]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSClusterFinderSDD.cxx
Made a new abstract base class; AliL3HoughBaseTransformer for different implementations
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
48058160 15/*
16 $Id$
17 $Log$
18 */
19
a1f090e0 20#include <iostream.h>
78a228db 21#include <TFile.h>
a1f090e0 22#include <TMath.h>
23#include <math.h>
b0f5e3fc 24
25#include "AliITSClusterFinderSDD.h"
e8189707 26#include "AliITSMapA1.h"
27#include "AliITS.h"
78a228db 28#include "AliITSdigit.h"
29#include "AliITSRawCluster.h"
30#include "AliITSRecPoint.h"
31#include "AliITSsegmentation.h"
5dd4cc39 32#include "AliITSresponseSDD.h"
b0f5e3fc 33#include "AliRun.h"
34
b0f5e3fc 35ClassImp(AliITSClusterFinderSDD)
36
42da2935 37//______________________________________________________________________
38AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
50d05d7b 39 AliITSresponse *response,
40 TClonesArray *digits,
41 TClonesArray *recp){
42da2935 42 // standard constructor
78a228db 43
b48af428 44 fSegmentation = seg;
45 fResponse = response;
46 fDigits = digits;
47 fClusters = recp;
48 fNclusters = fClusters->GetEntriesFast();
b0f5e3fc 49 SetCutAmplitude();
50 SetDAnode();
51 SetDTime();
b0f5e3fc 52 SetMinPeak();
78a228db 53 SetMinNCells();
54 SetMaxNCells();
55 SetTimeCorr();
a1f090e0 56 SetMinCharge();
b48af428 57 fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
b0f5e3fc 58}
42da2935 59//______________________________________________________________________
60AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
61 // default constructor
b0f5e3fc 62
b48af428 63 fSegmentation = 0;
64 fResponse = 0;
65 fDigits = 0;
66 fClusters = 0;
67 fNclusters = 0;
68 fMap = 0;
69 fCutAmplitude = 0;
b0f5e3fc 70 SetDAnode();
71 SetDTime();
48058160 72 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
78a228db 73 SetMinNCells();
74 SetMaxNCells();
75 SetTimeCorr();
a1f090e0 76 SetMinCharge();
b0f5e3fc 77}
42da2935 78//____________________________________________________________________________
79AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
e8189707 80 // destructor
81
82 if(fMap) delete fMap;
e8189707 83}
42da2935 84//______________________________________________________________________
85void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
86 // set the signal threshold for cluster finder
87 Float_t baseline,noise,noise_after_el;
88
89 fResponse->GetNoiseParam(noise,baseline);
90 noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
b48af428 91 fCutAmplitude = (Int_t)((baseline + nsigma*noise_after_el));
5dd4cc39 92}
42da2935 93//______________________________________________________________________
94void AliITSClusterFinderSDD::Find1DClusters(){
95 // find 1D clusters
b48af428 96 static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
a1f090e0 97
42da2935 98 // retrieve the parameters
b48af428 99 Int_t fNofMaps = fSegmentation->Npz();
42da2935 100 Int_t fMaxNofSamples = fSegmentation->Npx();
b48af428 101 Int_t fNofAnodes = fNofMaps/2;
102 Int_t dummy = 0;
103 Float_t fTimeStep = fSegmentation->Dpx(dummy);
104 Float_t fSddLength = fSegmentation->Dx();
105 Float_t fDriftSpeed = fResponse->DriftSpeed();
106 Float_t anodePitch = fSegmentation->Dpz(dummy);
42da2935 107
108 // map the signal
50d05d7b 109 fMap->ClearMap();
42da2935 110 fMap->SetThreshold(fCutAmplitude);
111 fMap->FillMap();
a1f090e0 112
42da2935 113 Float_t noise;
114 Float_t baseline;
115 fResponse->GetNoiseParam(noise,baseline);
a1f090e0 116
42da2935 117 Int_t nofFoundClusters = 0;
118 Int_t i;
119 Float_t **dfadc = new Float_t*[fNofAnodes];
120 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
b48af428 121 Float_t fadc = 0.;
42da2935 122 Float_t fadc1 = 0.;
123 Float_t fadc2 = 0.;
124 Int_t j,k,idx,l,m;
125 for(j=0;j<2;j++) {
50d05d7b 126 for(k=0;k<fNofAnodes;k++) {
127 idx = j*fNofAnodes+k;
128 // signal (fadc) & derivative (dfadc)
129 dfadc[k][255]=0.;
130 for(l=0; l<fMaxNofSamples; l++) {
131 fadc2=(Float_t)fMap->GetSignal(idx,l);
132 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
133 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
134 } // samples
135 } // anodes
42da2935 136
50d05d7b 137 for(k=0;k<fNofAnodes;k++) {
138 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
139 idx = j*fNofAnodes+k;
140 Int_t imax = 0;
141 Int_t imaxd = 0;
142 Int_t it = 0;
143 while(it <= fMaxNofSamples-3) {
144 imax = it;
145 imaxd = it;
146 // maximum of signal
147 Float_t fadcmax = 0.;
148 Float_t dfadcmax = 0.;
149 Int_t lthrmina = 1;
150 Int_t lthrmint = 3;
151 Int_t lthra = 1;
152 Int_t lthrt = 0;
153 for(m=0;m<20;m++) {
154 Int_t id = it+m;
155 if(id>=fMaxNofSamples) break;
156 fadc=(float)fMap->GetSignal(idx,id);
157 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
158 if(fadc > (float)fCutAmplitude) {
159 lthrt++;
160 } // end if
161 if(dfadc[k][id] > dfadcmax) {
162 dfadcmax = dfadc[k][id];
163 imaxd = id;
164 } // end if
165 } // end for m
166 it = imaxd;
167 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
168 // cluster charge
169 Int_t tstart = it-2;
170 if(tstart < 0) tstart = 0;
171 Bool_t ilcl = 0;
172 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
173 if(ilcl) {
174 nofFoundClusters++;
175 Int_t tstop = tstart;
176 Float_t dfadcmin = 10000.;
177 Int_t ij;
178 for(ij=0; ij<20; ij++) {
179 if(tstart+ij > 255) { tstop = 255; break; }
180 fadc=(float)fMap->GetSignal(idx,tstart+ij);
181 if((dfadc[k][tstart+ij] < dfadcmin) &&
182 (fadc > fCutAmplitude)) {
183 tstop = tstart+ij+5;
184 if(tstop > 255) tstop = 255;
185 dfadcmin = dfadc[k][it+ij];
186 } // end if
187 } // end for ij
42da2935 188
50d05d7b 189 Float_t clusterCharge = 0.;
190 Float_t clusterAnode = k+0.5;
191 Float_t clusterTime = 0.;
192 Int_t clusterMult = 0;
193 Float_t clusterPeakAmplitude = 0.;
194 Int_t its,peakpos = -1;
195 Float_t n, baseline;
196 fResponse->GetNoiseParam(n,baseline);
197 for(its=tstart; its<=tstop; its++) {
198 fadc=(float)fMap->GetSignal(idx,its);
199 if(fadc>baseline) fadc -= baseline;
200 else fadc = 0.;
201 clusterCharge += fadc;
202 // as a matter of fact we should take the peak
203 // pos before FFT
204 // to get the list of tracks !!!
