]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONClusterFinderAZ.cxx
Merge MC labels for 4 neighbour bins in the Hough space in order to reduce the size...
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterFinderAZ.cxx
CommitLineData
0df3ca52 1#include "AliMUONClusterFinderAZ.h"
2
1f9a65c4 3#include <stdlib.h>
0df3ca52 4#include <fcntl.h>
5#include <Riostream.h>
6#include <TROOT.h>
7#include <TCanvas.h>
8#include <TLine.h>
9#include <TTree.h>
10#include <TH2.h>
11#include <TView.h>
12#include <TStyle.h>
13#include <TMinuit.h>
14#include <TMatrixD.h>
15
16#include "AliHeader.h"
17#include "AliRun.h"
18#include "AliMUON.h"
19#include "AliMUONChamber.h"
20#include "AliMUONDigit.h"
21#include "AliMUONHit.h"
22#include "AliMUONChamber.h"
23#include "AliMUONRawCluster.h"
24#include "AliMUONClusterInput.h"
25#include "AliMUONPixel.h"
5d12ce38 26#include "AliMC.h"
0df3ca52 27
c1aed84f 28// Clusterizer class developped by Zitchenko (Dubna)
29//
30//
31//
9e993f2a 32
0df3ca52 33
34ClassImp(AliMUONClusterFinderAZ)
0558a292 35
343146bf 36 const Double_t AliMUONClusterFinderAZ::fgkCouplMin = 1.e-3; // threshold on coupling
0558a292 37 AliMUONClusterFinderAZ* AliMUONClusterFinderAZ::fgClusterFinder = 0x0;
38 TMinuit* AliMUONClusterFinderAZ::fgMinuit = 0x0;
0df3ca52 39
0df3ca52 40
41//_____________________________________________________________________________
42AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(Bool_t draw=0, Int_t iReco=0)
74f7bbc5 43 : AliMUONClusterFinderVS()
0df3ca52 44{
45// Constructor
46 for (Int_t i=0; i<4; i++) {fHist[i] = 0;}
47 fMuonDigits = 0;
48 fSegmentation[1] = fSegmentation[0] = 0;
0558a292 49 fgClusterFinder = 0x0;
50 fgMinuit = 0x0;
0df3ca52 51 if (!fgClusterFinder) fgClusterFinder = this;
52 if (!fgMinuit) fgMinuit = new TMinuit(8);
53 fDraw = draw;
54 fReco = iReco;
55 fPixArray = new TObjArray(20);
56 /*
57 fPoints = 0;
58 fPhits = 0;
59 fRpoints = 0;
60 fCanvas = 0;
61 fNextCathode = kFALSE;
62 fColPad = 0;
63 */
64}
65
74f7bbc5 66//_____________________________________________________________________________
67AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(const AliMUONClusterFinderAZ& rhs)
68 : AliMUONClusterFinderVS(rhs)
69{
70// Protected copy constructor
71
72 Fatal("AliMUONClusterFinderAZModule", "Not implemented.");
73}
74
0df3ca52 75//_____________________________________________________________________________
76AliMUONClusterFinderAZ::~AliMUONClusterFinderAZ()
77{
78 // Destructor
79 delete fgMinuit; fgMinuit = 0; delete fPixArray; fPixArray = 0;
80 /*
81 // Delete space point structure
82 if (fPoints) fPoints->Delete();
83 delete fPoints;
84 fPoints = 0;
85 //
86 if (fPhits) fPhits->Delete();
87 delete fPhits;
88 fPhits = 0;
89 //
90 if (fRpoints) fRpoints->Delete();
91 delete fRpoints;
92 fRpoints = 0;
93 */
94}
95
74f7bbc5 96//_____________________________________________________________________________
97AliMUONClusterFinderAZ&
98AliMUONClusterFinderAZ::operator=(const AliMUONClusterFinderAZ& rhs)
99{
100// Protected assignement operator
101
102 if (this == &rhs) return *this;
103
104 Fatal("operator=", "Not implemented.");
105
106 return *this;
107}
108
0df3ca52 109//_____________________________________________________________________________
110void AliMUONClusterFinderAZ::FindRawClusters()
111{
112// To provide the same interface as in AliMUONClusterFinderVS
113
114 EventLoop (gAlice->GetHeader()->GetEvent(), AliMUONClusterInput::Instance()->Chamber());
115}
116
117//_____________________________________________________________________________
118void AliMUONClusterFinderAZ::EventLoop(Int_t nev=0, Int_t ch=0)
119{
120// Loop over events
121
122 FILE *lun = 0;
123 TCanvas *c1 = 0;
124 TView *view = 0;
125 TH2F *hist = 0;
126 Double_t p1[3]={0}, p2[3];
c1aed84f 127 TTree *treeR = 0;
0df3ca52 128 if (fDraw) {
129 // File
130 lun = fopen("pool.dat","w");
131 c1 = new TCanvas("c1","Clusters",0,0,600,700);
132 c1->Divide(1,2);
133 new TCanvas("c2","Mlem",700,0,600,350);
134 }
135
136newev:
137 Int_t nparticles = 0, nent;
88cb7938 138
139 //Loaders
140 AliRunLoader * rl = AliRunLoader::GetRunLoader();
141 AliLoader * gime = rl->GetLoader("MUONLoader");
142
143 if (!fReco) nparticles = rl->GetEvent(nev);
5d12ce38 144 else nparticles = gAlice->GetMCApp()->GetNtrack();
0df3ca52 145 cout << "nev " << nev <<endl;
146 cout << "nparticles " << nparticles <<endl;
147 if (nparticles <= 0) return;
148
c1aed84f 149 TTree *treeH = gime->TreeH();
150 Int_t ntracks = (Int_t) treeH->GetEntries();
0df3ca52 151 cout<<"ntracks "<<ntracks<<endl;
152
153 // Get pointers to Alice detectors and Digits containers
c1aed84f 154 AliMUON *muon = (AliMUON*) gAlice->GetModule("MUON");
155 if (!muon) return;
0df3ca52 156 // TClonesArray *Particles = gAlice->Particles();
157 if (!fReco) {
c1aed84f 158 treeR = gime->TreeR();
159 if (treeR) {
160 muon->ResetRawClusters();
161 nent = (Int_t) treeR->GetEntries();
0df3ca52 162 if (nent != 1) {
163 cout << "Error in MUONdrawClust" << endl;
164 cout << " nent = " << nent << " not equal to 1" << endl;
165 //exit(0);
166 }
c1aed84f 167 } // if (treeR)
0df3ca52 168 } // if (!fReco)
169
c1aed84f 170 TTree *treeD = gime->TreeD();
171 //muon->ResetDigits();
0df3ca52 172
c1aed84f 173 TClonesArray *listMUONrawclust ;
0df3ca52 174 AliMUONChamber* iChamber = 0;
175
176 // As default draw the first cluster of the chamber #0
177
178newchamber:
179 if (ch > 9) {if (fReco) return; nev++; ch = 0; goto newev;}
180 //gAlice->ResetDigits();
c1aed84f 181 fMuonDigits = muon->GetMUONData()->Digits(ch);
0df3ca52 182 if (fMuonDigits == 0) return;
c1aed84f 183 iChamber = &(muon->Chamber(ch));
0df3ca52 184 fSegmentation[0] = iChamber->SegmentationModel(1);
185 fSegmentation[1] = iChamber->SegmentationModel(2);
186 fResponse = iChamber->ResponseModel();
187
188 nent = 0;
189
c1aed84f 190 if (treeD) {
191 nent = (Int_t) treeD->GetEntries();
0df3ca52 192 //printf(" entries %d \n", nent);
193 }
194
195 Int_t ndigits[2]={9,9}, nShown[2]={0};
196 for (Int_t i=0; i<2; i++) {
343146bf 197 for (Int_t j=0; j<fgkDim; j++) {fUsed[i][j]=kFALSE;}
0df3ca52 198 }
199
200next:
201 if (ndigits[0] == nShown[0] && ndigits[1] == nShown[1]) {
202 // No more clusters
203 if (fReco) return;
204 ch++;
205 goto newchamber; // next chamber
206 }
207 Float_t xpad, ypad, zpad, zpad0;
208 TLine *line[99]={0};
209 Int_t nLine = 0;
210 Bool_t first = kTRUE;
211 cout << " *** Event # " << nev << " chamber: " << ch << endl;
212 fnPads[0] = fnPads[1] = 0;
343146bf 213 for (Int_t i=0; i<fgkDim; i++) {fPadIJ[1][i] = 0;}
0df3ca52 214 //for (Int_t iii = 0; iii<999; iii++) {
215 for (Int_t iii = 0; iii<2; iii++) {
216 Int_t cath = TMath::Odd(iii);
217 gAlice->ResetDigits();
c1aed84f 218 treeD->GetEvent(cath);
219 fMuonDigits = muon->GetMUONData()->Digits(ch);
0df3ca52 220
221 ndigits[cath] = fMuonDigits->GetEntriesFast();
222 if (!ndigits[0] && !ndigits[1]) {if (fReco) return; ch++; goto newchamber;}
223 if (ndigits[cath] == 0) continue;
224 cout << " ndigits: " << ndigits[cath] << " " << cath << endl;
225
226 AliMUONDigit *mdig;
227 Int_t digit;
228
c1aed84f 229 Bool_t eEOC = kTRUE; // end-of-cluster
0df3ca52 230 for (digit = 0; digit < ndigits[cath]; digit++) {
231 mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
232 if (mdig->Cathode() != cath) continue;
233 if (first) {
234 // Find first unused pad
235 if (fUsed[cath][digit]) continue;
236 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0);
237 } else {
238 if (fUsed[cath][digit]) continue;
239 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad);
240 if (TMath::Abs(zpad-zpad0)>0.1) continue; // different slats
241 // Find a pad overlapping with the cluster
242 if (!Overlap(cath,mdig)) continue;
243 }
244 // Add pad - recursive call
245 AddPad(cath,digit);
c1aed84f 246 eEOC = kFALSE;
0df3ca52 247 if (digit >= 0) break;
248 }
c1aed84f 249 if (first && eEOC) {
0df3ca52 250 // No more unused pads
251 if (cath == 0) continue; // on cathode #0 - check #1
252 else {
253 // No more clusters
254 if (fReco) return;
255 ch++;
256 goto newchamber; // next chamber
257 }
258 }
c1aed84f 259 if (eEOC) break; // cluster found
0df3ca52 260 first = kFALSE;
261 cout << " nPads: " << fnPads[cath] << " " << nShown[cath]+fnPads[cath] << " " << cath << endl;
262 } // for (Int_t iii = 0;
263
264
265 if (fReco) goto skip;
266 char hName[4];
267 for (Int_t cath = 0; cath<2; cath++) {
268 // Build histograms
269 if (fHist[cath*2]) {fHist[cath*2]->Delete(); fHist[cath*2] = 0;}
270 if (fHist[cath*2+1]) {fHist[cath*2+1]->Delete(); fHist[cath*2+1] = 0;}
271 if (fnPads[cath] == 0) continue; // cluster on one cathode only
272 Float_t wxMin=999, wxMax=0, wyMin=999, wyMax=0;
273 Int_t minDx=0, maxDx=0, minDy=0, maxDy=0;
274 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
275 if (fPadIJ[0][i] != cath) continue;
276 if (fXyq[3][i] < wxMin) {wxMin = fXyq[3][i]; minDx = i;}
277 if (fXyq[3][i] > wxMax) {wxMax = fXyq[3][i]; maxDx = i;}
278 if (fXyq[4][i] < wyMin) {wyMin = fXyq[4][i]; minDy = i;}
279 if (fXyq[4][i] > wyMax) {wyMax = fXyq[4][i]; maxDy = i;}
280 }
281 cout << minDx << maxDx << minDy << maxDy << endl;
282 Int_t nx, ny, padSize;
283 Float_t xmin=9999, xmax=-9999, ymin=9999, ymax=-9999;
284 if (TMath::Nint(fXyq[3][minDx]*1000) == TMath::Nint(fXyq[3][maxDx]*1000) &&
285 TMath::Nint(fXyq[4][minDy]*1000) == TMath::Nint(fXyq[4][maxDy]*1000)) {
286 // the same segmentation
287 cout << " Same" << endl;
288 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
289 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
290 if (fPadIJ[0][i] != cath) continue;
291 if (fXyq[0][i] < xmin) xmin = fXyq[0][i];
292 if (fXyq[0][i] > xmax) xmax = fXyq[0][i];
293 if (fXyq[1][i] < ymin) ymin = fXyq[1][i];
294 if (fXyq[1][i] > ymax) ymax = fXyq[1][i];
295 }
296 xmin -= fXyq[3][minDx]; xmax += fXyq[3][minDx];
297 ymin -= fXyq[4][minDy]; ymax += fXyq[4][minDy];
298 nx = TMath::Nint ((xmax-xmin)/wxMin/2);
299 ny = TMath::Nint ((ymax-ymin)/wyMin/2);
300 sprintf(hName,"h%d",cath*2);
301 fHist[cath*2] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
302 cout << fHist[cath*2] << " " << fnPads[cath] << endl;
303 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
304 if (fPadIJ[0][i] != cath) continue;
305 fHist[cath*2]->Fill(fXyq[0][i],fXyq[1][i],fXyq[2][i]);
306 //cout << fXyq[0][i] << fXyq[1][i] << fXyq[2][i] << endl;
307 }
308 } else {
309 // different segmentation in the cluster
310 cout << " Different" << endl;
311 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
312 Int_t nOK = 0;
313 Int_t indx, locMin, locMax;
