]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSClusterFinderSDD.cxx
added a number of getter for variables which didn't have them in the past.
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
48058160 15/*
16 $Id$
17 $Log$
507cf1a7 18 Revision 1.30 2003/03/03 16:34:35 masera
19 Corrections to comply with coding conventions
20
bf3f2830 21 Revision 1.29 2002/10/25 18:54:22 barbera
22 Various improvements and updates from B.S.Nilsen and T. Virgili
23
f8d9a5b8 24 Revision 1.28 2002/10/22 14:45:29 alibrary
25 Introducing Riostream.h
26
4ae5bbc4 27 Revision 1.27 2002/10/14 14:57:00 hristov
28 Merging the VirtualMC branch to the main development branch (HEAD)
29
b9d0a01d 30 Revision 1.23.4.2 2002/10/14 13:14:07 hristov
31 Updating VirtualMC to v3-09-02
32
33 Revision 1.26 2002/09/09 17:23:28 nilsen
34 Minor changes in support of changes to AliITSdigitS?D class'.
35
ee86d557 36 Revision 1.25 2002/05/10 22:29:40 nilsen
37 Change my Massimo Masera in the default constructor to bring things into
38 compliance.
39
355ccb70 40 Revision 1.24 2002/04/24 22:02:31 nilsen
41 New SDigits and Digits routines, and related changes, (including new
42 noise values).
43
48058160 44 */
bf3f2830 45//
46// Cluster finder
47// for Silicon
48// Drift Detector
49//
4ae5bbc4 50#include <Riostream.h>
bf3f2830 51
a1f090e0 52#include <TMath.h>
53#include <math.h>
b0f5e3fc 54
55#include "AliITSClusterFinderSDD.h"
e8189707 56#include "AliITSMapA1.h"
57#include "AliITS.h"
78a228db 58#include "AliITSdigit.h"
59#include "AliITSRawCluster.h"
60#include "AliITSRecPoint.h"
61#include "AliITSsegmentation.h"
5dd4cc39 62#include "AliITSresponseSDD.h"
b0f5e3fc 63#include "AliRun.h"
64
b0f5e3fc 65ClassImp(AliITSClusterFinderSDD)
66
42da2935 67//______________________________________________________________________
68AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
50d05d7b 69 AliITSresponse *response,
70 TClonesArray *digits,
71 TClonesArray *recp){
42da2935 72 // standard constructor
78a228db 73
b48af428 74 fSegmentation = seg;
75 fResponse = response;
76 fDigits = digits;
77 fClusters = recp;
78 fNclusters = fClusters->GetEntriesFast();
b0f5e3fc 79 SetCutAmplitude();
80 SetDAnode();
81 SetDTime();
355ccb70 82 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
83 // SetMinPeak();
78a228db 84 SetMinNCells();
85 SetMaxNCells();
86 SetTimeCorr();
a1f090e0 87 SetMinCharge();
b48af428 88 fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
b0f5e3fc 89}
42da2935 90//______________________________________________________________________
91AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
92 // default constructor
b0f5e3fc 93
b48af428 94 fSegmentation = 0;
95 fResponse = 0;
96 fDigits = 0;
97 fClusters = 0;
98 fNclusters = 0;
99 fMap = 0;
100 fCutAmplitude = 0;
355ccb70 101 fDAnode = 0;
102 fDTime = 0;
103 fMinPeak = 0;
104 fMinNCells = 0;
105 fMaxNCells = 0;
106 fTimeCorr = 0;
107 fMinCharge = 0;
108 /*
b0f5e3fc 109 SetDAnode();
110 SetDTime();
48058160 111 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
78a228db 112 SetMinNCells();
113 SetMaxNCells();
114 SetTimeCorr();
a1f090e0 115 SetMinCharge();
355ccb70 116 */
b0f5e3fc 117}
42da2935 118//____________________________________________________________________________
119AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
e8189707 120 // destructor
121
122 if(fMap) delete fMap;
e8189707 123}
42da2935 124//______________________________________________________________________
125void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
126 // set the signal threshold for cluster finder
bf3f2830 127 Float_t baseline,noise,noiseAfterEl;
42da2935 128
129 fResponse->GetNoiseParam(noise,baseline);
bf3f2830 130 noiseAfterEl = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
131 fCutAmplitude = (Int_t)((baseline + nsigma*noiseAfterEl));
5dd4cc39 132}
42da2935 133//______________________________________________________________________
134void AliITSClusterFinderSDD::Find1DClusters(){
135 // find 1D clusters
b48af428 136 static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
a1f090e0 137
42da2935 138 // retrieve the parameters
b48af428 139 Int_t fNofMaps = fSegmentation->Npz();
42da2935 140 Int_t fMaxNofSamples = fSegmentation->Npx();
b48af428 141 Int_t fNofAnodes = fNofMaps/2;
142 Int_t dummy = 0;
143 Float_t fTimeStep = fSegmentation->Dpx(dummy);
144 Float_t fSddLength = fSegmentation->Dx();
145 Float_t fDriftSpeed = fResponse->DriftSpeed();
146 Float_t anodePitch = fSegmentation->Dpz(dummy);
42da2935 147
148 // map the signal
50d05d7b 149 fMap->ClearMap();
42da2935 150 fMap->SetThreshold(fCutAmplitude);
151 fMap->FillMap();
a1f090e0 152
42da2935 153 Float_t noise;
154 Float_t baseline;
155 fResponse->GetNoiseParam(noise,baseline);
a1f090e0 156
42da2935 157 Int_t nofFoundClusters = 0;
158 Int_t i;
159 Float_t **dfadc = new Float_t*[fNofAnodes];
160 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
b48af428 161 Float_t fadc = 0.;
42da2935 162 Float_t fadc1 = 0.;
163 Float_t fadc2 = 0.;
164 Int_t j,k,idx,l,m;
165 for(j=0;j<2;j++) {
50d05d7b 166 for(k=0;k<fNofAnodes;k++) {
167 idx = j*fNofAnodes+k;
168 // signal (fadc) & derivative (dfadc)
169 dfadc[k][255]=0.;
170 for(l=0; l<fMaxNofSamples; l++) {
171 fadc2=(Float_t)fMap->GetSignal(idx,l);
172 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
173 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
174 } // samples
175 } // anodes
42da2935 176
50d05d7b 177 for(k=0;k<fNofAnodes;k++) {
178 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
179 idx = j*fNofAnodes+k;
180 Int_t imax = 0;
181 Int_t imaxd = 0;
182 Int_t it = 0;
183 while(it <= fMaxNofSamples-3) {
184 imax = it;
185 imaxd = it;
186 // maximum of signal
187 Float_t fadcmax = 0.;
188 Float_t dfadcmax = 0.;
189 Int_t lthrmina = 1;
190 Int_t lthrmint = 3;
191 Int_t lthra = 1;
192 Int_t lthrt = 0;
193 for(m=0;m<20;m++) {
194 Int_t id = it+m;
195 if(id>=fMaxNofSamples) break;
196 fadc=(float)fMap->GetSignal(idx,id);
197 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
198 if(fadc > (float)fCutAmplitude) {
199 lthrt++;
200 } // end if
201 if(dfadc[k][id] > dfadcmax) {
202 dfadcmax = dfadc[k][id];
203 imaxd = id;
204 } // end if
205 } // end for m
206 it = imaxd;
207 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
208 // cluster charge
209 Int_t tstart = it-2;
210 if(tstart < 0) tstart = 0;
211 Bool_t ilcl = 0;
212 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
213 if(ilcl) {
214 nofFoundClusters++;
215 Int_t tstop = tstart;
216 Float_t dfadcmin = 10000.;
217 Int_t ij;
218 for(ij=0; ij<20; ij++) {
219 if(tstart+ij > 255) { tstop = 255; break; }
220 fadc=(float)fMap->GetSignal(idx,tstart+ij);
221 if((dfadc[k][tstart+ij] < dfadcmin) &&
222 (fadc > fCutAmplitude)) {
223 tstop = tstart+ij+5;
224 if(tstop > 255) tstop = 255;
225 dfadcmin = dfadc[k][it+ij];
226 } // end if
227 } // end for ij
42da2935 228
50d05d7b 229 Float_t clusterCharge = 0.;
230 Float_t clusterAnode = k+0.5;
231 Float_t clusterTime = 0.;
232 Int_t clusterMult = 0;
233 Float_t clusterPeakAmplitude = 0.;
234 Int_t its,peakpos = -1;
235 Float_t n, baseline;
236 fResponse->GetNoiseParam(n,baseline);
237 for(its=tstart; its<=tstop; its++) {
238 fadc=(float)fMap->GetSignal(idx,its);
239 if(fadc>baseline) fadc -= baseline;
240 else fadc = 0.;
241 clusterCharge += fadc;
242 // as a matter of fact we should take the peak
243 // pos before FFT
244 // to get the list of tracks !!!
