*xm + sina*zm;
1048 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1049 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1050 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1051 for (i=0; i<33; i++) { // solve a system of equations
1052 Double_t x1_old=x1, x2_old=x2, r_old=r;
1053 Double_t c11=x1-x2;
1054 Double_t c12=r;
1055 Double_t c13=1-r;
1056 Double_t c21=x1*x1 - x2*x2;
1057 Double_t c22=2*r*x1;
1058 Double_t c23=2*(1-r)*x2;
1059 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1060 Double_t c32=3*r*(sigma2 + x1*x1);
1061 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1062 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1063 Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1064 Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1065 (3*sigma2+x2*x2)-xxx);
1066 Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1067 c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1068 if (d==0.) {
1069 cout<<"*********** d=0 ***********\n";
1070 break;
1071 } // end if
1072 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1073 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1074 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1075 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1076 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1077 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1078 r += dr/d;
1079 x1 += d1/d;
1080 x2 += d2/d;
1081 if (fabs(x1-x1_old) > 0.0001) continue;
1082 if (fabs(x2-x2_old) > 0.0001) continue;
1083 if (fabs(r-r_old)/5 > 0.001) continue;
1084 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1085 Double_t a2=a1*(1-r)/r;
1086 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina +
1087 z12*cosa;
1088 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina +
1089 z12*cosa;
1090 nfhits=2;
1091 break; // Ok !
1092 } // end for i
1093 if (i==33) cerr<<"No more iterations ! "<<endl;
1094 } // end of attempt to separate overlapped clusters
1095 } // end of nbins cut
1096 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1097 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1098 <<elps<<","<<nfhits<<endl;
1099 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1100 for (i=0; i<nfhits; i++) {
1101 xfit[i] *= (1.e+4/scl);
1102 if(wing == 1) xfit[i] *= (-1);
1103 zfit[i] *= 1.e+4;
1104 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","
1105 // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1106 } // end for i
1107 Int_t ncl = nfhits;
1108 if(nfhits == 1 && separate == 1) {
1109 cout<<"!!!!! no separate"<<endl;
1110 ncl = -2;
1111 } // end if
1112 if(nfhits == 2) {
1113 cout << "Split cluster: " << endl;
1114 clusterJ->PrintInfo();
1115 cout << " in: " << endl;
1116 for (i=0; i<nfhits; i++) {
1117 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
1118 -1,-1,(Float_t)qfit[i],ncl,0,0,
1119 (Float_t)xfit[i],
1120 (Float_t)zfit[i],0,0,0,0,
1121 tstart,tstop,astart,astop);
1122 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1123 // -1,(Float_t)qfit[i],0,0,0,
1124 // (Float_t)xfit[i],
1125 // (Float_t)zfit[i],0,0,0,0,
1126 // tstart,tstop,astart,astop,ncl);
1127 // ???????????
1128 // if(wing == 1) xfit[i] *= (-1);
1129 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1130 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1131 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1132 Float_t peakpos = clusterJ->PeakPos();
1133 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1134 Float_t clusterDriftPath = Time*fDriftSpeed;
1135 clusterDriftPath = fSddLength-clusterDriftPath;
1136 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1137 Time,qfit[i],
1138 clusterPeakAmplitude,peakpos,
1139 0.,0.,clusterDriftPath,
1140 clusteranodePath,clusterJ->Samples()/2
a1f090e0 1141 ,tstart,tstop,0,0,0,astart,astop);
42da2935 1142 clust->PrintInfo();
1143 iTS->AddCluster(1,clust);
1144 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1145 // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1146 // <<","<<ncl<<endl;
1147 delete clust;
1148 }// nfhits loop
1149 fClusters->RemoveAt(j);
1150 } // if nfhits = 2
1151} // cluster loop
1152fClusters->Compress();
1153fMap->ClearMap();
1154*/
1155 return;
a1f090e0 1156}
42da2935 1157//______________________________________________________________________
1158void AliITSClusterFinderSDD::GetRecPoints(){
1159 // get rec points
1160 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1161 // get number of clusters for this module
1162 Int_t nofClusters = fClusters->GetEntriesFast();
1163 nofClusters -= fNclusters;
1164 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1165 const Float_t kconv = 1.0e-4;
1166 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1167 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1168 Int_t i;
1169 Int_t ix, iz, idx=-1;
1170 AliITSdigitSDD *dig=0;
1171 Int_t ndigits=fDigits->GetEntriesFast();
1172 for(i=0; i<nofClusters; i++) {
1173 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1174 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1175 if(clusterI) idx=clusterI->PeakPos();
1176 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1177 // try peak neighbours - to be done
1178 if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1179 if(!dig) {
1180 // try cog
1181 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1182 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1183 // if null try neighbours
1184 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1185 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1186 if (!dig) printf("SDD: cannot assign the track number!\n");
1187 } // end if !dig
1188 AliITSRecPoint rnew;
1189 rnew.SetX(clusterI->X());
1190 rnew.SetZ(clusterI->Z());
1191 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
1192 rnew.SetdEdX(kconvGeV*clusterI->Q());
1193 rnew.SetSigmaX2(kRMSx*kRMSx);
1194 rnew.SetSigmaZ2(kRMSz*kRMSz);
1195 if(dig) rnew.fTracks[0]=dig->fTracks[0];
1196 if(dig) rnew.fTracks[1]=dig->fTracks[1];
1197 if(dig) rnew.fTracks[2]=dig->fTracks[2];
1198 //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1199 // i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1200 // lusterI->X(),clusterI->Z());
1201 iTS->AddRecPoint(rnew);
1202 } // I clusters
1203 fMap->ClearMap();
b0f5e3fc 1204}
42da2935 1205//______________________________________________________________________
1206void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1207 // find raw clusters
b0f5e3fc 1208
a1f090e0 1209 Find1DClustersE();
b0f5e3fc 1210 GroupClusters();
1211 SelectClusters();
a1f090e0 1212 ResolveClustersE();
b0f5e3fc 1213 GetRecPoints();
1214}
42da2935 1215//_______________________________________________________________________
1216void AliITSClusterFinderSDD::Print(){
1217 // Print SDD cluster finder Parameters
1218
1219 cout << "**************************************************" << endl;
1220 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1221 cout << "**************************************************" << endl;
1222 cout << "Number of Clusters: " << fNclusters << endl;
1223 cout << "Anode Tolerance: " << fDAnode << endl;
1224 cout << "Time Tolerance: " << fDTime << endl;
1225 cout << "Time correction (electronics): " << fTimeCorr << endl;
1226 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1227 cout << "Minimum Amplitude: " << fMinPeak << endl;
1228 cout << "Minimum Charge: " << fMinCharge << endl;
1229 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1230 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1231 cout << "**************************************************" << endl;
a1f090e0 1232}