]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSClusterFinderSDD.cxx
Field conversion factor added.
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
48058160 15/*
16 $Id$
17 $Log$
4ae5bbc4 18 Revision 1.27 2002/10/14 14:57:00 hristov
19 Merging the VirtualMC branch to the main development branch (HEAD)
20
b9d0a01d 21 Revision 1.23.4.2 2002/10/14 13:14:07 hristov
22 Updating VirtualMC to v3-09-02
23
24 Revision 1.26 2002/09/09 17:23:28 nilsen
25 Minor changes in support of changes to AliITSdigitS?D class'.
26
ee86d557 27 Revision 1.25 2002/05/10 22:29:40 nilsen
28 Change my Massimo Masera in the default constructor to bring things into
29 compliance.
30
355ccb70 31 Revision 1.24 2002/04/24 22:02:31 nilsen
32 New SDigits and Digits routines, and related changes, (including new
33 noise values).
34
48058160 35 */
36
4ae5bbc4 37#include <Riostream.h>
78a228db 38#include <TFile.h>
a1f090e0 39#include <TMath.h>
40#include <math.h>
b0f5e3fc 41
42#include "AliITSClusterFinderSDD.h"
e8189707 43#include "AliITSMapA1.h"
44#include "AliITS.h"
78a228db 45#include "AliITSdigit.h"
46#include "AliITSRawCluster.h"
47#include "AliITSRecPoint.h"
48#include "AliITSsegmentation.h"
5dd4cc39 49#include "AliITSresponseSDD.h"
b0f5e3fc 50#include "AliRun.h"
51
b0f5e3fc 52ClassImp(AliITSClusterFinderSDD)
53
42da2935 54//______________________________________________________________________
55AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
50d05d7b 56 AliITSresponse *response,
57 TClonesArray *digits,
58 TClonesArray *recp){
42da2935 59 // standard constructor
78a228db 60
b48af428 61 fSegmentation = seg;
62 fResponse = response;
63 fDigits = digits;
64 fClusters = recp;
65 fNclusters = fClusters->GetEntriesFast();
b0f5e3fc 66 SetCutAmplitude();
67 SetDAnode();
68 SetDTime();
355ccb70 69 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
70 // SetMinPeak();
78a228db 71 SetMinNCells();
72 SetMaxNCells();
73 SetTimeCorr();
a1f090e0 74 SetMinCharge();
b48af428 75 fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
b0f5e3fc 76}
42da2935 77//______________________________________________________________________
78AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
79 // default constructor
b0f5e3fc 80
b48af428 81 fSegmentation = 0;
82 fResponse = 0;
83 fDigits = 0;
84 fClusters = 0;
85 fNclusters = 0;
86 fMap = 0;
87 fCutAmplitude = 0;
355ccb70 88 fDAnode = 0;
89 fDTime = 0;
90 fMinPeak = 0;
91 fMinNCells = 0;
92 fMaxNCells = 0;
93 fTimeCorr = 0;
94 fMinCharge = 0;
95 /*
b0f5e3fc 96 SetDAnode();
97 SetDTime();
48058160 98 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
78a228db 99 SetMinNCells();
100 SetMaxNCells();
101 SetTimeCorr();
a1f090e0 102 SetMinCharge();
355ccb70 103 */
b0f5e3fc 104}
42da2935 105//____________________________________________________________________________
106AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
e8189707 107 // destructor
108
109 if(fMap) delete fMap;
e8189707 110}
42da2935 111//______________________________________________________________________
112void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
113 // set the signal threshold for cluster finder
114 Float_t baseline,noise,noise_after_el;
115
116 fResponse->GetNoiseParam(noise,baseline);
117 noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
b48af428 118 fCutAmplitude = (Int_t)((baseline + nsigma*noise_after_el));
5dd4cc39 119}
42da2935 120//______________________________________________________________________
