]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSClusterFinderSDD.cxx
Replaced private segmentation calculation with that of segmentation class.
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
a1f090e0 15#include <iostream.h>
78a228db 16#include <TFile.h>
a1f090e0 17#include <TMath.h>
18#include <math.h>
b0f5e3fc 19
20#include "AliITSClusterFinderSDD.h"
e8189707 21#include "AliITSMapA1.h"
22#include "AliITS.h"
78a228db 23#include "AliITSdigit.h"
24#include "AliITSRawCluster.h"
25#include "AliITSRecPoint.h"
26#include "AliITSsegmentation.h"
5dd4cc39 27#include "AliITSresponseSDD.h"
b0f5e3fc 28#include "AliRun.h"
29
b0f5e3fc 30ClassImp(AliITSClusterFinderSDD)
31
42da2935 32//______________________________________________________________________
33AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
50d05d7b 34 AliITSresponse *response,
35 TClonesArray *digits,
36 TClonesArray *recp){
42da2935 37 // standard constructor
78a228db 38
b48af428 39 fSegmentation = seg;
40 fResponse = response;
41 fDigits = digits;
42 fClusters = recp;
43 fNclusters = fClusters->GetEntriesFast();
b0f5e3fc 44 SetCutAmplitude();
45 SetDAnode();
46 SetDTime();
b0f5e3fc 47 SetMinPeak();
78a228db 48 SetMinNCells();
49 SetMaxNCells();
50 SetTimeCorr();
a1f090e0 51 SetMinCharge();
b48af428 52 fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
b0f5e3fc 53}
42da2935 54//______________________________________________________________________
55AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
56 // default constructor
b0f5e3fc 57
b48af428 58 fSegmentation = 0;
59 fResponse = 0;
60 fDigits = 0;
61 fClusters = 0;
62 fNclusters = 0;
63 fMap = 0;
64 fCutAmplitude = 0;
b0f5e3fc 65 SetDAnode();
66 SetDTime();
b0f5e3fc 67 SetMinPeak();
78a228db 68 SetMinNCells();
69 SetMaxNCells();
70 SetTimeCorr();
a1f090e0 71 SetMinCharge();
b0f5e3fc 72}
42da2935 73//____________________________________________________________________________
74AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
e8189707 75 // destructor
76
77 if(fMap) delete fMap;
e8189707 78}
42da2935 79//______________________________________________________________________
80void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
81 // set the signal threshold for cluster finder
82 Float_t baseline,noise,noise_after_el;
83
84 fResponse->GetNoiseParam(noise,baseline);
85 noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
b48af428 86 fCutAmplitude = (Int_t)((baseline + nsigma*noise_after_el));
5dd4cc39 87}
42da2935 88//______________________________________________________________________
89void AliITSClusterFinderSDD::Find1DClusters(){
90 // find 1D clusters
b48af428 91 static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
a1f090e0 92
42da2935 93 // retrieve the parameters
b48af428 94 Int_t fNofMaps = fSegmentation->Npz();
42da2935 95 Int_t fMaxNofSamples = fSegmentation->Npx();
b48af428 96 Int_t fNofAnodes = fNofMaps/2;
97 Int_t dummy = 0;
98 Float_t fTimeStep = fSegmentation->Dpx(dummy);
99 Float_t fSddLength = fSegmentation->Dx();
100 Float_t fDriftSpeed = fResponse->DriftSpeed();
101 Float_t anodePitch = fSegmentation->Dpz(dummy);
42da2935 102
103 // map the signal
50d05d7b 104 fMap->ClearMap();
42da2935 105 fMap->SetThreshold(fCutAmplitude);
106 fMap->FillMap();
a1f090e0 107
42da2935 108 Float_t noise;
109 Float_t baseline;
110 fResponse->GetNoiseParam(noise,baseline);
a1f090e0 111
42da2935 112 Int_t nofFoundClusters = 0;
113 Int_t i;
114 Float_t **dfadc = new Float_t*[fNofAnodes];
115 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
b48af428 116 Float_t fadc = 0.;
42da2935 117 Float_t fadc1 = 0.;
118 Float_t fadc2 = 0.;
119 Int_t j,k,idx,l,m;
120 for(j=0;j<2;j++) {
50d05d7b 121 for(k=0;k<fNofAnodes;k++) {
122 idx = j*fNofAnodes+k;
123 // signal (fadc) & derivative (dfadc)
124 dfadc[k][255]=0.;
125 for(l=0; l<fMaxNofSamples; l++) {
126 fadc2=(Float_t)fMap->GetSignal(idx,l);
127 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
128 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
129 } // samples
130 } // anodes
42da2935 131
50d05d7b 132 for(k=0;k<fNofAnodes;k++) {
133 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
134 idx = j*fNofAnodes+k;
135 Int_t imax = 0;
136 Int_t imaxd = 0;
137 Int_t it = 0;
138 while(it <= fMaxNofSamples-3) {
139 imax = it;
140 imaxd = it;
141 // maximum of signal
142 Float_t fadcmax = 0.;
143 Float_t dfadcmax = 0.;
144 Int_t lthrmina = 1;
145 Int_t lthrmint = 3;
146 Int_t lthra = 1;
147 Int_t lthrt = 0;
148 for(m=0;m<20;m++) {
149 Int_t id = it+m;
150 if(id>=fMaxNofSamples) break;
151 fadc=(float)fMap->GetSignal(idx,id);
152 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
153 if(fadc > (float)fCutAmplitude) {
154 lthrt++;
155 } // end if
156 if(dfadc[k][id] > dfadcmax) {
157 dfadcmax = dfadc[k][id];
158 imaxd = id;
159 } // end if
160 } // end for m
161 it = imaxd;
162 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
163 // cluster charge
164 Int_t tstart = it-2;
165 if(tstart < 0) tstart = 0;
166 Bool_t ilcl = 0;
167 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
168 if(ilcl) {
169 nofFoundClusters++;
170 Int_t tstop = tstart;
171 Float_t dfadcmin = 10000.;
172 Int_t ij;
173 for(ij=0; ij<20; ij++) {
174 if(tstart+ij > 255) { tstop = 255; break; }
175 fadc=(float)fMap->GetSignal(idx,tstart+ij);
176 if((dfadc[k][tstart+ij] < dfadcmin) &&
177 (fadc > fCutAmplitude)) {
178 tstop = tstart+ij+5;
179 if(tstop > 255) tstop = 255;
180 dfadcmin = dfadc[k][it+ij];
181 } // end if
182 } // end for ij
42da2935 183
50d05d7b 184 Float_t clusterCharge = 0.;
185 Float_t clusterAnode = k+0.5;
186 Float_t clusterTime = 0.;
187 Int_t clusterMult = 0;
188 Float_t clusterPeakAmplitude = 0.;
189 Int_t its,peakpos = -1;
190 Float_t n, baseline;
191 fResponse->GetNoiseParam(n,baseline);
192 for(its=tstart; its<=tstop; its++) {
193 fadc=(float)fMap->GetSignal(idx,its);
194 if(fadc>baseline) fadc -= baseline;
195 else fadc = 0.;
196 clusterCharge += fadc;
197 // as a matter of fact we should take the peak
198 // pos before FFT
199 // to get the list of tracks !!!
