]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSClusterFinderSDD.cxx
Removing obsolete macros
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
48058160 15/*
16 $Id$
17 $Log$
bf3f2830 18 Revision 1.29 2002/10/25 18:54:22 barbera
19 Various improvements and updates from B.S.Nilsen and T. Virgili
20
f8d9a5b8 21 Revision 1.28 2002/10/22 14:45:29 alibrary
22 Introducing Riostream.h
23
4ae5bbc4 24 Revision 1.27 2002/10/14 14:57:00 hristov
25 Merging the VirtualMC branch to the main development branch (HEAD)
26
b9d0a01d 27 Revision 1.23.4.2 2002/10/14 13:14:07 hristov
28 Updating VirtualMC to v3-09-02
29
30 Revision 1.26 2002/09/09 17:23:28 nilsen
31 Minor changes in support of changes to AliITSdigitS?D class'.
32
ee86d557 33 Revision 1.25 2002/05/10 22:29:40 nilsen
34 Change my Massimo Masera in the default constructor to bring things into
35 compliance.
36
355ccb70 37 Revision 1.24 2002/04/24 22:02:31 nilsen
38 New SDigits and Digits routines, and related changes, (including new
39 noise values).
40
48058160 41 */
bf3f2830 42//
43// Cluster finder
44// for Silicon
45// Drift Detector
46//
4ae5bbc4 47#include <Riostream.h>
bf3f2830 48
a1f090e0 49#include <TMath.h>
50#include <math.h>
b0f5e3fc 51
52#include "AliITSClusterFinderSDD.h"
e8189707 53#include "AliITSMapA1.h"
54#include "AliITS.h"
78a228db 55#include "AliITSdigit.h"
56#include "AliITSRawCluster.h"
57#include "AliITSRecPoint.h"
58#include "AliITSsegmentation.h"
5dd4cc39 59#include "AliITSresponseSDD.h"
b0f5e3fc 60#include "AliRun.h"
61
b0f5e3fc 62ClassImp(AliITSClusterFinderSDD)
63
42da2935 64//______________________________________________________________________
65AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
50d05d7b 66 AliITSresponse *response,
67 TClonesArray *digits,
68 TClonesArray *recp){
42da2935 69 // standard constructor
78a228db 70
b48af428 71 fSegmentation = seg;
72 fResponse = response;
73 fDigits = digits;
74 fClusters = recp;
75 fNclusters = fClusters->GetEntriesFast();
b0f5e3fc 76 SetCutAmplitude();
77 SetDAnode();
78 SetDTime();
355ccb70 79 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
80 // SetMinPeak();
78a228db 81 SetMinNCells();
82 SetMaxNCells();
83 SetTimeCorr();
a1f090e0 84 SetMinCharge();
b48af428 85 fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
b0f5e3fc 86}
42da2935 87//______________________________________________________________________
88AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
89 // default constructor
b0f5e3fc 90
b48af428 91 fSegmentation = 0;
92 fResponse = 0;
93 fDigits = 0;
94 fClusters = 0;
95 fNclusters = 0;
96 fMap = 0;
97 fCutAmplitude = 0;
355ccb70 98 fDAnode = 0;
99 fDTime = 0;
100 fMinPeak = 0;
101 fMinNCells = 0;
102 fMaxNCells = 0;
103 fTimeCorr = 0;
104 fMinCharge = 0;
105 /*
b0f5e3fc 106 SetDAnode();
107 SetDTime();
48058160 108 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
78a228db 109 SetMinNCells();
110 SetMaxNCells();
111 SetTimeCorr();
a1f090e0 112 SetMinCharge();
355ccb70 113 */
b0f5e3fc 114}
42da2935 115//____________________________________________________________________________
116AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
e8189707 117 // destructor
118
119 if(fMap) delete fMap;
e8189707 120}
42da2935 121//______________________________________________________________________
122void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
123 // set the signal threshold for cluster finder
bf3f2830 124 Float_t baseline,noise,noiseAfterEl;
42da2935 125
126 fResponse->GetNoiseParam(noise,baseline);
bf3f2830 127 noiseAfterEl = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
128 fCutAmplitude = (Int_t)((baseline + nsigma*noiseAfterEl));
5dd4cc39 129}
42da2935 130//______________________________________________________________________
131void AliITSClusterFinderSDD::Find1DClusters(){
132 // find 1D clusters
b48af428 133 static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
a1f090e0 134
42da2935 135 // retrieve the parameters
b48af428 136 Int_t fNofMaps = fSegmentation->Npz();
42da2935 137 Int_t fMaxNofSamples = fSegmentation->Npx();
b48af428 138 Int_t fNofAnodes = fNofMaps/2;
139 Int_t dummy = 0;
140 Float_t fTimeStep = fSegmentation->Dpx(dummy);
141 Float_t fSddLength = fSegmentation->Dx();
142 Float_t fDriftSpeed = fResponse->DriftSpeed();
143 Float_t anodePitch = fSegmentation->Dpz(dummy);
42da2935 144
145 // map the signal
50d05d7b 146 fMap->ClearMap();
42da2935 147 fMap->SetThreshold(fCutAmplitude);
148 fMap->FillMap();
a1f090e0 149
42da2935 150 Float_t noise;
151 Float_t baseline;
152 fResponse->GetNoiseParam(noise,baseline);
a1f090e0 153
42da2935 154 Int_t nofFoundClusters = 0;
155 Int_t i;
156 Float_t **dfadc = new Float_t*[fNofAnodes];
157 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
b48af428 158 Float_t fadc = 0.;
42da2935 159 Float_t fadc1 = 0.;
160 Float_t fadc2 = 0.;
161 Int_t j,k,idx,l,m;
162 for(j=0;j<2;j++) {
50d05d7b 163 for(k=0;k<fNofAnodes;k++) {
164 idx = j*fNofAnodes+k;
165 // signal (fadc) & derivative (dfadc)
166 dfadc[k][255]=0.;
167 for(l=0; l<fMaxNofSamples; l++) {
168 fadc2=(Float_t)fMap->GetSignal(idx,l);
169 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
