]> git.uio.no Git - u/mrichter/AliRoot.git/blob - ITS/AliITSClusterFinderSDD.cxx
Removing obsolete macros
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15 /*
16   $Id$
17   $Log$
18   Revision 1.29  2002/10/25 18:54:22  barbera
19   Various improvements and updates from B.S.Nilsen and T. Virgili
20
21   Revision 1.28  2002/10/22 14:45:29  alibrary
22   Introducing Riostream.h
23
24   Revision 1.27  2002/10/14 14:57:00  hristov
25   Merging the VirtualMC branch to the main development branch (HEAD)
26
27   Revision 1.23.4.2  2002/10/14 13:14:07  hristov
28   Updating VirtualMC to v3-09-02
29
30   Revision 1.26  2002/09/09 17:23:28  nilsen
31   Minor changes in support of changes to AliITSdigitS?D class'.
32
33   Revision 1.25  2002/05/10 22:29:40  nilsen
34   Change my Massimo Masera in the default constructor to bring things into
35   compliance.
36
37   Revision 1.24  2002/04/24 22:02:31  nilsen
38   New SDigits and Digits routines, and related changes,  (including new
39   noise values).
40
41  */
42 // 
43 //  Cluster finder 
44 //  for Silicon
45 //  Drift Detector
46 //
47 #include <Riostream.h>
48
49 #include <TMath.h>
50 #include <math.h>
51
52 #include "AliITSClusterFinderSDD.h"
53 #include "AliITSMapA1.h"
54 #include "AliITS.h"
55 #include "AliITSdigit.h"
56 #include "AliITSRawCluster.h"
57 #include "AliITSRecPoint.h"
58 #include "AliITSsegmentation.h"
59 #include "AliITSresponseSDD.h"
60 #include "AliRun.h"
61
62 ClassImp(AliITSClusterFinderSDD)
63
64 //______________________________________________________________________
65 AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
66                                                AliITSresponse *response,
67                                                TClonesArray *digits,
68                                                TClonesArray *recp){
69     // standard constructor
70
71     fSegmentation = seg;
72     fResponse     = response;
73     fDigits       = digits;
74     fClusters     = recp;
75     fNclusters    = fClusters->GetEntriesFast();
76     SetCutAmplitude();
77     SetDAnode();
78     SetDTime();
79     SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
80     //    SetMinPeak();
81     SetMinNCells();
82     SetMaxNCells();
83     SetTimeCorr();
84     SetMinCharge();
85     fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
86 }
87 //______________________________________________________________________
88 AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
89     // default constructor
90
91     fSegmentation = 0;
92     fResponse     = 0;
93     fDigits       = 0;
94     fClusters     = 0;
95     fNclusters    = 0;
96     fMap          = 0;
97     fCutAmplitude = 0;
98     fDAnode = 0;
99     fDTime = 0;
100     fMinPeak = 0;
101     fMinNCells = 0;
102     fMaxNCells = 0;
103     fTimeCorr = 0;
104     fMinCharge = 0;
105     /*
106     SetDAnode();
107     SetDTime();
108     SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
109     SetMinNCells();
110     SetMaxNCells();
111     SetTimeCorr();
112     SetMinCharge();
113     */
114 }
115 //____________________________________________________________________________
116 AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
117     // destructor
118
119     if(fMap) delete fMap;
120 }
121 //______________________________________________________________________
122 void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
123     // set the signal threshold for cluster finder
124     Float_t baseline,noise,noiseAfterEl;
125
126     fResponse->GetNoiseParam(noise,baseline);
127     noiseAfterEl = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
128     fCutAmplitude = (Int_t)((baseline + nsigma*noiseAfterEl));
129 }
130 //______________________________________________________________________
131 void AliITSClusterFinderSDD::Find1DClusters(){
132     // find 1D clusters
133     static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
134   
135     // retrieve the parameters 
136     Int_t fNofMaps       = fSegmentation->Npz();
137     Int_t fMaxNofSamples = fSegmentation->Npx();
138     Int_t fNofAnodes     = fNofMaps/2;
139     Int_t dummy          = 0;
140     Float_t fTimeStep    = fSegmentation->Dpx(dummy);
141     Float_t fSddLength   = fSegmentation->Dx();
142     Float_t fDriftSpeed  = fResponse->DriftSpeed();  
143     Float_t anodePitch   = fSegmentation->Dpz(dummy);
144
145     // map the signal
146     fMap->ClearMap();
147     fMap->SetThreshold(fCutAmplitude);
148     fMap->FillMap();
149   
150     Float_t noise;
151     Float_t baseline;
152     fResponse->GetNoiseParam(noise,baseline);
153   
154     Int_t nofFoundClusters = 0;
155     Int_t i;
156     Float_t **dfadc = new Float_t*[fNofAnodes];
157     for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
158     Float_t fadc  = 0.;
159     Float_t fadc1 = 0.;
160     Float_t fadc2 = 0.;
161     Int_t j,k,idx,l,m;
162     for(j=0;j<2;j++) {
163         for(k=0;k<fNofAnodes;k++) {
164             idx = j*fNofAnodes+k;
165             // signal (fadc) & derivative (dfadc)
166             dfadc[k][255]=0.;
167             for(l=0; l<fMaxNofSamples; l++) {
168                 fadc2=(Float_t)fMap->GetSignal(idx,l);
169                 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
170                 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
171             } // samples
172         } // anodes
173
174         for(k=0;k<fNofAnodes;k++) {
175         //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
176             idx = j*fNofAnodes+k;
177             Int_t imax  = 0;
178             Int_t imaxd = 0;
179             Int_t it    = 0;
180             while(it <= fMaxNofSamples-3) {
181                 imax  = it;
182                 imaxd = it;
183                 // maximum of signal          
184                 Float_t fadcmax  = 0.;
185                 Float_t dfadcmax = 0.;
186                 Int_t lthrmina   = 1;
187                 Int_t lthrmint   = 3;
188                 Int_t lthra      = 1;
189                 Int_t lthrt      = 0;
190                 for(m=0;m<20;m++) {
191                     Int_t id = it+m;
192                     if(id>=fMaxNofSamples) break;
193                     fadc=(float)fMap->GetSignal(idx,id);
194                     if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
195                     if(fadc > (float)fCutAmplitude) { 
196                         lthrt++; 
197                     } // end if
198                     if(dfadc[k][id] > dfadcmax) {
199                         dfadcmax = dfadc[k][id];
200                         imaxd    = id;
201                     } // end if
202                 } // end for m
203                 it = imaxd;
204                 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
205                 // cluster charge
206                 Int_t tstart = it-2;
207                 if(tstart < 0) tstart = 0;
208                 Bool_t ilcl = 0;
209                 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
210                 if(ilcl) {
211                     nofFoundClusters++;
212                     Int_t tstop      = tstart;
213                     Float_t dfadcmin = 10000.;
214                     Int_t ij;
215                     for(ij=0; ij<20; ij++) {
216                         if(tstart+ij > 255) { tstop = 255; break; }
217                         fadc=(float)fMap->GetSignal(idx,tstart+ij);
218                         if((dfadc[k][tstart+ij] < dfadcmin) && 
219                            (fadc > fCutAmplitude)) {
220                             tstop = tstart+ij+5;
221                             if(tstop > 255) tstop = 255;
222                             dfadcmin = dfadc[k][it+ij];
223                         } // end if
224                     } // end for ij
225
226                     Float_t clusterCharge = 0.;
227                     Float_t clusterAnode  = k+0.5;
228                     Float_t clusterTime   = 0.;
229                     Int_t   clusterMult   = 0;
230                     Float_t clusterPeakAmplitude = 0.;
231                     Int_t its,peakpos     = -1;
232                     Float_t n, baseline;
233                     fResponse->GetNoiseParam(n,baseline);
234                     for(its=tstart; its<=tstop; its++) {
235                         fadc=(float)fMap->GetSignal(idx,its);
236                         if(fadc>baseline) fadc -= baseline;
237                         else fadc = 0.;
238                         clusterCharge += fadc;
239                         // as a matter of fact we should take the peak
240                         // pos before FFT
241                         // to get the list of tracks !!!