314 if (TMath::Nint(fXyq[3][minDx]*1000) != TMath::Nint(fXyq[3][maxDx]*1000)) {
315 // different segmentation along x
316 indx = 0;
317 locMin = minDx;
318 locMax = maxDx;
319 } else {
320 // different segmentation along y
321 indx = 1;
322 locMin = minDy;
323 locMax = maxDy;
324 }
325 Int_t loc = locMin;
326 for (Int_t i=0; i<2; i++) {
327 // loop over different pad sizes
328 if (i>0) loc = locMax;
329 padSize = TMath::Nint(fXyq[indx+3][loc]*1000);
330 xmin = 9999; xmax = -9999; ymin = 9999; ymax = -9999;
331 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
332 if (fPadIJ[0][j] != cath) continue;
333 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
334 nOK++;
335 xmin = TMath::Min (xmin,fXyq[0][j]);
336 xmax = TMath::Max (xmax,fXyq[0][j]);
337 ymin = TMath::Min (ymin,fXyq[1][j]);
338 ymax = TMath::Max (ymax,fXyq[1][j]);
339 }
340 xmin -= fXyq[3][loc]; xmax += fXyq[3][loc];
341 ymin -= fXyq[4][loc]; ymax += fXyq[4][loc];
342 nx = TMath::Nint ((xmax-xmin)/fXyq[3][loc]/2);
343 ny = TMath::Nint ((ymax-ymin)/fXyq[4][loc]/2);
344 sprintf(hName,"h%d",cath*2+i);
345 fHist[cath*2+i] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
346 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
347 if (fPadIJ[0][j] != cath) continue;
348 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
349 fHist[cath*2+i]->Fill(fXyq[0][j],fXyq[1][j],fXyq[2][j]);
350 }
351 } // for (Int_t i=0;
352 if (nOK != fnPads[cath]) cout << " *** Too many segmentations: nPads, nOK " << fnPads[cath] << " " << nOK << endl;
353 } // if (TMath::Nint(fXyq[3][minDx]*1000)
354 } // for (Int_t cath = 0;
355
356 // Draw histograms and coordinates
357 for (Int_t cath=0; cath<2; cath++) {
358 if (cath == 0) ModifyHistos();
359 if (fnPads[cath] == 0) continue; // cluster on one cathode only
360 if (fDraw) {
361 c1->cd(cath+1);
362 gPad->SetTheta(55);
363 gPad->SetPhi(30);
cd747ddb 364 Double_t x, y, x0, y0, r1=999, r2=0;
0df3ca52 365 if (fHist[cath*2+1]) {
366 //
367 x0 = fHist[cath*2]->GetXaxis()->GetXmin() - 1000*TMath::Cos(30*TMath::Pi()/180);
368 y0 = fHist[cath*2]->GetYaxis()->GetXmin() - 1000*TMath::Sin(30*TMath::Pi()/180);
369 r1 = 0;
370 Int_t ihist=cath*2;
371 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
372 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
373 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
374 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
375 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
376 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
377 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
378 r1 = TMath::Max (r1,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
379 }
380 }
381 }
382 ihist = cath*2 + 1 ;
383 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
384 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
385 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
386 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
387 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
388 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
389 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
390 r2 = TMath::Max (r2,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
391 }
392 }
393 }
394 cout << r1 << " " << r2 << endl;
395 } // if (fHist[cath*2+1])
396 if (r1 > r2) {
397 //fHist[cath*2]->Draw("lego1");
398 fHist[cath*2]->Draw("lego1Fb");
399 //if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBb");
400 if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBbFb");
401 } else {
402 //fHist[cath*2+1]->Draw("lego1");
403 fHist[cath*2+1]->Draw("lego1Fb");
404 //fHist[cath*2]->Draw("lego1SameAxisBb");
405 fHist[cath*2]->Draw("lego1SameAxisFbBb");
406 }
407 c1->Update();
408 } // if (fDraw)
409 } // for (Int_t cath = 0;
410
411 // Draw generated hits
412 Double_t xNDC[6];
413 hist = fHist[0] ? fHist[0] : fHist[2];
414 p2[2] = hist->GetMaximum();
415 view = 0;
416 if (c1) view = c1->Pad()->GetView();
417 cout << " *** GEANT hits *** " << endl;
418 fnMu = 0;
419 Int_t ix, iy, iok;
420 for (Int_t i=0; i<ntracks; i++) {
c1aed84f 421 treeH->GetEvent(i);
422 for (AliMUONHit* mHit=(AliMUONHit*)muon->FirstHit(-1);
0df3ca52 423 mHit;
c1aed84f 424 mHit=(AliMUONHit*)muon->NextHit()) {
0df3ca52 425 if (mHit->Chamber() != ch+1) continue; // chamber number
426 if (TMath::Abs(mHit->Z()-zpad0) > 1) continue; // different slat
427 p2[0] = p1[0] = mHit->X(); // x-pos of hit
428 p2[1] = p1[1] = mHit->Y(); // y-pos
429 if (p1[0] < hist->GetXaxis()->GetXmin() ||
430 p1[0] > hist->GetXaxis()->GetXmax()) continue;
431 if (p1[1] < hist->GetYaxis()->GetXmin() ||
432 p1[1] > hist->GetYaxis()->GetXmax()) continue;
433 // Check if track comes thru pads with signal
434 iok = 0;
435 for (Int_t ihist=0; ihist<4; ihist++) {
436 if (!fHist[ihist]) continue;
437 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
438 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
439 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
440 }
441 if (!iok) continue;
442 gStyle->SetLineColor(1);
443 if (TMath::Abs((Int_t)mHit->Particle()) == 13) {
444 gStyle->SetLineColor(4);
445 fnMu++;
446 if (fnMu <= 2) {
447 fxyMu[fnMu-1][0] = p1[0];
448 fxyMu[fnMu-1][1] = p1[1];
449 }
450 }
451 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mHit->Z());
452 if (view) {
453 view->WCtoNDC(p1, &xNDC[0]);
454 view->WCtoNDC(p2, &xNDC[3]);
455 for (Int_t ipad=1; ipad<3; ipad++) {
456 c1->cd(ipad);
457 //c1->DrawLine(xpad[0],xpad[1],xpad[3],xpad[4]);
458 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
459 line[nLine++]->Draw();
460 }
461 }
462 } // for (AliMUONHit* mHit=
463 } // for (Int_t i=0; i<ntracks;
464
465 // Draw reconstructed coordinates
c1aed84f 466 listMUONrawclust = muon->GetMUONData()->RawClusters(ch);
467 treeR->GetEvent(ch);
468 //cout << listMUONrawclust << " " << listMUONrawclust ->GetEntries() << endl;
0df3ca52 469 AliMUONRawCluster *mRaw;
470 gStyle->SetLineColor(3);
471 cout << " *** Reconstructed hits *** " << endl;
c1aed84f 472 for (Int_t i=0; i<listMUONrawclust ->GetEntries(); i++) {
473 mRaw = (AliMUONRawCluster*)listMUONrawclust ->UncheckedAt(i);
ba12c242 474 if (TMath::Abs(mRaw->GetZ(0)-zpad0) > 1) continue; // different slat
475 p2[0] = p1[0] = mRaw->GetX(0); // x-pos of hit
476 p2[1] = p1[1] = mRaw->GetY(0); // y-pos
0df3ca52 477 if (p1[0] < hist->GetXaxis()->GetXmin() ||
478 p1[0] > hist->GetXaxis()->GetXmax()) continue;
479 if (p1[1] < hist->GetYaxis()->GetXmin() ||
480 p1[1] > hist->GetYaxis()->GetXmax()) continue;
481 /*
c1aed84f 482 treeD->GetEvent(cath);
0df3ca52 483 cout << mRaw->fMultiplicity[0] << mRaw->fMultiplicity[1] << endl;
484 for (Int_t j=0; j<mRaw->fMultiplicity[cath]; j++) {
485 Int_t digit = mRaw->fIndexMap[j][cath];
486 cout << ((AliMUONDigit*)fMuonDigits->UncheckedAt(digit))->Signal() << endl;
487 }
488 */
489 // Check if track comes thru pads with signal
490 iok = 0;
491 for (Int_t ihist=0; ihist<4; ihist++) {
492 if (!fHist[ihist]) continue;
493 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
494 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
495 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
496 }
497 if (!iok) continue;
ba12c242 498 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mRaw->GetZ(0));
0df3ca52 499 if (view) {
500 view->WCtoNDC(p1, &xNDC[0]);
501 view->WCtoNDC(p2, &xNDC[3]);
502 for (Int_t ipad=1; ipad<3; ipad++) {
503 c1->cd(ipad);
504 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
505 line[nLine++]->Draw();
506 }
507 }
c1aed84f 508 } // for (Int_t i=0; i<listMUONrawclust ->GetEntries();
0df3ca52 509 if (fDraw) c1->Update();
510
511skip:
512 // Use MLEM for cluster finder
513 fZpad = zpad0;
514 Int_t nMax = 1, localMax[100], maxPos[100];
515 Double_t maxVal[100];
516
517 if (CheckPrecluster(nShown)) {
518 BuildPixArray();
519 if (fnPads[0]+fnPads[1] > 50) nMax = FindLocalMaxima(localMax, maxVal);
520 if (nMax > 1) TMath::Sort(nMax, maxVal, maxPos, kTRUE); // in decreasing order
521 for (Int_t i=0; i<nMax; i++) {
522 if (nMax > 1) FindCluster(localMax, maxPos[i]);
523 if (!MainLoop()) cout << " MainLoop failed " << endl;
524 if (i < nMax-1) {
525 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
526 if (fPadIJ[1][j] == 0) continue; // pad charge was not modified
527 fPadIJ[1][j] = 0;
528 fXyq[2][j] = fXyq[5][j]; // use backup charge value
529 }
530 }
531 }
532 }
533 if (fReco) goto next;
534
535 for (Int_t i=0; i<fnMu; i++) {
536 // Check again if muon come thru the used pads (due to extra splitting)
537 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
538 if (TMath::Abs(fxyMu[i][0]-fXyq[0][j])<fXyq[3][j] &&
539 TMath::Abs(fxyMu[i][1]-fXyq[1][j])<fXyq[4][j]) {
540 printf("%12.3e %12.3e %12.3e %12.3e\n",fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
541 if (lun) fprintf(lun,"%4d %2d %12.3e %12.3e %12.3e %12.3e\n",nev,ch,fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
542 break;
543 }
544 }
545 } // for (Int_t i=0; i<fnMu;
546
547 // What's next?
548 char command[8];
549 cout << " What is next? " << endl;
550 command[0] = ' ';
551 if (fDraw) gets(command);
552 if (command[0] == 'n' || command[0] == 'N') {nev++; goto newev;} // next event
553 else if (command[0] == 'q' || command[0] == 'Q') {fclose(lun); return;} // exit display
554 //else if (command[0] == 'r' || command[0] == 'R') goto redraw; // redraw points
555 else if (command[0] == 'c' || command[0] == 'C') {
556 // new chamber
557 sscanf(command+1,"%d",&ch);
558 goto newchamber;
559 }
560 else if (command[0] == 'e' || command[0] == 'E') {
561 // new event
562 sscanf(command+1,"%d",&nev);
563 goto newev;
564 }
565 else goto next; // Next cluster
566}
567
568//_____________________________________________________________________________
569void AliMUONClusterFinderAZ::ModifyHistos(void)
570{
571 // Modify histograms to bring them to the same size
572 Int_t nhist = 0;
573 Float_t hlim[4][4], hbin[4][4]; // first index - xmin, xmax, ymin, ymax
574 Float_t binMin[4] = {999,999,999,999};
575
576 for (Int_t i=0; i<4; i++) {
577 if (!fHist[i]) continue;
578 hlim[0][nhist] = fHist[i]->GetXaxis()->GetXmin(); // xmin
579 hlim[1][nhist] = fHist[i]->GetXaxis()->GetXmax(); // xmax
580 hlim[2][nhist] = fHist[i]->GetYaxis()->GetXmin(); // ymin
581 hlim[3][nhist] = fHist[i]->GetYaxis()->GetXmax(); // ymax
582 hbin[0][nhist] = hbin[1][nhist] = fHist[i]->GetXaxis()->GetBinWidth(1);
583 hbin[2][nhist] = hbin[3][nhist] = fHist[i]->GetYaxis()->GetBinWidth(1);
584 binMin[0] = TMath::Min(binMin[0],hbin[0][nhist]);
585 binMin[2] = TMath::Min(binMin[2],hbin[2][nhist]);
586 nhist++;
587 }
588 binMin[1] = binMin[0];
589 binMin[3] = binMin[2];