170 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
171 } // samples
172 } // anodes
42da2935 173
50d05d7b 174 for(k=0;k<fNofAnodes;k++) {
175 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
176 idx = j*fNofAnodes+k;
177 Int_t imax = 0;
178 Int_t imaxd = 0;
179 Int_t it = 0;
180 while(it <= fMaxNofSamples-3) {
181 imax = it;
182 imaxd = it;
183 // maximum of signal
184 Float_t fadcmax = 0.;
185 Float_t dfadcmax = 0.;
186 Int_t lthrmina = 1;
187 Int_t lthrmint = 3;
188 Int_t lthra = 1;
189 Int_t lthrt = 0;
190 for(m=0;m<20;m++) {
191 Int_t id = it+m;
192 if(id>=fMaxNofSamples) break;
193 fadc=(float)fMap->GetSignal(idx,id);
194 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
195 if(fadc > (float)fCutAmplitude) {
196 lthrt++;
197 } // end if
198 if(dfadc[k][id] > dfadcmax) {
199 dfadcmax = dfadc[k][id];
200 imaxd = id;
201 } // end if
202 } // end for m
203 it = imaxd;
204 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
205 // cluster charge
206 Int_t tstart = it-2;
207 if(tstart < 0) tstart = 0;
208 Bool_t ilcl = 0;
209 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
210 if(ilcl) {
211 nofFoundClusters++;
212 Int_t tstop = tstart;
213 Float_t dfadcmin = 10000.;
214 Int_t ij;
215 for(ij=0; ij<20; ij++) {
216 if(tstart+ij > 255) { tstop = 255; break; }
217 fadc=(float)fMap->GetSignal(idx,tstart+ij);
218 if((dfadc[k][tstart+ij] < dfadcmin) &&
219 (fadc > fCutAmplitude)) {
220 tstop = tstart+ij+5;
221 if(tstop > 255) tstop = 255;
222 dfadcmin = dfadc[k][it+ij];
223 } // end if
224 } // end for ij
42da2935 225
50d05d7b 226 Float_t clusterCharge = 0.;
227 Float_t clusterAnode = k+0.5;
228 Float_t clusterTime = 0.;
229 Int_t clusterMult = 0;
230 Float_t clusterPeakAmplitude = 0.;
231 Int_t its,peakpos = -1;
232 Float_t n, baseline;
233 fResponse->GetNoiseParam(n,baseline);
234 for(its=tstart; its<=tstop; its++) {
235 fadc=(float)fMap->GetSignal(idx,its);
236 if(fadc>baseline) fadc -= baseline;
237 else fadc = 0.;
238 clusterCharge += fadc;
239 // as a matter of fact we should take the peak
240 // pos before FFT
241 // to get the list of tracks !!!
242 if(fadc > clusterPeakAmplitude) {
243 clusterPeakAmplitude = fadc;
244 //peakpos=fMap->GetHitIndex(idx,its);
245 Int_t shift = (int)(fTimeCorr/fTimeStep);
246 if(its>shift && its<(fMaxNofSamples-shift))
247 peakpos = fMap->GetHitIndex(idx,its+shift);
248 else peakpos = fMap->GetHitIndex(idx,its);
249 if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
250 } // end if
251 clusterTime += fadc*its;
252 if(fadc > 0) clusterMult++;
253 if(its == tstop) {
254 clusterTime /= (clusterCharge/fTimeStep); // ns
255 if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
256 //ns
257 } // end if
258 } // end for its
42da2935 259
50d05d7b 260 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
261 anodePitch;
262 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
263 clusterDriftPath = fSddLength-clusterDriftPath;
264 if(clusterCharge <= 0.) break;
265 AliITSRawClusterSDD clust(j+1,//i
266 clusterAnode,clusterTime,//ff
267 clusterCharge, //f
268 clusterPeakAmplitude, //f
269 peakpos, //i
270 0.,0.,clusterDriftPath,//fff
271 clusteranodePath, //f
272 clusterMult, //i
273 0,0,0,0,0,0,0);//7*i
274 iTS->AddCluster(1,&clust);
275 it = tstop;
276 } // ilcl
277 it++;
278 } // while (samples)
279 } // anodes
42da2935 280 } // detectors (2)
42da2935 281
282 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
283 delete [] dfadc;
a1f090e0 284
42da2935 285 return;
a1f090e0 286}
50d05d7b 287
288
289
42da2935 290//______________________________________________________________________
291void AliITSClusterFinderSDD::Find1DClustersE(){
24a1c341 292 // find 1D clusters
42da2935 293 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
294 // retrieve the parameters
295 Int_t fNofMaps = fSegmentation->Npz();
296 Int_t fMaxNofSamples = fSegmentation->Npx();
297 Int_t fNofAnodes = fNofMaps/2;
298 Int_t dummy=0;
299 Float_t fTimeStep = fSegmentation->Dpx( dummy );
300 Float_t fSddLength = fSegmentation->Dx();
301 Float_t fDriftSpeed = fResponse->DriftSpeed();
302 Float_t anodePitch = fSegmentation->Dpz( dummy );
303 Float_t n, baseline;
304 fResponse->GetNoiseParam( n, baseline );
305 // map the signal
50d05d7b 306 fMap->ClearMap();
42da2935 307 fMap->SetThreshold( fCutAmplitude );
308 fMap->FillMap();
50d05d7b 309
42da2935 310 Int_t nClu = 0;
50d05d7b 311 // cout << "Search cluster... "<< endl;
42da2935 312 for( Int_t j=0; j<2; j++ ){
50d05d7b 313 for( Int_t k=0; k<fNofAnodes; k++ ){
314 Int_t idx = j*fNofAnodes+k;
315 Bool_t on = kFALSE;
316 Int_t start = 0;
317 Int_t nTsteps = 0;
318 Float_t fmax = 0.;
319 Int_t lmax = 0;
320 Float_t charge = 0.;
321 Float_t time = 0.;
322 Float_t anode = k+0.5;
323 Int_t peakpos = -1;
324 for( Int_t l=0; l<fMaxNofSamples; l++ ){
325 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
326 if( fadc > 0.0 ){
327 if( on == kFALSE && l<fMaxNofSamples-4){
328 // star RawCluster (reset var.)
329 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
330 if( fadc1 < fadc ) continue;
331 start = l;
332 fmax = 0.;
333 lmax = 0;
334 time = 0.;
335 charge = 0.;
336 on = kTRUE;
337 nTsteps = 0;
338 } // end if on...