242                         if(fadc > clusterPeakAmplitude) {
243                             clusterPeakAmplitude = fadc;
244                             //peakpos=fMap->GetHitIndex(idx,its);
245                             Int_t shift = (int)(fTimeCorr/fTimeStep);
246                             if(its>shift && its<(fMaxNofSamples-shift))
247                                 peakpos  = fMap->GetHitIndex(idx,its+shift);
248                             else peakpos = fMap->GetHitIndex(idx,its);
249                             if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
250                         } // end if
251                         clusterTime += fadc*its;
252                         if(fadc > 0) clusterMult++;
253                         if(its == tstop) {
254                             clusterTime /= (clusterCharge/fTimeStep);   // ns
255                             if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
256                             //ns
257                         } // end if
258                     } // end for its
259
260                     Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
261                                                anodePitch;
262                     Float_t clusterDriftPath = clusterTime*fDriftSpeed;
263                     clusterDriftPath = fSddLength-clusterDriftPath;
264                     if(clusterCharge <= 0.) break;
265                     AliITSRawClusterSDD clust(j+1,//i
266                                               clusterAnode,clusterTime,//ff
267                                               clusterCharge, //f
268                                               clusterPeakAmplitude, //f
269                                               peakpos, //i
270                                               0.,0.,clusterDriftPath,//fff
271                                               clusteranodePath, //f
272                                               clusterMult, //i
273                                               0,0,0,0,0,0,0);//7*i
274                     iTS->AddCluster(1,&clust);
275                     it = tstop;
276                 } // ilcl
277                 it++;
278             } // while (samples)
279         } // anodes
280     } // detectors (2)
281
282     for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
283     delete [] dfadc;
284
285     return;
286 }
287
288
289
290 //______________________________________________________________________
291 void AliITSClusterFinderSDD::Find1DClustersE(){
292     // find 1D clusters
293     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
294     // retrieve the parameters 
295     Int_t fNofMaps = fSegmentation->Npz();
296     Int_t fMaxNofSamples = fSegmentation->Npx();
297     Int_t fNofAnodes = fNofMaps/2;
298     Int_t dummy=0;
299     Float_t fTimeStep = fSegmentation->Dpx( dummy );
300     Float_t fSddLength = fSegmentation->Dx();
301     Float_t fDriftSpeed = fResponse->DriftSpeed();
302     Float_t anodePitch = fSegmentation->Dpz( dummy );
303     Float_t n, baseline;
304     fResponse->GetNoiseParam( n, baseline );
305     // map the signal
306     fMap->ClearMap();
307     fMap->SetThreshold( fCutAmplitude );
308     fMap->FillMap();
309     
310     Int_t nClu = 0;
311     //        cout << "Search  cluster... "<< endl;
312     for( Int_t j=0; j<2; j++ ){
313         for( Int_t k=0; k<fNofAnodes; k++ ){
314             Int_t idx = j*fNofAnodes+k;
315             Bool_t on = kFALSE;
316             Int_t start = 0;
317             Int_t nTsteps = 0;
318             Float_t fmax = 0.;
319             Int_t lmax = 0;
320             Float_t charge = 0.;
321             Float_t time = 0.;
322             Float_t anode = k+0.5;
323             Int_t peakpos = -1;
324             for( Int_t l=0; l<fMaxNofSamples; l++ ){
325                 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
326                 if( fadc > 0.0 ){
327                     if( on == kFALSE && l<fMaxNofSamples-4){
328                         // star RawCluster (reset var.)
329                         Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
330                         if( fadc1 < fadc ) continue;
331                         start = l;
332                         fmax = 0.;
333                         lmax = 0;
334                         time = 0.;
335                         charge = 0.; 
336                         on = kTRUE; 
337                         nTsteps = 0;
338                     } // end if on...
339                     nTsteps++ ;
340                     if( fadc > baseline ) fadc -= baseline;
341                     else fadc=0.;
342                     charge += fadc;
343                     time += fadc*l;
344                     if( fadc > fmax ){ 
345                         fmax = fadc; 
346                         lmax = l; 
347                         Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
348                         if( l > shift && l < (fMaxNofSamples-shift) )  
349                             peakpos = fMap->GetHitIndex( idx, l+shift );
350                         else
351                             peakpos = fMap->GetHitIndex( idx, l );
352                         if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
353                     } // end if fadc
354                 }else{ // end fadc>0
355                     if( on == kTRUE ){        
356                         if( nTsteps > 2 ){
357                             //  min # of timesteps for a RawCluster
358                             // Found a RawCluster...