205 if(fadc > clusterPeakAmplitude) {
206 clusterPeakAmplitude = fadc;
207 //peakpos=fMap->GetHitIndex(idx,its);
208 Int_t shift = (int)(fTimeCorr/fTimeStep);
209 if(its>shift && its<(fMaxNofSamples-shift))
210 peakpos = fMap->GetHitIndex(idx,its+shift);
211 else peakpos = fMap->GetHitIndex(idx,its);
212 if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
213 } // end if
214 clusterTime += fadc*its;
215 if(fadc > 0) clusterMult++;
216 if(its == tstop) {
217 clusterTime /= (clusterCharge/fTimeStep); // ns
218 if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
219 //ns
220 } // end if
221 } // end for its
42da2935 222
50d05d7b 223 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
224 anodePitch;
225 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
226 clusterDriftPath = fSddLength-clusterDriftPath;
227 if(clusterCharge <= 0.) break;
228 AliITSRawClusterSDD clust(j+1,//i
229 clusterAnode,clusterTime,//ff
230 clusterCharge, //f
231 clusterPeakAmplitude, //f
232 peakpos, //i
233 0.,0.,clusterDriftPath,//fff
234 clusteranodePath, //f
235 clusterMult, //i
236 0,0,0,0,0,0,0);//7*i
237 iTS->AddCluster(1,&clust);
238 it = tstop;
239 } // ilcl
240 it++;
241 } // while (samples)
242 } // anodes
42da2935 243 } // detectors (2)
42da2935 244
245 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
246 delete [] dfadc;
a1f090e0 247
42da2935 248 return;
a1f090e0 249}
50d05d7b 250
251
252
42da2935 253//______________________________________________________________________
254void AliITSClusterFinderSDD::Find1DClustersE(){
24a1c341 255 // find 1D clusters
42da2935 256 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
257 // retrieve the parameters
258 Int_t fNofMaps = fSegmentation->Npz();
259 Int_t fMaxNofSamples = fSegmentation->Npx();
260 Int_t fNofAnodes = fNofMaps/2;
261 Int_t dummy=0;
262 Float_t fTimeStep = fSegmentation->Dpx( dummy );
263 Float_t fSddLength = fSegmentation->Dx();
264 Float_t fDriftSpeed = fResponse->DriftSpeed();
265 Float_t anodePitch = fSegmentation->Dpz( dummy );
266 Float_t n, baseline;
267 fResponse->GetNoiseParam( n, baseline );
268 // map the signal
50d05d7b 269 fMap->ClearMap();
42da2935 270 fMap->SetThreshold( fCutAmplitude );
271 fMap->FillMap();
50d05d7b 272
42da2935 273 Int_t nClu = 0;
50d05d7b 274 // cout << "Search cluster... "<< endl;
42da2935 275 for( Int_t j=0; j<2; j++ ){
50d05d7b 276 for( Int_t k=0; k<fNofAnodes; k++ ){
277 Int_t idx = j*fNofAnodes+k;
278 Bool_t on = kFALSE;
279 Int_t start = 0;
280 Int_t nTsteps = 0;
281 Float_t fmax = 0.;
282 Int_t lmax = 0;
283 Float_t charge = 0.;
284 Float_t time = 0.;
285 Float_t anode = k+0.5;
286 Int_t peakpos = -1;
287 for( Int_t l=0; l<fMaxNofSamples; l++ ){
288 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
289 if( fadc > 0.0 ){
290 if( on == kFALSE && l<fMaxNofSamples-4){
291 // star RawCluster (reset var.)
292 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
293 if( fadc1 < fadc ) continue;
294 start = l;
295 fmax = 0.;
296 lmax = 0;
297 time = 0.;
298 charge = 0.;
299 on = kTRUE;
300 nTsteps = 0;
301 } // end if on...
302 nTsteps++ ;
303 if( fadc > baseline ) fadc -= baseline;
304 else fadc=0.;
305 charge += fadc;
306 time += fadc*l;
307 if( fadc > fmax ){
308 fmax = fadc;
309 lmax = l;
310 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
311 if( l > shift && l < (fMaxNofSamples-shift) )
312 peakpos = fMap->GetHitIndex( idx, l+shift );
313 else
314 peakpos = fMap->GetHitIndex( idx, l );
315 if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
316 } // end if fadc
317 }else{ // end fadc>0
318 if( on == kTRUE ){
319 if( nTsteps > 2 ){
320 // min # of timesteps for a RawCluster
321 // Found a RawCluster...