245 if(fadc > clusterPeakAmplitude) {
246 clusterPeakAmplitude = fadc;
247 //peakpos=fMap->GetHitIndex(idx,its);
248 Int_t shift = (int)(fTimeCorr/fTimeStep);
249 if(its>shift && its<(fMaxNofSamples-shift))
250 peakpos = fMap->GetHitIndex(idx,its+shift);
251 else peakpos = fMap->GetHitIndex(idx,its);
252 if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
253 } // end if
254 clusterTime += fadc*its;
255 if(fadc > 0) clusterMult++;
256 if(its == tstop) {
257 clusterTime /= (clusterCharge/fTimeStep); // ns
258 if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
259 //ns
260 } // end if
261 } // end for its
42da2935 262
50d05d7b 263 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
264 anodePitch;
265 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
266 clusterDriftPath = fSddLength-clusterDriftPath;
267 if(clusterCharge <= 0.) break;
268 AliITSRawClusterSDD clust(j+1,//i
269 clusterAnode,clusterTime,//ff
270 clusterCharge, //f
271 clusterPeakAmplitude, //f
272 peakpos, //i
273 0.,0.,clusterDriftPath,//fff
274 clusteranodePath, //f
275 clusterMult, //i
276 0,0,0,0,0,0,0);//7*i
277 iTS->AddCluster(1,&clust);
278 it = tstop;
279 } // ilcl
280 it++;
281 } // while (samples)
282 } // anodes
42da2935 283 } // detectors (2)
42da2935 284
285 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
286 delete [] dfadc;
a1f090e0 287
42da2935 288 return;
a1f090e0 289}
50d05d7b 290
291
292
42da2935 293//______________________________________________________________________
294void AliITSClusterFinderSDD::Find1DClustersE(){
24a1c341 295 // find 1D clusters
42da2935 296 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
297 // retrieve the parameters
298 Int_t fNofMaps = fSegmentation->Npz();
299 Int_t fMaxNofSamples = fSegmentation->Npx();
300 Int_t fNofAnodes = fNofMaps/2;
301 Int_t dummy=0;
302 Float_t fTimeStep = fSegmentation->Dpx( dummy );
303 Float_t fSddLength = fSegmentation->Dx();
304 Float_t fDriftSpeed = fResponse->DriftSpeed();
305 Float_t anodePitch = fSegmentation->Dpz( dummy );
306 Float_t n, baseline;
307 fResponse->GetNoiseParam( n, baseline );
308 // map the signal
50d05d7b 309 fMap->ClearMap();
42da2935 310 fMap->SetThreshold( fCutAmplitude );
311 fMap->FillMap();
50d05d7b 312
42da2935 313 Int_t nClu = 0;
50d05d7b 314 // cout << "Search cluster... "<< endl;
42da2935 315 for( Int_t j=0; j<2; j++ ){
50d05d7b 316 for( Int_t k=0; k<fNofAnodes; k++ ){
317 Int_t idx = j*fNofAnodes+k;
318 Bool_t on = kFALSE;
319 Int_t start = 0;
320 Int_t nTsteps = 0;
321 Float_t fmax = 0.;
322 Int_t lmax = 0;
323 Float_t charge = 0.;
324 Float_t time = 0.;
325 Float_t anode = k+0.5;
326 Int_t peakpos = -1;
327 for( Int_t l=0; l<fMaxNofSamples; l++ ){
328 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
329 if( fadc > 0.0 ){
330 if( on == kFALSE && l<fMaxNofSamples-4){
331 // star RawCluster (reset var.)
332 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
333 if( fadc1 < fadc ) continue;
334 start = l;
335 fmax = 0.;
336 lmax = 0;
337 time = 0.;
338 charge = 0.;
339 on = kTRUE;
340 nTsteps = 0;
341 } // end if on...
342 nTsteps++ ;
343 if( fadc > baseline ) fadc -= baseline;
344 else fadc=0.;
345 charge += fadc;
346 time += fadc*l;
347 if( fadc > fmax ){
348 fmax = fadc;
349 lmax = l;
350 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
351 if( l > shift && l < (fMaxNofSamples-shift) )
352 peakpos = fMap->GetHitIndex( idx, l+shift );
353 else
354 peakpos = fMap->GetHitIndex( idx, l );
355 if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
356 } // end if fadc
357 }else{ // end fadc>0
358 if( on == kTRUE ){
359 if( nTsteps > 2 ){
360 // min # of timesteps for a RawCluster
361 // Found a RawCluster...