359                             Int_t stop = l-1;
360                             time /= (charge/fTimeStep);   // ns
361                                 // time = lmax*fTimeStep;   // ns
362                             if( time > fTimeCorr ) time -= fTimeCorr;   // ns
363                             Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
364                             Float_t driftPath = time*fDriftSpeed;
365                             driftPath = fSddLength-driftPath;
366                             AliITSRawClusterSDD clust(j+1,anode,time,charge,
367                                                       fmax, peakpos,0.,0.,
368                                                       driftPath,anodePath,
369                                                       nTsteps,start,stop,
370                                                       start, stop, 1, k, k );
371                             iTS->AddCluster( 1, &clust );
372                             //        clust.PrintInfo();
373                             nClu++;
374                         } // end if nTsteps
375                         on = kFALSE;
376                     } // end if on==kTRUE
377                 } // end if fadc>0
378             } // samples
379         } // anodes
380     } // wings
381     //        cout << "# Rawclusters " << nClu << endl;         
382     return; 
383 }
384 //_______________________________________________________________________
385 Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
386                                          Int_t *peakX, Int_t *peakZ, 
387                                          Float_t *peakAmp, Float_t minpeak ){
388     // search peaks on a 2D cluster
389     Int_t npeak = 0;    // # peaks
390     Int_t i,j;
391     // search peaks
392     for( Int_t z=1; z<zdim-1; z++ ){
393         for( Int_t x=1; x<xdim-2; x++ ){
394             Float_t sxz = spect[x*zdim+z];
395             Float_t sxz1 = spect[(x+1)*zdim+z];
396             Float_t sxz2 = spect[(x-1)*zdim+z];
397             // search a local max. in s[x,z]
398             if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
399             if( sxz >= spect[(x+1)*zdim+z  ] && sxz >= spect[(x-1)*zdim+z  ] &&
400                 sxz >= spect[x*zdim    +z+1] && sxz >= spect[x*zdim    +z-1] &&
401                 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
402                 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
403                 // peak found
404                 peakX[npeak] = x;
405                 peakZ[npeak] = z;
406                 peakAmp[npeak] = sxz;
407                 npeak++;
408             } // end if ....
409         } // end for x
410     } // end for z
411     // search groups of peaks with same amplitude.
412     Int_t *flag = new Int_t[npeak];
413     for( i=0; i<npeak; i++ ) flag[i] = 0;
414     for( i=0; i<npeak; i++ ){
415         for( j=0; j<npeak; j++ ){
416             if( i==j) continue;
417             if( flag[j] > 0 ) continue;
418             if( peakAmp[i] == peakAmp[j] && 
419                 TMath::Abs(peakX[i]-peakX[j])<=1 && 
420                 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
421                 if( flag[i] == 0) flag[i] = i+1;
422                 flag[j] = flag[i];
423             } // end if ...
424         } // end for j
425     } // end for i
426     // make average of peak groups        
427     for( i=0; i<npeak; i++ ){
428         Int_t nFlag = 1;
429         if( flag[i] <= 0 ) continue;
430         for( j=0; j<npeak; j++ ){
431             if( i==j ) continue;
432             if( flag[j] != flag[i] ) continue;
433             peakX[i] += peakX[j];
434             peakZ[i] += peakZ[j];
435             nFlag++;
436             npeak--;
437             for( Int_t k=j; k<npeak; k++ ){
438                 peakX[k] = peakX[k+1];
439                 peakZ[k] = peakZ[k+1];
440                 peakAmp[k] = peakAmp[k+1];
441                 flag[k] = flag[k+1];
442             } // end for k        
443             j--;
444         } // end for j
445         if( nFlag > 1 ){
446             peakX[i] /= nFlag;
447             peakZ[i] /= nFlag;
448         } // end fi nFlag
449     } // end for i
450     delete [] flag;
451     return( npeak );
452 }
453 //______________________________________________________________________
454 void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
455                                        Float_t *spe, Float_t *integral){
456     // function used to fit the clusters
457     // par -> parameters..
458     // par[0]  number of peaks.
459     // for each peak i=1, ..., par[0]
460     //                 par[i] = Ampl.
461     //                 par[i+1] = xpos
462     //                 par[i+2] = zpos
463     //                 par[i+3] = tau
464     //                 par[i+4] = sigma.
465     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
466     const Int_t knParam = 5;
467     Int_t npeak = (Int_t)par[0];
468
469     memset( spe, 0, sizeof( Float_t )*zdim*xdim );
470
471     Int_t k = 1;
472     for( Int_t i=0; i<npeak; i++ ){
473         if( integral != 0 ) integral[i] = 0.;
474         Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
475         Float_t t2 = par[k+3];   // PASCAL
476         if( electronics == 2 ) { t2 *= t2; t2 *= 2; } // OLA
477         for( Int_t z=0; z<zdim; z++ ){
478             for( Int_t x=0; x<xdim; x++ ){
479                 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
480                 Float_t x2 = 0.;
481                 Float_t signal = 0.;
482                 if( electronics == 1 ){ // PASCAL
483                     x2 = (x-par[k+1]+t2)/t2;
484                     signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
485                 //  signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
486                 }else if( electronics == 2 ) { // OLA
487                     x2 = (x-par[k+1])*(x-par[k+1])/t2;
488                     signal = par[k]  * exp( -x2 - z2 );
489                 } else {
490                   Warning("PeakFunc","Wrong SDD Electronics = %d",electronics);
491                     // exit( 1 );
492                 } // end if electronicx
493                 spe[x*zdim+z] += signal;
494                 if( integral != 0 ) integral[i] += signal;
495             } // end for x
496         } // end for z
497         k += knParam;
498     } // end for i
499     return;
500 }
501 //__________________________________________________________________________
502 Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
503                                         Float_t *speFit ) const{
504     // EVALUATES UNNORMALIZED CHI-SQUARED
505     Float_t chi2 = 0.;
506     for( Int_t z=0; z<zdim; z++ ){
507         for( Int_t x=1; x<xdim-1; x++ ){
508             Int_t index = x*zdim+z;
509             Float_t tmp = spe[index] - speFit[index];
510             chi2 += tmp*tmp;
511         } // end for x
512     } // end for z
513     return( chi2 );
514 }
515 //_______________________________________________________________________
516 void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
517                                     Float_t *prm0,Float_t *steprm,
518                                     Float_t *chisqr,Float_t *spe,
519                                     Float_t *speFit ){
520     // 
521     Int_t   k, nnn, mmm, i;