322 Int_t stop = l-1;
323 time /= (charge/fTimeStep); // ns
324 // time = lmax*fTimeStep; // ns
325 if( time > fTimeCorr ) time -= fTimeCorr; // ns
326 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
327 Float_t driftPath = time*fDriftSpeed;
328 driftPath = fSddLength-driftPath;
329 AliITSRawClusterSDD clust(j+1,anode,time,charge,
330 fmax, peakpos,0.,0.,
331 driftPath,anodePath,
332 nTsteps,start,stop,
333 start, stop, 1, k, k );
334 iTS->AddCluster( 1, &clust );
335 // clust.PrintInfo();
336 nClu++;
337 } // end if nTsteps
338 on = kFALSE;
339 } // end if on==kTRUE
340 } // end if fadc>0
341 } // samples
342 } // anodes
42da2935 343 } // wings
50d05d7b 344 // cout << "# Rawclusters " << nClu << endl;
42da2935 345 return;
a1f090e0 346}
42da2935 347//_______________________________________________________________________
348Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
50d05d7b 349 Int_t *peakX, Int_t *peakZ,
350 Float_t *peakAmp, Float_t minpeak ){
42da2935 351 // search peaks on a 2D cluster
352 Int_t npeak = 0; // # peaks
56fff130 353 Int_t i,j;
42da2935 354 // search peaks
355 for( Int_t z=1; z<zdim-1; z++ ){
48058160 356 for( Int_t x=1; x<xdim-2; x++ ){
50d05d7b 357 Float_t sxz = spect[x*zdim+z];
358 Float_t sxz1 = spect[(x+1)*zdim+z];
359 Float_t sxz2 = spect[(x-1)*zdim+z];
360 // search a local max. in s[x,z]
361 if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
362 if( sxz >= spect[(x+1)*zdim+z ] && sxz >= spect[(x-1)*zdim+z ] &&
363 sxz >= spect[x*zdim +z+1] && sxz >= spect[x*zdim +z-1] &&
364 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
365 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
366 // peak found
367 peakX[npeak] = x;
368 peakZ[npeak] = z;
369 peakAmp[npeak] = sxz;
370 npeak++;
371 } // end if ....
372 } // end for x
42da2935 373 } // end for z
374 // search groups of peaks with same amplitude.
375 Int_t *flag = new Int_t[npeak];
376 for( i=0; i<npeak; i++ ) flag[i] = 0;
377 for( i=0; i<npeak; i++ ){
50d05d7b 378 for( j=0; j<npeak; j++ ){
379 if( i==j) continue;
380 if( flag[j] > 0 ) continue;
381 if( peakAmp[i] == peakAmp[j] &&
382 TMath::Abs(peakX[i]-peakX[j])<=1 &&
383 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
384 if( flag[i] == 0) flag[i] = i+1;
385 flag[j] = flag[i];
386 } // end if ...
387 } // end for j
42da2935 388 } // end for i
50d05d7b 389 // make average of peak groups
42da2935 390 for( i=0; i<npeak; i++ ){
50d05d7b 391 Int_t nFlag = 1;
392 if( flag[i] <= 0 ) continue;
393 for( j=0; j<npeak; j++ ){
394 if( i==j ) continue;
395 if( flag[j] != flag[i] ) continue;
396 peakX[i] += peakX[j];
397 peakZ[i] += peakZ[j];
398 nFlag++;
399 npeak--;
400 for( Int_t k=j; k<npeak; k++ ){
401 peakX[k] = peakX[k+1];
402 peakZ[k] = peakZ[k+1];
403 peakAmp[k] = peakAmp[k+1];
404 flag[k] = flag[k+1];
405 } // end for k
406 j--;
407 } // end for j
408 if( nFlag > 1 ){
409 peakX[i] /= nFlag;
410 peakZ[i] /= nFlag;
411 } // end fi nFlag
42da2935 412 } // end for i
413 delete [] flag;
414 return( npeak );
a1f090e0 415}
42da2935 416//______________________________________________________________________
417void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
50d05d7b 418 Float_t *spe, Float_t *integral){
24a1c341 419 // function used to fit the clusters
50d05d7b 420 // par -> parameters..
24a1c341 421 // par[0] number of peaks.
422 // for each peak i=1, ..., par[0]
50d05d7b 423 // par[i] = Ampl.
424 // par[i+1] = xpos
425 // par[i+2] = zpos
426 // par[i+3] = tau
427 // par[i+4] = sigma.
24a1c341 428 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
429 const Int_t knParam = 5;
430 Int_t npeak = (Int_t)par[0];
42da2935 431
24a1c341 432 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
42da2935 433
24a1c341 434 Int_t k = 1;
42da2935 435 for( Int_t i=0; i<npeak; i++ ){
24a1c341 436 if( integral != 0 ) integral[i] = 0.;
437 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
438 Float_t T2 = par[k+3]; // PASCAL
439 if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
42da2935 440 for( Int_t z=0; z<zdim; z++ ){
441 for( Int_t x=0; x<xdim; x++ ){
24a1c341 442 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
443 Float_t x2 = 0.;
444 Float_t signal = 0.;
42da2935 445 if( electronics == 1 ){ // PASCAL
24a1c341 446 x2 = (x-par[k+1]+T2)/T2;
42da2935 447 signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
448 // signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
449 }else if( electronics == 2 ) { // OLA
50d05d7b 450 x2 = (x-par[k+1])*(x-par[k+1])/T2;
451 signal = par[k] * exp( -x2 - z2 );
452 } else {
453 cout << "Wrong SDD Electronics =" << electronics << endl;
454 // exit( 1 );
455 } // end if electronicx
24a1c341 456 spe[x*zdim+z] += signal;
457 if( integral != 0 ) integral[i] += signal;
42da2935 458 } // end for x
459 } // end for z
24a1c341 460 k += knParam;
42da2935 461 } // end for i
24a1c341 462 return;
a1f090e0 463}
42da2935 464//__________________________________________________________________________
465Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
50d05d7b 466 Float_t *speFit ){
42da2935 467 // EVALUATES UNNORMALIZED CHI-SQUARED
468 Float_t chi2 = 0.;
469 for( Int_t z=0; z<zdim; z++ ){
50d05d7b 470 for( Int_t x=1; x<xdim-1; x++ ){
471 Int_t index = x*zdim+z;
472 Float_t tmp = spe[index] - speFit[index];
473 chi2 += tmp*tmp;
474 } // end for x
42da2935 475 } // end for z
476 return( chi2 );
a1f090e0 477}
42da2935 478//_______________________________________________________________________
479void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
50d05d7b 480 Float_t *prm0,Float_t *steprm,
481 Float_t *chisqr,Float_t *spe,
482 Float_t *speFit ){
42da2935 483 //
484 Int_t k, nnn, mmm, i;