362 Int_t stop = l-1;
363 time /= (charge/fTimeStep); // ns
364 // time = lmax*fTimeStep; // ns
365 if( time > fTimeCorr ) time -= fTimeCorr; // ns
366 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
367 Float_t driftPath = time*fDriftSpeed;
368 driftPath = fSddLength-driftPath;
369 AliITSRawClusterSDD clust(j+1,anode,time,charge,
370 fmax, peakpos,0.,0.,
371 driftPath,anodePath,
372 nTsteps,start,stop,
373 start, stop, 1, k, k );
374 iTS->AddCluster( 1, &clust );
375 // clust.PrintInfo();
376 nClu++;
377 } // end if nTsteps
378 on = kFALSE;
379 } // end if on==kTRUE
380 } // end if fadc>0
381 } // samples
382 } // anodes
42da2935 383 } // wings
50d05d7b 384 // cout << "# Rawclusters " << nClu << endl;
42da2935 385 return;
a1f090e0 386}
42da2935 387//_______________________________________________________________________
388Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
50d05d7b 389 Int_t *peakX, Int_t *peakZ,
390 Float_t *peakAmp, Float_t minpeak ){
42da2935 391 // search peaks on a 2D cluster
392 Int_t npeak = 0; // # peaks
56fff130 393 Int_t i,j;
42da2935 394 // search peaks
395 for( Int_t z=1; z<zdim-1; z++ ){
48058160 396 for( Int_t x=1; x<xdim-2; x++ ){
50d05d7b 397 Float_t sxz = spect[x*zdim+z];
398 Float_t sxz1 = spect[(x+1)*zdim+z];
399 Float_t sxz2 = spect[(x-1)*zdim+z];
400 // search a local max. in s[x,z]
401 if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
402 if( sxz >= spect[(x+1)*zdim+z ] && sxz >= spect[(x-1)*zdim+z ] &&
403 sxz >= spect[x*zdim +z+1] && sxz >= spect[x*zdim +z-1] &&
404 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
405 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
406 // peak found
407 peakX[npeak] = x;
408 peakZ[npeak] = z;
409 peakAmp[npeak] = sxz;
410 npeak++;
411 } // end if ....
412 } // end for x
42da2935 413 } // end for z
414 // search groups of peaks with same amplitude.
415 Int_t *flag = new Int_t[npeak];
416 for( i=0; i<npeak; i++ ) flag[i] = 0;
417 for( i=0; i<npeak; i++ ){
50d05d7b 418 for( j=0; j<npeak; j++ ){
419 if( i==j) continue;
420 if( flag[j] > 0 ) continue;
421 if( peakAmp[i] == peakAmp[j] &&
422 TMath::Abs(peakX[i]-peakX[j])<=1 &&
423 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
424 if( flag[i] == 0) flag[i] = i+1;
425 flag[j] = flag[i];
426 } // end if ...
427 } // end for j
42da2935 428 } // end for i
50d05d7b 429 // make average of peak groups
42da2935 430 for( i=0; i<npeak; i++ ){
50d05d7b 431 Int_t nFlag = 1;
432 if( flag[i] <= 0 ) continue;
433 for( j=0; j<npeak; j++ ){
434 if( i==j ) continue;
435 if( flag[j] != flag[i] ) continue;
436 peakX[i] += peakX[j];
437 peakZ[i] += peakZ[j];
438 nFlag++;
439 npeak--;
440 for( Int_t k=j; k<npeak; k++ ){
441 peakX[k] = peakX[k+1];
442 peakZ[k] = peakZ[k+1];
443 peakAmp[k] = peakAmp[k+1];
444 flag[k] = flag[k+1];
445 } // end for k
446 j--;
447 } // end for j
448 if( nFlag > 1 ){
449 peakX[i] /= nFlag;
450 peakZ[i] /= nFlag;
451 } // end fi nFlag
42da2935 452 } // end for i
453 delete [] flag;
454 return( npeak );
a1f090e0 455}
42da2935 456//______________________________________________________________________
457void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
50d05d7b 458 Float_t *spe, Float_t *integral){
24a1c341 459 // function used to fit the clusters
50d05d7b 460 // par -> parameters..
24a1c341 461 // par[0] number of peaks.
462 // for each peak i=1, ..., par[0]
50d05d7b 463 // par[i] = Ampl.
464 // par[i+1] = xpos
465 // par[i+2] = zpos
466 // par[i+3] = tau
467 // par[i+4] = sigma.
24a1c341 468 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
469 const Int_t knParam = 5;
470 Int_t npeak = (Int_t)par[0];
42da2935 471
24a1c341 472 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
42da2935 473
24a1c341 474 Int_t k = 1;
42da2935 475 for( Int_t i=0; i<npeak; i++ ){
24a1c341 476 if( integral != 0 ) integral[i] = 0.;
477 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
bf3f2830 478 Float_t t2 = par[k+3]; // PASCAL
479 if( electronics == 2 ) { t2 *= t2; t2 *= 2; } // OLA
42da2935 480 for( Int_t z=0; z<zdim; z++ ){
481 for( Int_t x=0; x<xdim; x++ ){
24a1c341 482 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
483 Float_t x2 = 0.;
484 Float_t signal = 0.;
42da2935 485 if( electronics == 1 ){ // PASCAL
bf3f2830 486 x2 = (x-par[k+1]+t2)/t2;
42da2935 487 signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
488 // signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
489 }else if( electronics == 2 ) { // OLA
bf3f2830 490 x2 = (x-par[k+1])*(x-par[k+1])/t2;
50d05d7b 491 signal = par[k] * exp( -x2 - z2 );
492 } else {
bf3f2830 493 Warning("PeakFunc","Wrong SDD Electronics = %d",electronics);
50d05d7b 494 // exit( 1 );
495 } // end if electronicx
24a1c341 496 spe[x*zdim+z] += signal;
497 if( integral != 0 ) integral[i] += signal;
42da2935 498 } // end for x
499 } // end for z
24a1c341 500 k += knParam;
42da2935 501 } // end for i
24a1c341 502 return;
a1f090e0 503}
42da2935 504//__________________________________________________________________________
505Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
bf3f2830 506 Float_t *speFit ) const{
42da2935 507 // EVALUATES UNNORMALIZED CHI-SQUARED
508 Float_t chi2 = 0.;
509 for( Int_t z=0; z<zdim; z++ ){
50d05d7b 510 for( Int_t x=1; x<xdim-1; x++ ){
511 Int_t index = x*zdim+z;
512 Float_t tmp = spe[index] - speFit[index];
513 chi2 += tmp*tmp;
514 } // end for x
42da2935 515 } // end for z
516 return( chi2 );
a1f090e0 517}
42da2935 518//_______________________________________________________________________
519void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
50d05d7b 520 Float_t *prm0,Float_t *steprm,
521 Float_t *chisqr,Float_t *spe,
522 Float_t *speFit ){
42da2935 523 //
524 Int_t k, nnn, mmm, i;
525 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
526 const Int_t knParam = 5;
527 Int_t npeak = (Int_t)param[0];
528 for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
529 for( k=1; k<(npeak*knParam+1); k++ ){
50d05d7b 530 p1 = param[k];
531 delta = steprm[k];
532 d1 = delta;
533 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
534 if( fabs( p1 ) > 1.0E-6 )
535 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
536 else delta = (Float_t)1.0E-4;