200 if(fadc > clusterPeakAmplitude) {
201 clusterPeakAmplitude = fadc;
202 //peakpos=fMap->GetHitIndex(idx,its);
203 Int_t shift = (int)(fTimeCorr/fTimeStep);
204 if(its>shift && its<(fMaxNofSamples-shift))
205 peakpos = fMap->GetHitIndex(idx,its+shift);
206 else peakpos = fMap->GetHitIndex(idx,its);
207 if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
208 } // end if
209 clusterTime += fadc*its;
210 if(fadc > 0) clusterMult++;
211 if(its == tstop) {
212 clusterTime /= (clusterCharge/fTimeStep); // ns
213 if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
214 //ns
215 } // end if
216 } // end for its
42da2935 217
50d05d7b 218 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
219 anodePitch;
220 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
221 clusterDriftPath = fSddLength-clusterDriftPath;
222 if(clusterCharge <= 0.) break;
223 AliITSRawClusterSDD clust(j+1,//i
224 clusterAnode,clusterTime,//ff
225 clusterCharge, //f
226 clusterPeakAmplitude, //f
227 peakpos, //i
228 0.,0.,clusterDriftPath,//fff
229 clusteranodePath, //f
230 clusterMult, //i
231 0,0,0,0,0,0,0);//7*i
232 iTS->AddCluster(1,&clust);
233 it = tstop;
234 } // ilcl
235 it++;
236 } // while (samples)
237 } // anodes
42da2935 238 } // detectors (2)
42da2935 239
240 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
241 delete [] dfadc;
a1f090e0 242
42da2935 243 return;
a1f090e0 244}
50d05d7b 245
246
247
42da2935 248//______________________________________________________________________
249void AliITSClusterFinderSDD::Find1DClustersE(){
24a1c341 250 // find 1D clusters
42da2935 251 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
252 // retrieve the parameters
253 Int_t fNofMaps = fSegmentation->Npz();
254 Int_t fMaxNofSamples = fSegmentation->Npx();
255 Int_t fNofAnodes = fNofMaps/2;
256 Int_t dummy=0;
257 Float_t fTimeStep = fSegmentation->Dpx( dummy );
258 Float_t fSddLength = fSegmentation->Dx();
259 Float_t fDriftSpeed = fResponse->DriftSpeed();
260 Float_t anodePitch = fSegmentation->Dpz( dummy );
261 Float_t n, baseline;
262 fResponse->GetNoiseParam( n, baseline );
263 // map the signal
50d05d7b 264 fMap->ClearMap();
42da2935 265 fMap->SetThreshold( fCutAmplitude );
266 fMap->FillMap();
50d05d7b 267
42da2935 268 Int_t nClu = 0;
50d05d7b 269 // cout << "Search cluster... "<< endl;
42da2935 270 for( Int_t j=0; j<2; j++ ){
50d05d7b 271 for( Int_t k=0; k<fNofAnodes; k++ ){
272 Int_t idx = j*fNofAnodes+k;
273 Bool_t on = kFALSE;
274 Int_t start = 0;
275 Int_t nTsteps = 0;
276 Float_t fmax = 0.;
277 Int_t lmax = 0;
278 Float_t charge = 0.;
279 Float_t time = 0.;
280 Float_t anode = k+0.5;
281 Int_t peakpos = -1;
282 for( Int_t l=0; l<fMaxNofSamples; l++ ){
283 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
284 if( fadc > 0.0 ){
285 if( on == kFALSE && l<fMaxNofSamples-4){
286 // star RawCluster (reset var.)
287 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
288 if( fadc1 < fadc ) continue;
289 start = l;
290 fmax = 0.;
291 lmax = 0;
292 time = 0.;
293 charge = 0.;
294 on = kTRUE;
295 nTsteps = 0;
296 } // end if on...
297 nTsteps++ ;
298 if( fadc > baseline ) fadc -= baseline;
299 else fadc=0.;
300 charge += fadc;
301 time += fadc*l;
302 if( fadc > fmax ){
303 fmax = fadc;
304 lmax = l;
305 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
306 if( l > shift && l < (fMaxNofSamples-shift) )
307 peakpos = fMap->GetHitIndex( idx, l+shift );
308 else
309 peakpos = fMap->GetHitIndex( idx, l );
310 if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
311 } // end if fadc
312 }else{ // end fadc>0
313 if( on == kTRUE ){
314 if( nTsteps > 2 ){
315 // min # of timesteps for a RawCluster
316 // Found a RawCluster...
