]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PYTHIA6/AliPythia6.cxx
Set max field default value to 15 kG to be above compensator dipole values
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia6.cxx
CommitLineData
39d810c8 1
2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
17/* $Id: AliPythia.cxx,v 1.40 2007/10/09 08:43:24 morsch Exp $ */
18
19#include "AliPythia6.h"
20#include "AliStack.h"
21#include "AliPythiaRndm.h"
22#include "AliFastGlauber.h"
23#include "AliQuenchingWeights.h"
24
25#include "TVector3.h"
26#include "TParticle.h"
27#include "PyquenCommon.h"
28
29ClassImp(AliPythia6)
30
31#ifndef WIN32
32# define pyclus pyclus_
33# define pycell pycell_
34# define pyshow pyshow_
35# define pyrobo pyrobo_
36# define pyquen pyquen_
37# define pyevnw pyevnw_
38# define type_of_call
39#else
40# define pyclus PYCLUS
41# define pycell PYCELL
42# define pyrobo PYROBO
43# define pyquen PYQUEN
44# define pyevnw PYEVNW
45# define type_of_call _stdcall
46#endif
47
48extern "C" void type_of_call pyclus(Int_t & );
49extern "C" void type_of_call pycell(Int_t & );
50extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
51extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
52extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
53extern "C" void type_of_call pyevnw();
54
55
56//_____________________________________________________________________________
57
58AliPythia6* AliPythia6::fgAliPythia=NULL;
59
60AliPythia6::AliPythia6():
61 TPythia6(),
62 AliPythiaBase(),
63 fProcess(kPyMb),
64 fEcms(0.),
65 fStrucFunc(kCTEQ5L),
66 fXJet(0.),
67 fYJet(0.),
68 fNGmax(30),
69 fZmax(0.97),
70 fGlauber(0),
71 fQuenchingWeights(0)
72{
73// Default Constructor
74//
75// Set random number
76 if (!AliPythiaRndm::GetPythiaRandom())
77 AliPythiaRndm::SetPythiaRandom(GetRandom());
78 fGlauber = 0;
79 fQuenchingWeights = 0;
80}
81
82AliPythia6::AliPythia6(const AliPythia6& pythia):
83 TPythia6(),
84 AliPythiaBase(),
85 fProcess(kPyMb),
86 fEcms(0.),
87 fStrucFunc(kCTEQ5L),
88 fXJet(0.),
89 fYJet(0.),
90 fNGmax(30),
91 fZmax(0.97),
92 fGlauber(0),
93 fQuenchingWeights(0)
94{
95 // Copy Constructor
96 pythia.Copy(*this);
97}
98
99void AliPythia6::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
100{
101// Initialise the process to generate
102 if (!AliPythiaRndm::GetPythiaRandom())
103 AliPythiaRndm::SetPythiaRandom(GetRandom());
104
105 fProcess = process;
106 fEcms = energy;
107 fStrucFunc = strucfunc;
108//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
109 SetMDCY(Pycomp(111) ,1,0);
110 SetMDCY(Pycomp(310) ,1,0);
111 SetMDCY(Pycomp(3122),1,0);
112 SetMDCY(Pycomp(3112),1,0);
113 SetMDCY(Pycomp(3212),1,0);
114 SetMDCY(Pycomp(3222),1,0);
115 SetMDCY(Pycomp(3312),1,0);
116 SetMDCY(Pycomp(3322),1,0);
117 SetMDCY(Pycomp(3334),1,0);
118 // Select structure function
119 SetMSTP(52,2);
120 SetMSTP(51,AliStructFuncType::PDFsetIndex(strucfunc));
121 // Particles produced in string fragmentation point directly to either of the two endpoints
122 // of the string (depending in the side they were generated from).
123 SetMSTU(16,2);
124
125//
126// Pythia initialisation for selected processes//
127//
128// Make MSEL clean
129//
130 for (Int_t i=1; i<= 200; i++) {
131 SetMSUB(i,0);
132 }
133// select charm production
134 switch (process)
135 {
136 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
137// Multiple interactions on.
138 SetMSTP(81,1);
139// Double Gaussian matter distribution.
140 SetMSTP(82,4);
141 SetPARP(83,0.5);
142 SetPARP(84,0.4);
143// pT0.
144 SetPARP(82,2.0);
145// Reference energy for pT0 and energy rescaling pace.
146 SetPARP(89,1800);
147 SetPARP(90,0.25);
148// String drawing almost completely minimizes string length.
149 SetPARP(85,0.9);
150 SetPARP(86,0.95);
151// ISR and FSR activity.
152 SetPARP(67,4);
153 SetPARP(71,4);
154// Lambda_FSR scale.
155 SetPARJ(81,0.29);
156 break;
157 case kPyOldUEQ2ordered2:
158// Old underlying events with Q2 ordered QCD processes
159// Multiple interactions on.
160 SetMSTP(81,1);
161// Double Gaussian matter distribution.
162 SetMSTP(82,4);
163 SetPARP(83,0.5);
164 SetPARP(84,0.4);
165// pT0.
166 SetPARP(82,2.0);
167// Reference energy for pT0 and energy rescaling pace.
168 SetPARP(89,1800);
169 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
170// String drawing almost completely minimizes string length.
171 SetPARP(85,0.9);
172 SetPARP(86,0.95);
173// ISR and FSR activity.
174 SetPARP(67,4);
175 SetPARP(71,4);
176// Lambda_FSR scale.