590 cout << " Nhist: " << nhist << endl;
591
592 Int_t imin, imax;
593 for (Int_t lim=0; lim<4; lim++) {
594 while (1) {
595 imin = TMath::LocMin(nhist,hlim[lim]);
596 imax = TMath::LocMax(nhist,hlim[lim]);
597 if (TMath::Abs(hlim[lim][imin]-hlim[lim][imax])<0.01*binMin[lim]) break;
598 if (lim == 0 || lim == 2) {
599 // find lower limit
600 hlim[lim][imax] -= hbin[lim][imax];
601 } else {
602 // find upper limit
603 hlim[lim][imin] += hbin[lim][imin];
604 }
605 } // while (1)
606 }
607
608 // Rebuild histograms
609 nhist = 0;
610 TH2F *hist = 0;
611 Int_t nx, ny;
cd747ddb 612 Double_t x, y, cont, cmax=0;
0df3ca52 613 char hName[4];
614 for (Int_t ihist=0; ihist<4; ihist++) {
615 if (!fHist[ihist]) continue;
616 nx = TMath::Nint((hlim[1][nhist]-hlim[0][nhist])/hbin[0][nhist]);
617 ny = TMath::Nint((hlim[3][nhist]-hlim[2][nhist])/hbin[2][nhist]);
618 //hist = new TH2F("h","hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
619 sprintf(hName,"hh%d",ihist);
620 hist = new TH2F(hName,"hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
621 for (Int_t i=1; i<=fHist[ihist]->GetNbinsX(); i++) {
622 x = fHist[ihist]->GetXaxis()->GetBinCenter(i);
623 for (Int_t j=1; j<=fHist[ihist]->GetNbinsY(); j++) {
624 y = fHist[ihist]->GetYaxis()->GetBinCenter(j);
625 cont = fHist[ihist]->GetCellContent(i,j);
626 hist->Fill(x,y,cont);
627 }
628 }
629 cmax = TMath::Max (cmax,hist->GetMaximum());
630 fHist[ihist]->Delete();
631 fHist[ihist] = new TH2F(*hist);
632 hist->Delete();
633 nhist++;
634 }
635 printf("%f \n",cmax);
636
637 for (Int_t ihist=0; ihist<4; ihist++) {
638 if (!fHist[ihist]) continue;
639 fHist[ihist]->SetMaximum(cmax);
640 }
641}
642
643//_____________________________________________________________________________
644void AliMUONClusterFinderAZ::AddPad(Int_t cath, Int_t digit)
645{
646 // Add pad to the cluster
647 AliMUONDigit *mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
648
649 Int_t charge = mdig->Signal();
650 // get the center of the pad
651 Float_t xpad, ypad, zpad;
652 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
653
654 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
655 Int_t nPads = fnPads[0] + fnPads[1];
656 fXyq[0][nPads] = xpad;
657 fXyq[1][nPads] = ypad;
658 fXyq[2][nPads] = charge;
659 fXyq[3][nPads] = fSegmentation[cath]->Dpx(isec)/2;
660 fXyq[4][nPads] = fSegmentation[cath]->Dpy(isec)/2;
661 fXyq[5][nPads] = digit;
662 fPadIJ[0][nPads] = cath;
663 fPadIJ[1][nPads] = 0;
664 fUsed[cath][digit] = kTRUE;
665 //cout << " bbb " << fXyq[cath][2][nPads] << " " << fXyq[cath][0][nPads] << " " << fXyq[cath][1][nPads] << " " << fXyq[cath][3][nPads] << " " << fXyq[cath][4][nPads] << " " << zpad << " " << nPads << endl;
666 fnPads[cath]++;
667
668 // Check neighbours
669 Int_t nn, ix, iy, xList[10], yList[10];
670 AliMUONDigit *mdig1;
671
672 Int_t ndigits = fMuonDigits->GetEntriesFast();
673 fSegmentation[cath]->Neighbours(mdig->PadX(),mdig->PadY(),&nn,xList,yList);
674 for (Int_t in=0; in<nn; in++) {
675 ix=xList[in];
676 iy=yList[in];
677 for (Int_t digit1 = 0; digit1 < ndigits; digit1++) {
678 if (digit1 == digit) continue;
679 mdig1 = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit1);
680 if (mdig1->Cathode() != cath) continue;
681 if (!fUsed[cath][digit1] && mdig1->PadX() == ix && mdig1->PadY() == iy) {
682 fUsed[cath][digit1] = kTRUE;
683 // Add pad - recursive call
684 AddPad(cath,digit1);
685 }
686 } //for (Int_t digit1 = 0;
687 } // for (Int_t in=0;
688}
689
690//_____________________________________________________________________________
691Bool_t AliMUONClusterFinderAZ::Overlap(Int_t cath, TObject *dig)
692{
693 // Check if the pad from one cathode overlaps with a pad
694 // in the precluster on the other cathode
695
696 AliMUONDigit *mdig = (AliMUONDigit*) dig;
697
698 Float_t xpad, ypad, zpad;
699 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
700 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
701
702 Float_t xy1[4], xy12[4];
703 xy1[0] = xpad - fSegmentation[cath]->Dpx(isec)/2;
704 xy1[1] = xy1[0] + fSegmentation[cath]->Dpx(isec);
705 xy1[2] = ypad - fSegmentation[cath]->Dpy(isec)/2;
706 xy1[3] = xy1[2] + fSegmentation[cath]->Dpy(isec);
707 //cout << " ok " << fnPads[0]+fnPads[1] << xy1[0] << xy1[1] << xy1[2] << xy1[3] << endl;
708
709 Int_t cath1 = TMath::Even(cath);
710 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
711 if (fPadIJ[0][i] != cath1) continue;
712 if (Overlap(xy1, i, xy12, 0)) return kTRUE;
713 }
714 return kFALSE;
715}
716
717//_____________________________________________________________________________
718Bool_t AliMUONClusterFinderAZ::Overlap(Float_t *xy1, Int_t iPad, Float_t *xy12, Int_t iSkip)
719{
720 // Check if the pads xy1 and iPad overlap and return overlap area
721
722 Float_t xy2[4];
723 xy2[0] = fXyq[0][iPad] - fXyq[3][iPad];
724 xy2[1] = fXyq[0][iPad] + fXyq[3][iPad];
725 if (xy1[0] > xy2[1]-1.e-4 || xy1[1] < xy2[0]+1.e-4) return kFALSE;
726 xy2[2] = fXyq[1][iPad] - fXyq[4][iPad];
727 xy2[3] = fXyq[1][iPad] + fXyq[4][iPad];
728 if (xy1[2] > xy2[3]-1.e-4 || xy1[3] < xy2[2]+1.e-4) return kFALSE;
729 if (!iSkip) return kTRUE; // just check overlap (w/out computing the area)
730 xy12[0] = TMath::Max (xy1[0],xy2[0]);
731 xy12[1] = TMath::Min (xy1[1],xy2[1]);
732 xy12[2] = TMath::Max (xy1[2],xy2[2]);
733 xy12[3] = TMath::Min (xy1[3],xy2[3]);
734 return kTRUE;
735}
736
737//_____________________________________________________________________________
738/*
739Bool_t AliMUONClusterFinderAZ::Overlap(Int_t i, Int_t j, Float_t *xy12, Int_t iSkip)
740{
741 // Check if the pads i and j overlap and return overlap area
742
743 Float_t xy1[4], xy2[4];
744 return Overlap(xy1, xy2, xy12, iSkip);
745}
746*/
747//_____________________________________________________________________________
748Bool_t AliMUONClusterFinderAZ::CheckPrecluster(Int_t *nShown)
749{
750 // Check precluster in order to attempt to simplify it (mostly for
751 // two-cathode preclusters)
752
753 Int_t i1, i2;
754 Float_t xy1[4], xy12[4];
755
756 Int_t npad = fnPads[0] + fnPads[1];
757
758 // If pads have the same size take average of pads on both cathodes
759 Int_t sameSize = (fnPads[0] && fnPads[1]) ? 1 : 0;
760 if (sameSize) {
761 Double_t xSize = -1, ySize = 0;
762 for (Int_t i=0; i<npad; i++) {
763 if (fXyq[2][i] < 0) continue;
764 if (xSize < 0) { xSize = fXyq[3][i]; ySize = fXyq[4][i]; }
765 if (TMath::Abs(xSize-fXyq[3][i]) > 1.e-4 || TMath::Abs(ySize-fXyq[4][i]) > 1.e-4) { sameSize = 0; break; }
766 }
767 } // if (sameSize)
768 if (sameSize && (fnPads[0] > 2 || fnPads[1] > 2)) {
769 nShown[0] += fnPads[0];
770 nShown[1] += fnPads[1];
771 fnPads[0] = fnPads[1] = 0;
772 Int_t div;
773 for (Int_t i=0; i<npad; i++) {
774 if (fXyq[2][i] < 0) continue; // used pad
775 fXyq[2][fnPads[0]] = fXyq[2][i];
776 div = 1;
777 for (Int_t j=i+1; j<npad; j++) {
778 if (fPadIJ[0][j] == fPadIJ[0][i]) continue; // same cathode
779 if (TMath::Abs(fXyq[0][j]-fXyq[0][i]) > 1.e-4) continue;
780 if (TMath::Abs(fXyq[1][j]-fXyq[1][i]) > 1.e-4) continue;
781 fXyq[2][fnPads[0]] += fXyq[2][j];
782 div = 2;
783 fXyq[2][j] = -2;
784 break;
785 }
786 fXyq[2][fnPads[0]] /= div;
787 fXyq[0][fnPads[0]] = fXyq[0][i];
788 fXyq[1][fnPads[0]] = fXyq[1][i];
789 fPadIJ[0][fnPads[0]++] = 0;
790 }
791 } // if (sameSize)
792
793 // Check if one-cathode precluster
794 i1 = fnPads[0]!=0 ? 0 : 1;
795 i2 = fnPads[1]!=0 ? 1 : 0;
796
797 if (i1 != i2) { // two-cathode
798
799 Int_t *flags = new Int_t[npad];
800 for (Int_t i=0; i<npad; i++) { flags[i] = 0; }
801
802 // Check pad overlaps
803 for (Int_t i=0; i<npad; i++) {
804 if (fPadIJ[0][i] != i1) continue;
805 xy1[0] = fXyq[0][i] - fXyq[3][i];
806 xy1[1] = fXyq[0][i] + fXyq[3][i];
807 xy1[2] = fXyq[1][i] - fXyq[4][i];
808 xy1[3] = fXyq[1][i] + fXyq[4][i];
809 for (Int_t j=0; j<npad; j++) {
810 if (fPadIJ[0][j] != i2) continue;
811 if (!Overlap(xy1, j, xy12, 0)) continue;
812 flags[i] = flags[j] = 1; // mark overlapped pads
813 } // for (Int_t j=0;
814 } // for (Int_t i=0;
815
816 // Check if all pads overlap
817 Int_t digit=0, cath, nFlags=0;
818 for (Int_t i=0; i<npad; i++) {nFlags += !flags[i];}
819 if (nFlags) cout << " nFlags = " << nFlags << endl;
820 //if (nFlags > 2 || (Float_t)nFlags / npad > 0.2) { // why 2 ??? - empirical choice
821 if (nFlags > 0) {
822 for (Int_t i=0; i<npad; i++) {
823 if (flags[i]) continue;
824 digit = TMath::Nint (fXyq[5][i]);
825 cath = fPadIJ[0][i];
826 fUsed[cath][digit] = kFALSE; // release pad
827 fXyq[2][i] = -2;
828 fnPads[cath]--;
829 }
830 } // if (nFlags > 2)
831
832 // Check correlations of cathode charges
833 if (fnPads[0] && fnPads[1]) { // two-cathode
834 Double_t sum[2]={0};
835 Int_t over[2] = {1, 1};
836 for (Int_t i=0; i<npad; i++) {
837 cath = fPadIJ[0][i];
838 if (fXyq[2][i] > 0) sum[cath] += fXyq[2][i];
839 if (fXyq[2][i] > fResponse->MaxAdc()-1) over[cath] = 0;
840 }
841 cout << " Total charge: " << sum[0] << " " << sum[1] << endl;
842 if ((over[0] || over[1]) && TMath::Abs(sum[0]-sum[1])/(sum[0]+sum[1])*2 > 1) { // 3 times difference
843 cout << " Release " << endl;
844 // Big difference
845 cath = sum[0]>sum[1] ? 0 : 1;
846 Int_t imax = 0;
847 Double_t cmax=-1;
848 Double_t *dist = new Double_t[npad];
849 for (Int_t i=0; i<npad; i++) {
850 if (fPadIJ[0][i] != cath) continue;
851 if (fXyq[2][i] < cmax) continue;
852 cmax = fXyq[2][i];
853 imax = i;
854 }
855 // Arrange pads according to their distance to the max,
856 // normalized to the pad size
857 for (Int_t i=0; i<npad; i++) {
858 dist[i] = 0;
859 if (fPadIJ[0][i] != cath) continue;
860 if (i == imax) continue;
861 if (fXyq[2][i] < 0) continue;
862 dist[i] = (fXyq[0][i]-fXyq[0][imax])*(fXyq[0][i]-fXyq[0][imax])/
863 fXyq[3][imax]/fXyq[3][imax]/4;
864 dist[i] += (fXyq[1][i]-fXyq[1][imax])*(fXyq[1][i]-fXyq[1][imax])/
865 fXyq[4][imax]/fXyq[4][imax]/4;
866 dist[i] = TMath::Sqrt (dist[i]);
867 }
868 TMath::Sort(npad, dist, flags, kFALSE); // in increasing order
869 Int_t indx;
870 Double_t xmax = -1;
871 for (Int_t i=0; i<npad; i++) {
872 indx = flags[i];
873 if (fPadIJ[0][indx] != cath) continue;
874 if (fXyq[2][indx] < 0) continue;
875 if (fXyq[2][indx] <= cmax || TMath::Abs(dist[indx]-xmax)<1.e-3) {
876 // Release pads
877 if (TMath::Abs(dist[indx]-xmax)<1.e-3)
cd747ddb 878 cmax = TMath::Max((Double_t)(fXyq[2][indx]),cmax);
0df3ca52 879 else cmax = fXyq[2][indx];
880 xmax = dist[indx];
881 digit = TMath::Nint (fXyq[5][indx]);
882 fUsed[cath][digit] = kFALSE;
883 fXyq[2][indx] = -2;
884 fnPads[cath]--;
885 // xmax = dist[i]; // Bug?
886 }
887 else break;
888 }
889 delete [] dist; dist = 0;
890 } // TMath::Abs(sum[0]-sum[1])...