121void AliITSClusterFinderSDD::Find1DClusters(){
122 // find 1D clusters
b48af428 123 static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
a1f090e0 124
42da2935 125 // retrieve the parameters
b48af428 126 Int_t fNofMaps = fSegmentation->Npz();
42da2935 127 Int_t fMaxNofSamples = fSegmentation->Npx();
b48af428 128 Int_t fNofAnodes = fNofMaps/2;
129 Int_t dummy = 0;
130 Float_t fTimeStep = fSegmentation->Dpx(dummy);
131 Float_t fSddLength = fSegmentation->Dx();
132 Float_t fDriftSpeed = fResponse->DriftSpeed();
133 Float_t anodePitch = fSegmentation->Dpz(dummy);
42da2935 134
135 // map the signal
50d05d7b 136 fMap->ClearMap();
42da2935 137 fMap->SetThreshold(fCutAmplitude);
138 fMap->FillMap();
a1f090e0 139
42da2935 140 Float_t noise;
141 Float_t baseline;
142 fResponse->GetNoiseParam(noise,baseline);
a1f090e0 143
42da2935 144 Int_t nofFoundClusters = 0;
145 Int_t i;
146 Float_t **dfadc = new Float_t*[fNofAnodes];
147 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
b48af428 148 Float_t fadc = 0.;
42da2935 149 Float_t fadc1 = 0.;
150 Float_t fadc2 = 0.;
151 Int_t j,k,idx,l,m;
152 for(j=0;j<2;j++) {
50d05d7b 153 for(k=0;k<fNofAnodes;k++) {
154 idx = j*fNofAnodes+k;
155 // signal (fadc) & derivative (dfadc)
156 dfadc[k][255]=0.;
157 for(l=0; l<fMaxNofSamples; l++) {
158 fadc2=(Float_t)fMap->GetSignal(idx,l);
159 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
160 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
161 } // samples
162 } // anodes
42da2935 163
50d05d7b 164 for(k=0;k<fNofAnodes;k++) {
165 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
166 idx = j*fNofAnodes+k;
167 Int_t imax = 0;
168 Int_t imaxd = 0;
169 Int_t it = 0;
170 while(it <= fMaxNofSamples-3) {
171 imax = it;
172 imaxd = it;
173 // maximum of signal
174 Float_t fadcmax = 0.;
175 Float_t dfadcmax = 0.;
176 Int_t lthrmina = 1;
177 Int_t lthrmint = 3;
178 Int_t lthra = 1;
179 Int_t lthrt = 0;
180 for(m=0;m<20;m++) {
181 Int_t id = it+m;
182 if(id>=fMaxNofSamples) break;
183 fadc=(float)fMap->GetSignal(idx,id);
184 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
185 if(fadc > (float)fCutAmplitude) {
186 lthrt++;
187 } // end if
188 if(dfadc[k][id] > dfadcmax) {
189 dfadcmax = dfadc[k][id];
190 imaxd = id;
191 } // end if
192 } // end for m
193 it = imaxd;
194 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
195 // cluster charge
196 Int_t tstart = it-2;
197 if(tstart < 0) tstart = 0;
198 Bool_t ilcl = 0;
199 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
200 if(ilcl) {
201 nofFoundClusters++;
202 Int_t tstop = tstart;
203 Float_t dfadcmin = 10000.;
204 Int_t ij;
205 for(ij=0; ij<20; ij++) {
206 if(tstart+ij > 255) { tstop = 255; break; }
207 fadc=(float)fMap->GetSignal(idx,tstart+ij);
208 if((dfadc[k][tstart+ij] < dfadcmin) &&
209 (fadc > fCutAmplitude)) {
210 tstop = tstart+ij+5;
211 if(tstop > 255) tstop = 255;
212 dfadcmin = dfadc[k][it+ij];
213 } // end if
214 } // end for ij
42da2935 215
50d05d7b 216 Float_t clusterCharge = 0.;
217 Float_t clusterAnode = k+0.5;
218 Float_t clusterTime = 0.;
219 Int_t clusterMult = 0;
220 Float_t clusterPeakAmplitude = 0.;
221 Int_t its,peakpos = -1;
222 Float_t n, baseline;
223 fResponse->GetNoiseParam(n,baseline);
224 for(its=tstart; its<=tstop; its++) {
225 fadc=(float)fMap->GetSignal(idx,its);
226 if(fadc>baseline) fadc -= baseline;
227 else fadc = 0.;
228 clusterCharge += fadc;
229 // as a matter of fact we should take the peak
230 // pos before FFT
231 // to get the list of tracks !!!