339 nTsteps++ ;
340 if( fadc > baseline ) fadc -= baseline;
341 else fadc=0.;
342 charge += fadc;
343 time += fadc*l;
344 if( fadc > fmax ){
345 fmax = fadc;
346 lmax = l;
347 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
348 if( l > shift && l < (fMaxNofSamples-shift) )
349 peakpos = fMap->GetHitIndex( idx, l+shift );
350 else
351 peakpos = fMap->GetHitIndex( idx, l );
352 if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
353 } // end if fadc
354 }else{ // end fadc>0
355 if( on == kTRUE ){
356 if( nTsteps > 2 ){
357 // min # of timesteps for a RawCluster
358 // Found a RawCluster...
359 Int_t stop = l-1;
360 time /= (charge/fTimeStep); // ns
361 // time = lmax*fTimeStep; // ns
362 if( time > fTimeCorr ) time -= fTimeCorr; // ns
363 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
364 Float_t driftPath = time*fDriftSpeed;
365 driftPath = fSddLength-driftPath;
366 AliITSRawClusterSDD clust(j+1,anode,time,charge,
367 fmax, peakpos,0.,0.,
368 driftPath,anodePath,
369 nTsteps,start,stop,
370 start, stop, 1, k, k );
371 iTS->AddCluster( 1, &clust );
372 // clust.PrintInfo();
373 nClu++;
374 } // end if nTsteps
375 on = kFALSE;
376 } // end if on==kTRUE
377 } // end if fadc>0
378 } // samples
379 } // anodes
42da2935 380 } // wings
50d05d7b 381 // cout << "# Rawclusters " << nClu << endl;
42da2935 382 return;
a1f090e0 383}
42da2935 384//_______________________________________________________________________
385Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
50d05d7b 386 Int_t *peakX, Int_t *peakZ,
387 Float_t *peakAmp, Float_t minpeak ){
42da2935 388 // search peaks on a 2D cluster
389 Int_t npeak = 0; // # peaks
56fff130 390 Int_t i,j;
42da2935 391 // search peaks
392 for( Int_t z=1; z<zdim-1; z++ ){
48058160 393 for( Int_t x=1; x<xdim-2; x++ ){
50d05d7b 394 Float_t sxz = spect[x*zdim+z];
395 Float_t sxz1 = spect[(x+1)*zdim+z];
396 Float_t sxz2 = spect[(x-1)*zdim+z];
397 // search a local max. in s[x,z]
398 if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
399 if( sxz >= spect[(x+1)*zdim+z ] && sxz >= spect[(x-1)*zdim+z ] &&
400 sxz >= spect[x*zdim +z+1] && sxz >= spect[x*zdim +z-1] &&
401 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
402 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
403 // peak found
404 peakX[npeak] = x;
405 peakZ[npeak] = z;
406 peakAmp[npeak] = sxz;
407 npeak++;
408 } // end if ....
409 } // end for x
42da2935 410 } // end for z
411 // search groups of peaks with same amplitude.
412 Int_t *flag = new Int_t[npeak];
413 for( i=0; i<npeak; i++ ) flag[i] = 0;
414 for( i=0; i<npeak; i++ ){
50d05d7b 415 for( j=0; j<npeak; j++ ){
416 if( i==j) continue;
417 if( flag[j] > 0 ) continue;
418 if( peakAmp[i] == peakAmp[j] &&
419 TMath::Abs(peakX[i]-peakX[j])<=1 &&
420 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
421 if( flag[i] == 0) flag[i] = i+1;
422 flag[j] = flag[i];
423 } // end if ...
424 } // end for j
42da2935 425 } // end for i
50d05d7b 426 // make average of peak groups
42da2935 427 for( i=0; i<npeak; i++ ){
50d05d7b 428 Int_t nFlag = 1;
429 if( flag[i] <= 0 ) continue;
430 for( j=0; j<npeak; j++ ){
431 if( i==j ) continue;
432 if( flag[j] != flag[i] ) continue;
433 peakX[i] += peakX[j];
434 peakZ[i] += peakZ[j];
435 nFlag++;
436 npeak--;
437 for( Int_t k=j; k<npeak; k++ ){
438 peakX[k] = peakX[k+1];
439 peakZ[k] = peakZ[k+1];
440 peakAmp[k] = peakAmp[k+1];
441 flag[k] = flag[k+1];
442 } // end for k
443 j--;
444 } // end for j
445 if( nFlag > 1 ){
446 peakX[i] /= nFlag;
447 peakZ[i] /= nFlag;
448 } // end fi nFlag
42da2935 449 } // end for i
450 delete [] flag;
451 return( npeak );
a1f090e0 452}
42da2935 453//______________________________________________________________________
454void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
50d05d7b 455 Float_t *spe, Float_t *integral){
24a1c341 456 // function used to fit the clusters
50d05d7b 457 // par -> parameters..
24a1c341 458 // par[0] number of peaks.
459 // for each peak i=1, ..., par[0]
50d05d7b 460 // par[i] = Ampl.
461 // par[i+1] = xpos
462 // par[i+2] = zpos
463 // par[i+3] = tau
464 // par[i+4] = sigma.