177 SetPARJ(81,0.29);
178 break;
179 case kPyOldPopcorn:
180// Old production mechanism: Old Popcorn
181 SetMSEL(1);
182 SetMSTJ(12,3);
183// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
184 SetMSTP(88,2);
185// (D=1)see can be used to form baryons (BARYON JUNCTION)
186 SetMSTJ(1,1);
187 AtlasTuning();
188 break;
189 case kPyCharm:
190 SetMSEL(4);
191// heavy quark masses
192
193 SetPMAS(4,1,1.2);
194//
195// primordial pT
196 SetMSTP(91,1);
197 SetPARP(91,1.);
198 SetPARP(93,5.);
199//
200 break;
201 case kPyBeauty:
202 SetMSEL(5);
203 SetPMAS(5,1,4.75);
204 break;
205 case kPyJpsi:
206 SetMSEL(0);
207// gg->J/Psi g
208 SetMSUB(86,1);
209 break;
210 case kPyJpsiChi:
211 SetMSEL(0);
212// gg->J/Psi g
213 SetMSUB(86,1);
214// gg-> chi_0c g
215 SetMSUB(87,1);
216// gg-> chi_1c g
217 SetMSUB(88,1);
218// gg-> chi_2c g
219 SetMSUB(89,1);
220 break;
221 case kPyCharmUnforced:
222 SetMSEL(0);
223// gq->qg
224 SetMSUB(28,1);
225// gg->qq
226 SetMSUB(53,1);
227// gg->gg
228 SetMSUB(68,1);
229 break;
230 case kPyBeautyUnforced:
231 SetMSEL(0);
232// gq->qg
233 SetMSUB(28,1);
234// gg->qq
235 SetMSUB(53,1);
236// gg->gg
237 SetMSUB(68,1);
238 break;
239 case kPyMb:
240// Minimum Bias pp-Collisions
241//
242//
243// select Pythia min. bias model
244 SetMSEL(0);
245 SetMSUB(92,1); // single diffraction AB-->XB
246 SetMSUB(93,1); // single diffraction AB-->AX
247 SetMSUB(94,1); // double diffraction
248 SetMSUB(95,1); // low pt production
249
250 AtlasTuning();
251 break;
67b7bb0e 252 case kPyMbAtlasTuneMC09:
253// Minimum Bias pp-Collisions
254//
255//
256// select Pythia min. bias model
257 SetMSEL(0);
258 SetMSUB(92,1); // single diffraction AB-->XB
259 SetMSUB(93,1); // single diffraction AB-->AX
260 SetMSUB(94,1); // double diffraction
261 SetMSUB(95,1); // low pt production
262
263 AtlasTuning_MC09();
264 break;
04081a91 265
266 case kPyMbWithDirectPhoton:
267// Minimum Bias pp-Collisions with direct photon processes added
268//
269//
270// select Pythia min. bias model
271 SetMSEL(0);
272 SetMSUB(92,1); // single diffraction AB-->XB
273 SetMSUB(93,1); // single diffraction AB-->AX
274 SetMSUB(94,1); // double diffraction
275 SetMSUB(95,1); // low pt production
276
277 SetMSUB(14,1); //
278 SetMSUB(18,1); //
279 SetMSUB(29,1); //
280 SetMSUB(114,1); //
281 SetMSUB(115,1); //
282
283
284 AtlasTuning();
285 break;
286
39d810c8 287 case kPyMbDefault:
288// Minimum Bias pp-Collisions
289//
290//
291// select Pythia min. bias model
292 SetMSEL(0);
293 SetMSUB(92,1); // single diffraction AB-->XB
294 SetMSUB(93,1); // single diffraction AB-->AX
295 SetMSUB(94,1); // double diffraction
296 SetMSUB(95,1); // low pt production
297
298 break;
299 case kPyLhwgMb:
300// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
301// -> Pythia 6.3 or above is needed
302//
303 SetMSEL(0);
304 SetMSUB(92,1); // single diffraction AB-->XB
305 SetMSUB(93,1); // single diffraction AB-->AX
306 SetMSUB(94,1); // double diffraction
307 SetMSUB(95,1); // low pt production
308 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll));
309 SetMSTP(52,2);
310 SetMSTP(68,1);
311 SetMSTP(70,2);
312 SetMSTP(81,1); // Multiple Interactions ON
313 SetMSTP(82,4); // Double Gaussian Model
314 SetMSTP(88,1);
315
316 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
317 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
318 SetPARP(84,0.5); // Core radius
319 SetPARP(85,0.9); // Regulates gluon prod. mechanism
320 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
321
322 break;
323 case kPyMbNonDiffr:
324// Minimum Bias pp-Collisions
325//
326//
327// select Pythia min. bias model
328 SetMSEL(0);
329 SetMSUB(95,1); // low pt production
330
331 AtlasTuning();
332 break;
333 case kPyMbMSEL1:
334 ConfigHeavyFlavor();
335// Intrinsic <kT^2>
336 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
337 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
338 SetPARP(93,5.); // Upper cut-off
339// Set Q-quark mass
340 SetPMAS(4,1,1.2); // Charm quark mass
341 SetPMAS(5,1,4.78); // Beauty quark mass
342 SetPARP(71,4.); // Defaut value
343// Atlas Tuning
344 AtlasTuning();
345 break;
346 case kPyJets:
347//
348// QCD Jets
349//
350 SetMSEL(1);
351 // Pythia Tune A (CDF)
352 //
353 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
354 SetMSTP(82,4); // Double Gaussian Model
355 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
356 SetPARP(84,0.4); // Core radius
357 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
358 SetPARP(86,0.95); // Regulates gluon prod. mechanism
359 SetPARP(89,1800.); // [GeV] Ref. energy
360 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
361 break;
362 case kPyDirectGamma:
363 SetMSEL(10);
364 break;
365 case kPyCharmPbPbMNR:
366 case kPyD0PbPbMNR:
367 case kPyDPlusPbPbMNR:
368 case kPyDPlusStrangePbPbMNR:
369 // Tuning of Pythia parameters aimed to get a resonable agreement
370 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
371 // c-cbar single inclusive and double differential distributions.
372 // This parameter settings are meant to work with Pb-Pb collisions
373 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
374 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
375 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
376 ConfigHeavyFlavor();
377 // Intrinsic <kT>
378 SetMSTP(91,1);
379 SetPARP(91,1.304);
380 SetPARP(93,6.52);
381 // Set c-quark mass
382 SetPMAS(4,1,1.2);
383 break;
384 case kPyCharmpPbMNR:
385 case kPyD0pPbMNR:
386 case kPyDPluspPbMNR:
387 case kPyDPlusStrangepPbMNR:
388 // Tuning of Pythia parameters aimed to get a resonable agreement
389 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
390 // c-cbar single inclusive and double differential distributions.