522     Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
523     const Int_t knParam = 5;
524     Int_t npeak = (Int_t)param[0];
525     for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
526     for( k=1; k<(npeak*knParam+1); k++ ){
527         p1 = param[k];
528         delta = steprm[k];
529         d1 = delta;
530         // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
531         if( fabs( p1 ) > 1.0E-6 ) 
532             if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
533             else  delta = (Float_t)1.0E-4;
534         //  EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
535         PeakFunc( xdim, zdim, param, speFit );
536         chisq1 = ChiSqr( xdim, zdim, spe, speFit );
537         p2 = p1+delta;
538         param[k] = p2;
539         PeakFunc( xdim, zdim, param, speFit );
540         chisq2 = ChiSqr( xdim, zdim, spe, speFit );
541         if( chisq1 < chisq2 ){
542             // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
543             delta = -delta;
544             t = p1;
545             p1 = p2;
546             p2 = t;
547             t = chisq1;
548             chisq1 = chisq2;
549             chisq2 = t;
550         } // end if
551         i = 1; nnn = 0;
552         do {   // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
553             nnn++;
554             p3 = p2 + delta;
555             mmm = nnn - (nnn/5)*5;  // multiplo de 5
556             if( mmm == 0 ){
557                 d1 = delta;
558                 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW 
559                 delta *= 5;
560             } // end if
561             param[k] = p3;
562             // Constrain paramiters
563             Int_t kpos = (k-1) % knParam;
564             switch( kpos ){
565             case 0 :
566                 if( param[k] <= 20 ) param[k] = fMinPeak;
567                 break;
568             case 1 :
569                 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
570                 break;
571             case 2 :
572                 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
573                 break;
574             case 3 :
575                 if( param[k] < .5 ) param[k] = .5;        
576                 break;
577             case 4 :
578                 if( param[k] < .288 ) param[k] = .288;        // 1/sqrt(12) = 0.288
579                 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
580                 break;
581             }; // end switch
582             PeakFunc( xdim, zdim, param, speFit );
583             chisq3 = ChiSqr( xdim, zdim, spe, speFit );
584             if( chisq3 < chisq2 && nnn < 50 ){
585                 p1 = p2;
586                 p2 = p3;
587                 chisq1 = chisq2;
588                 chisq2 = chisq3;
589             }else i=0;
590         } while( i );
591         // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
592         a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
593         b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
594         if( a!=0 ) p0 = (Float_t)(0.5*b/a);
595         else p0 = 10000;
596         //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
597         //   ERRONEOUS EVALUATION OF PARABOLA MINIMUM
598         //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
599         //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
600         //if( fabs( p2-p0 ) > dp ) p0 = p2;
601         param[k] = p0;
602         // Constrain paramiters
603         Int_t kpos = (k-1) % knParam;
604         switch( kpos ){
605         case 0 :
606             if( param[k] <= 20 ) param[k] = fMinPeak;   
607             break;
608         case 1 :
609             if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
610             break;
611         case 2 :
612             if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
613             break;
614         case 3 :
615             if( param[k] < .5 ) param[k] = .5;        
616             break;
617         case 4 :
618             if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
619             if( param[k] > zdim*.5 ) param[k] = zdim*.5;
620             break;
621         }; // end switch
622         PeakFunc( xdim, zdim, param, speFit );
623         chisqt = ChiSqr( xdim, zdim, spe, speFit );
624         // DO NOT ALLOW ERRONEOUS INTERPOLATION
625         if( chisqt <= *chisqr ) *chisqr = chisqt;
626         else param[k] = prm0[k];
627         // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
628         steprm[k] = (param[k]-prm0[k])/5;
629         if( steprm[k] >= d1 ) steprm[k] = d1/5;
630     } // end for k
631     // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
632     PeakFunc( xdim, zdim, param, speFit );
633     *chisqr = ChiSqr( xdim, zdim, spe, speFit );
634     return;
635 }
636 //_________________________________________________________________________
637 Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim, 
638                                            Float_t *param, Float_t *spe, 
639                                            Int_t *niter, Float_t *chir ){
640     // fit method from Comput. Phys. Commun 46(1987) 149
641     const Float_t kchilmt = 0.01;  //        relative accuracy           
642     const Int_t   knel = 3;        //        for parabolic minimization  
643     const Int_t   knstop = 50;     //        Max. iteration number          
644     const Int_t   knParam = 5;
645     Int_t npeak = (Int_t)param[0];
646     // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE 
647     if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
648     Float_t degFree = (xdim*zdim - npeak*knParam)-1;
649     Int_t   n, k, iterNum = 0;
650     Float_t *prm0 = new Float_t[npeak*knParam+1];
651     Float_t *step = new Float_t[npeak*knParam+1];
652     Float_t *schi = new Float_t[npeak*knParam+1]; 
653     Float_t *sprm[3];
654     sprm[0] = new Float_t[npeak*knParam+1];
655     sprm[1] = new Float_t[npeak*knParam+1];
656     sprm[2] = new Float_t[npeak*knParam+1];
657     Float_t  chi0, chi1, reldif, a, b, prmin, dp;
658     Float_t *speFit = new Float_t[ xdim*zdim ];
659     PeakFunc( xdim, zdim, param, speFit );
660     chi0 = ChiSqr( xdim, zdim, spe, speFit );
661     chi1 = chi0;
662     for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
663         for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
664             step[k] = param[k] / 20.0 ;
665             step[k+1] = param[k+1] / 50.0;
666             step[k+2] = param[k+2] / 50.0;                 
667             step[k+3] = param[k+3] / 20.0;                 
668             step[k+4] = param[k+4] / 20.0;                 
669         } // end for k
670     Int_t out = 0;
671     do{
672         iterNum++;
673             chi0 = chi1;
674             Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
675             reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
676         // EXIT conditions
677         if( reldif < (float) kchilmt ){
678             *chir  = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
679             *niter = iterNum;
680             out = 0;
681             break;
682         } // end if
683         if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
684             *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
685             *niter = iterNum;
686             out = 0;
687             break;