24a1c341 465 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
466 const Int_t knParam = 5;
467 Int_t npeak = (Int_t)par[0];
42da2935 468
24a1c341 469 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
42da2935 470
24a1c341 471 Int_t k = 1;
42da2935 472 for( Int_t i=0; i<npeak; i++ ){
24a1c341 473 if( integral != 0 ) integral[i] = 0.;
474 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
bf3f2830 475 Float_t t2 = par[k+3]; // PASCAL
476 if( electronics == 2 ) { t2 *= t2; t2 *= 2; } // OLA
42da2935 477 for( Int_t z=0; z<zdim; z++ ){
478 for( Int_t x=0; x<xdim; x++ ){
24a1c341 479 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
480 Float_t x2 = 0.;
481 Float_t signal = 0.;
42da2935 482 if( electronics == 1 ){ // PASCAL
bf3f2830 483 x2 = (x-par[k+1]+t2)/t2;
42da2935 484 signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
485 // signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
486 }else if( electronics == 2 ) { // OLA
bf3f2830 487 x2 = (x-par[k+1])*(x-par[k+1])/t2;
50d05d7b 488 signal = par[k] * exp( -x2 - z2 );
489 } else {
bf3f2830 490 Warning("PeakFunc","Wrong SDD Electronics = %d",electronics);
50d05d7b 491 // exit( 1 );
492 } // end if electronicx
24a1c341 493 spe[x*zdim+z] += signal;
494 if( integral != 0 ) integral[i] += signal;
42da2935 495 } // end for x
496 } // end for z
24a1c341 497 k += knParam;
42da2935 498 } // end for i
24a1c341 499 return;
a1f090e0 500}
42da2935 501//__________________________________________________________________________
502Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
bf3f2830 503 Float_t *speFit ) const{
42da2935 504 // EVALUATES UNNORMALIZED CHI-SQUARED
505 Float_t chi2 = 0.;
506 for( Int_t z=0; z<zdim; z++ ){
50d05d7b 507 for( Int_t x=1; x<xdim-1; x++ ){
508 Int_t index = x*zdim+z;
509 Float_t tmp = spe[index] - speFit[index];
510 chi2 += tmp*tmp;
511 } // end for x
42da2935 512 } // end for z
513 return( chi2 );
a1f090e0 514}
42da2935 515//_______________________________________________________________________
516void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
50d05d7b 517 Float_t *prm0,Float_t *steprm,
518 Float_t *chisqr,Float_t *spe,
519 Float_t *speFit ){
42da2935 520 //
521 Int_t k, nnn, mmm, i;
522 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
523 const Int_t knParam = 5;
524 Int_t npeak = (Int_t)param[0];
525 for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
526 for( k=1; k<(npeak*knParam+1); k++ ){
50d05d7b 527 p1 = param[k];
528 delta = steprm[k];
529 d1 = delta;
530 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
531 if( fabs( p1 ) > 1.0E-6 )
532 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
533 else delta = (Float_t)1.0E-4;
534 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
535 PeakFunc( xdim, zdim, param, speFit );
536 chisq1 = ChiSqr( xdim, zdim, spe, speFit );
537 p2 = p1+delta;
538 param[k] = p2;
539 PeakFunc( xdim, zdim, param, speFit );
540 chisq2 = ChiSqr( xdim, zdim, spe, speFit );
541 if( chisq1 < chisq2 ){
542 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
543 delta = -delta;
544 t = p1;
545 p1 = p2;
546 p2 = t;
547 t = chisq1;
548 chisq1 = chisq2;
549 chisq2 = t;
550 } // end if
551 i = 1; nnn = 0;
552 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
553 nnn++;
554 p3 = p2 + delta;
555 mmm = nnn - (nnn/5)*5; // multiplo de 5
556 if( mmm == 0 ){
557 d1 = delta;
558 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
559 delta *= 5;
560 } // end if
561 param[k] = p3;
562 // Constrain paramiters
563 Int_t kpos = (k-1) % knParam;
564 switch( kpos ){
565 case 0 :
566 if( param[k] <= 20 ) param[k] = fMinPeak;
567 break;
568 case 1 :
569 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
570 break;
571 case 2 :
572 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
573 break;
574 case 3 :
575 if( param[k] < .5 ) param[k] = .5;
576 break;
577 case 4 :
578 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
579 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
580 break;
581 }; // end switch
582 PeakFunc( xdim, zdim, param, speFit );
583 chisq3 = ChiSqr( xdim, zdim, spe, speFit );
584 if( chisq3 < chisq2 && nnn < 50 ){
585 p1 = p2;
586 p2 = p3;
587 chisq1 = chisq2;
588 chisq2 = chisq3;
589 }else i=0;
590 } while( i );
591 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
592 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
593 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
594 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
595 else p0 = 10000;
596 //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
597 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
598 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
599 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
600 //if( fabs( p2-p0 ) > dp ) p0 = p2;
601 param[k] = p0;
602 // Constrain paramiters
603 Int_t kpos = (k-1) % knParam;
604 switch( kpos ){
605 case 0 :
606 if( param[k] <= 20 ) param[k] = fMinPeak;
607 break;
608 case 1 :
609 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
610 break;
611 case 2 :
612 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
613 break;
614 case 3 :
615 if( param[k] < .5 ) param[k] = .5;
616 break;
617 case 4 :
618 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
619 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
620 break;
621 }; // end switch
622 PeakFunc( xdim, zdim, param, speFit );
623 chisqt = ChiSqr( xdim, zdim, spe, speFit );
624 // DO NOT ALLOW ERRONEOUS INTERPOLATION
625 if( chisqt <= *chisqr ) *chisqr = chisqt;
626 else param[k] = prm0[k];
627 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
628 steprm[k] = (param[k]-prm0[k])/5;
629 if( steprm[k] >= d1 ) steprm[k] = d1/5;
42da2935 630 } // end for k
631 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
632 PeakFunc( xdim, zdim, param, speFit );
633 *chisqr = ChiSqr( xdim, zdim, spe, speFit );
634 return;
a1f090e0 635}
42da2935 636//_________________________________________________________________________
637Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim,
50d05d7b 638 Float_t *param, Float_t *spe,
639 Int_t *niter, Float_t *chir ){
42da2935 640 // fit method from Comput. Phys. Commun 46(1987) 149
50d05d7b 641 const Float_t kchilmt = 0.01; // relative accuracy
642 const Int_t knel = 3; // for parabolic minimization