485 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
486 const Int_t knParam = 5;
487 Int_t npeak = (Int_t)param[0];
488 for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
489 for( k=1; k<(npeak*knParam+1); k++ ){
50d05d7b 490 p1 = param[k];
491 delta = steprm[k];
492 d1 = delta;
493 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
494 if( fabs( p1 ) > 1.0E-6 )
495 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
496 else delta = (Float_t)1.0E-4;
497 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
498 PeakFunc( xdim, zdim, param, speFit );
499 chisq1 = ChiSqr( xdim, zdim, spe, speFit );
500 p2 = p1+delta;
501 param[k] = p2;
502 PeakFunc( xdim, zdim, param, speFit );
503 chisq2 = ChiSqr( xdim, zdim, spe, speFit );
504 if( chisq1 < chisq2 ){
505 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
506 delta = -delta;
507 t = p1;
508 p1 = p2;
509 p2 = t;
510 t = chisq1;
511 chisq1 = chisq2;
512 chisq2 = t;
513 } // end if
514 i = 1; nnn = 0;
515 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
516 nnn++;
517 p3 = p2 + delta;
518 mmm = nnn - (nnn/5)*5; // multiplo de 5
519 if( mmm == 0 ){
520 d1 = delta;
521 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
522 delta *= 5;
523 } // end if
524 param[k] = p3;
525 // Constrain paramiters
526 Int_t kpos = (k-1) % knParam;
527 switch( kpos ){
528 case 0 :
529 if( param[k] <= 20 ) param[k] = fMinPeak;
530 break;
531 case 1 :
532 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
533 break;
534 case 2 :
535 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
536 break;
537 case 3 :
538 if( param[k] < .5 ) param[k] = .5;
539 break;
540 case 4 :
541 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
542 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
543 break;
544 }; // end switch
545 PeakFunc( xdim, zdim, param, speFit );
546 chisq3 = ChiSqr( xdim, zdim, spe, speFit );
547 if( chisq3 < chisq2 && nnn < 50 ){
548 p1 = p2;
549 p2 = p3;
550 chisq1 = chisq2;
551 chisq2 = chisq3;
552 }else i=0;
553 } while( i );
554 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
555 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
556 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
557 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
558 else p0 = 10000;
559 //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
560 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
561 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
562 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
563 //if( fabs( p2-p0 ) > dp ) p0 = p2;
564 param[k] = p0;
565 // Constrain paramiters
566 Int_t kpos = (k-1) % knParam;
567 switch( kpos ){
568 case 0 :
569 if( param[k] <= 20 ) param[k] = fMinPeak;
570 break;
571 case 1 :
572 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
573 break;
574 case 2 :
575 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
576 break;
577 case 3 :
578 if( param[k] < .5 ) param[k] = .5;
579 break;
580 case 4 :
581 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
582 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
583 break;
584 }; // end switch
585 PeakFunc( xdim, zdim, param, speFit );
586 chisqt = ChiSqr( xdim, zdim, spe, speFit );
587 // DO NOT ALLOW ERRONEOUS INTERPOLATION
588 if( chisqt <= *chisqr ) *chisqr = chisqt;
589 else param[k] = prm0[k];
590 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
591 steprm[k] = (param[k]-prm0[k])/5;
592 if( steprm[k] >= d1 ) steprm[k] = d1/5;
42da2935 593 } // end for k
594 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
595 PeakFunc( xdim, zdim, param, speFit );
596 *chisqr = ChiSqr( xdim, zdim, spe, speFit );
597 return;
a1f090e0 598}
42da2935 599//_________________________________________________________________________
600Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim,
50d05d7b 601 Float_t *param, Float_t *spe,
602 Int_t *niter, Float_t *chir ){
42da2935 603 // fit method from Comput. Phys. Commun 46(1987) 149
50d05d7b 604 const Float_t kchilmt = 0.01; // relative accuracy
605 const Int_t knel = 3; // for parabolic minimization
606 const Int_t knstop = 50; // Max. iteration number
42da2935 607 const Int_t knParam = 5;
608 Int_t npeak = (Int_t)param[0];
609 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
610 if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
611 Float_t degFree = (xdim*zdim - npeak*knParam)-1;
612 Int_t n, k, iterNum = 0;
613 Float_t *prm0 = new Float_t[npeak*knParam+1];
614 Float_t *step = new Float_t[npeak*knParam+1];
615 Float_t *schi = new Float_t[npeak*knParam+1];
616 Float_t *sprm[3];
617 sprm[0] = new Float_t[npeak*knParam+1];
618 sprm[1] = new Float_t[npeak*knParam+1];
619 sprm[2] = new Float_t[npeak*knParam+1];
620 Float_t chi0, chi1, reldif, a, b, prmin, dp;
621 Float_t *speFit = new Float_t[ xdim*zdim ];
622 PeakFunc( xdim, zdim, param, speFit );
623 chi0 = ChiSqr( xdim, zdim, spe, speFit );
624 chi1 = chi0;
625 for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
50d05d7b 626 for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
627 step[k] = param[k] / 20.0 ;
628 step[k+1] = param[k+1] / 50.0;
629 step[k+2] = param[k+2] / 50.0;
630 step[k+3] = param[k+3] / 20.0;
631 step[k+4] = param[k+4] / 20.0;
632 } // end for k
42da2935 633 Int_t out = 0;
634 do{
50d05d7b 635 iterNum++;
636 chi0 = chi1;
637 Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
638 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
639 // EXIT conditions
640 if( reldif < (float) kchilmt ){
641 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
642 *niter = iterNum;
643 out = 0;
644 break;
645 } // end if
646 if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
647 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
648 *niter = iterNum;