537 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
538 PeakFunc( xdim, zdim, param, speFit );
539 chisq1 = ChiSqr( xdim, zdim, spe, speFit );
540 p2 = p1+delta;
541 param[k] = p2;
542 PeakFunc( xdim, zdim, param, speFit );
543 chisq2 = ChiSqr( xdim, zdim, spe, speFit );
544 if( chisq1 < chisq2 ){
545 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
546 delta = -delta;
547 t = p1;
548 p1 = p2;
549 p2 = t;
550 t = chisq1;
551 chisq1 = chisq2;
552 chisq2 = t;
553 } // end if
554 i = 1; nnn = 0;
555 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
556 nnn++;
557 p3 = p2 + delta;
558 mmm = nnn - (nnn/5)*5; // multiplo de 5
559 if( mmm == 0 ){
560 d1 = delta;
561 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
562 delta *= 5;
563 } // end if
564 param[k] = p3;
565 // Constrain paramiters
566 Int_t kpos = (k-1) % knParam;
567 switch( kpos ){
568 case 0 :
569 if( param[k] <= 20 ) param[k] = fMinPeak;
570 break;
571 case 1 :
572 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
573 break;
574 case 2 :
575 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
576 break;
577 case 3 :
578 if( param[k] < .5 ) param[k] = .5;
579 break;
580 case 4 :
581 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
582 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
583 break;
584 }; // end switch
585 PeakFunc( xdim, zdim, param, speFit );
586 chisq3 = ChiSqr( xdim, zdim, spe, speFit );
587 if( chisq3 < chisq2 && nnn < 50 ){
588 p1 = p2;
589 p2 = p3;
590 chisq1 = chisq2;
591 chisq2 = chisq3;
592 }else i=0;
593 } while( i );
594 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
595 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
596 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
597 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
598 else p0 = 10000;
599 //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
600 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
601 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
602 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
603 //if( fabs( p2-p0 ) > dp ) p0 = p2;
604 param[k] = p0;
605 // Constrain paramiters
606 Int_t kpos = (k-1) % knParam;
607 switch( kpos ){
608 case 0 :
609 if( param[k] <= 20 ) param[k] = fMinPeak;
610 break;
611 case 1 :
612 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
613 break;
614 case 2 :
615 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
616 break;
617 case 3 :
618 if( param[k] < .5 ) param[k] = .5;
619 break;
620 case 4 :
621 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
622 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
623 break;
624 }; // end switch
625 PeakFunc( xdim, zdim, param, speFit );
626 chisqt = ChiSqr( xdim, zdim, spe, speFit );
627 // DO NOT ALLOW ERRONEOUS INTERPOLATION
628 if( chisqt <= *chisqr ) *chisqr = chisqt;
629 else param[k] = prm0[k];
630 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
631 steprm[k] = (param[k]-prm0[k])/5;
632 if( steprm[k] >= d1 ) steprm[k] = d1/5;
42da2935 633 } // end for k
634 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
635 PeakFunc( xdim, zdim, param, speFit );
636 *chisqr = ChiSqr( xdim, zdim, spe, speFit );
637 return;
a1f090e0 638}
42da2935 639//_________________________________________________________________________
640Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim,
50d05d7b 641 Float_t *param, Float_t *spe,
642 Int_t *niter, Float_t *chir ){
42da2935 643 // fit method from Comput. Phys. Commun 46(1987) 149
50d05d7b 644 const Float_t kchilmt = 0.01; // relative accuracy
645 const Int_t knel = 3; // for parabolic minimization
646 const Int_t knstop = 50; // Max. iteration number
42da2935 647 const Int_t knParam = 5;
648 Int_t npeak = (Int_t)param[0];
649 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
650 if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
651 Float_t degFree = (xdim*zdim - npeak*knParam)-1;
652 Int_t n, k, iterNum = 0;
653 Float_t *prm0 = new Float_t[npeak*knParam+1];
654 Float_t *step = new Float_t[npeak*knParam+1];
655 Float_t *schi = new Float_t[npeak*knParam+1];
656 Float_t *sprm[3];
657 sprm[0] = new Float_t[npeak*knParam+1];
658 sprm[1] = new Float_t[npeak*knParam+1];
659 sprm[2] = new Float_t[npeak*knParam+1];
660 Float_t chi0, chi1, reldif, a, b, prmin, dp;
661 Float_t *speFit = new Float_t[ xdim*zdim ];
662 PeakFunc( xdim, zdim, param, speFit );
663 chi0 = ChiSqr( xdim, zdim, spe, speFit );
664 chi1 = chi0;
665 for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
50d05d7b 666 for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
667 step[k] = param[k] / 20.0 ;
668 step[k+1] = param[k+1] / 50.0;
669 step[k+2] = param[k+2] / 50.0;
670 step[k+3] = param[k+3] / 20.0;
671 step[k+4] = param[k+4] / 20.0;
672 } // end for k
42da2935 673 Int_t out = 0;
674 do{
50d05d7b 675 iterNum++;
676 chi0 = chi1;
677 Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
678 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
679 // EXIT conditions
680 if( reldif < (float) kchilmt ){
681 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
682 *niter = iterNum;
683 out = 0;
684 break;
685 } // end if
686 if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
687 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
688 *niter = iterNum;
689 out = 0;
690 break;
691 } // end if
692 if( iterNum > 5*knstop ){
693 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
694 *niter = iterNum;
695 out = 1;
696 break;
697 } // end if
698 if( iterNum <= knel ) continue;
699 n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
700 if( n > 3 || n == 0 ) continue;
701 schi[n-1] = chi1;
702 for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
703 if( n != 3 ) continue;
704 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
705 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
706 for( k=1; k<(npeak*knParam+1); k++ ){
707 Float_t tmp0 = sprm[0][k];
708 Float_t tmp1 = sprm[1][k];
709 Float_t tmp2 = sprm[2][k];
710 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
711 a += (schi[2]*(tmp0-tmp1));
712 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
713 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
714 (tmp0*tmp0-tmp1*tmp1)));
715 if ((double)a < 1.0E-6) prmin = 0;