891 } // if (fnPads[0] && fnPads[1])
892 delete [] flags; flags = 0;
893 } // if (i1 != i2)
894
895 if (!sameSize) { nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; }
896
897 // Move released pads to the right
898 Int_t beg = 0, end = npad-1, padij;
899 Double_t xyq;
900 while (beg < end) {
901 if (fXyq[2][beg] > 0) { beg++; continue; }
902 for (Int_t j=end; j>beg; j--) {
903 if (fXyq[2][j] < 0) continue;
904 end = j - 1;
905 for (Int_t j1=0; j1<2; j1++) {
906 padij = fPadIJ[j1][beg];
907 fPadIJ[j1][beg] = fPadIJ[j1][j];
908 fPadIJ[j1][j] = padij;
909 }
910 for (Int_t j1=0; j1<6; j1++) {
911 xyq = fXyq[j1][beg];
912 fXyq[j1][beg] = fXyq[j1][j];
913 fXyq[j1][j] = xyq;
914 }
915 break;
916 } // for (Int_t j=end;
917 beg++;
918 } // while
919 npad = fnPads[0] + fnPads[1];
920 if (npad > 500) { cout << " ***** Too large cluster. Give up. " << npad << endl; return kFALSE; }
921 // Back up charge value
922 for (Int_t j=0; j<npad; j++) fXyq[5][j] = fXyq[2][j];
923
924 return kTRUE;
925}
926
927//_____________________________________________________________________________
928void AliMUONClusterFinderAZ::BuildPixArray()
929{
930 // Build pixel array for MLEM method
931
932 Int_t nPix=0, i1, i2;
933 Float_t xy1[4], xy12[4];
934 AliMUONPixel *pixPtr=0;
935
936 Int_t npad = fnPads[0] + fnPads[1];
937
938 // One cathode is empty
939 i1 = fnPads[0]!=0 ? 0 : 1;
940 i2 = fnPads[1]!=0 ? 1 : 0;
941
942 // Build array of pixels on anode plane
943 if (i1 == i2) { // one-cathode precluster
944 for (Int_t j=0; j<npad; j++) {
945 pixPtr = new AliMUONPixel();
946 for (Int_t i=0; i<2; i++) {
947 pixPtr->SetCoord(i, fXyq[i][j]); // pixel coordinates
948 pixPtr->SetSize(i, fXyq[i+3][j]); // pixel size
949 }
950 pixPtr->SetCharge(fXyq[2][j]); // charge
951 fPixArray->Add((TObject*)pixPtr);
952 nPix++;
953 }
954 } else { // two-cathode precluster
955 for (Int_t i=0; i<npad; i++) {
956 if (fPadIJ[0][i] != i1) continue;
957 xy1[0] = fXyq[0][i] - fXyq[3][i];
958 xy1[1] = fXyq[0][i] + fXyq[3][i];
959 xy1[2] = fXyq[1][i] - fXyq[4][i];
960 xy1[3] = fXyq[1][i] + fXyq[4][i];
961 for (Int_t j=0; j<npad; j++) {
962 if (fPadIJ[0][j] != i2) continue;
963 if (!Overlap(xy1, j, xy12, 1)) continue;
964 pixPtr = new AliMUONPixel();
965 for (Int_t k=0; k<2; k++) {
966 pixPtr->SetCoord(k, (xy12[2*k]+xy12[2*k+1])/2); // pixel coordinates
967 pixPtr->SetSize(k, xy12[2*k+1]-pixPtr->Coord(k)); // size
968 }
969 pixPtr->SetCharge(TMath::Min (fXyq[2][i],fXyq[2][j])); //charge
970 fPixArray->Add((TObject*)pixPtr);
971 nPix++;
972 } // for (Int_t j=0;
973 } // for (Int_t i=0;
974 } // else
975
976 Float_t wxmin=999, wymin=999;
977 for (Int_t i=0; i<npad; i++) {
978 if (fPadIJ[0][i] == i1) wymin = TMath::Min (wymin,fXyq[4][i]);
979 if (fPadIJ[0][i] == i2) wxmin = TMath::Min (wxmin,fXyq[3][i]);
980 }
981 cout << wxmin << " " << wymin << endl;
982
983 // Check if small pixel X-size
984 AjustPixel(wxmin, 0);
985 // Check if small pixel Y-size
986 AjustPixel(wymin, 1);
987 // Check if large pixel size
988 AjustPixel(wxmin, wymin);
989
990 // Remove discarded pixels
991 for (Int_t i=0; i<nPix; i++) {
992 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
993 //pixPtr->Print();
994 if (pixPtr->Charge() < 1) { fPixArray->RemoveAt(i); delete pixPtr; }// discarded pixel
995 }
996 fPixArray->Compress();
997 nPix = fPixArray->GetEntriesFast();
998
999 if (nPix > npad) {
1000 cout << nPix << endl;
1001 // Too many pixels - sort and remove pixels with the lowest signal
1002 fPixArray->Sort();
1003 for (Int_t i=npad; i<nPix; i++) {
1004 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1005 //pixPtr->Print();
1006 fPixArray->RemoveAt(i);
1007 delete pixPtr;
1008 }
1009 nPix = npad;
1010 } // if (nPix > npad)
1011
1012 // Set pixel charges to the same value (for MLEM)
1013 for (Int_t i=0; i<nPix; i++) {
1014 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1015 //pixPtr->SetCharge(10);
1016 cout << i+1 << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(0) << " " << pixPtr->Size(1) << endl;
1017 }
1018}
1019
1020//_____________________________________________________________________________
1021void AliMUONClusterFinderAZ::AjustPixel(Float_t width, Int_t ixy)
1022{
1023 // Check if some pixels have small size (ajust if necessary)
1024
1025 AliMUONPixel *pixPtr, *pixPtr1 = 0;
1026 Int_t ixy1 = TMath::Even(ixy);
1027 Int_t nPix = fPixArray->GetEntriesFast();
1028
1029 for (Int_t i=0; i<nPix; i++) {
1030 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1031 if (pixPtr->Charge() < 1) continue; // discarded pixel
1032 if (pixPtr->Size(ixy)-width < -1.e-4) {
1033 // try to merge
1034 cout << " Small X or Y: " << ixy << " " << pixPtr->Size(ixy) << " " << width << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << endl;
1035 for (Int_t j=i+1; j<nPix; j++) {
1036 pixPtr1 = (AliMUONPixel*) fPixArray->UncheckedAt(j);
1037 if (pixPtr1->Charge() < 1) continue; // discarded pixel
1038 if (TMath::Abs(pixPtr1->Size(ixy)-width) < 1.e-4) continue; // right size
1039 if (TMath::Abs(pixPtr1->Coord(ixy1)-pixPtr->Coord(ixy1)) > 1.e-4) continue; // different rows/columns
1040 if (TMath::Abs(pixPtr1->Coord(ixy)-pixPtr->Coord(ixy)) < 2*width) {
1041 // merge
1042 pixPtr->SetSize(ixy, width);
1043 pixPtr->SetCoord(ixy, (pixPtr->Coord(ixy)+pixPtr1->Coord(ixy))/2);
1044 pixPtr->SetCharge(TMath::Min (pixPtr->Charge(),pixPtr1->Charge()));
1045 pixPtr1->SetCharge(0);
1046 pixPtr1 = 0;
1047 break;
1048 }
1049 } // for (Int_t j=i+1;
1050 //if (!pixPtr1) { cout << " I am here!" << endl; pixPtr->SetSize(ixy, width); } // ???
1051 //else if (pixPtr1->Charge() > 0.5 || i == nPix-1) {
1052 if (pixPtr1 || i == nPix-1) {
1053 // edge pixel - just increase its size
1054 cout << " Edge ..." << endl;
1055 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1056 // ???if (fPadIJ[0][j] != i1) continue;
1057 if (TMath::Abs(pixPtr->Coord(ixy1)-fXyq[ixy1][j]) > 1.e-4) continue;
1058 if (pixPtr->Coord(ixy) < fXyq[ixy][j])
1059 pixPtr->Shift(ixy, -pixPtr->Size(ixy));
1060 else pixPtr->Shift(ixy, pixPtr->Size(ixy));
1061 pixPtr->SetSize(ixy, width);
1062 break;
1063 }
1064 }
1065 } // if (pixPtr->Size(ixy)-width < -1.e-4)
1066 } // for (Int_t i=0; i<nPix;
1067 return;
1068}
1069
1070//_____________________________________________________________________________
1071void AliMUONClusterFinderAZ::AjustPixel(Float_t wxmin, Float_t wymin)
1072{
1073 // Check if some pixels have large size (ajust if necessary)
1074
1075 Int_t nx, ny;
1076 Int_t nPix = fPixArray->GetEntriesFast();
1077 AliMUONPixel *pixPtr, *pixPtr1, pix;
1078
1079 // Check if large pixel size
1080 for (Int_t i=0; i<nPix; i++) {
1081 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1082 if (pixPtr->Charge() < 1) continue; // discarded pixel
1083 if (pixPtr->Size(0)-wxmin > 1.e-4 || pixPtr->Size(1)-wymin > 1.e-4) {
1084 cout << " Different " << pixPtr->Size(0) << " " << wxmin << " " << pixPtr->Size(1) << " " << wymin << endl;
1085 pix = *pixPtr;
1086 nx = TMath::Nint (pix.Size(0)/wxmin);
1087 ny = TMath::Nint (pix.Size(1)/wymin);
1088 pix.Shift(0, -pix.Size(0)-wxmin);
1089 pix.Shift(1, -pix.Size(1)-wymin);
1090 pix.SetSize(0, wxmin);
1091 pix.SetSize(1, wymin);
1092 for (Int_t ii=0; ii<nx; ii++) {
1093 pix.Shift(0, wxmin*2);
1094 for (Int_t jj=0; jj<ny; jj++) {
1095 pix.Shift(1, wymin*2);
1096 pixPtr1 = new AliMUONPixel(pix);
1097 fPixArray->Add((TObject*)pixPtr1);
1098 }
1099 }
1100 pixPtr->SetCharge(0);
1101 }
1102 } // for (Int_t i=0; i<nPix;
1103 return;
1104}
1105
1106//_____________________________________________________________________________
1107Bool_t AliMUONClusterFinderAZ::MainLoop()
1108{
1109 // Repeat MLEM algorithm until pixel size becomes sufficiently small
1110
1111 TH2D *mlem;
1112
1113 Int_t ix, iy;
1114 //Int_t nn, xList[10], yList[10];
1115 Int_t nPix = fPixArray->GetEntriesFast();
1116 Int_t npadTot = fnPads[0] + fnPads[1], npadOK = 0;
1117 AliMUONPixel *pixPtr = 0;
1118 Double_t *coef = 0, *probi = 0;
1119 for (Int_t i=0; i<npadTot; i++) if (fPadIJ[1][i] == 0) npadOK++;
1120
1121 while (1) {
1122
1123 mlem = (TH2D*) gROOT->FindObject("mlem");
1124 if (mlem) mlem->Delete();
1125 // Calculate coefficients
1126 cout << " nPix, npadTot, npadOK " << nPix << " " << npadTot << " " << npadOK << endl;
1127
1128 // Calculate coefficients and pixel visibilities
1129 coef = new Double_t [npadTot*nPix];
1130 probi = new Double_t [nPix];
1131 Int_t indx = 0, cath;
1132 for (Int_t ipix=0; ipix<nPix; ipix++) {
1133 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1134 probi[ipix] = 0;
1135 for (Int_t j=0; j<npadTot; j++) {
1136 if (fPadIJ[1][j] < 0) { coef[j*nPix+ipix] = 0; continue; }
1137 cath = fPadIJ[0][j];
1138 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
1139 fSegmentation[cath]->SetPad(ix,iy);
1140 /*
1141 fSegmentation[cath]->Neighbours(ix,iy,&nn,xList,yList);
1142 if (nn != 4) {
1143 cout << nn << ": ";
1144 for (Int_t i=0; i<nn; i++) {cout << xList[i] << " " << yList[i] << ", ";}
1145 cout << endl;
1146 }
1147 */
1148 Double_t sum = 0;
1149 fSegmentation[cath]->SetHit(pixPtr->Coord(0),pixPtr->Coord(1),fZpad);
1150 sum += fResponse->IntXY(fSegmentation[cath]);
1151 indx = j*nPix + ipix;
1152 coef[indx] = sum;
1153 probi[ipix] += coef[indx];
1154 //cout << j << " " << ipix << " " << coef[indx] << endl;
1155 } // for (Int_t j=0;
1156 //cout << " prob: " << probi[ipix] << endl;
1157 if (probi[ipix] < 0.01) pixPtr->SetCharge(0); // "invisible" pixel
1158 } // for (Int_t ipix=0;
1159
1160 // MLEM algorithm
1161 Mlem(coef, probi);
1162
cd747ddb 1163 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 1164 for (Int_t ipix=0; ipix<nPix; ipix++) {
1165 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1166 for (Int_t i=0; i<4; i++)
1167 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1168 //cout << ipix+1; pixPtr->Print();
1169 }
1170 for (Int_t i=0; i<4; i++) {
1171 xylim[i] -= pixPtr->Size(i/2); cout << (i%2 ? -1 : 1)*xylim[i] << " "; }
1172 cout << endl;
1173
1174 // Ajust histogram to approximately the same limits as for the pads
1175 // (for good presentation)
1176 //*
1177 Float_t xypads[4];
1178 if (fHist[0]) {
1179 xypads[0] = fHist[0]->GetXaxis()->GetXmin();
1180 xypads[1] = -fHist[0]->GetXaxis()->GetXmax();
1181 xypads[2] = fHist[0]->GetYaxis()->GetXmin();
1182 xypads[3] = -fHist[0]->GetYaxis()->GetXmax();
1183 for (Int_t i=0; i<4; i++) {
1184 while(1) {
1185 if (xylim[i] < xypads[i]) break;
1186 xylim[i] -= 2*pixPtr->Size(i/2);
1187 }
1188 }
1189 } // if (fHist[0])
1190 //*/
1191
1192 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
1193 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
1194 mlem = new TH2D("mlem","mlem",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
1195 for (Int_t ipix=0; ipix<nPix; ipix++) {
1196 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1197 mlem->Fill(pixPtr->Coord(0),pixPtr->Coord(1),pixPtr->Charge());
1198 }
1199 //gPad->GetCanvas()->cd(3);
1200 if (fDraw) {
1201 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1202 gPad->SetTheta(55);
1203 gPad->SetPhi(30);
1204 mlem->Draw("lego1Fb");
1205 gPad->Update();
1206 gets((char*)&ix);
1207 }
1208
1209 // Check if the total charge of pixels is too low
1210 Double_t qTot = 0;
1211 for (Int_t i=0; i<nPix; i++) {
1212 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1213 qTot += pixPtr->Charge();
1214 }
1215 if (qTot < 1.e-4 || npadOK < 3 && qTot < 50) {
1216 delete [] coef; delete [] probi; coef = 0; probi = 0;
1217 fPixArray->Delete();
1218 return kFALSE;
1219 }
1220
1221 // Plot data - expectation
1222 /*
1223 Double_t x, y, cont;
1224 for (Int_t j=0; j<npadTot; j++) {
1225 Double_t sum1 = 0;
1226 for (Int_t i=0; i<nPix; i++) {
1227 // Caculate expectation
1228 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1229 sum1 += pixPtr->Charge()*coef[j*nPix+i];
1230 }
1231 sum1 = TMath::Min (sum1,(Double_t)fResponse->MaxAdc());
1232 x = fXyq[0][j];
1233 y = fXyq[1][j];