649 out = 0;
650 break;
651 } // end if
652 if( iterNum > 5*knstop ){
653 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
654 *niter = iterNum;
655 out = 1;
656 break;
657 } // end if
658 if( iterNum <= knel ) continue;
659 n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
660 if( n > 3 || n == 0 ) continue;
661 schi[n-1] = chi1;
662 for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
663 if( n != 3 ) continue;
664 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
665 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
666 for( k=1; k<(npeak*knParam+1); k++ ){
667 Float_t tmp0 = sprm[0][k];
668 Float_t tmp1 = sprm[1][k];
669 Float_t tmp2 = sprm[2][k];
670 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
671 a += (schi[2]*(tmp0-tmp1));
672 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
673 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
674 (tmp0*tmp0-tmp1*tmp1)));
675 if ((double)a < 1.0E-6) prmin = 0;
676 else prmin = (float) (0.5*b/a);
677 dp = 5*(tmp2-tmp0);
678 if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
679 param[k] = prmin;
680 step[k] = dp/10; // OPTIMIZE SEARCH STEP
681 } // end for k
42da2935 682 } while( kTRUE );
683 delete [] prm0;
684 delete [] step;
685 delete [] schi;
686 delete [] sprm[0];
687 delete [] sprm[1];
688 delete [] sprm[2];
689 delete [] speFit;
690 return( out );
a1f090e0 691}
50d05d7b 692
42da2935 693//______________________________________________________________________
694void AliITSClusterFinderSDD::ResolveClustersE(){
695 // The function to resolve clusters if the clusters overlapping exists
24a1c341 696 Int_t i;
42da2935 697 static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
698 // get number of clusters for this module
699 Int_t nofClusters = fClusters->GetEntriesFast();
700 nofClusters -= fNclusters;
701 Int_t fNofMaps = fSegmentation->Npz();
702 Int_t fNofAnodes = fNofMaps/2;
703 Int_t fMaxNofSamples = fSegmentation->Npx();
704 Int_t dummy=0;
705 Double_t fTimeStep = fSegmentation->Dpx( dummy );
706 Double_t fSddLength = fSegmentation->Dx();
707 Double_t fDriftSpeed = fResponse->DriftSpeed();
708 Double_t anodePitch = fSegmentation->Dpz( dummy );
709 Float_t n, baseline;
710 fResponse->GetNoiseParam( n, baseline );
711 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
50d05d7b 712
42da2935 713 for( Int_t j=0; j<nofClusters; j++ ){
50d05d7b 714 // get cluster information
715 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
716 Int_t astart = clusterJ->Astart();
717 Int_t astop = clusterJ->Astop();
718 Int_t tstart = clusterJ->Tstartf();
719 Int_t tstop = clusterJ->Tstopf();
720 Int_t wing = (Int_t)clusterJ->W();
721 if( wing == 2 ){
722 astart += fNofAnodes;
723 astop += fNofAnodes;
724 } // end if
725 Int_t xdim = tstop-tstart+3;
726 Int_t zdim = astop-astart+3;
2bd89e94 727 if(xdim > 50 || zdim > 30) { cout << "Warning: xdim: " << xdim << ", zdim: " << zdim << endl; continue; }
50d05d7b 728 Float_t *sp = new Float_t[ xdim*zdim+1 ];
729 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
730
731 // make a local map from cluster region
732 for( Int_t ianode=astart; ianode<=astop; ianode++ ){
733 for( Int_t itime=tstart; itime<=tstop; itime++ ){
734 Float_t fadc = fMap->GetSignal( ianode, itime );
735 if( fadc > baseline ) fadc -= (Double_t)baseline;
736 else fadc = 0.;
737 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
738 sp[index] = fadc;
739 } // time loop
740 } // anode loop
741
742 // search peaks on cluster
743 const Int_t kNp = 150;
744 Int_t peakX1[kNp];
745 Int_t peakZ1[kNp];
746 Float_t peakAmp1[kNp];
747 Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
748
749 // if multiple peaks, split cluster
750 if( npeak >= 1 )
751 {
752 // cout << "npeak " << npeak << endl;
753 // clusterJ->PrintInfo();
754 Float_t *par = new Float_t[npeak*5+1];
755 par[0] = (Float_t)npeak;
48058160 756 // Initial parameters in cell dimentions
50d05d7b 757 Int_t k1 = 1;
758 for( i=0; i<npeak; i++ ){
759 par[k1] = peakAmp1[i];
760 par[k1+1] = peakX1[i]; // local time pos. [timebin]
761 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
762 if( electronics == 1 )
763 par[k1+3] = 2.; // PASCAL
764 else if( electronics == 2 )
765 par[k1+3] = 0.7; // tau [timebin] OLA
766 par[k1+4] = .4; // sigma [anodepich]
767 k1+=5;
768 } // end for i
769 Int_t niter;
770 Float_t chir;
771 NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
772 Float_t peakX[kNp];
773 Float_t peakZ[kNp];
774 Float_t sigma[kNp];
775 Float_t tau[kNp];
776 Float_t peakAmp[kNp];
777 Float_t integral[kNp];
778 //get integrals => charge for each peak
779 PeakFunc( xdim, zdim, par, sp, integral );
780 k1 = 1;
781 for( i=0; i<npeak; i++ ){
782 peakAmp[i] = par[k1];
783 peakX[i] = par[k1+1];
784 peakZ[i] = par[k1+2];
785 tau[i] = par[k1+3];
786 sigma[i] = par[k1+4];
787 k1+=5;
788 } // end for i
789 // calculate parameter for new clusters
790 for( i=0; i<npeak; i++ ){
791 AliITSRawClusterSDD clusterI( *clusterJ );
792 Int_t newAnode = peakZ1[i]-1 + astart;
793 Int_t newiTime = peakX1[i]-1 + tstart;
794 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
795 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) )
796 shift = 0;
797 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
798 clusterI.SetPeakPos( peakpos );
799 clusterI.SetPeakAmpl( peakAmp1[i] );
800 Float_t newAnodef = peakZ[i] - 0.5 + astart;
801 Float_t newiTimef = peakX[i] - 1 + tstart;
802 if( wing == 2 ) newAnodef -= fNofAnodes;
803 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
804 newiTimef *= fTimeStep;
805 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
806 if( electronics == 1 ){
48058160 807 // newiTimef *= 0.999438; // PASCAL