716 else prmin = (float) (0.5*b/a);
717 dp = 5*(tmp2-tmp0);
718 if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
719 param[k] = prmin;
720 step[k] = dp/10; // OPTIMIZE SEARCH STEP
721 } // end for k
42da2935 722 } while( kTRUE );
723 delete [] prm0;
724 delete [] step;
725 delete [] schi;
726 delete [] sprm[0];
727 delete [] sprm[1];
728 delete [] sprm[2];
729 delete [] speFit;
730 return( out );
a1f090e0 731}
50d05d7b 732
42da2935 733//______________________________________________________________________
734void AliITSClusterFinderSDD::ResolveClustersE(){
735 // The function to resolve clusters if the clusters overlapping exists
24a1c341 736 Int_t i;
42da2935 737 static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
738 // get number of clusters for this module
739 Int_t nofClusters = fClusters->GetEntriesFast();
740 nofClusters -= fNclusters;
741 Int_t fNofMaps = fSegmentation->Npz();
742 Int_t fNofAnodes = fNofMaps/2;
743 Int_t fMaxNofSamples = fSegmentation->Npx();
744 Int_t dummy=0;
745 Double_t fTimeStep = fSegmentation->Dpx( dummy );
746 Double_t fSddLength = fSegmentation->Dx();
747 Double_t fDriftSpeed = fResponse->DriftSpeed();
748 Double_t anodePitch = fSegmentation->Dpz( dummy );
749 Float_t n, baseline;
750 fResponse->GetNoiseParam( n, baseline );
751 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
50d05d7b 752
42da2935 753 for( Int_t j=0; j<nofClusters; j++ ){
50d05d7b 754 // get cluster information
755 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
756 Int_t astart = clusterJ->Astart();
757 Int_t astop = clusterJ->Astop();
758 Int_t tstart = clusterJ->Tstartf();
759 Int_t tstop = clusterJ->Tstopf();
760 Int_t wing = (Int_t)clusterJ->W();
761 if( wing == 2 ){
762 astart += fNofAnodes;
763 astop += fNofAnodes;
764 } // end if
765 Int_t xdim = tstop-tstart+3;
766 Int_t zdim = astop-astart+3;
bf3f2830 767 if(xdim > 50 || zdim > 30) {
768 Warning("ResolveClustersE","xdim: %d , zdim: %d ",xdim,zdim);
769 continue;
770 }
50d05d7b 771 Float_t *sp = new Float_t[ xdim*zdim+1 ];
772 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
773
774 // make a local map from cluster region
775 for( Int_t ianode=astart; ianode<=astop; ianode++ ){
776 for( Int_t itime=tstart; itime<=tstop; itime++ ){
777 Float_t fadc = fMap->GetSignal( ianode, itime );
778 if( fadc > baseline ) fadc -= (Double_t)baseline;
779 else fadc = 0.;
780 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
781 sp[index] = fadc;
782 } // time loop
783 } // anode loop
784
785 // search peaks on cluster
786 const Int_t kNp = 150;
787 Int_t peakX1[kNp];
788 Int_t peakZ1[kNp];
789 Float_t peakAmp1[kNp];
790 Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
791
792 // if multiple peaks, split cluster
793 if( npeak >= 1 )
794 {
795 // cout << "npeak " << npeak << endl;
796 // clusterJ->PrintInfo();
797 Float_t *par = new Float_t[npeak*5+1];
798 par[0] = (Float_t)npeak;
48058160 799 // Initial parameters in cell dimentions
50d05d7b 800 Int_t k1 = 1;
801 for( i=0; i<npeak; i++ ){
802 par[k1] = peakAmp1[i];
803 par[k1+1] = peakX1[i]; // local time pos. [timebin]
804 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
805 if( electronics == 1 )
806 par[k1+3] = 2.; // PASCAL
807 else if( electronics == 2 )
808 par[k1+3] = 0.7; // tau [timebin] OLA
809 par[k1+4] = .4; // sigma [anodepich]
810 k1+=5;
811 } // end for i
812 Int_t niter;
813 Float_t chir;
814 NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
815 Float_t peakX[kNp];
816 Float_t peakZ[kNp];
817 Float_t sigma[kNp];
818 Float_t tau[kNp];
819 Float_t peakAmp[kNp];
820 Float_t integral[kNp];
821 //get integrals => charge for each peak
822 PeakFunc( xdim, zdim, par, sp, integral );
823 k1 = 1;
824 for( i=0; i<npeak; i++ ){
825 peakAmp[i] = par[k1];
826 peakX[i] = par[k1+1];
827 peakZ[i] = par[k1+2];
828 tau[i] = par[k1+3];
829 sigma[i] = par[k1+4];
830 k1+=5;
831 } // end for i
832 // calculate parameter for new clusters
833 for( i=0; i<npeak; i++ ){
834 AliITSRawClusterSDD clusterI( *clusterJ );
835 Int_t newAnode = peakZ1[i]-1 + astart;
836 Int_t newiTime = peakX1[i]-1 + tstart;
837 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
838 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) )
839 shift = 0;
840 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
841 clusterI.SetPeakPos( peakpos );
842 clusterI.SetPeakAmpl( peakAmp1[i] );
843 Float_t newAnodef = peakZ[i] - 0.5 + astart;
844 Float_t newiTimef = peakX[i] - 1 + tstart;
845 if( wing == 2 ) newAnodef -= fNofAnodes;
846 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
847 newiTimef *= fTimeStep;
848 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
849 if( electronics == 1 ){
48058160 850 // newiTimef *= 0.999438; // PASCAL
851 // newiTimef += (6./fDriftSpeed - newiTimef/3000.);
50d05d7b 852 }else if( electronics == 2 )
853 newiTimef *= 0.99714; // OLA
854 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
855 Float_t sign = ( wing == 1 ) ? -1. : 1.;
856 clusterI.SetX( driftPath*sign * 0.0001 );
857 clusterI.SetZ( anodePath * 0.0001 );
858 clusterI.SetAnode( newAnodef );
859 clusterI.SetTime( newiTimef );
860 clusterI.SetAsigma( sigma[i]*anodePitch );
861 clusterI.SetTsigma( tau[i]*fTimeStep );
862 clusterI.SetQ( integral[i] );
48058160 863 // clusterI.PrintInfo();
50d05d7b 864 iTS->AddCluster( 1, &clusterI );
865 } // end for i
866 fClusters->RemoveAt( j );
867 delete [] par;
48058160 868 } else { // something odd
bf3f2830 869 Warning("ResolveClustersE","--- Peak not found!!!! minpeak=%d ,cluster peak= %f , module= %d",fMinPeak,clusterJ->PeakAmpl(),fModule);
870 clusterJ->PrintInfo();
871 Warning("ResolveClustersE"," xdim= %d zdim= %d",xdim-2,zdim-2);
50d05d7b 872 }
873 delete [] sp;
42da2935 874 } // cluster loop
875 fClusters->Compress();
50d05d7b 876// fMap->ClearMap();
a1f090e0 877}
50d05d7b 878
879
42da2935 880//________________________________________________________________________
881void AliITSClusterFinderSDD::GroupClusters(){
882 // group clusters
883 Int_t dummy=0;
884 Float_t fTimeStep = fSegmentation->Dpx(dummy);
885 // get number of clusters for this module
886 Int_t nofClusters = fClusters->GetEntriesFast();
887 nofClusters -= fNclusters;
888 AliITSRawClusterSDD *clusterI;