317 Int_t stop = l-1;
318 time /= (charge/fTimeStep); // ns
319 // time = lmax*fTimeStep; // ns
320 if( time > fTimeCorr ) time -= fTimeCorr; // ns
321 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
322 Float_t driftPath = time*fDriftSpeed;
323 driftPath = fSddLength-driftPath;
324 AliITSRawClusterSDD clust(j+1,anode,time,charge,
325 fmax, peakpos,0.,0.,
326 driftPath,anodePath,
327 nTsteps,start,stop,
328 start, stop, 1, k, k );
329 iTS->AddCluster( 1, &clust );
330 // clust.PrintInfo();
331 nClu++;
332 } // end if nTsteps
333 on = kFALSE;
334 } // end if on==kTRUE
335 } // end if fadc>0
336 } // samples
337 } // anodes
42da2935 338 } // wings
50d05d7b 339 // cout << "# Rawclusters " << nClu << endl;
42da2935 340 return;
a1f090e0 341}
42da2935 342//_______________________________________________________________________
343Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
50d05d7b 344 Int_t *peakX, Int_t *peakZ,
345 Float_t *peakAmp, Float_t minpeak ){
42da2935 346 // search peaks on a 2D cluster
347 Int_t npeak = 0; // # peaks
56fff130 348 Int_t i,j;
42da2935 349 // search peaks
350 for( Int_t z=1; z<zdim-1; z++ ){
50d05d7b 351 for( Int_t x=2; x<xdim-3; x++ ){
352 Float_t sxz = spect[x*zdim+z];
353 Float_t sxz1 = spect[(x+1)*zdim+z];
354 Float_t sxz2 = spect[(x-1)*zdim+z];
355 // search a local max. in s[x,z]
356 if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
357 if( sxz >= spect[(x+1)*zdim+z ] && sxz >= spect[(x-1)*zdim+z ] &&
358 sxz >= spect[x*zdim +z+1] && sxz >= spect[x*zdim +z-1] &&
359 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
360 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
361 // peak found
362 peakX[npeak] = x;
363 peakZ[npeak] = z;
364 peakAmp[npeak] = sxz;
365 npeak++;
366 } // end if ....
367 } // end for x
42da2935 368 } // end for z
369 // search groups of peaks with same amplitude.
370 Int_t *flag = new Int_t[npeak];
371 for( i=0; i<npeak; i++ ) flag[i] = 0;
372 for( i=0; i<npeak; i++ ){
50d05d7b 373 for( j=0; j<npeak; j++ ){
374 if( i==j) continue;
375 if( flag[j] > 0 ) continue;
376 if( peakAmp[i] == peakAmp[j] &&
377 TMath::Abs(peakX[i]-peakX[j])<=1 &&
378 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
379 if( flag[i] == 0) flag[i] = i+1;
380 flag[j] = flag[i];
381 } // end if ...
382 } // end for j
42da2935 383 } // end for i
50d05d7b 384 // make average of peak groups
42da2935 385 for( i=0; i<npeak; i++ ){
50d05d7b 386 Int_t nFlag = 1;
387 if( flag[i] <= 0 ) continue;
388 for( j=0; j<npeak; j++ ){
389 if( i==j ) continue;
390 if( flag[j] != flag[i] ) continue;
391 peakX[i] += peakX[j];
392 peakZ[i] += peakZ[j];
393 nFlag++;
394 npeak--;
395 for( Int_t k=j; k<npeak; k++ ){
396 peakX[k] = peakX[k+1];
397 peakZ[k] = peakZ[k+1];
398 peakAmp[k] = peakAmp[k+1];
399 flag[k] = flag[k+1];
400 } // end for k
401 j--;
402 } // end for j
403 if( nFlag > 1 ){
404 peakX[i] /= nFlag;
405 peakZ[i] /= nFlag;
406 } // end fi nFlag
42da2935 407 } // end for i
408 delete [] flag;
409 return( npeak );
a1f090e0 410}
42da2935 411//______________________________________________________________________
412void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
50d05d7b 413 Float_t *spe, Float_t *integral){
24a1c341 414 // function used to fit the clusters
50d05d7b 415 // par -> parameters..
24a1c341 416 // par[0] number of peaks.
417 // for each peak i=1, ..., par[0]
50d05d7b 418 // par[i] = Ampl.
419 // par[i+1] = xpos
420 // par[i+2] = zpos
421 // par[i+3] = tau
422 // par[i+4] = sigma.
24a1c341 423 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
424 const Int_t knParam = 5;
425 Int_t npeak = (Int_t)par[0];
42da2935 426
24a1c341 427 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
42da2935 428
24a1c341 429 Int_t k = 1;
42da2935 430 for( Int_t i=0; i<npeak; i++ ){
24a1c341 431 if( integral != 0 ) integral[i] = 0.;
432 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
433 Float_t T2 = par[k+3]; // PASCAL
434 if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
42da2935 435 for( Int_t z=0; z<zdim; z++ ){
436 for( Int_t x=0; x<xdim; x++ ){
24a1c341 437 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
438 Float_t x2 = 0.;
439 Float_t signal = 0.;
42da2935 440 if( electronics == 1 ){ // PASCAL
24a1c341 441 x2 = (x-par[k+1]+T2)/T2;
42da2935 442 signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
443 // signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
444 }else if( electronics == 2 ) { // OLA
50d05d7b 445 x2 = (x-par[k+1])*(x-par[k+1])/T2;
446 signal = par[k] * exp( -x2 - z2 );
447 } else {
448 cout << "Wrong SDD Electronics =" << electronics << endl;
449 // exit( 1 );
450 } // end if electronicx
24a1c341 451 spe[x*zdim+z] += signal;
452 if( integral != 0 ) integral[i] += signal;
42da2935 453 } // end for x
454 } // end for z
24a1c341 455 k += knParam;
42da2935 456 } // end for i
24a1c341 457 return;
a1f090e0 458}
42da2935 459//__________________________________________________________________________
460Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
50d05d7b 461 Float_t *speFit ){
42da2935 462 // EVALUATES UNNORMALIZED CHI-SQUARED
463 Float_t chi2 = 0.;
464 for( Int_t z=0; z<zdim; z++ ){
50d05d7b 465 for( Int_t x=1; x<xdim-1; x++ ){
466 Int_t index = x*zdim+z;
467 Float_t tmp = spe[index] - speFit[index];
468 chi2 += tmp*tmp;
469 } // end for x
42da2935 470 } // end for z
471 return( chi2 );
a1f090e0 472}
42da2935 473//_______________________________________________________________________
474void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
50d05d7b 475 Float_t *prm0,Float_t *steprm,
476 Float_t *chisqr,Float_t *spe,
477 Float_t *speFit ){
42da2935 478 //
479 Int_t k, nnn, mmm, i;