808 // newiTimef += (6./fDriftSpeed - newiTimef/3000.);
50d05d7b 809 }else if( electronics == 2 )
810 newiTimef *= 0.99714; // OLA
811 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
812 Float_t sign = ( wing == 1 ) ? -1. : 1.;
813 clusterI.SetX( driftPath*sign * 0.0001 );
814 clusterI.SetZ( anodePath * 0.0001 );
815 clusterI.SetAnode( newAnodef );
816 clusterI.SetTime( newiTimef );
817 clusterI.SetAsigma( sigma[i]*anodePitch );
818 clusterI.SetTsigma( tau[i]*fTimeStep );
819 clusterI.SetQ( integral[i] );
48058160 820 // clusterI.PrintInfo();
50d05d7b 821 iTS->AddCluster( 1, &clusterI );
822 } // end for i
823 fClusters->RemoveAt( j );
824 delete [] par;
48058160 825 } else { // something odd
826 cout << " --- Peak not found!!!! minpeak=" << fMinPeak<<
827 " cluster peak=" << clusterJ->PeakAmpl() <<
828 " module=" << fModule << endl;
50d05d7b 829 clusterJ->PrintInfo();
48058160 830 cout << " xdim=" << xdim-2 << " zdim=" << zdim-2 << endl << endl;
50d05d7b 831 }
832 delete [] sp;
42da2935 833 } // cluster loop
834 fClusters->Compress();
50d05d7b 835// fMap->ClearMap();
a1f090e0 836}
50d05d7b 837
838
42da2935 839//________________________________________________________________________
840void AliITSClusterFinderSDD::GroupClusters(){
841 // group clusters
842 Int_t dummy=0;
843 Float_t fTimeStep = fSegmentation->Dpx(dummy);
844 // get number of clusters for this module
845 Int_t nofClusters = fClusters->GetEntriesFast();
846 nofClusters -= fNclusters;
847 AliITSRawClusterSDD *clusterI;
848 AliITSRawClusterSDD *clusterJ;
849 Int_t *label = new Int_t [nofClusters];
850 Int_t i,j;
851 for(i=0; i<nofClusters; i++) label[i] = 0;
852 for(i=0; i<nofClusters; i++) {
50d05d7b 853 if(label[i] != 0) continue;
854 for(j=i+1; j<nofClusters; j++) {
855 if(label[j] != 0) continue;
856 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
857 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
858 // 1.3 good
859 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
860 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
861 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
862 if(!pair) continue;
863 // clusterI->PrintInfo();
864 // clusterJ->PrintInfo();
865 clusterI->Add(clusterJ);
866 label[j] = 1;
867 fClusters->RemoveAt(j);
868 j=i; // <- Ernesto
869 } // J clusters
870 label[i] = 1;
42da2935 871 } // I clusters
872 fClusters->Compress();
873
874 delete [] label;
875 return;
b0f5e3fc 876}
42da2935 877//________________________________________________________________________
878void AliITSClusterFinderSDD::SelectClusters(){
879 // get number of clusters for this module
880 Int_t nofClusters = fClusters->GetEntriesFast();
b0f5e3fc 881
42da2935 882 nofClusters -= fNclusters;
883 Int_t i;
884 for(i=0; i<nofClusters; i++) {
50d05d7b 885 AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
886 Int_t rmflg = 0;
887 Float_t wy = 0.;
888 if(clusterI->Anodes() != 0.) {
889 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
890 } // end if
891 Int_t amp = (Int_t) clusterI->PeakAmpl();
892 Int_t cha = (Int_t) clusterI->Q();
893 if(amp < fMinPeak) rmflg = 1;
894 if(cha < fMinCharge) rmflg = 1;
895 if(wy < fMinNCells) rmflg = 1;
896 //if(wy > fMaxNCells) rmflg = 1;
897 if(rmflg) fClusters->RemoveAt(i);
42da2935 898 } // I clusters
899 fClusters->Compress();
900 return;
b0f5e3fc 901}
42da2935 902//__________________________________________________________________________
903void AliITSClusterFinderSDD::ResolveClusters(){
904 // The function to resolve clusters if the clusters overlapping exists
905/* AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
906 // get number of clusters for this module
907 Int_t nofClusters = fClusters->GetEntriesFast();
908 nofClusters -= fNclusters;
909 //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
910 // <<fNclusters<<endl;
911 Int_t fNofMaps = fSegmentation->Npz();
912 Int_t fNofAnodes = fNofMaps/2;
913 Int_t dummy=0;
914 Double_t fTimeStep = fSegmentation->Dpx(dummy);
915 Double_t fSddLength = fSegmentation->Dx();
916 Double_t fDriftSpeed = fResponse->DriftSpeed();
917 Double_t anodePitch = fSegmentation->Dpz(dummy);
918 Float_t n, baseline;
919 fResponse->GetNoiseParam(n,baseline);
920 Float_t dzz_1A = anodePitch * anodePitch / 12;
921 // fill Map of signals
a1f090e0 922 fMap->FillMap();
42da2935 923 Int_t j,i,ii,ianode,anode,itime;
924 Int_t wing,astart,astop,tstart,tstop,nanode;
925 Double_t fadc,ClusterTime;
926 Double_t q[400],x[400],z[400]; // digit charges and coordinates
927 for(j=0; j<nofClusters; j++) {
50d05d7b 928 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
929 Int_t ndigits = 0;
930 astart=clusterJ->Astart();
931 astop=clusterJ->Astop();
932 tstart=clusterJ->Tstartf();
933 tstop=clusterJ->Tstopf();
934 nanode=clusterJ->Anodes(); // <- Ernesto
935 wing=(Int_t)clusterJ->W();
936 if(wing == 2) {
937 astart += fNofAnodes;
938 astop += fNofAnodes;
939 } // end if
940 // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
941 // <<tstart<<","<<tstop<<endl;
942 // clear the digit arrays
943 for(ii=0; ii<400; ii++) {
944 q[ii] = 0.;
945 x[ii] = 0.;
946 z[ii] = 0.;
947 } // end for ii
42da2935 948
50d05d7b 949 for(ianode=astart; ianode<=astop; ianode++) {
950 for(itime=tstart; itime<=tstop; itime++) {
951 fadc=fMap->GetSignal(ianode,itime);
952 if(fadc>baseline) {
953 fadc-=(Double_t)baseline;
954 q[ndigits] = fadc*(fTimeStep/160); // KeV
955 anode = ianode;
956 if(wing == 2) anode -= fNofAnodes;
957 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
958 ClusterTime = itime*fTimeStep;
959 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
960 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
961 if(wing == 1) x[ndigits] *= (-1);
962 // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