688         } // end if
689         if( iterNum > 5*knstop ){
690             *chir  = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
691             *niter = iterNum;
692             out = 1;
693             break;
694         } // end if
695         if( iterNum <= knel ) continue;
696         n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
697         if( n > 3 || n == 0 ) continue;
698         schi[n-1] = chi1;
699         for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
700         if( n != 3 ) continue;
701         // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
702         //    PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
703         for( k=1; k<(npeak*knParam+1); k++ ){
704             Float_t tmp0 = sprm[0][k];
705             Float_t tmp1 = sprm[1][k];
706             Float_t tmp2 = sprm[2][k];
707             a  = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
708             a += (schi[2]*(tmp0-tmp1));
709             b  = schi[0]*(tmp1*tmp1-tmp2*tmp2);
710             b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
711                                              (tmp0*tmp0-tmp1*tmp1)));
712             if ((double)a < 1.0E-6) prmin = 0;
713             else prmin = (float) (0.5*b/a);
714             dp = 5*(tmp2-tmp0);
715             if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
716             param[k] = prmin;
717             step[k]  = dp/10; // OPTIMIZE SEARCH STEP
718         } // end for k
719     } while( kTRUE );
720     delete [] prm0;
721     delete [] step;
722     delete [] schi; 
723     delete [] sprm[0];
724     delete [] sprm[1];
725     delete [] sprm[2];
726     delete [] speFit;
727     return( out );
728 }
729
730 //______________________________________________________________________
731 void AliITSClusterFinderSDD::ResolveClustersE(){
732     // The function to resolve clusters if the clusters overlapping exists
733     Int_t i;
734     static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
735     // get number of clusters for this module
736     Int_t nofClusters = fClusters->GetEntriesFast();
737     nofClusters -= fNclusters;
738     Int_t fNofMaps = fSegmentation->Npz();
739     Int_t fNofAnodes = fNofMaps/2;
740     Int_t fMaxNofSamples = fSegmentation->Npx();
741     Int_t dummy=0;
742     Double_t fTimeStep = fSegmentation->Dpx( dummy );
743     Double_t fSddLength = fSegmentation->Dx();
744     Double_t fDriftSpeed = fResponse->DriftSpeed();
745     Double_t anodePitch = fSegmentation->Dpz( dummy );
746     Float_t n, baseline;
747     fResponse->GetNoiseParam( n, baseline );
748     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
749
750     for( Int_t j=0; j<nofClusters; j++ ){ 
751         // get cluster information
752         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
753         Int_t astart = clusterJ->Astart();
754         Int_t astop = clusterJ->Astop();
755         Int_t tstart = clusterJ->Tstartf();
756         Int_t tstop = clusterJ->Tstopf();
757         Int_t wing = (Int_t)clusterJ->W();
758         if( wing == 2 ){
759             astart += fNofAnodes; 
760             astop  += fNofAnodes;
761         } // end if 
762         Int_t xdim = tstop-tstart+3;
763         Int_t zdim = astop-astart+3;
764         if(xdim > 50 || zdim > 30) { 
765           Warning("ResolveClustersE","xdim: %d , zdim: %d ",xdim,zdim);
766           continue;
767         }
768         Float_t *sp = new Float_t[ xdim*zdim+1 ];
769         memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
770         
771         // make a local map from cluster region
772         for( Int_t ianode=astart; ianode<=astop; ianode++ ){
773             for( Int_t itime=tstart; itime<=tstop; itime++ ){
774                 Float_t fadc = fMap->GetSignal( ianode, itime );
775                 if( fadc > baseline ) fadc -= (Double_t)baseline;
776                 else fadc = 0.;
777                 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
778                 sp[index] = fadc;
779             } // time loop
780         } // anode loop
781         
782         // search peaks on cluster
783         const Int_t kNp = 150;
784         Int_t peakX1[kNp];
785         Int_t peakZ1[kNp];
786         Float_t peakAmp1[kNp];
787         Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
788
789         // if multiple peaks, split cluster
790         if( npeak >= 1 )
791         {
792             //        cout << "npeak " << npeak << endl;
793             //        clusterJ->PrintInfo();
794             Float_t *par = new Float_t[npeak*5+1];
795             par[0] = (Float_t)npeak;                
796             // Initial parameters in cell dimentions
797             Int_t k1 = 1;
798             for( i=0; i<npeak; i++ ){
799                 par[k1] = peakAmp1[i];
800                 par[k1+1] = peakX1[i]; // local time pos. [timebin]
801                 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
802                 if( electronics == 1 ) 
803                     par[k1+3] = 2.; // PASCAL
804                 else if( electronics == 2 ) 
805                     par[k1+3] = 0.7; // tau [timebin]  OLA 
806                 par[k1+4] = .4;    // sigma        [anodepich]
807                 k1+=5;
808             } // end for i                        
809             Int_t niter;
810             Float_t chir;                        
811             NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
812             Float_t peakX[kNp];
813             Float_t peakZ[kNp];
814             Float_t sigma[kNp];
815             Float_t tau[kNp];
816             Float_t peakAmp[kNp];
817             Float_t integral[kNp];
818             //get integrals => charge for each peak
819             PeakFunc( xdim, zdim, par, sp, integral );
820             k1 = 1;
821             for( i=0; i<npeak; i++ ){
822                 peakAmp[i] = par[k1];
823                 peakX[i] = par[k1+1];
824                 peakZ[i] = par[k1+2];
825                 tau[i] = par[k1+3];
826                 sigma[i] = par[k1+4];
827                 k1+=5;
828             } // end for i
829             // calculate parameter for new clusters
830             for( i=0; i<npeak; i++ ){
831                 AliITSRawClusterSDD clusterI( *clusterJ );
832                 Int_t newAnode = peakZ1[i]-1 + astart;
833                 Int_t newiTime = peakX1[i]-1 + tstart;
834                 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
835                 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) ) 
836                     shift = 0;
837                 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
838                 clusterI.SetPeakPos( peakpos );
839                 clusterI.SetPeakAmpl( peakAmp1[i] );
840                 Float_t newAnodef = peakZ[i] - 0.5 + astart;
841                 Float_t newiTimef = peakX[i] - 1 + tstart;
842                 if( wing == 2 ) newAnodef -= fNofAnodes; 
843                 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
844                 newiTimef *= fTimeStep;
845                 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
846                 if( electronics == 1 ){
847                 //    newiTimef *= 0.999438;    // PASCAL
848                 //    newiTimef += (6./fDriftSpeed - newiTimef/3000.);
849                 }else if( electronics == 2 )