480 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
481 const Int_t knParam = 5;
482 Int_t npeak = (Int_t)param[0];
483 for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
484 for( k=1; k<(npeak*knParam+1); k++ ){
50d05d7b 485 p1 = param[k];
486 delta = steprm[k];
487 d1 = delta;
488 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
489 if( fabs( p1 ) > 1.0E-6 )
490 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
491 else delta = (Float_t)1.0E-4;
492 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
493 PeakFunc( xdim, zdim, param, speFit );
494 chisq1 = ChiSqr( xdim, zdim, spe, speFit );
495 p2 = p1+delta;
496 param[k] = p2;
497 PeakFunc( xdim, zdim, param, speFit );
498 chisq2 = ChiSqr( xdim, zdim, spe, speFit );
499 if( chisq1 < chisq2 ){
500 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
501 delta = -delta;
502 t = p1;
503 p1 = p2;
504 p2 = t;
505 t = chisq1;
506 chisq1 = chisq2;
507 chisq2 = t;
508 } // end if
509 i = 1; nnn = 0;
510 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
511 nnn++;
512 p3 = p2 + delta;
513 mmm = nnn - (nnn/5)*5; // multiplo de 5
514 if( mmm == 0 ){
515 d1 = delta;
516 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
517 delta *= 5;
518 } // end if
519 param[k] = p3;
520 // Constrain paramiters
521 Int_t kpos = (k-1) % knParam;
522 switch( kpos ){
523 case 0 :
524 if( param[k] <= 20 ) param[k] = fMinPeak;
525 break;
526 case 1 :
527 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
528 break;
529 case 2 :
530 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
531 break;
532 case 3 :
533 if( param[k] < .5 ) param[k] = .5;
534 break;
535 case 4 :
536 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
537 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
538 break;
539 }; // end switch
540 PeakFunc( xdim, zdim, param, speFit );
541 chisq3 = ChiSqr( xdim, zdim, spe, speFit );
542 if( chisq3 < chisq2 && nnn < 50 ){
543 p1 = p2;
544 p2 = p3;
545 chisq1 = chisq2;
546 chisq2 = chisq3;
547 }else i=0;
548 } while( i );
549 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
550 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
551 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
552 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
553 else p0 = 10000;
554 //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
555 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
556 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
557 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
558 //if( fabs( p2-p0 ) > dp ) p0 = p2;
559 param[k] = p0;
560 // Constrain paramiters
561 Int_t kpos = (k-1) % knParam;
562 switch( kpos ){
563 case 0 :
564 if( param[k] <= 20 ) param[k] = fMinPeak;
565 break;
566 case 1 :
567 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
568 break;
569 case 2 :
570 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
571 break;
572 case 3 :
573 if( param[k] < .5 ) param[k] = .5;
574 break;
575 case 4 :
576 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
577 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
578 break;
579 }; // end switch
580 PeakFunc( xdim, zdim, param, speFit );
581 chisqt = ChiSqr( xdim, zdim, spe, speFit );
582 // DO NOT ALLOW ERRONEOUS INTERPOLATION
583 if( chisqt <= *chisqr ) *chisqr = chisqt;
584 else param[k] = prm0[k];
585 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
586 steprm[k] = (param[k]-prm0[k])/5;
587 if( steprm[k] >= d1 ) steprm[k] = d1/5;
42da2935 588 } // end for k
589 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
590 PeakFunc( xdim, zdim, param, speFit );
591 *chisqr = ChiSqr( xdim, zdim, spe, speFit );
592 return;
a1f090e0 593}
42da2935 594//_________________________________________________________________________
595Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim,
50d05d7b 596 Float_t *param, Float_t *spe,
597 Int_t *niter, Float_t *chir ){
42da2935 598 // fit method from Comput. Phys. Commun 46(1987) 149
50d05d7b 599 const Float_t kchilmt = 0.01; // relative accuracy
600 const Int_t knel = 3; // for parabolic minimization
601 const Int_t knstop = 50; // Max. iteration number
42da2935 602 const Int_t knParam = 5;
603 Int_t npeak = (Int_t)param[0];
604 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
605 if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
606 Float_t degFree = (xdim*zdim - npeak*knParam)-1;
607 Int_t n, k, iterNum = 0;
608 Float_t *prm0 = new Float_t[npeak*knParam+1];
609 Float_t *step = new Float_t[npeak*knParam+1];
610 Float_t *schi = new Float_t[npeak*knParam+1];
611 Float_t *sprm[3];
612 sprm[0] = new Float_t[npeak*knParam+1];
613 sprm[1] = new Float_t[npeak*knParam+1];
614 sprm[2] = new Float_t[npeak*knParam+1];
615 Float_t chi0, chi1, reldif, a, b, prmin, dp;
616 Float_t *speFit = new Float_t[ xdim*zdim ];
617 PeakFunc( xdim, zdim, param, speFit );
618 chi0 = ChiSqr( xdim, zdim, spe, speFit );
619 chi1 = chi0;
620 for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
50d05d7b 621 for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
622 step[k] = param[k] / 20.0 ;
623 step[k+1] = param[k+1] / 50.0;
624 step[k+2] = param[k+2] / 50.0;
625 step[k+3] = param[k+3] / 20.0;
626 step[k+4] = param[k+4] / 20.0;
627 } // end for k
42da2935 628 Int_t out = 0;
629 do{
50d05d7b 630 iterNum++;
631 chi0 = chi1;
632 Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
633 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
634 // EXIT conditions
635 if( reldif < (float) kchilmt ){
636 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
637 *niter = iterNum;
638 out = 0;
639 break;
640 } // end if
641 if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