889 AliITSRawClusterSDD *clusterJ;
890 Int_t *label = new Int_t [nofClusters];
891 Int_t i,j;
892 for(i=0; i<nofClusters; i++) label[i] = 0;
893 for(i=0; i<nofClusters; i++) {
50d05d7b 894 if(label[i] != 0) continue;
895 for(j=i+1; j<nofClusters; j++) {
896 if(label[j] != 0) continue;
897 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
898 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
899 // 1.3 good
900 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
901 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
902 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
903 if(!pair) continue;
904 // clusterI->PrintInfo();
905 // clusterJ->PrintInfo();
906 clusterI->Add(clusterJ);
907 label[j] = 1;
908 fClusters->RemoveAt(j);
909 j=i; // <- Ernesto
910 } // J clusters
911 label[i] = 1;
42da2935 912 } // I clusters
913 fClusters->Compress();
914
915 delete [] label;
916 return;
b0f5e3fc 917}
42da2935 918//________________________________________________________________________
919void AliITSClusterFinderSDD::SelectClusters(){
920 // get number of clusters for this module
921 Int_t nofClusters = fClusters->GetEntriesFast();
b0f5e3fc 922
42da2935 923 nofClusters -= fNclusters;
924 Int_t i;
925 for(i=0; i<nofClusters; i++) {
50d05d7b 926 AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
927 Int_t rmflg = 0;
928 Float_t wy = 0.;
929 if(clusterI->Anodes() != 0.) {
930 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
931 } // end if
932 Int_t amp = (Int_t) clusterI->PeakAmpl();
933 Int_t cha = (Int_t) clusterI->Q();
934 if(amp < fMinPeak) rmflg = 1;
935 if(cha < fMinCharge) rmflg = 1;
936 if(wy < fMinNCells) rmflg = 1;
937 //if(wy > fMaxNCells) rmflg = 1;
938 if(rmflg) fClusters->RemoveAt(i);
42da2935 939 } // I clusters
940 fClusters->Compress();
941 return;
b0f5e3fc 942}
42da2935 943//__________________________________________________________________________
944void AliITSClusterFinderSDD::ResolveClusters(){
945 // The function to resolve clusters if the clusters overlapping exists
946/* AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
947 // get number of clusters for this module
948 Int_t nofClusters = fClusters->GetEntriesFast();
949 nofClusters -= fNclusters;
950 //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
951 // <<fNclusters<<endl;
952 Int_t fNofMaps = fSegmentation->Npz();
953 Int_t fNofAnodes = fNofMaps/2;
954 Int_t dummy=0;
955 Double_t fTimeStep = fSegmentation->Dpx(dummy);
956 Double_t fSddLength = fSegmentation->Dx();
957 Double_t fDriftSpeed = fResponse->DriftSpeed();
958 Double_t anodePitch = fSegmentation->Dpz(dummy);
959 Float_t n, baseline;
960 fResponse->GetNoiseParam(n,baseline);
961 Float_t dzz_1A = anodePitch * anodePitch / 12;
962 // fill Map of signals
a1f090e0 963 fMap->FillMap();
42da2935 964 Int_t j,i,ii,ianode,anode,itime;
965 Int_t wing,astart,astop,tstart,tstop,nanode;
966 Double_t fadc,ClusterTime;
967 Double_t q[400],x[400],z[400]; // digit charges and coordinates
968 for(j=0; j<nofClusters; j++) {
50d05d7b 969 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
970 Int_t ndigits = 0;
971 astart=clusterJ->Astart();
972 astop=clusterJ->Astop();
973 tstart=clusterJ->Tstartf();
974 tstop=clusterJ->Tstopf();
975 nanode=clusterJ->Anodes(); // <- Ernesto
976 wing=(Int_t)clusterJ->W();
977 if(wing == 2) {
978 astart += fNofAnodes;
979 astop += fNofAnodes;
980 } // end if
981 // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
982 // <<tstart<<","<<tstop<<endl;
983 // clear the digit arrays
984 for(ii=0; ii<400; ii++) {
985 q[ii] = 0.;
986 x[ii] = 0.;
987 z[ii] = 0.;
988 } // end for ii
42da2935 989
50d05d7b 990 for(ianode=astart; ianode<=astop; ianode++) {
991 for(itime=tstart; itime<=tstop; itime++) {
992 fadc=fMap->GetSignal(ianode,itime);
993 if(fadc>baseline) {
994 fadc-=(Double_t)baseline;
995 q[ndigits] = fadc*(fTimeStep/160); // KeV
996 anode = ianode;
997 if(wing == 2) anode -= fNofAnodes;
998 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
999 ClusterTime = itime*fTimeStep;
1000 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
1001 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
1002 if(wing == 1) x[ndigits] *= (-1);
1003 // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
1004 // <<fadc<<endl;
1005 // cout<<"wing,anode,ndigits,charge ="<<wing<<","
1006 // <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
1007 ndigits++;
1008 continue;
1009 } // end if
1010 fadc=0;
1011 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
1012 } // time loop
1013 } // anode loop
1014 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
1015 // Fit cluster to resolve for two separate ones --------------------
1016 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1017 Double_t dxx=0., dzz=0., dxz=0.;
1018 Double_t scl = 0., tmp, tga, elps = -1.;
1019 Double_t xfit[2], zfit[2], qfit[2];
1020 Double_t pitchz = anodePitch*1.e-4; // cm
1021 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
1022 Double_t sigma2;
1023 Int_t nfhits;
1024 Int_t nbins = ndigits;
1025 Int_t separate = 0;
1026 // now, all lengths are in microns
1027 for (ii=0; ii<nbins; ii++) {
1028 qq += q[ii];
1029 xm += x[ii]*q[ii];
1030 zm += z[ii]*q[ii];
1031 xx += x[ii]*x[ii]*q[ii];
1032 zz += z[ii]*z[ii]*q[ii];
1033 xz += x[ii]*z[ii]*q[ii];
1034 } // end for ii
1035 xm /= qq;
1036 zm /= qq;
1037 xx /= qq;
1038 zz /= qq;
1039 xz /= qq;
1040 dxx = xx - xm*xm;
1041 dzz = zz - zm*zm;
1042 dxz = xz - xm*zm;
42da2935 1043
50d05d7b 1044 // shrink the cluster in the time direction proportionaly to the
1045 // dxx/dzz, which lineary depends from the drift path
1046 // new Ernesto........
1047 if( nanode == 1 ){
1048 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1049 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1050 } // end if
1051 if( nanode == 2 ){
1052 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1053 } // end if
1054 if( nanode == 3 ){
1055 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1056 } // end if
1057 if( nanode > 3 ){
1058 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1059 } // end if
1060 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1061 // <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1062 // old Boris.........