850                     newiTimef *= 0.99714;    // OLA
851                 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
852                 Float_t sign = ( wing == 1 ) ? -1. : 1.;
853                 clusterI.SetX( driftPath*sign * 0.0001 );        
854                 clusterI.SetZ( anodePath * 0.0001 );
855                 clusterI.SetAnode( newAnodef );
856                 clusterI.SetTime( newiTimef );
857                 clusterI.SetAsigma( sigma[i]*anodePitch );
858                 clusterI.SetTsigma( tau[i]*fTimeStep );
859                 clusterI.SetQ( integral[i] );
860                 //    clusterI.PrintInfo();
861                 iTS->AddCluster( 1, &clusterI );
862             } // end for i
863             fClusters->RemoveAt( j );
864             delete [] par;
865         } else {  // something odd
866           Warning("ResolveClustersE","--- Peak not found!!!!  minpeak=%d ,cluster peak= %f , module= %d",fMinPeak,clusterJ->PeakAmpl(),fModule); 
867           clusterJ->PrintInfo();
868           Warning("ResolveClustersE"," xdim= %d zdim= %d",xdim-2,zdim-2);
869         }
870         delete [] sp;
871     } // cluster loop
872     fClusters->Compress();
873 //    fMap->ClearMap(); 
874 }
875
876
877 //________________________________________________________________________
878 void  AliITSClusterFinderSDD::GroupClusters(){
879     // group clusters
880     Int_t dummy=0;
881     Float_t fTimeStep = fSegmentation->Dpx(dummy);
882     // get number of clusters for this module
883     Int_t nofClusters = fClusters->GetEntriesFast();
884     nofClusters -= fNclusters;
885     AliITSRawClusterSDD *clusterI;
886     AliITSRawClusterSDD *clusterJ;
887     Int_t *label = new Int_t [nofClusters];
888     Int_t i,j;
889     for(i=0; i<nofClusters; i++) label[i] = 0;
890     for(i=0; i<nofClusters; i++) { 
891         if(label[i] != 0) continue;
892         for(j=i+1; j<nofClusters; j++) { 
893             if(label[j] != 0) continue;
894             clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
895             clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
896             // 1.3 good
897             if(clusterI->T() < fTimeStep*60) fDAnode = 4.2;  // TB 3.2  
898             if(clusterI->T() < fTimeStep*10) fDAnode = 1.5;  // TB 1.
899             Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
900             if(!pair) continue;
901             //      clusterI->PrintInfo();
902             //      clusterJ->PrintInfo();
903             clusterI->Add(clusterJ);
904             label[j] = 1;
905             fClusters->RemoveAt(j);
906             j=i; // <- Ernesto
907         } // J clusters  
908         label[i] = 1;
909     } // I clusters
910     fClusters->Compress();
911
912     delete [] label;
913     return;
914 }
915 //________________________________________________________________________
916 void AliITSClusterFinderSDD::SelectClusters(){
917     // get number of clusters for this module
918     Int_t nofClusters = fClusters->GetEntriesFast();
919
920     nofClusters -= fNclusters;
921     Int_t i;
922     for(i=0; i<nofClusters; i++) { 
923         AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
924         Int_t rmflg = 0;
925         Float_t wy = 0.;
926         if(clusterI->Anodes() != 0.) {
927             wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
928         } // end if
929         Int_t amp = (Int_t) clusterI->PeakAmpl();
930         Int_t cha = (Int_t) clusterI->Q();
931         if(amp < fMinPeak) rmflg = 1;  
932         if(cha < fMinCharge) rmflg = 1;
933         if(wy < fMinNCells) rmflg = 1;
934         //if(wy > fMaxNCells) rmflg = 1;
935         if(rmflg) fClusters->RemoveAt(i);
936     } // I clusters
937     fClusters->Compress();
938     return;
939 }
940 //__________________________________________________________________________
941 void AliITSClusterFinderSDD::ResolveClusters(){
942     // The function to resolve clusters if the clusters overlapping exists
943 /*    AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
944     // get number of clusters for this module
945     Int_t nofClusters = fClusters->GetEntriesFast();
946     nofClusters -= fNclusters;
947     //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
948     // <<fNclusters<<endl;
949     Int_t fNofMaps = fSegmentation->Npz();
950     Int_t fNofAnodes = fNofMaps/2;
951     Int_t dummy=0;
952     Double_t fTimeStep = fSegmentation->Dpx(dummy);
953     Double_t fSddLength = fSegmentation->Dx();
954     Double_t fDriftSpeed = fResponse->DriftSpeed();
955     Double_t anodePitch = fSegmentation->Dpz(dummy);
956     Float_t n, baseline;
957     fResponse->GetNoiseParam(n,baseline);
958     Float_t dzz_1A = anodePitch * anodePitch / 12;
959     // fill Map of signals
960     fMap->FillMap(); 
961     Int_t j,i,ii,ianode,anode,itime;
962     Int_t wing,astart,astop,tstart,tstop,nanode;
963     Double_t fadc,ClusterTime;
964     Double_t q[400],x[400],z[400]; // digit charges and coordinates
965     for(j=0; j<nofClusters; j++) { 
966         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
967         Int_t ndigits = 0;
968         astart=clusterJ->Astart();
969         astop=clusterJ->Astop();
970         tstart=clusterJ->Tstartf();
971         tstop=clusterJ->Tstopf();
972         nanode=clusterJ->Anodes();  // <- Ernesto
973         wing=(Int_t)clusterJ->W();
974         if(wing == 2) {
975             astart += fNofAnodes; 
976             astop  += fNofAnodes;
977         }  // end if
978         // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
979         //      <<tstart<<","<<tstop<<endl;
980         // clear the digit arrays
981         for(ii=0; ii<400; ii++) { 
982             q[ii] = 0.; 
983             x[ii] = 0.;
984             z[ii] = 0.;
985         } // end for ii
986
987         for(ianode=astart; ianode<=astop; ianode++) { 
988             for(itime=tstart; itime<=tstop; itime++) { 
989                 fadc=fMap->GetSignal(ianode,itime);
990                 if(fadc>baseline) {
991                     fadc-=(Double_t)baseline;
992                     q[ndigits] = fadc*(fTimeStep/160);  // KeV
993                     anode = ianode;
994                     if(wing == 2) anode -= fNofAnodes;
995                     z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
996                     ClusterTime = itime*fTimeStep;
997                     if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
998                     x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
999                     if(wing == 1) x[ndigits] *= (-1);
1000                     // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
1001                     //     <<fadc<<endl;
1002                     // cout<<"wing,anode,ndigits,charge ="<<wing<<","
1003                     //      <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
1004                     ndigits++;
1005                     continue;
1006                 } //  end if
1007                 fadc=0;
1008                 //              cout<<"fadc=0, ndigits ="<<ndigits<<endl;
1009             } // time loop
1010         } // anode loop
1011         //     cout<<"for new cluster ndigits ="<<ndigits<<endl;
1012         // Fit cluster to resolve for two separate ones --------------------
1013         Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1014         Double_t dxx=0., dzz=0., dxz=0.;