642 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
643 *niter = iterNum;
644 out = 0;
645 break;
646 } // end if
647 if( iterNum > 5*knstop ){
648 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
649 *niter = iterNum;
650 out = 1;
651 break;
652 } // end if
653 if( iterNum <= knel ) continue;
654 n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
655 if( n > 3 || n == 0 ) continue;
656 schi[n-1] = chi1;
657 for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
658 if( n != 3 ) continue;
659 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
660 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
661 for( k=1; k<(npeak*knParam+1); k++ ){
662 Float_t tmp0 = sprm[0][k];
663 Float_t tmp1 = sprm[1][k];
664 Float_t tmp2 = sprm[2][k];
665 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
666 a += (schi[2]*(tmp0-tmp1));
667 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
668 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
669 (tmp0*tmp0-tmp1*tmp1)));
670 if ((double)a < 1.0E-6) prmin = 0;
671 else prmin = (float) (0.5*b/a);
672 dp = 5*(tmp2-tmp0);
673 if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
674 param[k] = prmin;
675 step[k] = dp/10; // OPTIMIZE SEARCH STEP
676 } // end for k
42da2935 677 } while( kTRUE );
678 delete [] prm0;
679 delete [] step;
680 delete [] schi;
681 delete [] sprm[0];
682 delete [] sprm[1];
683 delete [] sprm[2];
684 delete [] speFit;
685 return( out );
a1f090e0 686}
50d05d7b 687
42da2935 688//______________________________________________________________________
689void AliITSClusterFinderSDD::ResolveClustersE(){
690 // The function to resolve clusters if the clusters overlapping exists
24a1c341 691 Int_t i;
42da2935 692 static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
693 // get number of clusters for this module
694 Int_t nofClusters = fClusters->GetEntriesFast();
695 nofClusters -= fNclusters;
696 Int_t fNofMaps = fSegmentation->Npz();
697 Int_t fNofAnodes = fNofMaps/2;
698 Int_t fMaxNofSamples = fSegmentation->Npx();
699 Int_t dummy=0;
700 Double_t fTimeStep = fSegmentation->Dpx( dummy );
701 Double_t fSddLength = fSegmentation->Dx();
702 Double_t fDriftSpeed = fResponse->DriftSpeed();
703 Double_t anodePitch = fSegmentation->Dpz( dummy );
704 Float_t n, baseline;
705 fResponse->GetNoiseParam( n, baseline );
706 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
50d05d7b 707
42da2935 708 for( Int_t j=0; j<nofClusters; j++ ){
50d05d7b 709 // get cluster information
710 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
711 Int_t astart = clusterJ->Astart();
712 Int_t astop = clusterJ->Astop();
713 Int_t tstart = clusterJ->Tstartf();
714 Int_t tstop = clusterJ->Tstopf();
715 Int_t wing = (Int_t)clusterJ->W();
716 if( wing == 2 ){
717 astart += fNofAnodes;
718 astop += fNofAnodes;
719 } // end if
720 Int_t xdim = tstop-tstart+3;
721 Int_t zdim = astop-astart+3;
2bd89e94 722 if(xdim > 50 || zdim > 30) { cout << "Warning: xdim: " << xdim << ", zdim: " << zdim << endl; continue; }
50d05d7b 723 Float_t *sp = new Float_t[ xdim*zdim+1 ];
724 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
725
726 // make a local map from cluster region
727 for( Int_t ianode=astart; ianode<=astop; ianode++ ){
728 for( Int_t itime=tstart; itime<=tstop; itime++ ){
729 Float_t fadc = fMap->GetSignal( ianode, itime );
730 if( fadc > baseline ) fadc -= (Double_t)baseline;
731 else fadc = 0.;
732 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
733 sp[index] = fadc;
734 } // time loop
735 } // anode loop
736
737 // search peaks on cluster
738 const Int_t kNp = 150;
739 Int_t peakX1[kNp];
740 Int_t peakZ1[kNp];
741 Float_t peakAmp1[kNp];
742 Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
743
744 // if multiple peaks, split cluster
745 if( npeak >= 1 )
746 {
747 // cout << "npeak " << npeak << endl;
748 // clusterJ->PrintInfo();
749 Float_t *par = new Float_t[npeak*5+1];
750 par[0] = (Float_t)npeak;
751 // Initial paramiters in cell dimentions
752 Int_t k1 = 1;
753 for( i=0; i<npeak; i++ ){
754 par[k1] = peakAmp1[i];
755 par[k1+1] = peakX1[i]; // local time pos. [timebin]
756 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
757 if( electronics == 1 )
758 par[k1+3] = 2.; // PASCAL
759 else if( electronics == 2 )
760 par[k1+3] = 0.7; // tau [timebin] OLA
761 par[k1+4] = .4; // sigma [anodepich]
762 k1+=5;
763 } // end for i
764 Int_t niter;
765 Float_t chir;
766 NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
767 Float_t peakX[kNp];
768 Float_t peakZ[kNp];
769 Float_t sigma[kNp];
770 Float_t tau[kNp];
771 Float_t peakAmp[kNp];
772 Float_t integral[kNp];
773 //get integrals => charge for each peak
774 PeakFunc( xdim, zdim, par, sp, integral );
775 k1 = 1;
776 for( i=0; i<npeak; i++ ){
777 peakAmp[i] = par[k1];
778 peakX[i] = par[k1+1];
779 peakZ[i] = par[k1+2];
780 tau[i] = par[k1+3];
781 sigma[i] = par[k1+4];
782 k1+=5;
783 } // end for i
784 // calculate parameter for new clusters
785 for( i=0; i<npeak; i++ ){
786 AliITSRawClusterSDD clusterI( *clusterJ );
787 Int_t newAnode = peakZ1[i]-1 + astart;
788 Int_t newiTime = peakX1[i]-1 + tstart;
789 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
790 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) )
791 shift = 0;
792 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
793 clusterI.SetPeakPos( peakpos );
794 clusterI.SetPeakAmpl( peakAmp1[i] );
795 Float_t newAnodef = peakZ[i] - 0.5 + astart;
796 Float_t newiTimef = peakX[i] - 1 + tstart;
797 if( wing == 2 ) newAnodef -= fNofAnodes;
798 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
799 newiTimef *= fTimeStep;
800 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
801 if( electronics == 1 ){
802 newiTimef *= 0.999438; // PASCAL