643 const Int_t knstop = 50; // Max. iteration number
42da2935 644 const Int_t knParam = 5;
645 Int_t npeak = (Int_t)param[0];
646 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
647 if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
648 Float_t degFree = (xdim*zdim - npeak*knParam)-1;
649 Int_t n, k, iterNum = 0;
650 Float_t *prm0 = new Float_t[npeak*knParam+1];
651 Float_t *step = new Float_t[npeak*knParam+1];
652 Float_t *schi = new Float_t[npeak*knParam+1];
653 Float_t *sprm[3];
654 sprm[0] = new Float_t[npeak*knParam+1];
655 sprm[1] = new Float_t[npeak*knParam+1];
656 sprm[2] = new Float_t[npeak*knParam+1];
657 Float_t chi0, chi1, reldif, a, b, prmin, dp;
658 Float_t *speFit = new Float_t[ xdim*zdim ];
659 PeakFunc( xdim, zdim, param, speFit );
660 chi0 = ChiSqr( xdim, zdim, spe, speFit );
661 chi1 = chi0;
662 for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
50d05d7b 663 for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
664 step[k] = param[k] / 20.0 ;
665 step[k+1] = param[k+1] / 50.0;
666 step[k+2] = param[k+2] / 50.0;
667 step[k+3] = param[k+3] / 20.0;
668 step[k+4] = param[k+4] / 20.0;
669 } // end for k
42da2935 670 Int_t out = 0;
671 do{
50d05d7b 672 iterNum++;
673 chi0 = chi1;
674 Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
675 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
676 // EXIT conditions
677 if( reldif < (float) kchilmt ){
678 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
679 *niter = iterNum;
680 out = 0;
681 break;
682 } // end if
683 if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
684 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
685 *niter = iterNum;
686 out = 0;
687 break;
688 } // end if
689 if( iterNum > 5*knstop ){
690 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
691 *niter = iterNum;
692 out = 1;
693 break;
694 } // end if
695 if( iterNum <= knel ) continue;
696 n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
697 if( n > 3 || n == 0 ) continue;
698 schi[n-1] = chi1;
699 for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
700 if( n != 3 ) continue;
701 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
702 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
703 for( k=1; k<(npeak*knParam+1); k++ ){
704 Float_t tmp0 = sprm[0][k];
705 Float_t tmp1 = sprm[1][k];
706 Float_t tmp2 = sprm[2][k];
707 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
708 a += (schi[2]*(tmp0-tmp1));
709 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
710 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
711 (tmp0*tmp0-tmp1*tmp1)));
712 if ((double)a < 1.0E-6) prmin = 0;
713 else prmin = (float) (0.5*b/a);
714 dp = 5*(tmp2-tmp0);
715 if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
716 param[k] = prmin;
717 step[k] = dp/10; // OPTIMIZE SEARCH STEP
718 } // end for k
42da2935 719 } while( kTRUE );
720 delete [] prm0;
721 delete [] step;
722 delete [] schi;
723 delete [] sprm[0];
724 delete [] sprm[1];
725 delete [] sprm[2];
726 delete [] speFit;
727 return( out );
a1f090e0 728}
50d05d7b 729
42da2935 730//______________________________________________________________________
731void AliITSClusterFinderSDD::ResolveClustersE(){
732 // The function to resolve clusters if the clusters overlapping exists
24a1c341 733 Int_t i;
42da2935 734 static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
735 // get number of clusters for this module
736 Int_t nofClusters = fClusters->GetEntriesFast();
737 nofClusters -= fNclusters;
738 Int_t fNofMaps = fSegmentation->Npz();
739 Int_t fNofAnodes = fNofMaps/2;
740 Int_t fMaxNofSamples = fSegmentation->Npx();
741 Int_t dummy=0;
742 Double_t fTimeStep = fSegmentation->Dpx( dummy );
743 Double_t fSddLength = fSegmentation->Dx();
744 Double_t fDriftSpeed = fResponse->DriftSpeed();
745 Double_t anodePitch = fSegmentation->Dpz( dummy );
746 Float_t n, baseline;
747 fResponse->GetNoiseParam( n, baseline );
748 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
50d05d7b 749
42da2935 750 for( Int_t j=0; j<nofClusters; j++ ){
50d05d7b 751 // get cluster information
752 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
753 Int_t astart = clusterJ->Astart();
754 Int_t astop = clusterJ->Astop();
755 Int_t tstart = clusterJ->Tstartf();
756 Int_t tstop = clusterJ->Tstopf();
757 Int_t wing = (Int_t)clusterJ->W();
758 if( wing == 2 ){
759 astart += fNofAnodes;
760 astop += fNofAnodes;
761 } // end if
762 Int_t xdim = tstop-tstart+3;
763 Int_t zdim = astop-astart+3;
bf3f2830 764 if(xdim > 50 || zdim > 30) {
765 Warning("ResolveClustersE","xdim: %d , zdim: %d ",xdim,zdim);
766 continue;
767 }
50d05d7b 768 Float_t *sp = new Float_t[ xdim*zdim+1 ];
769 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
770
771 // make a local map from cluster region
772 for( Int_t ianode=astart; ianode<=astop; ianode++ ){
773 for( Int_t itime=tstart; itime<=tstop; itime++ ){
774 Float_t fadc = fMap->GetSignal( ianode, itime );
775 if( fadc > baseline ) fadc -= (Double_t)baseline;
776 else fadc = 0.;
777 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
778 sp[index] = fadc;
779 } // time loop
780 } // anode loop
781
782 // search peaks on cluster
783 const Int_t kNp = 150;
784 Int_t peakX1[kNp];
785 Int_t peakZ1[kNp];
786 Float_t peakAmp1[kNp];
787 Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
788
789 // if multiple peaks, split cluster
790 if( npeak >= 1 )
791 {
792 // cout << "npeak " << npeak << endl;
793 // clusterJ->PrintInfo();
794 Float_t *par = new Float_t[npeak*5+1];
795 par[0] = (Float_t)npeak;
48058160 796 // Initial parameters in cell dimentions
50d05d7b 797 Int_t k1 = 1;
798 for( i=0; i<npeak; i++ ){
799 par[k1] = peakAmp1[i];
800 par[k1+1] = peakX1[i]; // local time pos. [timebin]
801 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
802 if( electronics == 1 )
803 par[k1+3] = 2.; // PASCAL
804 else if( electronics == 2 )
805 par[k1+3] = 0.7; // tau [timebin] OLA
806 par[k1+4] = .4; // sigma [anodepich]
807 k1+=5;
808 } // end for i
809 Int_t niter;
810 Float_t chir;
811 NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
812 Float_t peakX[kNp];
813 Float_t peakZ[kNp];
814 Float_t sigma[kNp];
815 Float_t tau[kNp];
816 Float_t peakAmp[kNp];
817 Float_t integral[kNp];
818 //get integrals => charge for each peak