232 if(fadc > clusterPeakAmplitude) {
233 clusterPeakAmplitude = fadc;
234 //peakpos=fMap->GetHitIndex(idx,its);
235 Int_t shift = (int)(fTimeCorr/fTimeStep);
236 if(its>shift && its<(fMaxNofSamples-shift))
237 peakpos = fMap->GetHitIndex(idx,its+shift);
238 else peakpos = fMap->GetHitIndex(idx,its);
239 if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
240 } // end if
241 clusterTime += fadc*its;
242 if(fadc > 0) clusterMult++;
243 if(its == tstop) {
244 clusterTime /= (clusterCharge/fTimeStep); // ns
245 if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
246 //ns
247 } // end if
248 } // end for its
42da2935 249
50d05d7b 250 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
251 anodePitch;
252 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
253 clusterDriftPath = fSddLength-clusterDriftPath;
254 if(clusterCharge <= 0.) break;
255 AliITSRawClusterSDD clust(j+1,//i
256 clusterAnode,clusterTime,//ff
257 clusterCharge, //f
258 clusterPeakAmplitude, //f
259 peakpos, //i
260 0.,0.,clusterDriftPath,//fff
261 clusteranodePath, //f
262 clusterMult, //i
263 0,0,0,0,0,0,0);//7*i
264 iTS->AddCluster(1,&clust);
265 it = tstop;
266 } // ilcl
267 it++;
268 } // while (samples)
269 } // anodes
42da2935 270 } // detectors (2)
42da2935 271
272 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
273 delete [] dfadc;
a1f090e0 274
42da2935 275 return;
a1f090e0 276}
50d05d7b 277
278
279
42da2935 280//______________________________________________________________________
281void AliITSClusterFinderSDD::Find1DClustersE(){
24a1c341 282 // find 1D clusters
42da2935 283 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
284 // retrieve the parameters
285 Int_t fNofMaps = fSegmentation->Npz();
286 Int_t fMaxNofSamples = fSegmentation->Npx();
287 Int_t fNofAnodes = fNofMaps/2;
288 Int_t dummy=0;
289 Float_t fTimeStep = fSegmentation->Dpx( dummy );
290 Float_t fSddLength = fSegmentation->Dx();
291 Float_t fDriftSpeed = fResponse->DriftSpeed();
292 Float_t anodePitch = fSegmentation->Dpz( dummy );
293 Float_t n, baseline;
294 fResponse->GetNoiseParam( n, baseline );
295 // map the signal
50d05d7b 296 fMap->ClearMap();
42da2935 297 fMap->SetThreshold( fCutAmplitude );
298 fMap->FillMap();
50d05d7b 299
42da2935 300 Int_t nClu = 0;
50d05d7b 301 // cout << "Search cluster... "<< endl;
42da2935 302 for( Int_t j=0; j<2; j++ ){
50d05d7b 303 for( Int_t k=0; k<fNofAnodes; k++ ){
304 Int_t idx = j*fNofAnodes+k;
305 Bool_t on = kFALSE;
306 Int_t start = 0;
307 Int_t nTsteps = 0;
308 Float_t fmax = 0.;
309 Int_t lmax = 0;
310 Float_t charge = 0.;
311 Float_t time = 0.;
312 Float_t anode = k+0.5;
313 Int_t peakpos = -1;
314 for( Int_t l=0; l<fMaxNofSamples; l++ ){
315 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
316 if( fadc > 0.0 ){
317 if( on == kFALSE && l<fMaxNofSamples-4){
318 // star RawCluster (reset var.)
319 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
320 if( fadc1 < fadc ) continue;
321 start = l;
322 fmax = 0.;
323 lmax = 0;
324 time = 0.;
325 charge = 0.;
326 on = kTRUE;
327 nTsteps = 0;
328 } // end if on...
329 nTsteps++ ;
330 if( fadc > baseline ) fadc -= baseline;
331 else fadc=0.;
332 charge += fadc;
333 time += fadc*l;
334 if( fadc > fmax ){
335 fmax = fadc;
336 lmax = l;
337 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
338 if( l > shift && l < (fMaxNofSamples-shift) )
339 peakpos = fMap->GetHitIndex( idx, l+shift );
340 else
341 peakpos = fMap->GetHitIndex( idx, l );
342 if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
343 } // end if fadc
344 }else{ // end fadc>0
345 if( on == kTRUE ){
346 if( nTsteps > 2 ){
347 // min # of timesteps for a RawCluster
348 // Found a RawCluster...