391 // This parameter settings are meant to work with p-Pb collisions
392 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
393 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
394 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
395 ConfigHeavyFlavor();
396 // Intrinsic <kT>
397 SetMSTP(91,1);
398 SetPARP(91,1.16);
399 SetPARP(93,5.8);
400
401 // Set c-quark mass
402 SetPMAS(4,1,1.2);
403 break;
404 case kPyCharmppMNR:
405 case kPyD0ppMNR:
406 case kPyDPlusppMNR:
407 case kPyDPlusStrangeppMNR:
408 // Tuning of Pythia parameters aimed to get a resonable agreement
409 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
410 // c-cbar single inclusive and double differential distributions.
411 // This parameter settings are meant to work with pp collisions
412 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
413 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
414 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
415 ConfigHeavyFlavor();
416 // Intrinsic <kT^2>
417 SetMSTP(91,1);
418 SetPARP(91,1.);
419 SetPARP(93,5.);
420
421 // Set c-quark mass
422 SetPMAS(4,1,1.2);
423 break;
424 case kPyCharmppMNRwmi:
425 // Tuning of Pythia parameters aimed to get a resonable agreement
426 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
427 // c-cbar single inclusive and double differential distributions.
428 // This parameter settings are meant to work with pp collisions
429 // and with kCTEQ5L PDFs.
430 // Added multiple interactions according to ATLAS tune settings.
431 // To get a "reasonable" agreement with MNR results, events have to be
432 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
433 // set to 2.76 GeV.
434 // To get a "perfect" agreement with MNR results, events have to be
435 // generated in four ptHard bins with the following relative
436 // normalizations:
437 // 2.76-3 GeV: 25%
438 // 3-4 GeV: 40%
439 // 4-8 GeV: 29%
440 // >8 GeV: 6%
441 ConfigHeavyFlavor();
442 // Intrinsic <kT^2>
443 SetMSTP(91,1);
444 SetPARP(91,1.);
445 SetPARP(93,5.);
446
447 // Set c-quark mass
448 SetPMAS(4,1,1.2);
449 AtlasTuning();
450 break;
451 case kPyBeautyPbPbMNR:
452 // Tuning of Pythia parameters aimed to get a resonable agreement
453 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
454 // b-bbar single inclusive and double differential distributions.
455 // This parameter settings are meant to work with Pb-Pb collisions
456 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
457 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
458 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
459 ConfigHeavyFlavor();
460 // QCD scales
461 SetPARP(67,1.0);
462 SetPARP(71,1.0);
463 // Intrinsic <kT>
464 SetMSTP(91,1);
465 SetPARP(91,2.035);
466 SetPARP(93,10.17);
467 // Set b-quark mass
468 SetPMAS(5,1,4.75);
469 break;
470 case kPyBeautypPbMNR:
471 // Tuning of Pythia parameters aimed to get a resonable agreement
472 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
473 // b-bbar single inclusive and double differential distributions.
474 // This parameter settings are meant to work with p-Pb collisions
475 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
476 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
477 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
478 ConfigHeavyFlavor();
479 // QCD scales
480 SetPARP(67,1.0);
481 SetPARP(71,1.0);
482 // Intrinsic <kT>
483 SetMSTP(91,1);
484 SetPARP(91,1.60);
485 SetPARP(93,8.00);
486 // Set b-quark mass
487 SetPMAS(5,1,4.75);
488 break;
489 case kPyBeautyppMNR:
490 // Tuning of Pythia parameters aimed to get a resonable agreement
491 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
492 // b-bbar single inclusive and double differential distributions.
493 // This parameter settings are meant to work with pp collisions
494 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
495 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
496 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
497 ConfigHeavyFlavor();
498 // QCD scales
499 SetPARP(67,1.0);
500 SetPARP(71,1.0);
501
502 // Intrinsic <kT>
503 SetMSTP(91,1);
504 SetPARP(91,1.);
505 SetPARP(93,5.);
506
507 // Set b-quark mass
508 SetPMAS(5,1,4.75);
509 break;
70574ff8 510 case kPyBeautyJets:
39d810c8 511 case kPyBeautyppMNRwmi:
512 // Tuning of Pythia parameters aimed to get a resonable agreement
513 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
514 // b-bbar single inclusive and double differential distributions.
515 // This parameter settings are meant to work with pp collisions
516 // and with kCTEQ5L PDFs.
517 // Added multiple interactions according to ATLAS tune settings.
518 // To get a "reasonable" agreement with MNR results, events have to be
519 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
520 // set to 2.76 GeV.
521 // To get a "perfect" agreement with MNR results, events have to be
522 // generated in four ptHard bins with the following relative
523 // normalizations:
524 // 2.76-4 GeV: 5%
525 // 4-6 GeV: 31%
526 // 6-8 GeV: 28%
527 // >8 GeV: 36%
528 ConfigHeavyFlavor();
529 // QCD scales
530 SetPARP(67,1.0);
531 SetPARP(71,1.0);
532
533 // Intrinsic <kT>
534 SetMSTP(91,1);
535 SetPARP(91,1.);
536 SetPARP(93,5.);
537
538 // Set b-quark mass
539 SetPMAS(5,1,4.75);
540
541 AtlasTuning();
542 break;
543 case kPyW:
544
545 //Inclusive production of W+/-
546 SetMSEL(0);
547 //f fbar -> W+
548 SetMSUB(2,1);
549 // //f fbar -> g W+
550 // SetMSUB(16,1);
551 // //f fbar -> gamma W+
552 // SetMSUB(20,1);
553 // //f g -> f W+
554 // SetMSUB(31,1);
555 // //f gamma -> f W+
556 // SetMSUB(36,1);
557
558 // Initial/final parton shower on (Pythia default)
559 // With parton showers on we are generating "W inclusive process"
560 SetMSTP(61,1); //Initial QCD & QED showers on
561 SetMSTP(71,1); //Final QCD & QED showers on
562
563 break;
564
565 case kPyZ:
566
567 //Inclusive production of Z
568 SetMSEL(0);
569 //f fbar -> Z/gamma
570 SetMSUB(1,1);
571
572 // // f fbar -> g Z/gamma
573 // SetMSUB(15,1);
574 // // f fbar -> gamma Z/gamma
575 // SetMSUB(19,1);
576 // // f g -> f Z/gamma
577 // SetMSUB(30,1);
578 // // f gamma -> f Z/gamma
579 // SetMSUB(35,1);
580
581 //only Z included, not gamma
582 SetMSTP(43,2);
583
584 // Initial/final parton shower on (Pythia default)
585 // With parton showers on we are generating "Z inclusive process"
586 SetMSTP(61,1); //Initial QCD & QED showers on
587 SetMSTP(71,1); //Final QCD & QED showers on
588
589 break;
590
591 }
592//
593// Initialize PYTHIA
594 SetMSTP(41,1); // all resonance decays switched on
595 Initialize("CMS","p","p",fEcms);
596
597}
598
599Int_t AliPythia6::CheckedLuComp(Int_t kf)
600{
601// Check Lund particle code (for debugging)
602 Int_t kc=Pycomp(kf);
603 return kc;
604}
605
606void AliPythia6::SetNuclei(Int_t a1, Int_t a2)
607{
608// Treat protons as inside nuclei with mass numbers a1 and a2
609// The MSTP array in the PYPARS common block is used to enable and
610// select the nuclear structure functions.
611// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
612// =1: internal PYTHIA acording to MSTP(51)
613// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
614// If the following mass number both not equal zero, nuclear corrections of the stf are used.
615// MSTP(192) : Mass number of nucleus side 1
616// MSTP(193) : Mass number of nucleus side 2
617 SetMSTP(52,2);
618 SetMSTP(192, a1);
619 SetMSTP(193, a2);
620}
621
622
623AliPythia6* AliPythia6::Instance()
624{
625// Set random number generator
626 if (fgAliPythia) {
627 return fgAliPythia;
628 } else {
629 fgAliPythia = new AliPythia6();
630 return fgAliPythia;
631 }
632}
633
634void AliPythia6::PrintParticles()
635{
636// Print list of particl properties
637 Int_t np = 0;
638 char* name = new char[16];
639 for (Int_t kf=0; kf<1000000; kf++) {
640 for (Int_t c = 1; c > -2; c-=2) {
641 Int_t kc = Pycomp(c*kf);
642 if (kc) {
643 Float_t mass = GetPMAS(kc,1);
644 Float_t width = GetPMAS(kc,2);
645 Float_t tau = GetPMAS(kc,4);
646
647 Pyname(kf,name);
648
649 np++;
650
651 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
652 c*kf, name, mass, width, tau);
653 }
654 }
655 }
656 printf("\n Number of particles %d \n \n", np);
657}
658
659void AliPythia6::ResetDecayTable()
660{
661// Set default values for pythia decay switches
662 Int_t i;
663 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
664 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
665}
666
667void AliPythia6::SetDecayTable()
668{
669// Set default values for pythia decay switches
670//
671 Int_t i;
672 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
673 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
674}
675
676void AliPythia6::Pyclus(Int_t& njet)
677{
678// Call Pythia clustering algorithm
679//
680 pyclus(njet);
681}
682
683void AliPythia6::Pycell(Int_t& njet)
684{
685// Call Pythia jet reconstruction algorithm
686//
687 pycell(njet);
688}
689
690void AliPythia6::GetJet(Int_t i, Float_t& px, Float_t& py, Float_t& pz, Float_t& e)
691{
692 // Get jet number i
693 Int_t n = GetN();
694 px = GetPyjets()->P[0][n+i];
695 py = GetPyjets()->P[1][n+i];
696 pz = GetPyjets()->P[2][n+i];
697 e = GetPyjets()->P[3][n+i];
698}
699
700void AliPythia6::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
701{
702// Call Pythia showering
703//
704 pyshow(ip1, ip2, qmax);
705}
706
707void AliPythia6::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
708{
709 pyrobo(imi, ima, the, phi, bex, bey, bez);
710}
711
712
713
714void AliPythia6::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
715{
716// Initializes
717// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
718// (2) The nuclear geometry using the Glauber Model
719//
720
18b7a4a1 721 fGlauber = AliFastGlauber::Instance();
39d810c8 722 fGlauber->Init(2);
723 fGlauber->SetCentralityClass(cMin, cMax);
724
725 fQuenchingWeights = new AliQuenchingWeights();
726 fQuenchingWeights->InitMult();
727 fQuenchingWeights->SetK(k);
728 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
729 fNGmax = ngmax;
730 fZmax = zmax;
731
732}
733
734
735void AliPythia6::Quench()
736{
737//
738//
739// Simple Jet Quenching routine:
740// =============================
741// The jet formed by all final state partons radiated by the parton created
742// in the hard collisions is quenched by a factor (1-z) using light cone variables in
743// the initial parton reference frame:
744// (E + p_z)new = (1-z) (E + p_z)old
745//
746//
747//
748//
749// The lost momentum is first balanced by one gluon with virtuality > 0.
750// Subsequently the gluon splits to yield two gluons with E = p.
751//
752//
753//
754 static Float_t eMean = 0.;
755 static Int_t icall = 0;
756
757 Double_t p0[4][5];
758 Double_t p1[4][5];
759 Double_t p2[4][5];
760 Int_t klast[4] = {-1, -1, -1, -1};
761
762 Int_t numpart = fPyjets->N;
763 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
764 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
765 Bool_t quenched[4];
766 Double_t wjtKick[4];
767 Int_t nGluon[4];
768 Int_t qPdg[4];
769 Int_t imo, kst, pdg;
770
771//
772// Sore information about Primary partons
773//
774// j =
775// 0, 1 partons from hard scattering
776// 2, 3 partons from initial state radiation
777//
778 for (Int_t i = 2; i <= 7; i++) {
779 Int_t j = 0;
780 // Skip gluons that participate in hard scattering
781 if (i == 4 || i == 5) continue;
782 // Gluons from hard Scattering
783 if (i == 6 || i == 7) {
784 j = i - 6;
785 pxq[j] = fPyjets->P[0][i];
786 pyq[j] = fPyjets->P[1][i];
787 pzq[j] = fPyjets->P[2][i];
788 eq[j] = fPyjets->P[3][i];
789 mq[j] = fPyjets->P[4][i];
790 } else {
791 // Gluons from initial state radiation
792 //
793 // Obtain 4-momentum vector from difference between original parton and parton after gluon
794 // radiation. Energy is calculated independently because initial state radition does not
795 // conserve strictly momentum and energy for each partonic system independently.