819 PeakFunc( xdim, zdim, par, sp, integral );
820 k1 = 1;
821 for( i=0; i<npeak; i++ ){
822 peakAmp[i] = par[k1];
823 peakX[i] = par[k1+1];
824 peakZ[i] = par[k1+2];
825 tau[i] = par[k1+3];
826 sigma[i] = par[k1+4];
827 k1+=5;
828 } // end for i
829 // calculate parameter for new clusters
830 for( i=0; i<npeak; i++ ){
831 AliITSRawClusterSDD clusterI( *clusterJ );
832 Int_t newAnode = peakZ1[i]-1 + astart;
833 Int_t newiTime = peakX1[i]-1 + tstart;
834 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
835 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) )
836 shift = 0;
837 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
838 clusterI.SetPeakPos( peakpos );
839 clusterI.SetPeakAmpl( peakAmp1[i] );
840 Float_t newAnodef = peakZ[i] - 0.5 + astart;
841 Float_t newiTimef = peakX[i] - 1 + tstart;
842 if( wing == 2 ) newAnodef -= fNofAnodes;
843 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
844 newiTimef *= fTimeStep;
845 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
846 if( electronics == 1 ){
48058160 847 // newiTimef *= 0.999438; // PASCAL
848 // newiTimef += (6./fDriftSpeed - newiTimef/3000.);
50d05d7b 849 }else if( electronics == 2 )
850 newiTimef *= 0.99714; // OLA
851 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
852 Float_t sign = ( wing == 1 ) ? -1. : 1.;
853 clusterI.SetX( driftPath*sign * 0.0001 );
854 clusterI.SetZ( anodePath * 0.0001 );
855 clusterI.SetAnode( newAnodef );
856 clusterI.SetTime( newiTimef );
857 clusterI.SetAsigma( sigma[i]*anodePitch );
858 clusterI.SetTsigma( tau[i]*fTimeStep );
859 clusterI.SetQ( integral[i] );
48058160 860 // clusterI.PrintInfo();
50d05d7b 861 iTS->AddCluster( 1, &clusterI );
862 } // end for i
863 fClusters->RemoveAt( j );
864 delete [] par;
48058160 865 } else { // something odd
bf3f2830 866 Warning("ResolveClustersE","--- Peak not found!!!! minpeak=%d ,cluster peak= %f , module= %d",fMinPeak,clusterJ->PeakAmpl(),fModule);
867 clusterJ->PrintInfo();
868 Warning("ResolveClustersE"," xdim= %d zdim= %d",xdim-2,zdim-2);
50d05d7b 869 }
870 delete [] sp;
42da2935 871 } // cluster loop
872 fClusters->Compress();
50d05d7b 873// fMap->ClearMap();
a1f090e0 874}
50d05d7b 875
876
42da2935 877//________________________________________________________________________
878void AliITSClusterFinderSDD::GroupClusters(){
879 // group clusters
880 Int_t dummy=0;
881 Float_t fTimeStep = fSegmentation->Dpx(dummy);
882 // get number of clusters for this module
883 Int_t nofClusters = fClusters->GetEntriesFast();
884 nofClusters -= fNclusters;
885 AliITSRawClusterSDD *clusterI;
886 AliITSRawClusterSDD *clusterJ;
887 Int_t *label = new Int_t [nofClusters];
888 Int_t i,j;
889 for(i=0; i<nofClusters; i++) label[i] = 0;
890 for(i=0; i<nofClusters; i++) {
50d05d7b 891 if(label[i] != 0) continue;
892 for(j=i+1; j<nofClusters; j++) {
893 if(label[j] != 0) continue;
894 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
895 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
896 // 1.3 good
897 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
898 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
899 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
900 if(!pair) continue;
901 // clusterI->PrintInfo();
902 // clusterJ->PrintInfo();
903 clusterI->Add(clusterJ);
904 label[j] = 1;
905 fClusters->RemoveAt(j);
906 j=i; // <- Ernesto
907 } // J clusters
908 label[i] = 1;
42da2935 909 } // I clusters
910 fClusters->Compress();
911
912 delete [] label;
913 return;
b0f5e3fc 914}
42da2935 915//________________________________________________________________________
916void AliITSClusterFinderSDD::SelectClusters(){
917 // get number of clusters for this module
918 Int_t nofClusters = fClusters->GetEntriesFast();
b0f5e3fc 919
42da2935 920 nofClusters -= fNclusters;
921 Int_t i;
922 for(i=0; i<nofClusters; i++) {
50d05d7b 923 AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
924 Int_t rmflg = 0;
925 Float_t wy = 0.;
926 if(clusterI->Anodes() != 0.) {
927 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
928 } // end if
929 Int_t amp = (Int_t) clusterI->PeakAmpl();
930 Int_t cha = (Int_t) clusterI->Q();
931 if(amp < fMinPeak) rmflg = 1;
932 if(cha < fMinCharge) rmflg = 1;
933 if(wy < fMinNCells) rmflg = 1;
934 //if(wy > fMaxNCells) rmflg = 1;
935 if(rmflg) fClusters->RemoveAt(i);
42da2935 936 } // I clusters
937 fClusters->Compress();
938 return;
b0f5e3fc 939}
42da2935 940//__________________________________________________________________________
941void AliITSClusterFinderSDD::ResolveClusters(){
942 // The function to resolve clusters if the clusters overlapping exists
943/* AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
944 // get number of clusters for this module
945 Int_t nofClusters = fClusters->GetEntriesFast();
946 nofClusters -= fNclusters;
947 //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
948 // <<fNclusters<<endl;
949 Int_t fNofMaps = fSegmentation->Npz();
950 Int_t fNofAnodes = fNofMaps/2;
951 Int_t dummy=0;
952 Double_t fTimeStep = fSegmentation->Dpx(dummy);
953 Double_t fSddLength = fSegmentation->Dx();
954 Double_t fDriftSpeed = fResponse->DriftSpeed();
955 Double_t anodePitch = fSegmentation->Dpz(dummy);
956 Float_t n, baseline;
957 fResponse->GetNoiseParam(n,baseline);
958 Float_t dzz_1A = anodePitch * anodePitch / 12;
959 // fill Map of signals
a1f090e0 960 fMap->FillMap();
42da2935 961 Int_t j,i,ii,ianode,anode,itime;
962 Int_t wing,astart,astop,tstart,tstop,nanode;
963 Double_t fadc,ClusterTime;
964 Double_t q[400],x[400],z[400]; // digit charges and coordinates
965 for(j=0; j<nofClusters; j++) {
50d05d7b 966 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
967 Int_t ndigits = 0;
968 astart=clusterJ->Astart();
969 astop=clusterJ->Astop();
970 tstart=clusterJ->Tstartf();
971 tstop=clusterJ->Tstopf();
972 nanode=clusterJ->Anodes(); // <- Ernesto
973 wing=(Int_t)clusterJ->W();
974 if(wing == 2) {
975 astart += fNofAnodes;
976 astop += fNofAnodes;
977 } // end if
978 // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
979 // <<tstart<<","<<tstop<<endl;
980 // clear the digit arrays
981 for(ii=0; ii<400; ii++) {
982 q[ii] = 0.;
983 x[ii] = 0.;
984 z[ii] = 0.;
985 } // end for ii
42da2935 986
50d05d7b 987 for(ianode=astart; ianode<=astop; ianode++) {