349 Int_t stop = l-1;
350 time /= (charge/fTimeStep); // ns
351 // time = lmax*fTimeStep; // ns
352 if( time > fTimeCorr ) time -= fTimeCorr; // ns
353 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
354 Float_t driftPath = time*fDriftSpeed;
355 driftPath = fSddLength-driftPath;
356 AliITSRawClusterSDD clust(j+1,anode,time,charge,
357 fmax, peakpos,0.,0.,
358 driftPath,anodePath,
359 nTsteps,start,stop,
360 start, stop, 1, k, k );
361 iTS->AddCluster( 1, &clust );
362 // clust.PrintInfo();
363 nClu++;
364 } // end if nTsteps
365 on = kFALSE;
366 } // end if on==kTRUE
367 } // end if fadc>0
368 } // samples
369 } // anodes
42da2935 370 } // wings
50d05d7b 371 // cout << "# Rawclusters " << nClu << endl;
42da2935 372 return;
a1f090e0 373}
42da2935 374//_______________________________________________________________________
375Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
50d05d7b 376 Int_t *peakX, Int_t *peakZ,
377 Float_t *peakAmp, Float_t minpeak ){
42da2935 378 // search peaks on a 2D cluster
379 Int_t npeak = 0; // # peaks
56fff130 380 Int_t i,j;
42da2935 381 // search peaks
382 for( Int_t z=1; z<zdim-1; z++ ){
48058160 383 for( Int_t x=1; x<xdim-2; x++ ){
50d05d7b 384 Float_t sxz = spect[x*zdim+z];
385 Float_t sxz1 = spect[(x+1)*zdim+z];
386 Float_t sxz2 = spect[(x-1)*zdim+z];
387 // search a local max. in s[x,z]
388 if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
389 if( sxz >= spect[(x+1)*zdim+z ] && sxz >= spect[(x-1)*zdim+z ] &&
390 sxz >= spect[x*zdim +z+1] && sxz >= spect[x*zdim +z-1] &&
391 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
392 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
393 // peak found
394 peakX[npeak] = x;
395 peakZ[npeak] = z;
396 peakAmp[npeak] = sxz;
397 npeak++;
398 } // end if ....
399 } // end for x
42da2935 400 } // end for z
401 // search groups of peaks with same amplitude.
402 Int_t *flag = new Int_t[npeak];
403 for( i=0; i<npeak; i++ ) flag[i] = 0;
404 for( i=0; i<npeak; i++ ){
50d05d7b 405 for( j=0; j<npeak; j++ ){
406 if( i==j) continue;
407 if( flag[j] > 0 ) continue;
408 if( peakAmp[i] == peakAmp[j] &&
409 TMath::Abs(peakX[i]-peakX[j])<=1 &&
410 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
411 if( flag[i] == 0) flag[i] = i+1;
412 flag[j] = flag[i];
413 } // end if ...
414 } // end for j
42da2935 415 } // end for i
50d05d7b 416 // make average of peak groups
42da2935 417 for( i=0; i<npeak; i++ ){
50d05d7b 418 Int_t nFlag = 1;
419 if( flag[i] <= 0 ) continue;
420 for( j=0; j<npeak; j++ ){
421 if( i==j ) continue;
422 if( flag[j] != flag[i] ) continue;
423 peakX[i] += peakX[j];
424 peakZ[i] += peakZ[j];
425 nFlag++;
426 npeak--;
427 for( Int_t k=j; k<npeak; k++ ){
428 peakX[k] = peakX[k+1];
429 peakZ[k] = peakZ[k+1];
430 peakAmp[k] = peakAmp[k+1];
431 flag[k] = flag[k+1];
432 } // end for k
433 j--;
434 } // end for j
435 if( nFlag > 1 ){
436 peakX[i] /= nFlag;
437 peakZ[i] /= nFlag;
438 } // end fi nFlag
42da2935 439 } // end for i
440 delete [] flag;
441 return( npeak );
a1f090e0 442}
42da2935 443//______________________________________________________________________
444void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
50d05d7b 445 Float_t *spe, Float_t *integral){
24a1c341 446 // function used to fit the clusters
50d05d7b 447 // par -> parameters..
24a1c341 448 // par[0] number of peaks.
449 // for each peak i=1, ..., par[0]
50d05d7b 450 // par[i] = Ampl.
451 // par[i+1] = xpos
452 // par[i+2] = zpos
453 // par[i+3] = tau
454 // par[i+4] = sigma.