796 //
797 // Not very clean. Should be improved !
798 //
799 //
800 j = i;
801 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
802 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
803 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
804 mq[j] = fPyjets->P[4][i];
805 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
806 }
807//
808// Calculate some kinematic variables
809//
810 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
811 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
812 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
813 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
814 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
815 qPdg[j] = fPyjets->K[1][i];
816 }
817
818 Double_t int0[4];
819 Double_t int1[4];
820
821 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
822
823 for (Int_t j = 0; j < 4; j++) {
824 //
825 // Quench only central jets and with E > 10.
826 //
827
828
829 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
830 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
831
832 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
833 fZQuench[j] = 0.;
834 } else {
835 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
836 icall ++;
837 eMean += eloss;
838 }
839 //
840 // Extra pt
841 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
842 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
843 //
844 // Fractional energy loss
845 fZQuench[j] = eloss / eq[j];
846 //
847 // Avoid complete loss
848 //
1044c4d8 849 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
39d810c8 850 //
851 // Some debug printing
852
853
854// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
855// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
856
857// fZQuench[j] = 0.8;
858// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
859 }
860
861 quenched[j] = (fZQuench[j] > 0.01);
862 } // primary partons
863
864
865
866 Double_t pNew[1000][4];
867 Int_t kNew[1000];
868 Int_t icount = 0;
869 Double_t zquench[4];
870
871//
872// System Loop
873 for (Int_t isys = 0; isys < 4; isys++) {
874// Skip to next system if not quenched.
875 if (!quenched[isys]) continue;
876
877 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
878 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
879 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
880 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
881
882
883
884 Int_t igMin = -1;
885 Int_t igMax = -1;
886 Double_t pg[4] = {0., 0., 0., 0.};
887
888//
889// Loop on radiation events
890
891 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
892 while (1) {
893 icount = 0;
894 for (Int_t k = 0; k < 4; k++)
895 {
896 p0[isys][k] = 0.;
897 p1[isys][k] = 0.;
898 p2[isys][k] = 0.;
899 }
900// Loop over partons
901 for (Int_t i = 0; i < numpart; i++)
902 {
903 imo = fPyjets->K[2][i];
904 kst = fPyjets->K[0][i];
905 pdg = fPyjets->K[1][i];
906
907
908
909// Quarks and gluons only
910 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
911// Particles from hard scattering only
912
913 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
914 Int_t imom = imo % 1000;
915 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
916 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
917
918
919// Skip comment lines
920 if (kst != 1 && kst != 2) continue;
921//
922// Parton kinematic
923 px = fPyjets->P[0][i];
924 py = fPyjets->P[1][i];
925 pz = fPyjets->P[2][i];
926 e = fPyjets->P[3][i];
927 m = fPyjets->P[4][i];
928 pt = TMath::Sqrt(px * px + py * py);
929 p = TMath::Sqrt(px * px + py * py + pz * pz);
930 phi = TMath::Pi() + TMath::ATan2(-py, -px);
931 theta = TMath::ATan2(pt, pz);
932
933//
934// Save 4-momentum sum for balancing
935 Int_t index = isys;
936
937 p0[index][0] += px;
938 p0[index][1] += py;
939 p0[index][2] += pz;
940 p0[index][3] += e;
941
942 klast[index] = i;
943
944//
945// Fractional energy loss
946 Double_t z = zquench[index];
947
948
949// Don't fully quench radiated gluons
950//
951 if (imo > 1000) {
952// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
953//
954
955 z = 0.02;
956 }
957// printf("z: %d %f\n", imo, z);
958
959
960//
961
962 //
963 //
964 // Transform into frame in which initial parton is along z-axis
965 //
966 TVector3 v(px, py, pz);
967 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
968 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
969
970 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
971 Double_t mt2 = jt * jt + m * m;
972 Double_t zmax = 1.;
973 //
974 // Kinematic limit on z
975 //
976 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
977 //
978 // Change light-cone kinematics rel. to initial parton
979 //
980 Double_t eppzOld = e + pl;
981 Double_t empzOld = e - pl;
982
983 Double_t eppzNew = (1. - z) * eppzOld;
984 Double_t empzNew = empzOld - mt2 * z / eppzOld;
985 Double_t eNew = 0.5 * (eppzNew + empzNew);
986 Double_t plNew = 0.5 * (eppzNew - empzNew);
987
988 Double_t jtNew;
989 //
990 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
991 Double_t mt2New = eppzNew * empzNew;
992 if (mt2New < 1.e-8) mt2New = 0.;
993 if (z < zmax) {
994 if (m * m > mt2New) {
995 //
996 // This should not happen
997 //
998 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
999 jtNew = 0;
1000 } else {
1001 jtNew = TMath::Sqrt(mt2New - m * m);
1002 }
1003 } else {
1004 // If pT is to small (probably a leading massive particle) we scale only the energy
1005 // This can cause negative masses of the radiated gluon
1006 // Let's hope for the best ...