963 // <<fadc<<endl;
964 // cout<<"wing,anode,ndigits,charge ="<<wing<<","
965 // <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
966 ndigits++;
967 continue;
968 } // end if
969 fadc=0;
970 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
971 } // time loop
972 } // anode loop
973 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
974 // Fit cluster to resolve for two separate ones --------------------
975 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
976 Double_t dxx=0., dzz=0., dxz=0.;
977 Double_t scl = 0., tmp, tga, elps = -1.;
978 Double_t xfit[2], zfit[2], qfit[2];
979 Double_t pitchz = anodePitch*1.e-4; // cm
980 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
981 Double_t sigma2;
982 Int_t nfhits;
983 Int_t nbins = ndigits;
984 Int_t separate = 0;
985 // now, all lengths are in microns
986 for (ii=0; ii<nbins; ii++) {
987 qq += q[ii];
988 xm += x[ii]*q[ii];
989 zm += z[ii]*q[ii];
990 xx += x[ii]*x[ii]*q[ii];
991 zz += z[ii]*z[ii]*q[ii];
992 xz += x[ii]*z[ii]*q[ii];
993 } // end for ii
994 xm /= qq;
995 zm /= qq;
996 xx /= qq;
997 zz /= qq;
998 xz /= qq;
999 dxx = xx - xm*xm;
1000 dzz = zz - zm*zm;
1001 dxz = xz - xm*zm;
42da2935 1002
50d05d7b 1003 // shrink the cluster in the time direction proportionaly to the
1004 // dxx/dzz, which lineary depends from the drift path
1005 // new Ernesto........
1006 if( nanode == 1 ){
1007 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1008 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1009 } // end if
1010 if( nanode == 2 ){
1011 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1012 } // end if
1013 if( nanode == 3 ){
1014 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1015 } // end if
1016 if( nanode > 3 ){
1017 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1018 } // end if
1019 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1020 // <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1021 // old Boris.........
1022 // tmp=29730. - 585.*fabs(xm/1000.);
1023 // scl=TMath::Sqrt(tmp/130000.);
a1f090e0 1024
50d05d7b 1025 xm *= scl;
1026 xx *= scl*scl;
1027 xz *= scl;
42da2935 1028
50d05d7b 1029 dxx = xx - xm*xm;
1030 // dzz = zz - zm*zm;
1031 dxz = xz - xm*zm;
1032 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1033 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1034 // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
a1f090e0 1035
50d05d7b 1036 if (dxx < 0.) dxx=0.;
1037 // the data if no cluster overlapping (the coordunates are in cm)
1038 nfhits = 1;
1039 xfit[0] = xm*1.e-4;
1040 zfit[0] = zm*1.e-4;
1041 qfit[0] = qq;
1042 // if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
a1f090e0 1043
50d05d7b 1044 if (nbins >= 7) {
1045 if (dxz==0.) tga=0.;
1046 else {
1047 tmp=0.5*(dzz-dxx)/dxz;
1048 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) :
1049 tmp+TMath::Sqrt(tmp*tmp+1);
1050 } // end if dxz
1051 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1052 // change from microns to cm
1053 xm *= 1.e-4;
1054 zm *= 1.e-4;
1055 zz *= 1.e-8;
1056 xx *= 1.e-8;
1057 xz *= 1.e-8;
1058 dxz *= 1.e-8;
1059 dxx *= 1.e-8;
1060 dzz *= 1.e-8;
1061 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1062 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1063 for (i=0; i<nbins; i++) {
1064 x[i] = x[i] *= scl;
1065 x[i] = x[i] *= 1.e-4;
1066 z[i] = z[i] *= 1.e-4;
1067 } // end for i
1068 // cout<<"!!! elps ="<<elps<<endl;
1069 if (elps < 0.3) { // try to separate hits
1070 separate = 1;
1071 tmp=atan(tga);
1072 Double_t cosa=cos(tmp),sina=sin(tmp);
1073 Double_t a1=0., x1=0., xxx=0.;
1074 for (i=0; i<nbins; i++) {
1075 tmp=x[i]*cosa + z[i]*sina;
1076 if (q[i] > a1) {
1077 a1=q[i];
1078 x1=tmp;
1079 } // end if
1080 xxx += tmp*tmp*tmp*q[i];
1081 } // end for i
1082 xxx /= qq;
1083 Double_t z12=-sina*xm + cosa*zm;
1084 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1085 xm=cosa*xm + sina*zm;
1086 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1087 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1088 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1089 for (i=0; i<33; i++) { // solve a system of equations
1090 Double_t x1_old=x1, x2_old=x2, r_old=r;
1091 Double_t c11=x1-x2;
1092 Double_t c12=r;
1093 Double_t c13=1-r;
1094 Double_t c21=x1*x1 - x2*x2;
1095 Double_t c22=2*r*x1;
1096 Double_t c23=2*(1-r)*x2;
1097 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1098 Double_t c32=3*r*(sigma2 + x1*x1);
1099 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1100 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1101 Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1102 Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1103 (3*sigma2+x2*x2)-xxx);
1104 Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1105 c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1106 if (d==0.) {
1107 cout<<"*********** d=0 ***********\n";
1108 break;
1109 } // end if
1110 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1111 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1112 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1113 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1114 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1115 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1116 r += dr/d;
1117 x1 += d1/d;
1118 x2 += d2/d;
1119 if (fabs(x1-x1_old) > 0.0001) continue;
1120 if (fabs(x2-x2_old) > 0.0001) continue;
1121 if (fabs(r-r_old)/5 > 0.001) continue;
1122 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1123 Double_t a2=a1*(1-r)/r;
1124 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina +
1125 z12*cosa;
1126 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina +
1127 z12*cosa;
1128 nfhits=2;
1129 break; // Ok !