1063 // tmp=29730. - 585.*fabs(xm/1000.);
1064 // scl=TMath::Sqrt(tmp/130000.);
a1f090e0 1065
50d05d7b 1066 xm *= scl;
1067 xx *= scl*scl;
1068 xz *= scl;
42da2935 1069
50d05d7b 1070 dxx = xx - xm*xm;
1071 // dzz = zz - zm*zm;
1072 dxz = xz - xm*zm;
1073 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1074 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1075 // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
a1f090e0 1076
50d05d7b 1077 if (dxx < 0.) dxx=0.;
1078 // the data if no cluster overlapping (the coordunates are in cm)
1079 nfhits = 1;
1080 xfit[0] = xm*1.e-4;
1081 zfit[0] = zm*1.e-4;
1082 qfit[0] = qq;
1083 // if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
a1f090e0 1084
50d05d7b 1085 if (nbins >= 7) {
1086 if (dxz==0.) tga=0.;
1087 else {
1088 tmp=0.5*(dzz-dxx)/dxz;
1089 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) :
1090 tmp+TMath::Sqrt(tmp*tmp+1);
1091 } // end if dxz
1092 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1093 // change from microns to cm
1094 xm *= 1.e-4;
1095 zm *= 1.e-4;
1096 zz *= 1.e-8;
1097 xx *= 1.e-8;
1098 xz *= 1.e-8;
1099 dxz *= 1.e-8;
1100 dxx *= 1.e-8;
1101 dzz *= 1.e-8;
1102 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1103 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1104 for (i=0; i<nbins; i++) {
1105 x[i] = x[i] *= scl;
1106 x[i] = x[i] *= 1.e-4;
1107 z[i] = z[i] *= 1.e-4;
1108 } // end for i
1109 // cout<<"!!! elps ="<<elps<<endl;
1110 if (elps < 0.3) { // try to separate hits
1111 separate = 1;
1112 tmp=atan(tga);
1113 Double_t cosa=cos(tmp),sina=sin(tmp);
1114 Double_t a1=0., x1=0., xxx=0.;
1115 for (i=0; i<nbins; i++) {
1116 tmp=x[i]*cosa + z[i]*sina;
1117 if (q[i] > a1) {
1118 a1=q[i];
1119 x1=tmp;
1120 } // end if
1121 xxx += tmp*tmp*tmp*q[i];
1122 } // end for i
1123 xxx /= qq;
1124 Double_t z12=-sina*xm + cosa*zm;
1125 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1126 xm=cosa*xm + sina*zm;
1127 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1128 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1129 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1130 for (i=0; i<33; i++) { // solve a system of equations
1131 Double_t x1_old=x1, x2_old=x2, r_old=r;
1132 Double_t c11=x1-x2;
1133 Double_t c12=r;
1134 Double_t c13=1-r;
1135 Double_t c21=x1*x1 - x2*x2;
1136 Double_t c22=2*r*x1;
1137 Double_t c23=2*(1-r)*x2;
1138 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1139 Double_t c32=3*r*(sigma2 + x1*x1);
1140 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1141 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1142 Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1143 Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1144 (3*sigma2+x2*x2)-xxx);
1145 Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1146 c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1147 if (d==0.) {
1148 cout<<"*********** d=0 ***********\n";
1149 break;
1150 } // end if
1151 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1152 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1153 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1154 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1155 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1156 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1157 r += dr/d;
1158 x1 += d1/d;
1159 x2 += d2/d;
1160 if (fabs(x1-x1_old) > 0.0001) continue;
1161 if (fabs(x2-x2_old) > 0.0001) continue;
1162 if (fabs(r-r_old)/5 > 0.001) continue;
1163 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1164 Double_t a2=a1*(1-r)/r;
1165 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina +
1166 z12*cosa;
1167 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina +
1168 z12*cosa;
1169 nfhits=2;
1170 break; // Ok !
1171 } // end for i
1172 if (i==33) cerr<<"No more iterations ! "<<endl;
1173 } // end of attempt to separate overlapped clusters
1174 } // end of nbins cut
1175 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1176 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1177 <<elps<<","<<nfhits<<endl;
1178 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1179 for (i=0; i<nfhits; i++) {
1180 xfit[i] *= (1.e+4/scl);
1181 if(wing == 1) xfit[i] *= (-1);
1182 zfit[i] *= 1.e+4;
1183 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","
1184 // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1185 } // end for i
1186 Int_t ncl = nfhits;
1187 if(nfhits == 1 && separate == 1) {
1188 cout<<"!!!!! no separate"<<endl;
1189 ncl = -2;
1190 } // end if
1191 if(nfhits == 2) {
1192 cout << "Split cluster: " << endl;
1193 clusterJ->PrintInfo();
1194 cout << " in: " << endl;
1195 for (i=0; i<nfhits; i++) {
1196 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
42da2935 1197 -1,-1,(Float_t)qfit[i],ncl,0,0,
1198 (Float_t)xfit[i],
1199 (Float_t)zfit[i],0,0,0,0,
1200 tstart,tstop,astart,astop);
50d05d7b 1201 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1202 // -1,(Float_t)qfit[i],0,0,0,
1203 // (Float_t)xfit[i],
1204 // (Float_t)zfit[i],0,0,0,0,
1205 // tstart,tstop,astart,astop,ncl);
1206 // ???????????
1207 // if(wing == 1) xfit[i] *= (-1);
1208 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1209 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1210 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1211 Float_t peakpos = clusterJ->PeakPos();
1212 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1213 Float_t clusterDriftPath = Time*fDriftSpeed;
1214 clusterDriftPath = fSddLength-clusterDriftPath;
1215 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1216 Time,qfit[i],
42da2935 1217 clusterPeakAmplitude,peakpos,
1218 0.,0.,clusterDriftPath,
1219 clusteranodePath,clusterJ->Samples()/2
50d05d7b 1220 ,tstart,tstop,0,0,0,astart,astop);
1221 clust->PrintInfo();
1222 iTS->AddCluster(1,clust);
1223 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1224 // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1225 // <<","<<ncl<<endl;
1226 delete clust;
1227 }// nfhits loop
1228 fClusters->RemoveAt(j);
42da2935 1229 } // if nfhits = 2
1230} // cluster loop
1231fClusters->Compress();
1232fMap->ClearMap();
1233*/
1234 return;
a1f090e0 1235}
42da2935 1236//______________________________________________________________________
1237void AliITSClusterFinderSDD::GetRecPoints(){
1238 // get rec points
1239 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1240 // get number of clusters for this module
1241 Int_t nofClusters = fClusters->GetEntriesFast();
1242 nofClusters -= fNclusters;
1243 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1244 const Float_t kconv = 1.0e-4;
1245 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1246 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
ee86d557 1247 Int_t i,j;
42da2935 1248 Int_t ix, iz, idx=-1;
1249 AliITSdigitSDD *dig=0;
1250 Int_t ndigits=fDigits->GetEntriesFast();
1251 for(i=0; i<nofClusters; i++) {
50d05d7b 1252 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1253 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1254 if(clusterI) idx=clusterI->PeakPos();
1255 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1256 // try peak neighbours - to be done
1257 if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
507cf1a7 1258 //// debug
1259 // cout<<"R.C. Anode = "<<clusterI->A()<<"; Time= "<<clusterI->T()<<endl;
1260 fSegmentation->LocalToDet(clusterI->X(),clusterI->Z(),ix,iz);
1261 // cout<<"From R.C. coordinates- Anode: "<<iz<<" and time: "<<ix<<endl;
1262 // end debug
1263 Int_t trks[10];
1264 Int_t notr=-1;
1265 Int_t deger = 0;
1266 if(!dig) {
1267 Warning("GetRecPoints","Cannot assign the track number\n");
1268 }
1269 else {
1270 fSegmentation->LocalToDet(clusterI->X(),clusterI->Z(),ix,iz);
1271 Int_t signal[30];
1272 for(Int_t kk=0;kk<9;kk++)trks[kk]=-2;
1273 AliITSdigitSDD * pdig = 0;
1274 for(Int_t itime=ix-1;itime<=ix+1;itime++){
1275 if(itime<0 || itime>=fSegmentation->Npx())continue;
1276 for(Int_t ianod=iz-1;ianod<=iz+1;ianod++){
1277 if(ianod<0 || ianod>=fSegmentation->Npz())continue;
1278 if(iz==(fSegmentation->Npz())/2 && ianod<iz)continue;
1279 if(iz==(fSegmentation->Npz())/2-1 && ianod>iz)continue;
1280 pdig = (AliITSdigitSDD*)fMap->GetHit(ianod,itime);
1281 if(pdig){
1282 for(Int_t kk=0;kk<3;kk++){
1283 if(kk == 0 || (kk>0 && pdig->fTracks[kk]>=0)){
1284 notr++;
1285 trks[notr]=pdig->fTracks[kk];
1286 signal[notr]=pdig->fSignal;
1287 }
1288 }
1289 }
1290 }
1291 } // for(itime....