1234 cath = fPadIJ[0][j];
1235 Int_t ihist = cath*2;
1236 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1237 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1238 cont = fHist[ihist]->GetCellContent(ix,iy);
1239 if (cont == 0 && fHist[ihist+1]) {
1240 ihist += 1;
1241 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1242 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1243 }
1244 fHist[ihist]->SetBinContent(ix,iy,fXyq[2][j]-sum1);
1245 }
1246 ((TCanvas*)gROOT->FindObject("c1"))->cd(1);
1247 //gPad->SetTheta(55);
1248 //gPad->SetPhi(30);
1249 //mlem->Draw("lego1");
1250 gPad->Modified();
1251 ((TCanvas*)gROOT->FindObject("c1"))->cd(2);
1252 gPad->Modified();
1253 */
1254
1255 // Calculate position of the center-of-gravity around the maximum pixel
1256 Double_t xyCOG[2];
1257 FindCOG(mlem, xyCOG);
1258
1259 if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.07 && pixPtr->Size(0) > pixPtr->Size(1)) break;
1260 //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) >= 0.07 || pixPtr->Size(0) < pixPtr->Size(1)) {
1261 // Sort pixels according to the charge
1262 fPixArray->Sort();
1263 /*
1264 for (Int_t i=0; i<nPix; i++) {
1265 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1266 cout << i+1; pixPtr->Print();
1267 }
1268 */
1269 Double_t pixMin = 0.01*((AliMUONPixel*)fPixArray->UncheckedAt(0))->Charge();
1270 pixMin = TMath::Min (pixMin,50.);
1271
1272 // Decrease pixel size and shift pixels to make them centered at
1273 // the maximum one
1274 indx = (pixPtr->Size(0)>pixPtr->Size(1)) ? 0 : 1;
1275 Double_t width = 0, shift[2]={0};
1276 ix = 1;
1277 for (Int_t i=0; i<4; i++) xylim[i] = 999;
1278 Int_t nPix1 = nPix; nPix = 0;
1279 for (Int_t ipix=0; ipix<nPix1; ipix++) {
1280 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1281 if (nPix >= npadOK) { // too many pixels already
1282 fPixArray->RemoveAt(ipix);
1283 delete pixPtr;
1284 continue;
1285 }
1286 if (pixPtr->Charge() < pixMin) { // low charge
1287 fPixArray->RemoveAt(ipix);
1288 delete pixPtr;
1289 continue;
1290 }
1291 for (Int_t i=0; i<2; i++) {
1292 if (!i) {
1293 pixPtr->SetCharge(10);
1294 pixPtr->SetSize(indx, pixPtr->Size(indx)/2);
1295 width = -pixPtr->Size(indx);
1296 pixPtr->Shift(indx, width);
1297 // Shift pixel position
1298 if (ix) {
1299 ix = 0;
1300 for (Int_t j=0; j<2; j++) {
1301 shift[j] = pixPtr->Coord(j) - xyCOG[j];
1302 shift[j] -= ((Int_t)(shift[j]/pixPtr->Size(j)/2))*pixPtr->Size(j)*2;
1303 }
1304 //cout << ipix << " " << i << " " << shift[0] << " " << shift[1] << endl;
1305 } // if (ix)
1306 pixPtr->Shift(0, -shift[0]);
1307 pixPtr->Shift(1, -shift[1]);
1308 } else {
1309 pixPtr = new AliMUONPixel(*pixPtr);
1310 pixPtr->Shift(indx, -2*width);
1311 fPixArray->Add((TObject*)pixPtr);
1312 } // else
1313 //pixPtr->Print();
1314 for (Int_t i=0; i<4; i++)
1315 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1316 } // for (Int_t i=0; i<2;
1317 nPix += 2;
1318 } // for (Int_t ipix=0;
1319
1320 fPixArray->Compress();
1321 nPix = fPixArray->GetEntriesFast();
1322
1323 // Remove excessive pixels
1324 if (nPix > npadOK) {
1325 for (Int_t ipix=npadOK; ipix<nPix; ipix++) {
1326 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1327 fPixArray->RemoveAt(ipix);
1328 delete pixPtr;
1329 }
1330 } else {
1331 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(0);
1332 // add pixels if the maximum is at the limit of pixel area
1333 // start from Y-direction
1334 Int_t j = 0;
1335 for (Int_t i=3; i>-1; i--) {
1336 if (nPix < npadOK &&
1337 TMath::Abs((i%2 ? -1 : 1)*xylim[i]-xyCOG[i/2]) < pixPtr->Size(i/2)) {
1338 pixPtr = new AliMUONPixel(*pixPtr);
1339 pixPtr->SetCoord(i/2, xyCOG[i/2]+(i%2 ? 2:-2)*pixPtr->Size(i/2));
1340 j = TMath::Even (i/2);
1341 pixPtr->SetCoord(j, xyCOG[j]);
1342 fPixArray->Add((TObject*)pixPtr);
1343 nPix++;
1344 }
1345 }
1346 } // else
1347
1348 fPixArray->Compress();
1349 nPix = fPixArray->GetEntriesFast();
1350 delete [] coef; delete [] probi; coef = 0; probi = 0;
1351 } // while (1)
1352
1353 // remove pixels with low signal or low visibility
1354 // Cuts are empirical !!!
1355 Double_t thresh = TMath::Max (mlem->GetMaximum()/100.,1.);
1356 thresh = TMath::Min (thresh,50.);
1357 Double_t cmax = -1, charge = 0;
1358 for (Int_t i=0; i<nPix; i++) cmax = TMath::Max (cmax,probi[i]);
1359 // Mark pixels which should be removed
1360 for (Int_t i=0; i<nPix; i++) {
1361 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1362 charge = pixPtr->Charge();
1363 if (charge < thresh) pixPtr->SetCharge(-charge);
1364 else if (cmax > 1.91) {
1365 if (probi[i] < 1.9) pixPtr->SetCharge(-charge);
1366 }
1367 else if (probi[i] < cmax*0.9) pixPtr->SetCharge(-charge);
1368 }
1369 // Move charge of removed pixels to their nearest neighbour (to keep total charge the same)
1370 Int_t near = 0;
1371 for (Int_t i=0; i<nPix; i++) {
1372 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1373 charge = pixPtr->Charge();
1374 if (charge > 0) continue;
1375 near = FindNearest(pixPtr);
1376 pixPtr->SetCharge(0);
1377 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(near);
1378 pixPtr->SetCharge(pixPtr->Charge() - charge);
1379 }
1380 // Update histogram
1381 for (Int_t i=0; i<nPix; i++) {
1382 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1383 ix = mlem->GetXaxis()->FindBin(pixPtr->Coord(0));
1384 iy = mlem->GetYaxis()->FindBin(pixPtr->Coord(1));
1385 mlem->SetBinContent(ix, iy, pixPtr->Charge());
1386 }
1387 if (fDraw) {
1388 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1389 gPad->SetTheta(55);
1390 gPad->SetPhi(30);
1391 mlem->Draw("lego1Fb");
1392 gPad->Update();
1393 }
1394
1395 fxyMu[0][6] = fxyMu[1][6] = 9999;
1396 // Try to split into clusters
1397 Bool_t ok = kTRUE;
1398 if (mlem->GetSum() < 1) ok = kFALSE;
1399 else Split(mlem, coef);
1400 delete [] coef; delete [] probi; coef = 0; probi = 0;
1401 fPixArray->Delete();
1402 return ok;
1403}
1404
1405//_____________________________________________________________________________
1406void AliMUONClusterFinderAZ::Mlem(Double_t *coef, Double_t *probi)
1407{
1408 // Use MLEM to find pixel charges
1409
1410 Int_t nPix = fPixArray->GetEntriesFast();
1411 Int_t npad = fnPads[0] + fnPads[1];
1412 Double_t *probi1 = new Double_t [nPix];
1413 Int_t indx, indx1;
1414 AliMUONPixel *pixPtr;
1415
1416 for (Int_t iter=0; iter<15; iter++) {
1417 // Do iterations
1418 for (Int_t ipix=0; ipix<nPix; ipix++) {
1419 // Correct each pixel
1420 if (probi[ipix] < 0.01) continue; // skip "invisible" pixel
1421 Double_t sum = 0;
1422 probi1[ipix] = probi[ipix];
1423 for (Int_t j=0; j<npad; j++) {
1424 if (fPadIJ[1][j] < 0) continue;
1425 Double_t sum1 = 0;
1426 indx1 = j*nPix;
1427 indx = indx1 + ipix;
1428 for (Int_t i=0; i<nPix; i++) {
1429 // Caculate expectation
1430 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1431 sum1 += pixPtr->Charge()*coef[indx1+i];
1432 } // for (Int_t i=0;
1433 if (fXyq[2][j] > fResponse->MaxAdc()-1 && sum1 > fResponse->MaxAdc()) { probi1[ipix] -= coef[indx]; continue; } // correct for pad charge overflows
1434 //cout << sum1 << " " << fXyq[2][j] << " " << coef[j*nPix+ipix] << endl;
1435 if (coef[indx] > 1.e-6) sum += fXyq[2][j]*coef[indx]/sum1;
1436 } // for (Int_t j=0;
1437 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1438 if (probi1[ipix] > 1.e-6) pixPtr->SetCharge(pixPtr->Charge()*sum/probi1[ipix]);
1439 } // for (Int_t ipix=0;
1440 } // for (Int_t iter=0;
1441 delete [] probi1;
1442 return;
1443}
1444
1445//_____________________________________________________________________________
1446void AliMUONClusterFinderAZ::FindCOG(TH2D *mlem, Double_t *xyc)
1447{
1448 // Calculate position of the center-of-gravity around the maximum pixel
1449
1450 Int_t ixmax, iymax, ix, nsumx=0, nsumy=0, nsum=0;
1451 Int_t i1 = -9, j1 = -9;
1452 mlem->GetMaximumBin(ixmax,iymax,ix);
1453 Int_t nx = mlem->GetNbinsX();
1454 Int_t ny = mlem->GetNbinsY();
1455 Double_t thresh = mlem->GetMaximum()/10;
1456 Double_t x, y, cont, xq=0, yq=0, qq=0;
1457
1458 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1459 y = mlem->GetYaxis()->GetBinCenter(i);
1460 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1461 cont = mlem->GetCellContent(j,i);
1462 if (cont < thresh) continue;
1463 if (i != i1) {i1 = i; nsumy++;}
1464 if (j != j1) {j1 = j; nsumx++;}
1465 x = mlem->GetXaxis()->GetBinCenter(j);
1466 xq += x*cont;
1467 yq += y*cont;
1468 qq += cont;
1469 nsum++;
1470 }
1471 }
1472
1473 Double_t cmax = 0;
1474 Int_t i2 = 0, j2 = 0;
1475 x = y = 0;
1476 if (nsumy == 1) {
1477 // one bin in Y - add one more (with the largest signal)
1478 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1479 if (i == iymax) continue;
1480 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1481 cont = mlem->GetCellContent(j,i);
1482 if (cont > cmax) {
1483 cmax = cont;
1484 x = mlem->GetXaxis()->GetBinCenter(j);
1485 y = mlem->GetYaxis()->GetBinCenter(i);
1486 i2 = i;
1487 j2 = j;
1488 }
1489 }
1490 }
1491 xq += x*cmax;
1492 yq += y*cmax;
1493 qq += cmax;
1494 if (i2 != i1) nsumy++;
1495 if (j2 != j1) nsumx++;
1496 nsum++;
1497 } // if (nsumy == 1)
1498
1499 if (nsumx == 1) {
1500 // one bin in X - add one more (with the largest signal)
1501 cmax = x = y = 0;
1502 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1503 if (j == ixmax) continue;
1504 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1505 cont = mlem->GetCellContent(j,i);
1506 if (cont > cmax) {
1507 cmax = cont;
1508 x = mlem->GetXaxis()->GetBinCenter(j);
1509 y = mlem->GetYaxis()->GetBinCenter(i);
1510 i2 = i;
1511 j2 = j;
1512 }
1513 }
1514 }
1515 xq += x*cmax;
1516 yq += y*cmax;
1517 qq += cmax;
1518 if (i2 != i1) nsumy++;
1519 if (j2 != j1) nsumx++;
1520 nsum++;
1521 } // if (nsumx == 1)
1522
1523 xyc[0] = xq/qq; xyc[1] = yq/qq;
1524 cout << xyc[0] << " " << xyc[1] << " " << qq << " " << nsum << " " << nsumx << " " << nsumy << endl;
1525 return;
1526}
1527
1528//_____________________________________________________________________________
1529Int_t AliMUONClusterFinderAZ::FindNearest(AliMUONPixel *pixPtr0)
1530{
1531 // Find the pixel nearest to the given one
1532 // (algorithm may be not very efficient)
1533
1534 Int_t nPix = fPixArray->GetEntriesFast(), imin = 0;
1535 Double_t rmin = 99999, dx = 0, dy = 0, r = 0;
1536 Double_t xc = pixPtr0->Coord(0), yc = pixPtr0->Coord(1);
1537 AliMUONPixel *pixPtr;
1538
1539 for (Int_t i=0; i<nPix; i++) {
1540 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1541 if (pixPtr->Charge() < 0.5) continue;
1542 dx = (xc - pixPtr->Coord(0)) / pixPtr->Size(0);
1543 dy = (yc - pixPtr->Coord(1)) / pixPtr->Size(1);
1544 r = dx *dx + dy * dy;
1545 if (r < rmin) { rmin = r; imin = i; }
1546 }
1547 return imin;
1548}
1549
1550//_____________________________________________________________________________
1551void AliMUONClusterFinderAZ::Split(TH2D *mlem, Double_t *coef)
1552{
1553 // The main steering function to work with clusters of pixels in anode
1554 // plane (find clusters, decouple them from each other, merge them (if
1555 // necessary), pick up coupled pads, call the fitting function)
1556
1557 Int_t nx = mlem->GetNbinsX();
1558 Int_t ny = mlem->GetNbinsY();
1559 Int_t nPix = fPixArray->GetEntriesFast();
1560
1561 Bool_t *used = new Bool_t[ny*nx];
1562 Double_t cont;
1563 Int_t nclust = 0, indx, indx1;
1564
1565 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
1566
1567 TObjArray *clusters[200]={0};
1568 TObjArray *pix;
1569
1570 // Find clusters of histogram bins (easier to work in 2-D space)
1571 for (Int_t i=1; i<=ny; i++) {
1572 for (Int_t j=1; j<=nx; j++) {
1573 indx = (i-1)*nx + j - 1;
1574 if (used[indx]) continue;
1575 cont = mlem->GetCellContent(j,i);
1576 if (cont < 0.5) continue;
1577 pix = new TObjArray(20);
1578 used[indx] = 1;
1579 pix->Add(BinToPix(mlem,j,i));
1580 AddBin(mlem, i, j, 0, used, pix); // recursive call
1581 clusters[nclust++] = pix;
1582 if (nclust > 200) { cout << " Too many clusters " << endl; ::exit(0); }