1007 jtNew = jt;
1008 eNew = TMath::Sqrt(plNew * plNew + mt2);
1009
1010 }
1011 //
1012 // Calculate new px, py
1013 //
1044c4d8 1014 Double_t pxNew = 0;
1015 Double_t pyNew = 0;
1016
1017 if (jt > 0.) {
1018 pxNew = jtNew / jt * pxs;
1019 pyNew = jtNew / jt * pys;
1020 }
39d810c8 1021
1022// Double_t dpx = pxs - pxNew;
1023// Double_t dpy = pys - pyNew;
1024// Double_t dpz = pl - plNew;
1025// Double_t de = e - eNew;
1026// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1027// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1028// printf("New mass (2) %e %e \n", pxNew, pyNew);
1029 //
1030 // Rotate back
1031 //
1032 TVector3 w(pxNew, pyNew, plNew);
1033 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1034 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1035
1036 p1[index][0] += pxNew;
1037 p1[index][1] += pyNew;
1038 p1[index][2] += plNew;
1039 p1[index][3] += eNew;
1040 //
1041 // Updated 4-momentum vectors
1042 //
1043 pNew[icount][0] = pxNew;
1044 pNew[icount][1] = pyNew;
1045 pNew[icount][2] = plNew;
1046 pNew[icount][3] = eNew;
1047 kNew[icount] = i;
1048 icount++;
1049 } // parton loop
1050 //
1051 // Check if there was phase-space for quenching
1052 //
1053
1054 if (icount == 0) quenched[isys] = kFALSE;
1055 if (!quenched[isys]) break;
1056
1057 for (Int_t j = 0; j < 4; j++)
1058 {
1059 p2[isys][j] = p0[isys][j] - p1[isys][j];
1060 }
1061 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
1062 if (p2[isys][4] > 0.) {
1063 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1064 break;
1065 } else {
1066 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
1067 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
1068 if (p2[isys][4] < -0.01) {
1069 printf("Negative mass squared !\n");
1070 // Here we have to put the gluon back to mass shell
1071 // This will lead to a small energy imbalance
1072 p2[isys][4] = 0.;
1073 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1074 break;
1075 } else {
1076 p2[isys][4] = 0.;
1077 break;
1078 }
1079 }
1080 /*
1081 zHeavy *= 0.98;
1082 printf("zHeavy lowered to %f\n", zHeavy);
1083 if (zHeavy < 0.01) {
1084 printf("No success ! \n");
1085 icount = 0;
1086 quenched[isys] = kFALSE;
1087 break;
1088 }
1089 */
1090 } // iteration on z (while)
1091
1092// Update event record
1093 for (Int_t k = 0; k < icount; k++) {
1094// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1095 fPyjets->P[0][kNew[k]] = pNew[k][0];
1096 fPyjets->P[1][kNew[k]] = pNew[k][1];
1097 fPyjets->P[2][kNew[k]] = pNew[k][2];
1098 fPyjets->P[3][kNew[k]] = pNew[k][3];
1099 }
1100 //
1101 // Add the gluons
1102 //
1103 Int_t ish = 0;
1104 Int_t iGlu;
1105 if (!quenched[isys]) continue;
1106//
1107// Last parton from shower i
1108 Int_t in = klast[isys];
1109//
1110// Continue if no parton in shower i selected
1111 if (in == -1) continue;
1112//
1113// If this is the second initial parton and it is behind the first move pointer by previous ish
1114 if (isys == 1 && klast[1] > klast[0]) in += ish;
1115//
1116// Starting index
1117
1118// jmin = in - 1;
1119// How many additional gluons will be generated
1120 ish = 1;
1121 if (p2[isys][4] > 0.05) ish = 2;
1122//
1123// Position of gluons
1124 iGlu = numpart;
1125 if (iglu == 0) igMin = iGlu;
1126 igMax = iGlu;
1127 numpart += ish;
1128 (fPyjets->N) += ish;
1129
1130 if (ish == 1) {
1131 fPyjets->P[0][iGlu] = p2[isys][0];
1132 fPyjets->P[1][iGlu] = p2[isys][1];
1133 fPyjets->P[2][iGlu] = p2[isys][2];
1134 fPyjets->P[3][iGlu] = p2[isys][3];
1135 fPyjets->P[4][iGlu] = p2[isys][4];
1136
1137 fPyjets->K[0][iGlu] = 1;
1138 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
1139 fPyjets->K[1][iGlu] = 21;
1140 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1141 fPyjets->K[3][iGlu] = -1;
1142 fPyjets->K[4][iGlu] = -1;
1143
1144 pg[0] += p2[isys][0];
1145 pg[1] += p2[isys][1];
1146 pg[2] += p2[isys][2];
1147 pg[3] += p2[isys][3];
1148 } else {
1149 //
1150 // Split gluon in rest frame.
1151 //
1152 Double_t bx = p2[isys][0] / p2[isys][3];
1153 Double_t by = p2[isys][1] / p2[isys][3];
1154 Double_t bz = p2[isys][2] / p2[isys][3];
1155 Double_t pst = p2[isys][4] / 2.;
1156 //
1157 // Isotropic decay ????
1158 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1159 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1160 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
39d810c8 1161
1162 Double_t pz1 = pst * cost;
1163 Double_t pz2 = -pst * cost;
1164 Double_t pt1 = pst * sint;
1165 Double_t pt2 = -pst * sint;
2ab330c9 1166 Double_t px1 = pt1 * TMath::Cos(phis);
1167 Double_t py1 = pt1 * TMath::Sin(phis);
1168 Double_t px2 = pt2 * TMath::Cos(phis);
1169 Double_t py2 = pt2 * TMath::Sin(phis);
39d810c8 1170
1171 fPyjets->P[0][iGlu] = px1;
1172 fPyjets->P[1][iGlu] = py1;
1173 fPyjets->P[2][iGlu] = pz1;
1174 fPyjets->P[3][iGlu] = pst;
1175 fPyjets->P[4][iGlu] = 0.;
1176
1177 fPyjets->K[0][iGlu] = 1 ;
1178 fPyjets->K[1][iGlu] = 21;
1179 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1180 fPyjets->K[3][iGlu] = -1;
1181 fPyjets->K[4][iGlu] = -1;
1182
1183 fPyjets->P[0][iGlu+1] = px2;
1184 fPyjets->P[1][iGlu+1] = py2;
1185 fPyjets->P[2][iGlu+1] = pz2;
1186 fPyjets->P[3][iGlu+1] = pst;