803 newiTimef += (6./fDriftSpeed - newiTimef/3000.);
804 }else if( electronics == 2 )
805 newiTimef *= 0.99714; // OLA
806 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
807 Float_t sign = ( wing == 1 ) ? -1. : 1.;
808 clusterI.SetX( driftPath*sign * 0.0001 );
809 clusterI.SetZ( anodePath * 0.0001 );
810 clusterI.SetAnode( newAnodef );
811 clusterI.SetTime( newiTimef );
812 clusterI.SetAsigma( sigma[i]*anodePitch );
813 clusterI.SetTsigma( tau[i]*fTimeStep );
814 clusterI.SetQ( integral[i] );
815 // clusterI.PrintInfo();
816 iTS->AddCluster( 1, &clusterI );
817 } // end for i
818 fClusters->RemoveAt( j );
819 delete [] par;
820 } else {
821 clusterJ->PrintInfo();
822 cout <<" --- Peak not found!!!! minpeak=" << fMinPeak<<
823 " cluster peak=" << clusterJ->PeakAmpl() <<
824 " npeak=" << npeak << endl << "xdim=" << xdim-2 << " zdim="
825 << zdim-2 << endl << endl;
826 }
827 delete [] sp;
42da2935 828 } // cluster loop
829 fClusters->Compress();
50d05d7b 830// fMap->ClearMap();
a1f090e0 831}
50d05d7b 832
833
42da2935 834//________________________________________________________________________
835void AliITSClusterFinderSDD::GroupClusters(){
836 // group clusters
837 Int_t dummy=0;
838 Float_t fTimeStep = fSegmentation->Dpx(dummy);
839 // get number of clusters for this module
840 Int_t nofClusters = fClusters->GetEntriesFast();
841 nofClusters -= fNclusters;
842 AliITSRawClusterSDD *clusterI;
843 AliITSRawClusterSDD *clusterJ;
844 Int_t *label = new Int_t [nofClusters];
845 Int_t i,j;
846 for(i=0; i<nofClusters; i++) label[i] = 0;
847 for(i=0; i<nofClusters; i++) {
50d05d7b 848 if(label[i] != 0) continue;
849 for(j=i+1; j<nofClusters; j++) {
850 if(label[j] != 0) continue;
851 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
852 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
853 // 1.3 good
854 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
855 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
856 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
857 if(!pair) continue;
858 // clusterI->PrintInfo();
859 // clusterJ->PrintInfo();
860 clusterI->Add(clusterJ);
861 label[j] = 1;
862 fClusters->RemoveAt(j);
863 j=i; // <- Ernesto
864 } // J clusters
865 label[i] = 1;
42da2935 866 } // I clusters
867 fClusters->Compress();
868
869 delete [] label;
870 return;
b0f5e3fc 871}
42da2935 872//________________________________________________________________________
873void AliITSClusterFinderSDD::SelectClusters(){
874 // get number of clusters for this module
875 Int_t nofClusters = fClusters->GetEntriesFast();
b0f5e3fc 876
42da2935 877 nofClusters -= fNclusters;
878 Int_t i;
879 for(i=0; i<nofClusters; i++) {
50d05d7b 880 AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
881 Int_t rmflg = 0;
882 Float_t wy = 0.;
883 if(clusterI->Anodes() != 0.) {
884 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
885 } // end if
886 Int_t amp = (Int_t) clusterI->PeakAmpl();
887 Int_t cha = (Int_t) clusterI->Q();
888 if(amp < fMinPeak) rmflg = 1;
889 if(cha < fMinCharge) rmflg = 1;
890 if(wy < fMinNCells) rmflg = 1;
891 //if(wy > fMaxNCells) rmflg = 1;
892 if(rmflg) fClusters->RemoveAt(i);
42da2935 893 } // I clusters
894 fClusters->Compress();
895 return;
b0f5e3fc 896}
42da2935 897//__________________________________________________________________________
898void AliITSClusterFinderSDD::ResolveClusters(){
899 // The function to resolve clusters if the clusters overlapping exists
900/* AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
901 // get number of clusters for this module
902 Int_t nofClusters = fClusters->GetEntriesFast();
903 nofClusters -= fNclusters;
904 //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
905 // <<fNclusters<<endl;
906 Int_t fNofMaps = fSegmentation->Npz();
907 Int_t fNofAnodes = fNofMaps/2;
908 Int_t dummy=0;
909 Double_t fTimeStep = fSegmentation->Dpx(dummy);
910 Double_t fSddLength = fSegmentation->Dx();
911 Double_t fDriftSpeed = fResponse->DriftSpeed();
912 Double_t anodePitch = fSegmentation->Dpz(dummy);
913 Float_t n, baseline;
914 fResponse->GetNoiseParam(n,baseline);
915 Float_t dzz_1A = anodePitch * anodePitch / 12;
916 // fill Map of signals
a1f090e0 917 fMap->FillMap();
42da2935 918 Int_t j,i,ii,ianode,anode,itime;
919 Int_t wing,astart,astop,tstart,tstop,nanode;
920 Double_t fadc,ClusterTime;
921 Double_t q[400],x[400],z[400]; // digit charges and coordinates
922 for(j=0; j<nofClusters; j++) {
50d05d7b 923 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
924 Int_t ndigits = 0;
925 astart=clusterJ->Astart();
926 astop=clusterJ->Astop();
927 tstart=clusterJ->Tstartf();
928 tstop=clusterJ->Tstopf();
929 nanode=clusterJ->Anodes(); // <- Ernesto
930 wing=(Int_t)clusterJ->W();
931 if(wing == 2) {
932 astart += fNofAnodes;
933 astop += fNofAnodes;
934 } // end if
935 // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
936 // <<tstart<<","<<tstop<<endl;
937 // clear the digit arrays
938 for(ii=0; ii<400; ii++) {
939 q[ii] = 0.;
940 x[ii] = 0.;
941 z[ii] = 0.;
942 } // end for ii
42da2935 943
50d05d7b 944 for(ianode=astart; ianode<=astop; ianode++) {
945 for(itime=tstart; itime<=tstop; itime++) {
946 fadc=fMap->GetSignal(ianode,itime);
947 if(fadc>baseline) {
948 fadc-=(Double_t)baseline;
949 q[ndigits] = fadc*(fTimeStep/160); // KeV
950 anode = ianode;
951 if(wing == 2) anode -= fNofAnodes;
952 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
953 ClusterTime = itime*fTimeStep;
954 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
955 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
956 if(wing == 1) x[ndigits] *= (-1);
957 // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