988 for(itime=tstart; itime<=tstop; itime++) {
989 fadc=fMap->GetSignal(ianode,itime);
990 if(fadc>baseline) {
991 fadc-=(Double_t)baseline;
992 q[ndigits] = fadc*(fTimeStep/160); // KeV
993 anode = ianode;
994 if(wing == 2) anode -= fNofAnodes;
995 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
996 ClusterTime = itime*fTimeStep;
997 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
998 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
999 if(wing == 1) x[ndigits] *= (-1);
1000 // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
1001 // <<fadc<<endl;
1002 // cout<<"wing,anode,ndigits,charge ="<<wing<<","
1003 // <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
1004 ndigits++;
1005 continue;
1006 } // end if
1007 fadc=0;
1008 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
1009 } // time loop
1010 } // anode loop
1011 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
1012 // Fit cluster to resolve for two separate ones --------------------
1013 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1014 Double_t dxx=0., dzz=0., dxz=0.;
1015 Double_t scl = 0., tmp, tga, elps = -1.;
1016 Double_t xfit[2], zfit[2], qfit[2];
1017 Double_t pitchz = anodePitch*1.e-4; // cm
1018 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
1019 Double_t sigma2;
1020 Int_t nfhits;
1021 Int_t nbins = ndigits;
1022 Int_t separate = 0;
1023 // now, all lengths are in microns
1024 for (ii=0; ii<nbins; ii++) {
1025 qq += q[ii];
1026 xm += x[ii]*q[ii];
1027 zm += z[ii]*q[ii];
1028 xx += x[ii]*x[ii]*q[ii];
1029 zz += z[ii]*z[ii]*q[ii];
1030 xz += x[ii]*z[ii]*q[ii];
1031 } // end for ii
1032 xm /= qq;
1033 zm /= qq;
1034 xx /= qq;
1035 zz /= qq;
1036 xz /= qq;
1037 dxx = xx - xm*xm;
1038 dzz = zz - zm*zm;
1039 dxz = xz - xm*zm;
42da2935 1040
50d05d7b 1041 // shrink the cluster in the time direction proportionaly to the
1042 // dxx/dzz, which lineary depends from the drift path
1043 // new Ernesto........
1044 if( nanode == 1 ){
1045 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1046 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1047 } // end if
1048 if( nanode == 2 ){
1049 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1050 } // end if
1051 if( nanode == 3 ){
1052 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1053 } // end if
1054 if( nanode > 3 ){
1055 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1056 } // end if
1057 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1058 // <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1059 // old Boris.........
1060 // tmp=29730. - 585.*fabs(xm/1000.);
1061 // scl=TMath::Sqrt(tmp/130000.);
a1f090e0 1062
50d05d7b 1063 xm *= scl;
1064 xx *= scl*scl;
1065 xz *= scl;
42da2935 1066
50d05d7b 1067 dxx = xx - xm*xm;
1068 // dzz = zz - zm*zm;
1069 dxz = xz - xm*zm;
1070 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1071 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1072 // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
a1f090e0 1073
50d05d7b 1074 if (dxx < 0.) dxx=0.;
1075 // the data if no cluster overlapping (the coordunates are in cm)
1076 nfhits = 1;
1077 xfit[0] = xm*1.e-4;
1078 zfit[0] = zm*1.e-4;
1079 qfit[0] = qq;
1080 // if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
a1f090e0 1081
50d05d7b 1082 if (nbins >= 7) {
1083 if (dxz==0.) tga=0.;
1084 else {
1085 tmp=0.5*(dzz-dxx)/dxz;
1086 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) :
1087 tmp+TMath::Sqrt(tmp*tmp+1);
1088 } // end if dxz
1089 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1090 // change from microns to cm
1091 xm *= 1.e-4;
1092 zm *= 1.e-4;
1093 zz *= 1.e-8;
1094 xx *= 1.e-8;
1095 xz *= 1.e-8;
1096 dxz *= 1.e-8;
1097 dxx *= 1.e-8;
1098 dzz *= 1.e-8;
1099 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1100 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1101 for (i=0; i<nbins; i++) {
1102 x[i] = x[i] *= scl;
1103 x[i] = x[i] *= 1.e-4;
1104 z[i] = z[i] *= 1.e-4;
1105 } // end for i
1106 // cout<<"!!! elps ="<<elps<<endl;
1107 if (elps < 0.3) { // try to separate hits
1108 separate = 1;
1109 tmp=atan(tga);
1110 Double_t cosa=cos(tmp),sina=sin(tmp);
1111 Double_t a1=0., x1=0., xxx=0.;
1112 for (i=0; i<nbins; i++) {
1113 tmp=x[i]*cosa + z[i]*sina;
1114 if (q[i] > a1) {
1115 a1=q[i];
1116 x1=tmp;
1117 } // end if
1118 xxx += tmp*tmp*tmp*q[i];
1119 } // end for i
1120 xxx /= qq;
1121 Double_t z12=-sina*xm + cosa*zm;
1122 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1123 xm=cosa*xm + sina*zm;
1124 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1125 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1126 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1127 for (i=0; i<33; i++) { // solve a system of equations
1128 Double_t x1_old=x1, x2_old=x2, r_old=r;
1129 Double_t c11=x1-x2;
1130 Double_t c12=r;
1131 Double_t c13=1-r;
1132 Double_t c21=x1*x1 - x2*x2;
1133 Double_t c22=2*r*x1;
1134 Double_t c23=2*(1-r)*x2;
1135 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1136 Double_t c32=3*r*(sigma2 + x1*x1);
1137 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1138 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1139 Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1140 Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1141 (3*sigma2+x2*x2)-xxx);
1142 Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1143 c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1144 if (d==0.) {
1145 cout<<"*********** d=0 ***********\n";
1146 break;
1147 } // end if
1148 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1149 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1150 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1151 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1152 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1153 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1154 r += dr/d;
1155 x1 += d1/d;
1156 x2 += d2/d;
1157 if (fabs(x1-x1_old) > 0.0001) continue;
1158 if (fabs(x2-x2_old) > 0.0001) continue;
1159 if (fabs(r-r_old)/5 > 0.001) continue;
1160 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1161 Double_t a2=a1*(1-r)/r;
1162 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina +
1163 z12*cosa;
1164 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina +
1165 z12*cosa;
1166 nfhits=2;
1167 break; // Ok !