1292 if((dig->fCoord1<(iz-1) || dig->fCoord1>(iz+1))
1293 && (dig->fCoord2<(ix-1) || dig->fCoord2>(ix+1))
1294 && dig->fTracks[0]>=-2){
1295 notr++;
1296 trks[notr]=dig->fTracks[0];
1297 signal[notr]=dig->fSignal;
1298 }
1299 for(Int_t ii=0; ii<notr;ii++){
1300 for(Int_t jj=ii+1; jj<=notr; jj++){
1301 if(trks[ii] == trks[jj]){
1302 signal[ii]+=signal[jj];
1303 signal[jj]=-100;
1304 trks[jj]=-jj-100;
1305 deger++;
1306 }
1307 }
1308 }
1309 Int_t ordtmp;
1310 for(Int_t ii=0; ii<notr;ii++){
1311 Int_t maxi = ii;
1312 for(Int_t jj=ii+1; jj<=notr; jj++){
1313 if(signal[jj]>signal[maxi])maxi=jj;
1314 }
1315 ordtmp = trks[ii];
1316 trks[ii]=trks[maxi];
1317 trks[maxi]=ordtmp;
1318 ordtmp = signal[ii];
1319 signal[ii]=signal[maxi];
1320 signal[maxi]=ordtmp;
1321 }
1322 }
1323 notr-=deger;
1324 notr++;
1325 /*
1326 if(!dig) {
50d05d7b 1327 // try cog
1328 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1329 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1330 // if null try neighbours
1331 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1332 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1333 if (!dig) printf("SDD: cannot assign the track number!\n");
1334 } // end if !dig
507cf1a7 1335 */
50d05d7b 1336 AliITSRecPoint rnew;
1337 rnew.SetX(clusterI->X());
1338 rnew.SetZ(clusterI->Z());
1339 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
507cf1a7 1340 // cout<<"Cluster # "<<i<< " - X,Z,Q= "<<clusterI->X()<<" "<<clusterI->Z()<<" "<<clusterI->Q()<<"; Digit n= "<<idx<<endl;
50d05d7b 1341 rnew.SetdEdX(kconvGeV*clusterI->Q());
1342 rnew.SetSigmaX2(kRMSx*kRMSx);
1343 rnew.SetSigmaZ2(kRMSz*kRMSz);
507cf1a7 1344 if(notr>3)notr=3;
1345 if(notr>=0)for(j=0;j<notr;j++)rnew.fTracks[j]=trks[j];
1346 /*
ee86d557 1347 if(dig){
507cf1a7 1348 for(j=0;j<dig->GetNTracks();j++){
1349 if(j>0 && j%4==0)cout<<endl;
1350 }
1351 cout<<endl;
ee86d557 1352 rnew.fTracks[0] = dig->fTracks[0];
507cf1a7 1353 cout<<" "<<dig->fTracks[0]<<" assigned to rp 0 "<<rnew.fTracks[0]<<endl;
ee86d557 1354 rnew.fTracks[1] = -3;
1355 rnew.fTracks[2] = -3;
1356 j=1;
1357 while(rnew.fTracks[0]==dig->fTracks[j] &&
1358 j<dig->GetNTracks()) j++;
1359 if(j<dig->GetNTracks()){
1360 rnew.fTracks[1] = dig->fTracks[j];
507cf1a7 1361 cout<<" Digit "<<j<<" "<<dig->fTracks[j]<<" assigned to rp 1 "<<rnew.fTracks[1]<<endl;
f8d9a5b8 1362 while((rnew.fTracks[0]==dig->fTracks[j] ||
1363 rnew.fTracks[1]==dig->fTracks[j] )&&
ee86d557 1364 j<dig->GetNTracks()) j++;
507cf1a7 1365 if(j<dig->GetNTracks()) {
1366 rnew.fTracks[2] = dig->fTracks[j];
1367 cout<<" Digit "<<j<<" "<<dig->fTracks[j]<<" assigned to rp 2 "<<rnew.fTracks[2]<<endl;
1368 }
ee86d557 1369 } // end if
1370 } // end if
507cf1a7 1371 */
1372
50d05d7b 1373 iTS->AddRecPoint(rnew);
42da2935 1374 } // I clusters
50d05d7b 1375// fMap->ClearMap();
b0f5e3fc 1376}
42da2935 1377//______________________________________________________________________
1378void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1379 // find raw clusters
50d05d7b 1380
1381 fModule = mod;
1382
a1f090e0 1383 Find1DClustersE();
b0f5e3fc 1384 GroupClusters();
1385 SelectClusters();
a1f090e0 1386 ResolveClustersE();
b0f5e3fc 1387 GetRecPoints();
1388}
42da2935 1389//_______________________________________________________________________
bf3f2830 1390void AliITSClusterFinderSDD::Print() const{
42da2935 1391 // Print SDD cluster finder Parameters
1392
1393 cout << "**************************************************" << endl;
1394 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1395 cout << "**************************************************" << endl;
1396 cout << "Number of Clusters: " << fNclusters << endl;
1397 cout << "Anode Tolerance: " << fDAnode << endl;
1398 cout << "Time Tolerance: " << fDTime << endl;
1399 cout << "Time correction (electronics): " << fTimeCorr << endl;
1400 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1401 cout << "Minimum Amplitude: " << fMinPeak << endl;
1402 cout << "Minimum Charge: " << fMinCharge << endl;
1403 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1404 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1405 cout << "**************************************************" << endl;
a1f090e0 1406}