1187 fPyjets->P[4][iGlu+1] = 0.;
1188
1189 fPyjets->K[0][iGlu+1] = 1;
1190 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
1191 fPyjets->K[1][iGlu+1] = 21;
1192 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
1193 fPyjets->K[3][iGlu+1] = -1;
1194 fPyjets->K[4][iGlu+1] = -1;
1195 SetMSTU(1,0);
1196 SetMSTU(2,0);
1197 //
1198 // Boost back
1199 //
1200 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1201 }
1202/*
1203 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1204 Double_t px, py, pz;
1205 px = fPyjets->P[0][ig];
1206 py = fPyjets->P[1][ig];
1207 pz = fPyjets->P[2][ig];
1208 TVector3 v(px, py, pz);
1209 v.RotateZ(-phiq[isys]);
1210 v.RotateY(-thetaq[isys]);
1211 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1212 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1213 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1214 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1215 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1216 pxs += jtKick * TMath::Cos(phiKick);
1217 pys += jtKick * TMath::Sin(phiKick);
1218 TVector3 w(pxs, pys, pzs);
1219 w.RotateY(thetaq[isys]);
1220 w.RotateZ(phiq[isys]);
1221 fPyjets->P[0][ig] = w.X();
1222 fPyjets->P[1][ig] = w.Y();
1223 fPyjets->P[2][ig] = w.Z();
1224 fPyjets->P[2][ig] = w.Mag();
1225 }
1226*/
1227 } // kGluon
1228
1229
1230 // Check energy conservation
1231 Double_t pxs = 0.;
1232 Double_t pys = 0.;
1233 Double_t pzs = 0.;
1234 Double_t es = 14000.;
1235
1236 for (Int_t i = 0; i < numpart; i++)
1237 {
1238 kst = fPyjets->K[0][i];
1239 if (kst != 1 && kst != 2) continue;
1240 pxs += fPyjets->P[0][i];
1241 pys += fPyjets->P[1][i];
1242 pzs += fPyjets->P[2][i];
1243 es -= fPyjets->P[3][i];
1244 }
1245 if (TMath::Abs(pxs) > 1.e-2 ||
1246 TMath::Abs(pys) > 1.e-2 ||
1247 TMath::Abs(pzs) > 1.e-1) {
1248 printf("%e %e %e %e\n", pxs, pys, pzs, es);
1249// Fatal("Quench()", "4-Momentum non-conservation");
1250 }
1251
1252 } // end quenching loop (systems)
1253// Clean-up
1254 for (Int_t i = 0; i < numpart; i++)
1255 {
1256 imo = fPyjets->K[2][i];
1257 if (imo > 1000) {
1258 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1259 }
1260 }
1261// this->Pylist(1);
1262} // end quench
1263
1264
1265void AliPythia6::Pyquen(Double_t a, Int_t ibf, Double_t b)
1266{
1267 // Igor Lokthine's quenching routine
1268 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1269
1270 pyquen(a, ibf, b);
1271}
1272
1273void AliPythia6::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1274{
1275 // Set the parameters for the PYQUEN package.
1276 // See comments in PyquenCommon.h
1277
1278
1279 PYQPAR.t0 = t0;
1280 PYQPAR.tau0 = tau0;
1281 PYQPAR.nf = nf;
1282 PYQPAR.iengl = iengl;
1283 PYQPAR.iangl = iangl;
1284}
1285
1286void AliPythia6::LoadEvent(AliStack* stack, Int_t flag, Int_t reHadr)
1287{
1288//
1289// Load event into Pythia Common Block
1290//
1291
1292 Int_t npart = stack -> GetNprimary();
1293 Int_t n0 = 0;
1294
1295 if (!flag) {
1296 GetPyjets()->N = npart;
1297 } else {
1298 n0 = GetPyjets()->N;
1299 GetPyjets()->N = n0 + npart;
1300 }
1301
1302
1303 for (Int_t part = 0; part < npart; part++) {
1304 TParticle *mPart = stack->Particle(part);
1305
1306 Int_t kf = mPart->GetPdgCode();
1307 Int_t ks = mPart->GetStatusCode();
1308 Int_t idf = mPart->GetFirstDaughter();
1309 Int_t idl = mPart->GetLastDaughter();
1310
1311 if (reHadr) {
1312 if (ks == 11 || ks == 12) {
1313 ks -= 10;
1314 idf = -1;
1315 idl = -1;
1316 }
1317 }
1318
1319 Float_t px = mPart->Px();
1320 Float_t py = mPart->Py();
1321 Float_t pz = mPart->Pz();
1322 Float_t e = mPart->Energy();
1323 Float_t m = mPart->GetCalcMass();
1324
1325
1326 (GetPyjets())->P[0][part+n0] = px;
1327 (GetPyjets())->P[1][part+n0] = py;
1328 (GetPyjets())->P[2][part+n0] = pz;
1329 (GetPyjets())->P[3][part+n0] = e;
1330 (GetPyjets())->P[4][part+n0] = m;
1331
1332 (GetPyjets())->K[1][part+n0] = kf;
1333 (GetPyjets())->K[0][part+n0] = ks;
1334 (GetPyjets())->K[3][part+n0] = idf + 1;
1335 (GetPyjets())->K[4][part+n0] = idl + 1;
1336 (GetPyjets())->K[2][part+n0] = mPart->GetFirstMother() + 1;
1337 }
1338}
1339
1340
1341void AliPythia6::Pyevnw()
1342{
1343 // New multiple interaction scenario
1344 pyevnw();
1345}
1346
1347void AliPythia6::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1348{
1349 // Return event specific quenching parameters
1350 xp = fXJet;
1351 yp = fYJet;
1352 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1353
1354}
1355
1356void AliPythia6::ConfigHeavyFlavor()
1357{
1358 //
1359 // Default configuration for Heavy Flavor production
1360 //
1361 // All QCD processes
1362 //
1363 SetMSEL(1);
1364
1365 // No multiple interactions
1366 SetMSTP(81,0);
1367 SetPARP(81, 0.);
1368 SetPARP(82, 0.);
1369 // Initial/final parton shower on (Pythia default)
1370 SetMSTP(61,1);
1371 SetMSTP(71,1);
1372
1373 // 2nd order alpha_s
1374 SetMSTP(2,2);
1375
1376 // QCD scales
1377 SetMSTP(32,2);
1378 SetPARP(34,1.0);
1379}
1380
1381void AliPythia6::AtlasTuning()
1382{
1383 //
1384 // Configuration for the ATLAS tuning
1385 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ5L));
1386 SetMSTP(81,1); // Multiple Interactions ON
1387 SetMSTP(82,4); // Double Gaussian Model