958 // <<fadc<<endl;
959 // cout<<"wing,anode,ndigits,charge ="<<wing<<","
960 // <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
961 ndigits++;
962 continue;
963 } // end if
964 fadc=0;
965 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
966 } // time loop
967 } // anode loop
968 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
969 // Fit cluster to resolve for two separate ones --------------------
970 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
971 Double_t dxx=0., dzz=0., dxz=0.;
972 Double_t scl = 0., tmp, tga, elps = -1.;
973 Double_t xfit[2], zfit[2], qfit[2];
974 Double_t pitchz = anodePitch*1.e-4; // cm
975 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
976 Double_t sigma2;
977 Int_t nfhits;
978 Int_t nbins = ndigits;
979 Int_t separate = 0;
980 // now, all lengths are in microns
981 for (ii=0; ii<nbins; ii++) {
982 qq += q[ii];
983 xm += x[ii]*q[ii];
984 zm += z[ii]*q[ii];
985 xx += x[ii]*x[ii]*q[ii];
986 zz += z[ii]*z[ii]*q[ii];
987 xz += x[ii]*z[ii]*q[ii];
988 } // end for ii
989 xm /= qq;
990 zm /= qq;
991 xx /= qq;
992 zz /= qq;
993 xz /= qq;
994 dxx = xx - xm*xm;
995 dzz = zz - zm*zm;
996 dxz = xz - xm*zm;
42da2935 997
50d05d7b 998 // shrink the cluster in the time direction proportionaly to the
999 // dxx/dzz, which lineary depends from the drift path
1000 // new Ernesto........
1001 if( nanode == 1 ){
1002 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1003 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1004 } // end if
1005 if( nanode == 2 ){
1006 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1007 } // end if
1008 if( nanode == 3 ){
1009 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1010 } // end if
1011 if( nanode > 3 ){
1012 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1013 } // end if
1014 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1015 // <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1016 // old Boris.........
1017 // tmp=29730. - 585.*fabs(xm/1000.);
1018 // scl=TMath::Sqrt(tmp/130000.);
a1f090e0 1019
50d05d7b 1020 xm *= scl;
1021 xx *= scl*scl;
1022 xz *= scl;
42da2935 1023
50d05d7b 1024 dxx = xx - xm*xm;
1025 // dzz = zz - zm*zm;
1026 dxz = xz - xm*zm;
1027 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1028 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1029 // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
a1f090e0 1030
50d05d7b 1031 if (dxx < 0.) dxx=0.;
1032 // the data if no cluster overlapping (the coordunates are in cm)
1033 nfhits = 1;
1034 xfit[0] = xm*1.e-4;
1035 zfit[0] = zm*1.e-4;
1036 qfit[0] = qq;
1037 // if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
a1f090e0 1038
50d05d7b 1039 if (nbins >= 7) {
1040 if (dxz==0.) tga=0.;
1041 else {
1042 tmp=0.5*(dzz-dxx)/dxz;
1043 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) :
1044 tmp+TMath::Sqrt(tmp*tmp+1);
1045 } // end if dxz
1046 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1047 // change from microns to cm
1048 xm *= 1.e-4;
1049 zm *= 1.e-4;
1050 zz *= 1.e-8;
1051 xx *= 1.e-8;
1052 xz *= 1.e-8;
1053 dxz *= 1.e-8;
1054 dxx *= 1.e-8;
1055 dzz *= 1.e-8;
1056 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1057 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1058 for (i=0; i<nbins; i++) {
1059 x[i] = x[i] *= scl;
1060 x[i] = x[i] *= 1.e-4;
1061 z[i] = z[i] *= 1.e-4;
1062 } // end for i
1063 // cout<<"!!! elps ="<<elps<<endl;
1064 if (elps < 0.3) { // try to separate hits
1065 separate = 1;
1066 tmp=atan(tga);
1067 Double_t cosa=cos(tmp),sina=sin(tmp);
1068 Double_t a1=0., x1=0., xxx=0.;
1069 for (i=0; i<nbins; i++) {
1070 tmp=x[i]*cosa + z[i]*sina;
1071 if (q[i] > a1) {
1072 a1=q[i];
1073 x1=tmp;
1074 } // end if
1075 xxx += tmp*tmp*tmp*q[i];
1076 } // end for i
1077 xxx /= qq;
1078 Double_t z12=-sina*xm + cosa*zm;
1079 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1080 xm=cosa*xm + sina*zm;
1081 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1082 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1083 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1084 for (i=0; i<33; i++) { // solve a system of equations
1085 Double_t x1_old=x1, x2_old=x2, r_old=r;
1086 Double_t c11=x1-x2;
1087 Double_t c12=r;
1088 Double_t c13=1-r;
1089 Double_t c21=x1*x1 - x2*x2;
1090 Double_t c22=2*r*x1;
1091 Double_t c23=2*(1-r)*x2;
1092 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1093 Double_t c32=3*r*(sigma2 + x1*x1);
1094 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1095 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1096 Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1097 Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1098 (3*sigma2+x2*x2)-xxx);
1099 Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1100 c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1101 if (d==0.) {
1102 cout<<"*********** d=0 ***********\n";
1103 break;
1104 } // end if
1105 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1106 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1107 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1108 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1109 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1110 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1111 r += dr/d;
1112 x1 += d1/d;
1113 x2 += d2/d;
1114 if (fabs(x1-x1_old) > 0.0001) continue;
1115 if (fabs(x2-x2_old) > 0.0001) continue;
1116 if (fabs(r-r_old)/5 > 0.001) continue;
1117 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1118 Double_t a2=a1*(1-r)/r;
1119 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina +
1120 z12*cosa;
1121 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina +
1122 z12*cosa;
1123 nfhits=2;
1124 break; // Ok !