1015         Double_t scl = 0., tmp, tga, elps = -1.;
1016         Double_t xfit[2], zfit[2], qfit[2];
1017         Double_t pitchz = anodePitch*1.e-4;             // cm
1018         Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4;  // cm
1019         Double_t sigma2;
1020         Int_t nfhits;
1021         Int_t nbins = ndigits;
1022         Int_t separate = 0;
1023         // now, all lengths are in microns
1024         for (ii=0; ii<nbins; ii++) {
1025             qq += q[ii];
1026             xm += x[ii]*q[ii];
1027             zm += z[ii]*q[ii];
1028             xx += x[ii]*x[ii]*q[ii];
1029             zz += z[ii]*z[ii]*q[ii];
1030             xz += x[ii]*z[ii]*q[ii];
1031         } // end for ii
1032         xm /= qq;
1033         zm /= qq;
1034         xx /= qq;
1035         zz /= qq;
1036         xz /= qq;
1037         dxx = xx - xm*xm;
1038         dzz = zz - zm*zm;
1039         dxz = xz - xm*zm;
1040
1041         // shrink the cluster in the time direction proportionaly to the 
1042         // dxx/dzz, which lineary depends from the drift path
1043         // new  Ernesto........         
1044         if( nanode == 1 ){
1045             dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1046             scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1047         } // end if
1048         if( nanode == 2 ){
1049             scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1050         } // end if
1051         if( nanode == 3 ){
1052             scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1053         } // end if
1054         if( nanode > 3 ){
1055             scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1056         } // end if
1057         //   cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1058         //  <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1059         //  old Boris.........
1060         //  tmp=29730. - 585.*fabs(xm/1000.); 
1061         //  scl=TMath::Sqrt(tmp/130000.);
1062    
1063         xm *= scl;
1064         xx *= scl*scl;
1065         xz *= scl;
1066
1067         dxx = xx - xm*xm;
1068         //   dzz = zz - zm*zm;
1069         dxz = xz - xm*zm;
1070         //   cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1071         // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1072         // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
1073   
1074         if (dxx < 0.) dxx=0.;
1075         // the data if no cluster overlapping (the coordunates are in cm) 
1076         nfhits = 1;
1077         xfit[0] = xm*1.e-4;
1078         zfit[0] = zm*1.e-4;
1079         qfit[0] = qq;
1080         //   if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
1081   
1082         if (nbins >= 7) {
1083             if (dxz==0.) tga=0.;
1084             else {
1085                 tmp=0.5*(dzz-dxx)/dxz;
1086                 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) : 
1087                                                    tmp+TMath::Sqrt(tmp*tmp+1);
1088             } // end if dxz
1089             elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1090             // change from microns to cm
1091             xm *= 1.e-4; 
1092             zm *= 1.e-4; 
1093             zz *= 1.e-8;
1094             xx *= 1.e-8;
1095             xz *= 1.e-8;
1096             dxz *= 1.e-8;
1097             dxx *= 1.e-8;
1098             dzz *= 1.e-8;
1099             //   cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1100             //  <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1101             for (i=0; i<nbins; i++) {     
1102                 x[i] = x[i] *= scl;
1103                 x[i] = x[i] *= 1.e-4;
1104                 z[i] = z[i] *= 1.e-4;
1105             } // end for i
1106             //     cout<<"!!! elps ="<<elps<<endl;
1107             if (elps < 0.3) { // try to separate hits 
1108                 separate = 1;
1109                 tmp=atan(tga);
1110                 Double_t cosa=cos(tmp),sina=sin(tmp);
1111                 Double_t a1=0., x1=0., xxx=0.;
1112                 for (i=0; i<nbins; i++) {
1113                     tmp=x[i]*cosa + z[i]*sina;
1114                     if (q[i] > a1) {
1115                         a1=q[i];
1116                         x1=tmp;
1117                     } // end if
1118                     xxx += tmp*tmp*tmp*q[i];
1119                 } // end for i
1120                 xxx /= qq;
1121                 Double_t z12=-sina*xm + cosa*zm;
1122                 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1123                 xm=cosa*xm + sina*zm;
1124                 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1125                 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1126                 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1127                 for (i=0; i<33; i++) { // solve a system of equations
1128                     Double_t x1_old=x1, x2_old=x2, r_old=r;
1129                     Double_t c11=x1-x2;
1130                     Double_t c12=r;
1131                     Double_t c13=1-r;
1132                     Double_t c21=x1*x1 - x2*x2;
1133                     Double_t c22=2*r*x1;
1134                     Double_t c23=2*(1-r)*x2;
1135                     Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1136                     Double_t c32=3*r*(sigma2 + x1*x1);
1137                     Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1138                     Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1139                     Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1140                     Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1141                                                          (3*sigma2+x2*x2)-xxx);
1142                     Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1143                                        c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1144                     if (d==0.) {
1145                         cout<<"*********** d=0 ***********\n";
1146                         break;
1147                     } // end if
1148                     Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1149                         f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1150                     Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1151                         c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1152                     Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1153                         c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1154                     r  += dr/d;
1155                     x1 += d1/d;
1156                     x2 += d2/d;
1157                     if (fabs(x1-x1_old) > 0.0001) continue;
1158                     if (fabs(x2-x2_old) > 0.0001) continue;
1159                     if (fabs(r-r_old)/5 > 0.001) continue;
1160                     a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1161                     Double_t a2=a1*(1-r)/r;
1162                     qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina + 
1163                                                                 z12*cosa;
1164                     qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina + 
1165                                                                 z12*cosa;
1166                     nfhits=2;
1167                     break; // Ok !