1583 } // for (Int_t j=1; j<=nx; j++) {
1584 } // for (Int_t i=1; i<=ny;
1585 cout << nclust << endl;
1586 delete [] used; used = 0;
1587
1588 // Compute couplings between clusters and clusters to pads
1589 Int_t npad = fnPads[0] + fnPads[1];
1590
1591 // Exclude pads with overflows
1592 for (Int_t j=0; j<npad; j++) {
1593 if (fXyq[2][j] > fResponse->MaxAdc()-1) fPadIJ[1][j] = -9;
1594 else fPadIJ[1][j] = 0;
1595 }
1596
1597 // Compute couplings of clusters to pads
c1aed84f 1598 TMatrixD *aijclupad = new TMatrixD(nclust,npad);
1599 *aijclupad = 0;
0df3ca52 1600 Int_t npxclu;
1601 for (Int_t iclust=0; iclust<nclust; iclust++) {
1602 pix = clusters[iclust];
1603 npxclu = pix->GetEntriesFast();
1604 for (Int_t i=0; i<npxclu; i++) {
1605 indx = fPixArray->IndexOf(pix->UncheckedAt(i));
1606 for (Int_t j=0; j<npad; j++) {
1607 // Exclude overflows
1608 if (fPadIJ[1][j] < 0) continue;
343146bf 1609 if (coef[j*nPix+indx] < fgkCouplMin) continue;
c1aed84f 1610 (*aijclupad)(iclust,j) += coef[j*nPix+indx];
0df3ca52 1611 }
1612 }
1613 }
1614 // Compute couplings between clusters
c1aed84f 1615 TMatrixD *aijcluclu = new TMatrixD(nclust,nclust);
1616 *aijcluclu = 0;
0df3ca52 1617 for (Int_t iclust=0; iclust<nclust; iclust++) {
1618 for (Int_t j=0; j<npad; j++) {
1619 // Exclude overflows
1620 if (fPadIJ[1][j] < 0) continue;
343146bf 1621 if ((*aijclupad)(iclust,j) < fgkCouplMin) continue;
0df3ca52 1622 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
343146bf 1623 if ((*aijclupad)(iclust1,j) < fgkCouplMin) continue;
c1aed84f 1624 (*aijcluclu)(iclust,iclust1) +=
1625 TMath::Sqrt ((*aijclupad)(iclust,j)*(*aijclupad)(iclust1,j));
0df3ca52 1626 }
1627 }
1628 }
1629 for (Int_t iclust=0; iclust<nclust; iclust++) {
1630 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
c1aed84f 1631 (*aijcluclu)(iclust1,iclust) = (*aijcluclu)(iclust,iclust1);
0df3ca52 1632 }
1633 }
1634
c1aed84f 1635 if (nclust > 1) aijcluclu->Print();
0df3ca52 1636
1637 // Find groups of coupled clusters
1638 used = new Bool_t[nclust];
1639 for (Int_t i=0; i<nclust; i++) used[i] = kFALSE;
1640 Int_t *clustNumb = new Int_t[nclust];
1641 Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
1642 Double_t parOk[8];
1643
1644 for (Int_t igroup=0; igroup<nclust; igroup++) {
1645 if (used[igroup]) continue;
1646 used[igroup] = kTRUE;
1647 clustNumb[0] = igroup;
1648 nCoupled = 1;
1649 // Find group of coupled clusters
c1aed84f 1650 AddCluster(igroup, nclust, aijcluclu, used, clustNumb, nCoupled); // recursive
0df3ca52 1651 cout << " nCoupled: " << nCoupled << endl;
1652 for (Int_t i=0; i<nCoupled; i++) cout << clustNumb[i] << " "; cout << endl;
1653
1654 while (nCoupled > 0) {
1655
1656 if (nCoupled < 4) {
1657 nForFit = nCoupled;
1658 for (Int_t i=0; i<nCoupled; i++) clustFit[i] = clustNumb[i];
1659 } else {
1660 // Too many coupled clusters to fit - try to decouple them
1661 // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
1662 // all the others in the group
1663 for (Int_t j=0; j<3; j++) minGroup[j] = -1;
c1aed84f 1664 Double_t coupl = MinGroupCoupl(nCoupled, clustNumb, aijcluclu, minGroup);
0df3ca52 1665
1666 // Flag clusters for fit
1667 nForFit = 0;
1668 while (minGroup[nForFit] >= 0 && nForFit < 3) {
1669 cout << clustNumb[minGroup[nForFit]] << " ";
1670 clustFit[nForFit] = clustNumb[minGroup[nForFit]];
1671 clustNumb[minGroup[nForFit]] -= 999;
1672 nForFit++;
1673 }
1674 cout << nForFit << " " << coupl << endl;
1675 } // else
1676
1677 // Select pads for fit.
c1aed84f 1678 if (SelectPad(nCoupled, nForFit, clustNumb, clustFit, aijclupad) < 3 && nCoupled > 1) {
0df3ca52 1679 // Deselect pads
1680 for (Int_t j=0; j<npad; j++) if (TMath::Abs(fPadIJ[1][j]) == 1) fPadIJ[1][j] = 0;
1681 // Merge the failed cluster candidates (with too few pads to fit) with
1682 // the one with the strongest coupling
c1aed84f 1683 Merge(nForFit, nCoupled, clustNumb, clustFit, clusters, aijcluclu, aijclupad);
0df3ca52 1684 } else {
1685 // Do the fit
1686 nfit = Fit(nForFit, clustFit, clusters, parOk);
1687 }
1688
1689 // Subtract the fitted charges from pads with strong coupling and/or
1690 // return pads for further use
1691 UpdatePads(nfit, parOk);
1692
1693 // Mark used pads
1694 for (Int_t j=0; j<npad; j++) {if (fPadIJ[1][j] == 1) fPadIJ[1][j] = -1;}
1695
1696 // Sort the clusters (move to the right the used ones)
1697 Int_t beg = 0, end = nCoupled - 1;
1698 while (beg < end) {
1699 if (clustNumb[beg] >= 0) { beg++; continue; }
1700 for (Int_t j=end; j>beg; j--) {
1701 if (clustNumb[j] < 0) continue;
1702 end = j - 1;
1703 indx = clustNumb[beg];
1704 clustNumb[beg] = clustNumb[j];
1705 clustNumb[j] = indx;
1706 break;
1707 }
1708 beg++;
1709 }
1710
1711 nCoupled -= nForFit;
1712 if (nCoupled > 3) {
1713 // Remove couplings of used clusters
1714 for (Int_t iclust=nCoupled; iclust<nCoupled+nForFit; iclust++) {
1715 indx = clustNumb[iclust] + 999;
1716 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1717 indx1 = clustNumb[iclust1];
c1aed84f 1718 (*aijcluclu)(indx,indx1) = (*aijcluclu)(indx1,indx) = 0;
0df3ca52 1719 }
1720 }
1721
1722 // Update the remaining clusters couplings (exclude couplings from
1723 // the used pads)
1724 for (Int_t j=0; j<npad; j++) {
1725 if (fPadIJ[1][j] != -1) continue;
1726 for (Int_t iclust=0; iclust<nCoupled; iclust++) {
1727 indx = clustNumb[iclust];
343146bf 1728 if ((*aijclupad)(indx,j) < fgkCouplMin) continue;
0df3ca52 1729 for (Int_t iclust1=iclust+1; iclust1<nCoupled; iclust1++) {
1730 indx1 = clustNumb[iclust1];
343146bf 1731 if ((*aijclupad)(indx1,j) < fgkCouplMin) continue;
0df3ca52 1732 // Check this
c1aed84f 1733 (*aijcluclu)(indx,indx1) -=
1734 TMath::Sqrt ((*aijclupad)(indx,j)*(*aijclupad)(indx1,j));
1735 (*aijcluclu)(indx1,indx) = (*aijcluclu)(indx,indx1);
0df3ca52 1736 }
1737 }
1738 fPadIJ[1][j] = -9;
1739 } // for (Int_t j=0; j<npad;
1740 } // if (nCoupled > 3)
1741 } // while (nCoupled > 0)
1742 } // for (Int_t igroup=0; igroup<nclust;
1743
c1aed84f 1744 //delete aij_clu; aij_clu = 0; delete aijclupad; aijclupad = 0;
1745 aijcluclu->Delete(); aijclupad->Delete();
0df3ca52 1746 for (Int_t iclust=0; iclust<nclust; iclust++) {
1747 pix = clusters[iclust];
1748 pix->Clear();
1749 delete pix; pix = 0;
1750 }
1751 delete [] clustNumb; clustNumb = 0; delete [] used; used = 0;
1752}
1753
1754//_____________________________________________________________________________
1755void AliMUONClusterFinderAZ::AddBin(TH2D *mlem, Int_t ic, Int_t jc, Int_t mode, Bool_t *used, TObjArray *pix)
1756{
1757 // Add a bin to the cluster
1758
1759 Int_t nx = mlem->GetNbinsX();
1760 Int_t ny = mlem->GetNbinsY();
1761 Double_t cont1, cont = mlem->GetCellContent(jc,ic);
1762 AliMUONPixel *pixPtr = 0;
1763
1764 for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) {
1765 for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) {
1766 if (i != ic && j != jc) continue;
1767 if (used[(i-1)*nx+j-1]) continue;
1768 cont1 = mlem->GetCellContent(j,i);
1769 if (mode && cont1 > cont) continue;
1770 used[(i-1)*nx+j-1] = kTRUE;
1771 if (cont1 < 0.5) continue;
1772 if (pix) pix->Add(BinToPix(mlem,j,i));
1773 else {
1774 pixPtr = new AliMUONPixel (mlem->GetXaxis()->GetBinCenter(j),
1775 mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
1776 fPixArray->Add((TObject*)pixPtr);
1777 }
1778 AddBin(mlem, i, j, mode, used, pix); // recursive call
1779 }
1780 }
1781}
1782
1783//_____________________________________________________________________________
1784TObject* AliMUONClusterFinderAZ::BinToPix(TH2D *mlem, Int_t jc, Int_t ic)
1785{
1786 // Translate histogram bin to pixel
1787
1788 Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
1789 Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
1790
1791 Int_t nPix = fPixArray->GetEntriesFast();
1792 AliMUONPixel *pixPtr;
1793
1794 // Compare pixel and bin positions
1795 for (Int_t i=0; i<nPix; i++) {
1796 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1797 if (pixPtr->Charge() < 0.5) continue;
1798 if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4) return (TObject*) pixPtr;
1799 }
1800 cout << " Something wrong ??? " << endl;
1801 return NULL;
1802}
1803
1804//_____________________________________________________________________________
c1aed84f 1805void AliMUONClusterFinderAZ::AddCluster(Int_t ic, Int_t nclust, TMatrixD *aijcluclu, Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
0df3ca52 1806{
1807 // Add a cluster to the group of coupled clusters
1808
1809 for (Int_t i=0; i<nclust; i++) {
1810 if (used[i]) continue;
343146bf 1811 if ((*aijcluclu)(i,ic) < fgkCouplMin) continue;
0df3ca52 1812 used[i] = kTRUE;
1813 clustNumb[nCoupled++] = i;
c1aed84f 1814 AddCluster(i, nclust, aijcluclu, used, clustNumb, nCoupled);
0df3ca52 1815 }
1816}
1817
1818//_____________________________________________________________________________
c1aed84f 1819Double_t AliMUONClusterFinderAZ::MinGroupCoupl(Int_t nCoupled, Int_t *clustNumb, TMatrixD *aijcluclu, Int_t *minGroup)
0df3ca52 1820{
1821 // Find group of clusters with minimum coupling to all the others
1822
1823 Int_t i123max = TMath::Min(3,nCoupled/2);
1824 Int_t indx, indx1, indx2, indx3, nTot = 0;
1825 Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1826
1827 for (Int_t i123=1; i123<=i123max; i123++) {
1828
1829 if (i123 == 1) {
1830 coupl1 = new Double_t [nCoupled];
1831 for (Int_t i=0; i<nCoupled; i++) coupl1[i] = 0;
1832 }
1833 else if (i123 == 2) {
1834 nTot = nCoupled*nCoupled;
1835 coupl2 = new Double_t [nTot];
1836 for (Int_t i=0; i<nTot; i++) coupl2[i] = 9999;
1837 } else {
1838 nTot = nTot*nCoupled;
1839 coupl3 = new Double_t [nTot];
1840 for (Int_t i=0; i<nTot; i++) coupl3[i] = 9999;
1841 } // else
1842
1843 for (Int_t i=0; i<nCoupled; i++) {
1844 indx1 = clustNumb[i];
1845 for (Int_t j=i+1; j<nCoupled; j++) {
1846 indx2 = clustNumb[j];
1847 if (i123 == 1) {
c1aed84f 1848 coupl1[i] += (*aijcluclu)(indx1,indx2);
1849 coupl1[j] += (*aijcluclu)(indx1,indx2);
0df3ca52 1850 }
1851 else if (i123 == 2) {
1852 indx = i*nCoupled + j;
1853 coupl2[indx] = coupl1[i] + coupl1[j];
c1aed84f 1854 coupl2[indx] -= 2 * ((*aijcluclu)(indx1,indx2));
0df3ca52 1855 } else {
1856 for (Int_t k=j+1; k<nCoupled; k++) {
1857 indx3 = clustNumb[k];
1858 indx = i*nCoupled*nCoupled + j*nCoupled + k;
1859 coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
c1aed84f 1860 coupl3[indx] -= 2 * ((*aijcluclu)(indx1,indx3)+(*aijcluclu)(indx2,indx3));
0df3ca52 1861 }
1862 } // else
1863 } // for (Int_t j=i+1;
1864 } // for (Int_t i=0;
1865 } // for (Int_t i123=1;
1866
1867 // Find minimum coupling
1868 Double_t couplMin = 9999;
1869 Int_t locMin = 0;
1870
1871 for (Int_t i123=1; i123<=i123max; i123++) {
1872 if (i123 == 1) {
1873 locMin = TMath::LocMin(nCoupled, coupl1);
1874 couplMin = coupl1[locMin];
1875 minGroup[0] = locMin;
1876 delete [] coupl1; coupl1 = 0;
1877 }
1878 else if (i123 == 2) {
1879 locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1880 if (coupl2[locMin] < couplMin) {
1881 couplMin = coupl2[locMin];
1882 minGroup[0] = locMin/nCoupled;
1883 minGroup[1] = locMin%nCoupled;
1884 }
1885 delete [] coupl2; coupl2 = 0;
1886 } else {
1887 locMin = TMath::LocMin(nTot, coupl3);
1888 if (coupl3[locMin] < couplMin) {
1889 couplMin = coupl3[locMin];
1890 minGroup[0] = locMin/nCoupled/nCoupled;
1891 minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1892 minGroup[2] = locMin%nCoupled;
1893 }
1894 delete [] coupl3; coupl3 = 0;
1895 } // else
1896 } // for (Int_t i123=1;
1897 return couplMin;
1898}
1899
1900//_____________________________________________________________________________
c1aed84f 1901Int_t AliMUONClusterFinderAZ::SelectPad(Int_t nCoupled, Int_t nForFit, Int_t *clustNumb, Int_t *clustFit, TMatrixD *aijclupad)
0df3ca52 1902{
1903 // Select pads for fit. If too many coupled clusters, find pads giving
1904 // the strongest coupling with the rest of clusters and exclude them from the fit.