1125 } // end for i
1126 if (i==33) cerr<<"No more iterations ! "<<endl;
1127 } // end of attempt to separate overlapped clusters
1128 } // end of nbins cut
1129 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1130 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1131 <<elps<<","<<nfhits<<endl;
1132 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1133 for (i=0; i<nfhits; i++) {
1134 xfit[i] *= (1.e+4/scl);
1135 if(wing == 1) xfit[i] *= (-1);
1136 zfit[i] *= 1.e+4;
1137 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","
1138 // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1139 } // end for i
1140 Int_t ncl = nfhits;
1141 if(nfhits == 1 && separate == 1) {
1142 cout<<"!!!!! no separate"<<endl;
1143 ncl = -2;
1144 } // end if
1145 if(nfhits == 2) {
1146 cout << "Split cluster: " << endl;
1147 clusterJ->PrintInfo();
1148 cout << " in: " << endl;
1149 for (i=0; i<nfhits; i++) {
1150 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
42da2935 1151 -1,-1,(Float_t)qfit[i],ncl,0,0,
1152 (Float_t)xfit[i],
1153 (Float_t)zfit[i],0,0,0,0,
1154 tstart,tstop,astart,astop);
50d05d7b 1155 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1156 // -1,(Float_t)qfit[i],0,0,0,
1157 // (Float_t)xfit[i],
1158 // (Float_t)zfit[i],0,0,0,0,
1159 // tstart,tstop,astart,astop,ncl);
1160 // ???????????
1161 // if(wing == 1) xfit[i] *= (-1);
1162 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1163 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1164 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1165 Float_t peakpos = clusterJ->PeakPos();
1166 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1167 Float_t clusterDriftPath = Time*fDriftSpeed;
1168 clusterDriftPath = fSddLength-clusterDriftPath;
1169 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1170 Time,qfit[i],
42da2935 1171 clusterPeakAmplitude,peakpos,
1172 0.,0.,clusterDriftPath,
1173 clusteranodePath,clusterJ->Samples()/2
50d05d7b 1174 ,tstart,tstop,0,0,0,astart,astop);
1175 clust->PrintInfo();
1176 iTS->AddCluster(1,clust);
1177 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1178 // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1179 // <<","<<ncl<<endl;
1180 delete clust;
1181 }// nfhits loop
1182 fClusters->RemoveAt(j);
42da2935 1183 } // if nfhits = 2
1184} // cluster loop
1185fClusters->Compress();
1186fMap->ClearMap();
1187*/
1188 return;
a1f090e0 1189}
42da2935 1190//______________________________________________________________________
1191void AliITSClusterFinderSDD::GetRecPoints(){
1192 // get rec points
1193 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1194 // get number of clusters for this module
1195 Int_t nofClusters = fClusters->GetEntriesFast();
1196 nofClusters -= fNclusters;
1197 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1198 const Float_t kconv = 1.0e-4;
1199 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1200 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1201 Int_t i;
1202 Int_t ix, iz, idx=-1;
1203 AliITSdigitSDD *dig=0;
1204 Int_t ndigits=fDigits->GetEntriesFast();
1205 for(i=0; i<nofClusters; i++) {
50d05d7b 1206 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1207 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1208 if(clusterI) idx=clusterI->PeakPos();
1209 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1210 // try peak neighbours - to be done
1211 if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1212 if(!dig) {
1213 // try cog
1214 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1215 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1216 // if null try neighbours
1217 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1218 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1219 if (!dig) printf("SDD: cannot assign the track number!\n");
1220 } // end if !dig
1221 AliITSRecPoint rnew;
1222 rnew.SetX(clusterI->X());
1223 rnew.SetZ(clusterI->Z());
1224 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
1225 rnew.SetdEdX(kconvGeV*clusterI->Q());
1226 rnew.SetSigmaX2(kRMSx*kRMSx);
1227 rnew.SetSigmaZ2(kRMSz*kRMSz);
1228 if(dig) rnew.fTracks[0]=dig->fTracks[0];
1229 if(dig) rnew.fTracks[1]=dig->fTracks[1];
1230 if(dig) rnew.fTracks[2]=dig->fTracks[2];
1231 //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1232 // i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1233 // lusterI->X(),clusterI->Z());
1234 iTS->AddRecPoint(rnew);
42da2935 1235 } // I clusters
50d05d7b 1236// fMap->ClearMap();
b0f5e3fc 1237}
42da2935 1238//______________________________________________________________________
1239void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1240 // find raw clusters
50d05d7b 1241
1242 fModule = mod;
1243
a1f090e0 1244 Find1DClustersE();
b0f5e3fc 1245 GroupClusters();
1246 SelectClusters();
a1f090e0 1247 ResolveClustersE();
b0f5e3fc 1248 GetRecPoints();
1249}
42da2935 1250//_______________________________________________________________________
1251void AliITSClusterFinderSDD::Print(){
1252 // Print SDD cluster finder Parameters
1253
1254 cout << "**************************************************" << endl;
1255 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1256 cout << "**************************************************" << endl;
1257 cout << "Number of Clusters: " << fNclusters << endl;
1258 cout << "Anode Tolerance: " << fDAnode << endl;
1259 cout << "Time Tolerance: " << fDTime << endl;
1260 cout << "Time correction (electronics): " << fTimeCorr << endl;
1261 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1262 cout << "Minimum Amplitude: " << fMinPeak << endl;
1263 cout << "Minimum Charge: " << fMinCharge << endl;
1264 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1265 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1266 cout << "**************************************************" << endl;
a1f090e0 1267}