1168 } // end for i
1169 if (i==33) cerr<<"No more iterations ! "<<endl;
1170 } // end of attempt to separate overlapped clusters
1171 } // end of nbins cut
1172 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1173 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1174 <<elps<<","<<nfhits<<endl;
1175 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1176 for (i=0; i<nfhits; i++) {
1177 xfit[i] *= (1.e+4/scl);
1178 if(wing == 1) xfit[i] *= (-1);
1179 zfit[i] *= 1.e+4;
1180 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","
1181 // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1182 } // end for i
1183 Int_t ncl = nfhits;
1184 if(nfhits == 1 && separate == 1) {
1185 cout<<"!!!!! no separate"<<endl;
1186 ncl = -2;
1187 } // end if
1188 if(nfhits == 2) {
1189 cout << "Split cluster: " << endl;
1190 clusterJ->PrintInfo();
1191 cout << " in: " << endl;
1192 for (i=0; i<nfhits; i++) {
1193 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
42da2935 1194 -1,-1,(Float_t)qfit[i],ncl,0,0,
1195 (Float_t)xfit[i],
1196 (Float_t)zfit[i],0,0,0,0,
1197 tstart,tstop,astart,astop);
50d05d7b 1198 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1199 // -1,(Float_t)qfit[i],0,0,0,
1200 // (Float_t)xfit[i],
1201 // (Float_t)zfit[i],0,0,0,0,
1202 // tstart,tstop,astart,astop,ncl);
1203 // ???????????
1204 // if(wing == 1) xfit[i] *= (-1);
1205 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1206 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1207 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1208 Float_t peakpos = clusterJ->PeakPos();
1209 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1210 Float_t clusterDriftPath = Time*fDriftSpeed;
1211 clusterDriftPath = fSddLength-clusterDriftPath;
1212 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1213 Time,qfit[i],
42da2935 1214 clusterPeakAmplitude,peakpos,
1215 0.,0.,clusterDriftPath,
1216 clusteranodePath,clusterJ->Samples()/2
50d05d7b 1217 ,tstart,tstop,0,0,0,astart,astop);
1218 clust->PrintInfo();
1219 iTS->AddCluster(1,clust);
1220 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1221 // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1222 // <<","<<ncl<<endl;
1223 delete clust;
1224 }// nfhits loop
1225 fClusters->RemoveAt(j);
42da2935 1226 } // if nfhits = 2
1227} // cluster loop
1228fClusters->Compress();
1229fMap->ClearMap();
1230*/
1231 return;
a1f090e0 1232}
42da2935 1233//______________________________________________________________________
1234void AliITSClusterFinderSDD::GetRecPoints(){
1235 // get rec points
1236 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1237 // get number of clusters for this module
1238 Int_t nofClusters = fClusters->GetEntriesFast();
1239 nofClusters -= fNclusters;
1240 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1241 const Float_t kconv = 1.0e-4;
1242 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1243 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
ee86d557 1244 Int_t i,j;
42da2935 1245 Int_t ix, iz, idx=-1;
1246 AliITSdigitSDD *dig=0;
1247 Int_t ndigits=fDigits->GetEntriesFast();
1248 for(i=0; i<nofClusters; i++) {
50d05d7b 1249 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1250 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1251 if(clusterI) idx=clusterI->PeakPos();
1252 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1253 // try peak neighbours - to be done
1254 if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1255 if(!dig) {
1256 // try cog
1257 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1258 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1259 // if null try neighbours
1260 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1261 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1262 if (!dig) printf("SDD: cannot assign the track number!\n");
1263 } // end if !dig
1264 AliITSRecPoint rnew;
1265 rnew.SetX(clusterI->X());
1266 rnew.SetZ(clusterI->Z());
1267 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
1268 rnew.SetdEdX(kconvGeV*clusterI->Q());
1269 rnew.SetSigmaX2(kRMSx*kRMSx);
1270 rnew.SetSigmaZ2(kRMSz*kRMSz);
ee86d557 1271 if(dig){
1272 rnew.fTracks[0] = dig->fTracks[0];
1273 rnew.fTracks[1] = -3;
1274 rnew.fTracks[2] = -3;
1275 j=1;
1276 while(rnew.fTracks[0]==dig->fTracks[j] &&
1277 j<dig->GetNTracks()) j++;
1278 if(j<dig->GetNTracks()){
1279 rnew.fTracks[1] = dig->fTracks[j];
f8d9a5b8 1280 while((rnew.fTracks[0]==dig->fTracks[j] ||
1281 rnew.fTracks[1]==dig->fTracks[j] )&&
ee86d557 1282 j<dig->GetNTracks()) j++;
1283 if(j<dig->GetNTracks()) rnew.fTracks[2] = dig->fTracks[j];
1284 } // end if
1285 } // end if
50d05d7b 1286 //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1287 // i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1288 // lusterI->X(),clusterI->Z());
1289 iTS->AddRecPoint(rnew);
42da2935 1290 } // I clusters
50d05d7b 1291// fMap->ClearMap();
b0f5e3fc 1292}
42da2935 1293//______________________________________________________________________
1294void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1295 // find raw clusters
50d05d7b 1296
1297 fModule = mod;
1298
a1f090e0 1299 Find1DClustersE();
b0f5e3fc 1300 GroupClusters();
1301 SelectClusters();
a1f090e0 1302 ResolveClustersE();
b0f5e3fc 1303 GetRecPoints();
1304}
42da2935 1305//_______________________________________________________________________
bf3f2830 1306void AliITSClusterFinderSDD::Print() const{
42da2935 1307 // Print SDD cluster finder Parameters
1308
1309 cout << "**************************************************" << endl;
1310 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1311 cout << "**************************************************" << endl;
1312 cout << "Number of Clusters: " << fNclusters << endl;
1313 cout << "Anode Tolerance: " << fDAnode << endl;
1314 cout << "Time Tolerance: " << fDTime << endl;
1315 cout << "Time correction (electronics): " << fTimeCorr << endl;
1316 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1317 cout << "Minimum Amplitude: " << fMinPeak << endl;
1318 cout << "Minimum Charge: " << fMinCharge << endl;
1319 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1320 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1321 cout << "**************************************************" << endl;
a1f090e0 1322}