1905
1906 Int_t npad = fnPads[0] + fnPads[1];
c1aed84f 1907 Double_t *padpix = 0;
0df3ca52 1908
1909 if (nCoupled > 3) {
c1aed84f 1910 padpix = new Double_t[npad];
1911 for (Int_t i=0; i<npad; i++) padpix[i] = 0;
0df3ca52 1912 }
1913
1914 Int_t nOK = 0, indx, indx1;
1915 for (Int_t iclust=0; iclust<nForFit; iclust++) {
1916 indx = clustFit[iclust];
1917 for (Int_t j=0; j<npad; j++) {
1918 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
343146bf 1919 if ((*aijclupad)(indx,j) < fgkCouplMin) continue;
0df3ca52 1920 fPadIJ[1][j] = 1; // pad to be used in fit
1921 nOK++;
1922 if (nCoupled > 3) {
1923 // Check other clusters
1924 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1925 indx1 = clustNumb[iclust1];
1926 if (indx1 < 0) continue;
343146bf 1927 if ((*aijclupad)(indx1,j) < fgkCouplMin) continue;
c1aed84f 1928 padpix[j] += (*aijclupad)(indx1,j);
0df3ca52 1929 }
1930 } // if (nCoupled > 3)
1931 } // for (Int_t j=0; j<npad;
1932 } // for (Int_t iclust=0; iclust<nForFit
1933 if (nCoupled < 4) return nOK;
1934
1935 Double_t aaa = 0;
1936 for (Int_t j=0; j<npad; j++) {
343146bf 1937 if (padpix[j] < fgkCouplMin) continue;
c1aed84f 1938 cout << j << " " << padpix[j] << " ";
0df3ca52 1939 cout << fXyq[0][j] << " " << fXyq[1][j] << endl;
c1aed84f 1940 aaa += padpix[j];
0df3ca52 1941 fPadIJ[1][j] = -1; // exclude pads with strong coupling to the other clusters
1942 nOK--;
1943 }
c1aed84f 1944 delete [] padpix; padpix = 0;
0df3ca52 1945 return nOK;
1946}
1947
1948//_____________________________________________________________________________
c1aed84f 1949void AliMUONClusterFinderAZ::Merge(Int_t nForFit, Int_t nCoupled, Int_t *clustNumb, Int_t *clustFit, TObjArray **clusters, TMatrixD *aijcluclu, TMatrixD *aijclupad)
0df3ca52 1950{
1951 // Merge the group of clusters with the one having the strongest coupling with them
1952
1953 Int_t indx, indx1, npxclu, npxclu1, imax=0;
1954 TObjArray *pix, *pix1;
1955 Double_t couplMax;
1956
1957 for (Int_t icl=0; icl<nForFit; icl++) {
1958 indx = clustFit[icl];
1959 pix = clusters[indx];
1960 npxclu = pix->GetEntriesFast();
1961 couplMax = -1;
1962 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1963 indx1 = clustNumb[icl1];
1964 if (indx1 < 0) continue;
c1aed84f 1965 if ((*aijcluclu)(indx,indx1) > couplMax) {
1966 couplMax = (*aijcluclu)(indx,indx1);
0df3ca52 1967 imax = indx1;
1968 }
1969 } // for (Int_t icl1=0;
343146bf 1970 /*if (couplMax < fgkCouplMin) {
0df3ca52 1971 cout << " Oops " << couplMax << endl;
c1aed84f 1972 aijcluclu->Print();
0df3ca52 1973 cout << icl << " " << indx << " " << npxclu << " " << nLinks << endl;
1974 ::exit(0);
1975 }*/
1976 // Add to it
1977 pix1 = clusters[imax];
1978 npxclu1 = pix1->GetEntriesFast();
1979 // Add pixels
1980 for (Int_t i=0; i<npxclu; i++) { pix1->Add(pix->UncheckedAt(i)); pix->RemoveAt(i); }
1981 cout << " New number of pixels: " << npxclu1 << " " << pix1->GetEntriesFast() << endl;
1982 //Add cluster-to-cluster couplings
c1aed84f 1983 //aijcluclu->Print();
0df3ca52 1984 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1985 indx1 = clustNumb[icl1];
1986 if (indx1 < 0 || indx1 == imax) continue;
c1aed84f 1987 (*aijcluclu)(indx1,imax) += (*aijcluclu)(indx,indx1);
1988 (*aijcluclu)(imax,indx1) = (*aijcluclu)(indx1,imax);
0df3ca52 1989 }
c1aed84f 1990 (*aijcluclu)(indx,imax) = (*aijcluclu)(imax,indx) = 0;
1991 //aijcluclu->Print();
0df3ca52 1992 //Add cluster-to-pad couplings
1993 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1994 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
c1aed84f 1995 (*aijclupad)(imax,j) += (*aijclupad)(indx,j);
1996 (*aijclupad)(indx,j) = 0;
0df3ca52 1997 }
1998 } // for (Int_t icl=0; icl<nForFit;
1999}
2000
2001//_____________________________________________________________________________
2002Int_t AliMUONClusterFinderAZ::Fit(Int_t nfit, Int_t *clustFit, TObjArray **clusters, Double_t *parOk)
2003{
2004 // Find selected clusters to selected pad charges
2005
2006 TH2D *mlem = (TH2D*) gROOT->FindObject("mlem");
2007 //Int_t nx = mlem->GetNbinsX();
2008 //Int_t ny = mlem->GetNbinsY();
2009 Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
2010 Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
2011 Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
2012 Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
2013 //Double_t qmin = 0, qmax = 1;
2014 Double_t step[3]={0.01,0.002,0.02};
2015
2016 Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8];
2017 TObjArray *pix;
2018 Int_t npxclu;
2019
2020 // Number of pads to use
2021 Int_t npads = 0;
2022 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {if (fPadIJ[1][i] == 1) npads++;}
2023 for (Int_t i=0; i<nfit; i++) {cout << i+1 << " " << clustFit[i] << " ";}
2024 cout << nfit << endl;
2025 cout << " Number of pads to fit: " << npads << endl;
2026 fNpar = 0;
2027 fQtot = 0;
2028 if (npads < 2) return 0;
2029
2030 // Take cluster maxima as fitting seeds
2031 AliMUONPixel *pixPtr;
2032 Double_t xyseed[3][2], qseed[3];
2033 for (Int_t ifit=1; ifit<=nfit; ifit++) {
2034 cmax = 0;
2035 pix = clusters[clustFit[ifit-1]];
2036 npxclu = pix->GetEntriesFast();
2037 for (Int_t clu=0; clu<npxclu; clu++) {
2038 pixPtr = (AliMUONPixel*) pix->UncheckedAt(clu);
2039 cont = pixPtr->Charge();
2040 fQtot += cont;
2041 if (cont > cmax) {
2042 cmax = cont;
2043 xseed = pixPtr->Coord(0);
2044 yseed = pixPtr->Coord(1);
2045 }
2046 }
2047 xyseed[ifit-1][0] = xseed;
2048 xyseed[ifit-1][1] = yseed;
2049 qseed[ifit-1] = cmax;
2050 } // for (Int_t ifit=1;
2051
2052 Int_t nDof, maxSeed[3];
2053 Double_t fmin, chi2o = 9999, chi2n;
2054
2055 // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
2056 // lower, try 3-track (if number of pads is sufficient).
2057
2058 TMath::Sort(nfit, qseed, maxSeed, kTRUE); // in decreasing order
2059 nfit = TMath::Min (nfit, (npads + 1) / 3);
2060
2061 Double_t *gin = 0, func0, func1, param[8], param0[2][8], deriv[2][8], step0[8];
2062 Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0;
2063 Double_t delta[8], scMax, dder[8], estim, shiftSave = 0;
2064 Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail;
2065
2066 for (Int_t iseed=0; iseed<nfit; iseed++) {
2067
2068 for (Int_t j=0; j<3; j++) step0[fNpar+j] = shift[fNpar+j] = step[j];
2069 param[fNpar] = xyseed[maxSeed[iseed]][0];
2070 parmin[fNpar] = xmin;
2071 parmax[fNpar++] = xmax;
2072 param[fNpar] = xyseed[maxSeed[iseed]][1];
2073 parmin[fNpar] = ymin;
2074 parmax[fNpar++] = ymax;
2075 if (fNpar > 2) {
2076 param[fNpar] = fNpar == 4 ? 0.5 : 0.3;
2077 parmin[fNpar] = 0;
2078 parmax[fNpar++] = 1;
2079 }
2080
2081 // Try new algorithm
2082 min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
2083
2084 while (1) {
2085 max = !min;
2086 fcn1(fNpar, gin, func0, param, 1); nCall++;
2087 //cout << " Func: " << func0 << endl;
2088
2089 func2[max] = func0;
2090 for (Int_t j=0; j<fNpar; j++) {
2091 param0[max][j] = param[j];
2092 delta[j] = step0[j];
2093 param[j] += delta[j] / 10;
2094 if (j > 0) param[j-1] -= delta[j-1] / 10;
2095 fcn1(fNpar, gin, func1, param, 1); nCall++;
2096 deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
2097 //cout << j << " " << deriv[max][j] << endl;
2098 dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
2099 (param0[0][j] - param0[1][j]) : 0; // second derivative
2100 }
2101 param[fNpar-1] -= delta[fNpar-1] / 10;
2102 if (nCall > 2000) ::exit(0);
2103
2104 min = func2[0] < func2[1] ? 0 : 1;
2105 nFail = min == max ? 0 : nFail + 1;
2106
2107 stepMax = derMax = estim = 0;
2108 for (Int_t j=0; j<fNpar; j++) {
2109 // Estimated distance to minimum
2110 shift0 = shift[j];
2111 if (nLoop == 1) shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
2112 else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3) shift[j] = 0;
2113 else if (deriv[min][j]*deriv[!min][j] > 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])
2114 || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) {
2115 shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
2116 if (min == max) {
2117 if (memory[j] > 1) { shift[j] *= 2; } //cout << " Memory " << memory[j] << " " << shift[j] << endl; }
2118 memory[j]++;
2119 }
2120 } else {
2121 shift[j] = -deriv[min][j] / dder[j];
2122 memory[j] = 0;
2123 }
2124 if (TMath::Abs(shift[j])/step0[j] > estim) {
2125 estim = TMath::Abs(shift[j])/step0[j];
2126 iestMax = j;
2127 }
2128
2129 // Too big step
2130 if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
2131
2132 // Failed to improve minimum
2133 if (min != max) {
2134 memory[j] = 0;
2135 param[j] = param0[min][j];
2136 if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j]) shift[j] = (shift[j] + shift0) / 2;
2137 else shift[j] /= -2;
2138 }
2139
2140 // Too big step
2141 if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
2142 shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
2143
2144 // Introduce step relaxation factor
2145 if (memory[j] < 3) {
2146 scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
2147 if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
2148 shift[j] = TMath::Sign (shift0*scMax, shift[j]);
2149 }
2150 param[j] += shift[j];
2151
2152 //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
2153 stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
2154 if (TMath::Abs(deriv[min][j]) > derMax) {
2155 idMax = j;
2156 derMax = TMath::Abs (deriv[min][j]);
2157 }
2158 } // for (Int_t j=0; j<fNpar;
2159 //cout << max << " " << func2[min] << " " << derMax << " " << stepMax << " " << estim << " " << iestMax << " " << nCall << endl;
2160 if (estim < 1 && derMax < 2 || nLoop > 100) break; // minimum was found
2161
2162 nLoop++;
2163 // Check for small step
2164 if (shift[idMax] == 0) { shift[idMax] = step0[idMax]/10; param[idMax] += shift[idMax]; continue; }
2165 if (!memory[idMax] && derMax > 0.5 && nLoop > 10) {
2166 //cout << " ok " << deriv[min][idMax] << " " << deriv[!min][idMax] << " " << dder[idMax]*shift[idMax] << " " << shift[idMax] << endl;
2167 if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10) {
2168 if (min == max) dder[idMax] = -dder[idMax];
2169 shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
2170 param[idMax] += shift[idMax];
2171 stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
2172 //cout << shift[idMax] << " " << param[idMax] << endl;
2173 if (min == max) shiftSave = shift[idMax];
2174 }
2175 if (nFail > 10) {
2176 param[idMax] -= shift[idMax];
2177 shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
2178 param[idMax] += shift[idMax];
2179 //cout << shift[idMax] << endl;
2180 }
2181 }
2182 } // while (1)
2183 fmin = func2[min];
2184
2185 nDof = npads - fNpar;
2186 chi2n = nDof ? fmin/nDof : 0;
2187
2188 if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; }
2189 // Save parameters and errors
2190 for (Int_t i=0; i<fNpar; i++) {
2191 parOk[i] = param0[min][i];
2192 errOk[i] = fmin;
2193 }
2194
2195 cout << chi2o << " " << chi2n << endl;
2196 chi2o = chi2n;
2197 if (fmin < 0.1) break; // !!!???