1130 } // end for i
1131 if (i==33) cerr<<"No more iterations ! "<<endl;
1132 } // end of attempt to separate overlapped clusters
1133 } // end of nbins cut
1134 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1135 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1136 <<elps<<","<<nfhits<<endl;
1137 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1138 for (i=0; i<nfhits; i++) {
1139 xfit[i] *= (1.e+4/scl);
1140 if(wing == 1) xfit[i] *= (-1);
1141 zfit[i] *= 1.e+4;
1142 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","
1143 // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1144 } // end for i
1145 Int_t ncl = nfhits;
1146 if(nfhits == 1 && separate == 1) {
1147 cout<<"!!!!! no separate"<<endl;
1148 ncl = -2;
1149 } // end if
1150 if(nfhits == 2) {
1151 cout << "Split cluster: " << endl;
1152 clusterJ->PrintInfo();
1153 cout << " in: " << endl;
1154 for (i=0; i<nfhits; i++) {
1155 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
42da2935 1156 -1,-1,(Float_t)qfit[i],ncl,0,0,
1157 (Float_t)xfit[i],
1158 (Float_t)zfit[i],0,0,0,0,
1159 tstart,tstop,astart,astop);
50d05d7b 1160 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1161 // -1,(Float_t)qfit[i],0,0,0,
1162 // (Float_t)xfit[i],
1163 // (Float_t)zfit[i],0,0,0,0,
1164 // tstart,tstop,astart,astop,ncl);
1165 // ???????????
1166 // if(wing == 1) xfit[i] *= (-1);
1167 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1168 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1169 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1170 Float_t peakpos = clusterJ->PeakPos();
1171 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1172 Float_t clusterDriftPath = Time*fDriftSpeed;
1173 clusterDriftPath = fSddLength-clusterDriftPath;
1174 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1175 Time,qfit[i],
42da2935 1176 clusterPeakAmplitude,peakpos,
1177 0.,0.,clusterDriftPath,
1178 clusteranodePath,clusterJ->Samples()/2
50d05d7b 1179 ,tstart,tstop,0,0,0,astart,astop);
1180 clust->PrintInfo();
1181 iTS->AddCluster(1,clust);
1182 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1183 // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1184 // <<","<<ncl<<endl;
1185 delete clust;
1186 }// nfhits loop
1187 fClusters->RemoveAt(j);
42da2935 1188 } // if nfhits = 2
1189} // cluster loop
1190fClusters->Compress();
1191fMap->ClearMap();
1192*/
1193 return;
a1f090e0 1194}
42da2935 1195//______________________________________________________________________
1196void AliITSClusterFinderSDD::GetRecPoints(){
1197 // get rec points
1198 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1199 // get number of clusters for this module
1200 Int_t nofClusters = fClusters->GetEntriesFast();
1201 nofClusters -= fNclusters;
1202 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1203 const Float_t kconv = 1.0e-4;
1204 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1205 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1206 Int_t i;
1207 Int_t ix, iz, idx=-1;
1208 AliITSdigitSDD *dig=0;
1209 Int_t ndigits=fDigits->GetEntriesFast();
1210 for(i=0; i<nofClusters; i++) {
50d05d7b 1211 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1212 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1213 if(clusterI) idx=clusterI->PeakPos();
1214 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1215 // try peak neighbours - to be done
1216 if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1217 if(!dig) {
1218 // try cog
1219 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1220 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1221 // if null try neighbours
1222 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1223 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1224 if (!dig) printf("SDD: cannot assign the track number!\n");
1225 } // end if !dig
1226 AliITSRecPoint rnew;
1227 rnew.SetX(clusterI->X());
1228 rnew.SetZ(clusterI->Z());
1229 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
1230 rnew.SetdEdX(kconvGeV*clusterI->Q());
1231 rnew.SetSigmaX2(kRMSx*kRMSx);
1232 rnew.SetSigmaZ2(kRMSz*kRMSz);
1233 if(dig) rnew.fTracks[0]=dig->fTracks[0];
1234 if(dig) rnew.fTracks[1]=dig->fTracks[1];
1235 if(dig) rnew.fTracks[2]=dig->fTracks[2];
1236 //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1237 // i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1238 // lusterI->X(),clusterI->Z());
1239 iTS->AddRecPoint(rnew);
42da2935 1240 } // I clusters
50d05d7b 1241// fMap->ClearMap();
b0f5e3fc 1242}
42da2935 1243//______________________________________________________________________
1244void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1245 // find raw clusters
50d05d7b 1246
1247 fModule = mod;
1248
a1f090e0 1249 Find1DClustersE();
b0f5e3fc 1250 GroupClusters();
1251 SelectClusters();
a1f090e0 1252 ResolveClustersE();
b0f5e3fc 1253 GetRecPoints();
1254}
42da2935 1255//_______________________________________________________________________
1256void AliITSClusterFinderSDD::Print(){
1257 // Print SDD cluster finder Parameters
1258
1259 cout << "**************************************************" << endl;
1260 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1261 cout << "**************************************************" << endl;
1262 cout << "Number of Clusters: " << fNclusters << endl;
1263 cout << "Anode Tolerance: " << fDAnode << endl;
1264 cout << "Time Tolerance: " << fDTime << endl;
1265 cout << "Time correction (electronics): " << fTimeCorr << endl;
1266 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1267 cout << "Minimum Amplitude: " << fMinPeak << endl;
1268 cout << "Minimum Charge: " << fMinCharge << endl;
1269 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1270 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1271 cout << "**************************************************" << endl;
a1f090e0 1272}