1388 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
1389 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1390 SetPARP(89,1000.); // [GeV] Ref. energy
1391 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1392 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1393 SetPARP(84,0.5); // Core radius
1394 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1395 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1396 SetPARP(67,1); // Regulates Initial State Radiation
1397}
1398
67b7bb0e 1399void AliPythia6::AtlasTuning_MC09()
1400{
1401 //
1402 // Configuration for the ATLAS tuning
1403 printf("ATLAS New TUNE MC09\n");
1404 SetMSTP(81,21); // treatment for MI, ISR, FSR and beam remnants: MI on, new model
1405 SetMSTP(82, 4); // Double Gaussian Model
1406 SetMSTP(52, 2); // External PDF
1407 SetMSTP(51, 20650); // MRST LO*
1408
1409
1410 SetMSTP(70, 0); // (was 2: def manual 1, def code 0) virtuality scale for ISR
1411 SetMSTP(72, 1); // (was 0: def 1) maximum scale for FSR
1412 SetMSTP(88, 1); // (was 0: def 1) strategy for qq junction to di-quark or baryon in beam remnant
1413 SetMSTP(90, 0); // (was 1: def 0) strategy of compensate the primordial kT
1414
1415 SetPARP(78, 0.3); // the amount of color reconnection in the final state
1416 SetPARP(80, 0.1); // probability of color partons kicked out from beam remnant
1417 SetPARP(82, 2.3); // [GeV] PT_min at Ref. energy
1418 SetPARP(83, 0.8); // Core density in proton matter distribution (def.value)
1419 SetPARP(84, 0.7); // Core radius
1420 SetPARP(90, 0.25); // 2*epsilon (exponent in power law)
1421 SetPARJ(81, 0.29); // (was 0.14: def 0.29) Labmda value in running alpha_s for parton showers
1422
1423 SetMSTP(95, 6);
1424 SetPARJ(41, 0.3); // a and b parameters of the symmm. Lund FF
1425 SetPARJ(42, 0.58);
1426 SetPARJ(46, 0.75); // mod. of the Lund FF for heavy end-point quarks
1427 SetPARP(89,1800.); // [GeV] Ref. energy
1428}
1429
39d810c8 1430void AliPythia6::SetPtHardRange(Float_t ptmin, Float_t ptmax)
1431{
1432 // Set the pt hard range
1433 SetCKIN(3, ptmin);
1434 SetCKIN(4, ptmax);
1435}
1436
1437void AliPythia6::SetYHardRange(Float_t ymin, Float_t ymax)
1438{
1439 // Set the y hard range
1440 SetCKIN(7, ymin);
1441 SetCKIN(8, ymax);
1442}
1443
1444
1445void AliPythia6::SetFragmentation(Int_t flag)
1446{
1447 // Switch fragmentation on/off
1448 SetMSTP(111, flag);
1449}
1450
1451void AliPythia6::SetInitialAndFinalStateRadiation(Int_t flag1, Int_t flag2)
1452{
1453// initial state radiation
1454 SetMSTP(61, flag1);
1455// final state radiation
1456 SetMSTP(71, flag2);
1457}
1458
1459void AliPythia6::SetIntrinsicKt(Float_t kt)
1460{
1461 // Set the inreinsic kt
1462 if (kt > 0.) {
1463 SetMSTP(91,1);
1464 SetPARP(91,kt);
1465 SetPARP(93, 4. * kt);
1466 } else {
1467 SetMSTP(91,0);
1468 }
1469}
1470
1471void AliPythia6::SwitchHFOff()
1472{
1473 // Switch off heavy flavor
1474 // Maximum number of quark flavours used in pdf
1475 SetMSTP(58, 3);
1476 // Maximum number of flavors that can be used in showers
1477 SetMSTJ(45, 3);
1478}
1479
1480void AliPythia6::SetPycellParameters(Float_t etamax, Int_t neta, Int_t nphi,
1481 Float_t thresh, Float_t etseed, Float_t minet, Float_t r)
1482{
1483// Set pycell parameters
1484 SetPARU(51, etamax);
1485 SetMSTU(51, neta);
1486 SetMSTU(52, nphi);
1487 SetPARU(58, thresh);
1488 SetPARU(52, etseed);
1489 SetPARU(53, minet);
1490 SetPARU(54, r);
1491 SetMSTU(54, 2);
1492}
1493
1494void AliPythia6::ModifiedSplitting()
1495{
1496 // Modified splitting probability as a model for quenching
1497 SetPARJ(200, 0.8);
1498 SetMSTJ(41, 1); // QCD radiation only
1499 SetMSTJ(42, 2); // angular ordering
1500 SetMSTJ(44, 2); // option to run alpha_s
1501 SetMSTJ(47, 0); // No correction back to hard scattering element
1502 SetMSTJ(50, 0); // No coherence in first branching
1503 SetPARJ(82, 1.); // Cut off for parton showers
1504}
1505
1506void AliPythia6::SwitchHadronisationOff()
1507{
1508 // Switch off hadronisarion
1509 SetMSTJ(1, 0);
1510}
1511
1512void AliPythia6::SwitchHadronisationOn()
1513{
1514 // Switch on hadronisarion
1515 SetMSTJ(1, 1);
1516}
1517
1518
1519void AliPythia6::GetXandQ(Float_t& x1, Float_t& x2, Float_t& q)
1520{
1521 // Get x1, x2 and Q for this event
1522
1523 q = GetVINT(51);
1524 x1 = GetVINT(41);
1525 x2 = GetVINT(42);
1526}
1527
1528Float_t AliPythia6::GetXSection()
1529{
1530 // Get the total cross-section
1531 return (GetPARI(1));
1532}
1533
1534Float_t AliPythia6::GetPtHard()
1535{
1536 // Get the pT hard for this event
1537 return GetVINT(47);
1538}
1539
1540Int_t AliPythia6::ProcessCode()
1541{
1542 // Get the subprocess code
1543 return GetMSTI(1);
1544}
1545
1546void AliPythia6::PrintStatistics()
1547{
1548 // End of run statistics
1549 Pystat(1);
1550}
1551
1552void AliPythia6::EventListing()
1553{
1554 // End of run statistics
1555 Pylist(2);
1556}
1557
1558AliPythia6& AliPythia6::operator=(const AliPythia6& rhs)
1559{
1560// Assignment operator
1561 rhs.Copy(*this);
1562 return *this;
1563}
1564
1565 void AliPythia6::Copy(TObject&) const
1566{
1567 //
1568 // Copy
1569 //
1570 Fatal("Copy","Not implemented!\n");
1571}