1168                 } // end for i
1169                 if (i==33) cerr<<"No more iterations ! "<<endl;
1170             } // end of attempt to separate overlapped clusters
1171         } // end of nbins cut 
1172         if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1173         if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1174                                                      <<elps<<","<<nfhits<<endl;
1175         if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1176         for (i=0; i<nfhits; i++) {
1177             xfit[i] *= (1.e+4/scl);
1178             if(wing == 1) xfit[i] *= (-1);
1179             zfit[i] *= 1.e+4;
1180             //       cout<<" ---------  i,xfiti,zfiti,qfiti ="<<i<<","
1181             // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1182         } // end for i
1183         Int_t ncl = nfhits;
1184         if(nfhits == 1 && separate == 1) {
1185             cout<<"!!!!! no separate"<<endl;
1186             ncl = -2;
1187         }  // end if
1188         if(nfhits == 2) {
1189             cout << "Split cluster: " << endl;
1190             clusterJ->PrintInfo();
1191             cout << " in: " << endl;
1192             for (i=0; i<nfhits; i++) {
1193                 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
1194                                                -1,-1,(Float_t)qfit[i],ncl,0,0,
1195                                                (Float_t)xfit[i],
1196                                                (Float_t)zfit[i],0,0,0,0,
1197                                                 tstart,tstop,astart,astop);
1198             //        AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1199             //                                 -1,(Float_t)qfit[i],0,0,0,
1200             //                                  (Float_t)xfit[i],
1201             //                                  (Float_t)zfit[i],0,0,0,0,
1202             //                                  tstart,tstop,astart,astop,ncl);
1203             // ???????????
1204             // if(wing == 1) xfit[i] *= (-1);
1205             Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1206             Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1207             Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1208             Float_t peakpos = clusterJ->PeakPos();
1209             Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1210             Float_t clusterDriftPath = Time*fDriftSpeed;
1211             clusterDriftPath = fSddLength-clusterDriftPath;
1212             AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1213                                                                  Time,qfit[i],
1214                                                clusterPeakAmplitude,peakpos,
1215                                                0.,0.,clusterDriftPath,
1216                                          clusteranodePath,clusterJ->Samples()/2
1217                                     ,tstart,tstop,0,0,0,astart,astop);
1218             clust->PrintInfo();
1219             iTS->AddCluster(1,clust);
1220             //        cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1221             // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1222             // <<","<<ncl<<endl;
1223             delete clust;
1224         }// nfhits loop
1225         fClusters->RemoveAt(j);
1226     } // if nfhits = 2
1227 } // cluster loop
1228 fClusters->Compress();
1229 fMap->ClearMap(); 
1230 */
1231     return;
1232 }
1233 //______________________________________________________________________
1234 void AliITSClusterFinderSDD::GetRecPoints(){
1235     // get rec points
1236     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1237     // get number of clusters for this module
1238     Int_t nofClusters = fClusters->GetEntriesFast();
1239     nofClusters -= fNclusters;
1240     const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1241     const Float_t kconv = 1.0e-4; 
1242     const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1243     const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1244     Int_t i,j;
1245     Int_t ix, iz, idx=-1;
1246     AliITSdigitSDD *dig=0;
1247     Int_t ndigits=fDigits->GetEntriesFast();
1248     for(i=0; i<nofClusters; i++) { 
1249         AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1250         if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1251         if(clusterI) idx=clusterI->PeakPos();
1252         if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1253         // try peak neighbours - to be done 
1254         if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1255         if(!dig) {
1256             // try cog
1257             fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1258             dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1259             // if null try neighbours
1260             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix); 
1261             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1); 
1262             if (!dig) printf("SDD: cannot assign the track number!\n");
1263         } //  end if !dig
1264         AliITSRecPoint rnew;
1265         rnew.SetX(clusterI->X());
1266         rnew.SetZ(clusterI->Z());
1267         rnew.SetQ(clusterI->Q());   // in KeV - should be ADC
1268         rnew.SetdEdX(kconvGeV*clusterI->Q());
1269         rnew.SetSigmaX2(kRMSx*kRMSx);
1270         rnew.SetSigmaZ2(kRMSz*kRMSz);
1271         if(dig){
1272             rnew.fTracks[0] = dig->fTracks[0];
1273             rnew.fTracks[1] = -3;
1274             rnew.fTracks[2] = -3;
1275             j=1;
1276             while(rnew.fTracks[0]==dig->fTracks[j] &&
1277                   j<dig->GetNTracks()) j++;
1278             if(j<dig->GetNTracks()){
1279                 rnew.fTracks[1] = dig->fTracks[j];
1280                 while((rnew.fTracks[0]==dig->fTracks[j] || 
1281                        rnew.fTracks[1]==dig->fTracks[j] )&& 
1282                       j<dig->GetNTracks()) j++;
1283                 if(j<dig->GetNTracks()) rnew.fTracks[2] = dig->fTracks[j];
1284             } // end if
1285         } // end if
1286         //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1287         //         i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1288         //         lusterI->X(),clusterI->Z());
1289         iTS->AddRecPoint(rnew);
1290     } // I clusters
1291 //    fMap->ClearMap();
1292 }
1293 //______________________________________________________________________
1294 void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1295     // find raw clusters
1296     
1297     fModule = mod;
1298     
1299     Find1DClustersE();
1300     GroupClusters();
1301     SelectClusters();
1302     ResolveClustersE();
1303     GetRecPoints();
1304 }
1305 //_______________________________________________________________________
1306 void AliITSClusterFinderSDD::Print() const{
1307     // Print SDD cluster finder Parameters
1308
1309     cout << "**************************************************" << endl;
1310     cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1311     cout << "**************************************************" << endl;
1312     cout << "Number of Clusters: " << fNclusters << endl;
1313     cout << "Anode Tolerance: " << fDAnode << endl;
1314     cout << "Time  Tolerance: " << fDTime << endl;
1315     cout << "Time  correction (electronics): " << fTimeCorr << endl;
1316     cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1317     cout << "Minimum Amplitude: " << fMinPeak << endl;
1318     cout << "Minimum Charge: " << fMinCharge << endl;
1319     cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1320     cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1321     cout << "**************************************************" << endl;
1322 }