2198 } // for (Int_t iseed=0;
2199
2200 for (Int_t i=0; i<fNpar; i++) {
2201 if (i == 4 || i == 7) continue;
2202 cout << parOk[i] << " " << errOk[i] << endl;
2203 }
2204 nfit = (fNpar + 1) / 3;
2205 Double_t rad;
2206 Int_t indx, imax;
2207 if (fReco) {
2208 for (Int_t j=0; j<nfit; j++) {
2209 indx = j<2 ? j*2 : j*2+1;
2210 AddRawCluster (parOk[indx], parOk[indx+1], errOk[indx]);
2211 }
2212 return nfit;
2213 }
2214 for (Int_t i=0; i<fnMu; i++) {
2215 cmax = fxyMu[i][6];
2216 for (Int_t j=0; j<nfit; j++) {
2217 indx = j<2 ? j*2 : j*2+1;
2218 rad = (fxyMu[i][0]-parOk[indx])*(fxyMu[i][0]-parOk[indx]) +
2219 (fxyMu[i][1]-parOk[indx+1])*(fxyMu[i][1]-parOk[indx+1]);
2220 if (rad < cmax) {
2221 cmax = rad;
2222 imax = indx;
2223 fxyMu[i][6] = cmax;
2224 fxyMu[i][2] = parOk[imax] - fxyMu[i][0];
2225 fxyMu[i][4] = parOk[imax+1] - fxyMu[i][1];
2226 fxyMu[i][3] = errOk[imax];
2227 fxyMu[i][5] = errOk[imax+1];
2228 }
2229 }
2230 }
2231 return nfit;
2232}
2233
2234//_____________________________________________________________________________
9e993f2a 2235void AliMUONClusterFinderAZ::fcn1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
0df3ca52 2236{
2237 // Fit for one track
2238 AliMUONClusterFinderAZ& c = *(AliMUONClusterFinderAZ::fgClusterFinder);
2239
2240 Int_t cath, ix, iy, indx, npads=0;
2241 Double_t charge, delta, coef=0, chi2=0;
2242 for (Int_t j=0; j<c.fnPads[0]+c.fnPads[1]; j++) {
2243 if (c.fPadIJ[1][j] != 1) continue;
2244 cath = c.fPadIJ[0][j];
2245 npads++;
2246 c.fSegmentation[cath]->GetPadI(c.fXyq[0][j],c.fXyq[1][j],c.fZpad,ix,iy);
2247 c.fSegmentation[cath]->SetPad(ix,iy);
2248 charge = 0;
2249 for (Int_t i=c.fNpar/3; i>=0; i--) { // sum over tracks
2250 indx = i<2 ? 2*i : 2*i+1;
2251 c.fSegmentation[cath]->SetHit(par[indx],par[indx+1],c.fZpad);
2252 //charge += c.fResponse->IntXY(c.fSegmentation[cath])*par[icl*3+2];
2253 if (c.fNpar == 2) coef = 1;
2254 else coef = i==c.fNpar/3 ? par[indx+2] : 1-coef;
2255 //coef = TMath::Max (coef, 0.);
2256 if (c.fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2257 //coef = TMath::Max (coef, 0.);
2258 charge += c.fResponse->IntXY(c.fSegmentation[cath])*coef;
2259 }
2260 charge *= c.fQtot;
2261 //if (c.fXyq[2][j] > c.fResponse->MaxAdc()-1 && charge >
2262 // c.fResponse->MaxAdc()) charge = c.fResponse->MaxAdc();
2263 delta = charge - c.fXyq[2][j];
2264 delta /= TMath::Sqrt ((Double_t)c.fXyq[2][j]);
2265 //chi2 += TMath::Abs(delta);
2266 chi2 += delta*delta;
2267 } // for (Int_t j=0;
2268 f = chi2;
2269 Double_t qAver = c.fQtot/npads; //(c.fnPads[0]+c.fnPads[1]);
2270 f = chi2/qAver;
2271}
2272
2273//_____________________________________________________________________________
6aaf81e6 2274void AliMUONClusterFinderAZ::UpdatePads(Int_t /*nfit*/, Double_t *par)
0df3ca52 2275{
2276 // Subtract the fitted charges from pads with strong coupling
2277
2278 Int_t cath, ix, iy, indx;
2279 Double_t charge, coef=0;
2280 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2281 if (fPadIJ[1][j] != -1) continue;
2282 if (fNpar != 0) {
2283 cath = fPadIJ[0][j];
2284 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
2285 fSegmentation[cath]->SetPad(ix,iy);
2286 charge = 0;
2287 for (Int_t i=fNpar/3; i>=0; i--) { // sum over tracks
2288 indx = i<2 ? 2*i : 2*i+1;
2289 fSegmentation[cath]->SetHit(par[indx],par[indx+1],fZpad);
2290 if (fNpar == 2) coef = 1;
2291 else coef = i==fNpar/3 ? par[indx+2] : 1-coef;
2292 if (fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2293 charge += fResponse->IntXY(fSegmentation[cath])*coef;
2294 }
2295 charge *= fQtot;
2296 fXyq[2][j] -= charge;
2297 } // if (fNpar != 0)
2298 if (fXyq[2][j] > fResponse->ZeroSuppression()) fPadIJ[1][j] = 0; // return pad for further using
2299 } // for (Int_t j=0;
2300}
2301
2302//_____________________________________________________________________________
6aaf81e6 2303Bool_t AliMUONClusterFinderAZ::TestTrack(Int_t /*t*/) {
0df3ca52 2304// Test if track was user selected
2305 return kTRUE;
2306 /*
2307 if (fTrack[0]==-1 || fTrack[1]==-1) {
2308 return kTRUE;
2309 } else if (t==fTrack[0] || t==fTrack[1]) {
2310 return kTRUE;
2311 } else {
2312 return kFALSE;
2313 }
2314 */
2315}
2316
2317//_____________________________________________________________________________
2318void AliMUONClusterFinderAZ::AddRawCluster(Double_t x, Double_t y, Double_t fmin)
2319{
2320 //
2321 // Add a raw cluster copy to the list
2322 //
2323 AliMUONRawCluster cnew;
2324 AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON");
2325 //pMUON->AddRawCluster(fInput->Chamber(),c);
2326
2327 Int_t cath;
2328 for (cath=0; cath<2; cath++) {
ba12c242 2329 cnew.SetX(cath, x);
2330 cnew.SetY(cath, y);
2331 cnew.SetZ(cath, fZpad);
2332 cnew.SetCharge(cath, 100);
9e993f2a 2333 cnew.SetPeakSignal(cath,20);
2334 cnew.SetMultiplicity(cath, 5);
3b5272e3 2335 cnew.SetNcluster(cath, 1);
2336 cnew.SetChi2(cath, fmin); //0.1;
0df3ca52 2337 /*
2338 cnew.fMultiplicity[cath]=c->fMultiplicity[cath];
2339 for (i=0; i<fMul[cath]; i++) {
2340 cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath];
2341 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
2342 }
2343 fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath);
2344 fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]);
2345 FillCluster(&cnew,cath);
2346 */
2347 }
2348 //cnew.fClusterType=cnew.PhysicsContribution();
ce3f5e87 2349 pMUON->GetMUONData()->AddRawCluster(AliMUONClusterInput::Instance()->Chamber(),cnew);
0df3ca52 2350 //fNPeaks++;
2351}
2352
2353//_____________________________________________________________________________
2354Int_t AliMUONClusterFinderAZ::FindLocalMaxima(Int_t *localMax, Double_t *maxVal)
2355{
2356 // Find local maxima in pixel space for large preclusters in order to
2357 // try to split them into smaller pieces (to speed up the MLEM procedure)
2358
2359 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2360 if (hist) hist->Delete();
2361
cd747ddb 2362 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 2363 Int_t nPix = fPixArray->GetEntriesFast();
2364 AliMUONPixel *pixPtr = 0;
2365 for (Int_t ipix=0; ipix<nPix; ipix++) {
2366 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2367 for (Int_t i=0; i<4; i++)
2368 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
2369 }
2370 for (Int_t i=0; i<4; i++) xylim[i] -= pixPtr->Size(i/2);
2371
2372 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
2373 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
2374 hist = new TH2D("anode","anode",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
2375 for (Int_t ipix=0; ipix<nPix; ipix++) {
2376 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2377 hist->Fill(pixPtr->Coord(0), pixPtr->Coord(1), pixPtr->Charge());
2378 }
2379 if (fDraw) {
2380 ((TCanvas*)gROOT->FindObject("c2"))->cd();
2381 gPad->SetTheta(55);
2382 gPad->SetPhi(30);
2383 hist->Draw("lego1Fb");
2384 gPad->Update();
2385 int ia;
2386 cin >> ia;
2387 }
2388
2389 Int_t nMax = 0, indx;
2390 Int_t *isLocalMax = new Int_t[ny*nx];
2391 for (Int_t i=0; i<ny*nx; i++) isLocalMax[i] = 0;
2392
2393 for (Int_t i=1; i<=ny; i++) {
2394 indx = (i-1) * nx;
2395 for (Int_t j=1; j<=nx; j++) {
2396 if (hist->GetCellContent(j,i) < 0.5) continue;
2397 //if (isLocalMax[indx+j-1] < 0) continue;
2398 if (isLocalMax[indx+j-1] != 0) continue;
2399 FlagLocalMax(hist, i, j, isLocalMax);
2400 }
2401 }
2402
2403 for (Int_t i=1; i<=ny; i++) {
2404 indx = (i-1) * nx;
2405 for (Int_t j=1; j<=nx; j++) {
2406 if (isLocalMax[indx+j-1] > 0) {
2407 localMax[nMax] = indx + j - 1;
2408 maxVal[nMax++] = hist->GetCellContent(j,i);
2409 }
2410 if (nMax > 99) { cout << " Too many local maxima !!!" << endl; ::exit(0); }
2411 }
2412 }
2413 cout << " Local max: " << nMax << endl;
2414 delete [] isLocalMax; isLocalMax = 0;
2415 return nMax;
2416}
2417
2418//_____________________________________________________________________________
2419void AliMUONClusterFinderAZ::FlagLocalMax(TH2D *hist, Int_t i, Int_t j, Int_t *isLocalMax)
2420{
2421 // Flag pixels (whether or not local maxima)
2422
2423 Int_t nx = hist->GetNbinsX();
2424 Int_t ny = hist->GetNbinsY();
2425 Int_t cont = TMath::Nint (hist->GetCellContent(j,i));
2426 Int_t cont1 = 0;
2427
2428 for (Int_t i1=i-1; i1<i+2; i1++) {
2429 if (i1 < 1 || i1 > ny) continue;
2430 for (Int_t j1=j-1; j1<j+2; j1++) {
2431 if (j1 < 1 || j1 > nx) continue;
2432 if (i == i1 && j == j1) continue;
2433 cont1 = TMath::Nint (hist->GetCellContent(j1,i1));
2434 if (cont < cont1) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2435 else if (cont > cont1) isLocalMax[(i1-1)*nx+j1-1] = -1;
2436 else { // the same charge
2437 isLocalMax[(i-1)*nx+j-1] = 1;
2438 if (isLocalMax[(i1-1)*nx+j1-1] == 0) {
2439 FlagLocalMax(hist, i1, j1, isLocalMax);
2440 if (isLocalMax[(i1-1)*nx+j1-1] < 0) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2441 else isLocalMax[(i1-1)*nx+j1-1] = -1;
2442 }
2443 }
2444 }
2445 }
2446 isLocalMax[(i-1)*nx+j-1] = 1; // local maximum
2447}
2448
2449//_____________________________________________________________________________
2450void AliMUONClusterFinderAZ::FindCluster(Int_t *localMax, Int_t iMax)
2451{
2452 // Find pixel cluster around local maximum #iMax and pick up pads
2453 // overlapping with it
2454
2455 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2456 Int_t nx = hist->GetNbinsX();
2457 Int_t ny = hist->GetNbinsY();
2458 Int_t ic = localMax[iMax] / nx + 1;
2459 Int_t jc = localMax[iMax] % nx + 1;
2460 Bool_t *used = new Bool_t[ny*nx];
2461 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
2462
2463 // Drop all pixels from the array - pick up only the ones from the cluster
2464 fPixArray->Delete();
2465
2466 Double_t wx = hist->GetXaxis()->GetBinWidth(1)/2;
2467 Double_t wy = hist->GetYaxis()->GetBinWidth(1)/2;
2468 Double_t yc = hist->GetYaxis()->GetBinCenter(ic);
2469 Double_t xc = hist->GetXaxis()->GetBinCenter(jc);
2470 Double_t cont = hist->GetCellContent(jc,ic);
2471 AliMUONPixel *pixPtr = new AliMUONPixel (xc, yc, wx, wy, cont);
2472 fPixArray->Add((TObject*)pixPtr);
2473 used[(ic-1)*nx+jc-1] = kTRUE;
2474 AddBin(hist, ic, jc, 1, used, (TObjArray*)0); // recursive call
2475
2476 Int_t nPix = fPixArray->GetEntriesFast(), npad = fnPads[0] + fnPads[1];
2477 for (Int_t i=0; i<nPix; i++) {
2478 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(0,wx);
2479 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(1,wy);
2480 }
2481 cout << iMax << " " << nPix << endl;
2482
2483 Float_t xy[4], xy12[4];
2484 // Pick up pads which overlap with found pixels
2485 for (Int_t i=0; i<npad; i++) fPadIJ[1][i] = -1;
2486 for (Int_t i=0; i<nPix; i++) {
2487 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
2488 for (Int_t j=0; j<4; j++)
2489 xy[j] = pixPtr->Coord(j/2) + (j%2 ? 1 : -1)*pixPtr->Size(j/2);
2490 for (Int_t j=0; j<npad; j++)
2491 if (Overlap(xy, j, xy12, 0)) fPadIJ[1][j] = 0; // flag for use
2492 }
2493
2494 delete [] used; used = 0;
2495}