24a1c341 455 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
456 const Int_t knParam = 5;
457 Int_t npeak = (Int_t)par[0];
42da2935 458
24a1c341 459 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
42da2935 460
24a1c341 461 Int_t k = 1;
42da2935 462 for( Int_t i=0; i<npeak; i++ ){
24a1c341 463 if( integral != 0 ) integral[i] = 0.;
464 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
465 Float_t T2 = par[k+3]; // PASCAL
466 if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
42da2935 467 for( Int_t z=0; z<zdim; z++ ){
468 for( Int_t x=0; x<xdim; x++ ){
24a1c341 469 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
470 Float_t x2 = 0.;
471 Float_t signal = 0.;
42da2935 472 if( electronics == 1 ){ // PASCAL
24a1c341 473 x2 = (x-par[k+1]+T2)/T2;
42da2935 474 signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
475 // signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
476 }else if( electronics == 2 ) { // OLA
50d05d7b 477 x2 = (x-par[k+1])*(x-par[k+1])/T2;
478 signal = par[k] * exp( -x2 - z2 );
479 } else {
480 cout << "Wrong SDD Electronics =" << electronics << endl;
481 // exit( 1 );
482 } // end if electronicx
24a1c341 483 spe[x*zdim+z] += signal;
484 if( integral != 0 ) integral[i] += signal;
42da2935 485 } // end for x
486 } // end for z
24a1c341 487 k += knParam;
42da2935 488 } // end for i
24a1c341 489 return;
a1f090e0 490}
42da2935 491//__________________________________________________________________________
492Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
50d05d7b 493 Float_t *speFit ){
42da2935 494 // EVALUATES UNNORMALIZED CHI-SQUARED
495 Float_t chi2 = 0.;
496 for( Int_t z=0; z<zdim; z++ ){
50d05d7b 497 for( Int_t x=1; x<xdim-1; x++ ){
498 Int_t index = x*zdim+z;
499 Float_t tmp = spe[index] - speFit[index];
500 chi2 += tmp*tmp;
501 } // end for x
42da2935 502 } // end for z
503 return( chi2 );
a1f090e0 504}
42da2935 505//_______________________________________________________________________
506void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
50d05d7b 507 Float_t *prm0,Float_t *steprm,
508 Float_t *chisqr,Float_t *spe,
509 Float_t *speFit ){
42da2935 510 //
511 Int_t k, nnn, mmm, i;
512 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
513 const Int_t knParam = 5;
514 Int_t npeak = (Int_t)param[0];
515 for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
516 for( k=1; k<(npeak*knParam+1); k++ ){
50d05d7b 517 p1 = param[k];
518 delta = steprm[k];
519 d1 = delta;
520 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
521 if( fabs( p1 ) > 1.0E-6 )
522 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
523 else delta = (Float_t)1.0E-4;
524 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
525 PeakFunc( xdim, zdim, param, speFit );
526 chisq1 = ChiSqr( xdim, zdim, spe, speFit );
527 p2 = p1+delta;
528 param[k] = p2;
529 PeakFunc( xdim, zdim, param, speFit );
530 chisq2 = ChiSqr( xdim, zdim, spe, speFit );
531 if( chisq1 < chisq2 ){
532 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
533 delta = -delta;
534 t = p1;
535 p1 = p2;
536 p2 = t;
537 t = chisq1;
538 chisq1 = chisq2;
539 chisq2 = t;
540 } // end if
541 i = 1; nnn = 0;
542 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
543 nnn++;
544 p3 = p2 + delta;
545 mmm = nnn - (nnn/5)*5; // multiplo de 5
546 if( mmm == 0 ){
547 d1 = delta;
548 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
549 delta *= 5;
550 } // end if
551 param[k] = p3;
552 // Constrain paramiters
553 Int_t kpos = (k-1) % knParam;
554 switch( kpos ){
555 case 0 :
556 if( param[k] <= 20 ) param[k] = fMinPeak;
557 break;
558 case 1 :
559 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
560 break;
561 case 2 :
562 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
563 break;
564 case 3 :
565 if( param[k] < .5 ) param[k] = .5;
566 break;
567 case 4 :
568 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
569 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
570 break;
571 }; // end switch
572 PeakFunc( xdim, zdim, param, speFit );
573 chisq3 = ChiSqr( xdim, zdim, spe, speFit );
574 if( chisq3 < chisq2 && nnn < 50 ){
575 p1 = p2;
576 p2 = p3;
577 chisq1 = chisq2;
578 chisq2 = chisq3;
579 }else i=0;
580 } while( i );
581 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
582 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
583 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
584 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
585 else p0 = 10000;
586 //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
587 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
588 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
589 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
590 //if( fabs( p2-p0 ) > dp ) p0 = p2;
591 param[k] = p0;
592 // Constrain paramiters
593 Int_t kpos = (k-1) % knParam;
594 switch( kpos ){
595 case 0 :
596 if( param[k] <= 20 ) param[k] = fMinPeak;
597 break;
598 case 1 :
599 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
600 break;
601 case 2 :
602 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
603 break;
604 case 3 :
605 if( param[k] < .5 ) param[k] = .5;
606 break;
607 case 4 :
608 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
609 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
610 break;
611 }; // end switch
612 PeakFunc( xdim, zdim, param, speFit );
613 chisqt = ChiSqr( xdim, zdim, spe, speFit );
614 // DO NOT ALLOW ERRONEOUS INTERPOLATION
615 if( chisqt <= *chisqr ) *chisqr = chisqt;
616 else param[k] = prm0[k];
617 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
618 steprm[k] = (param[k]-prm0[k])/5;
619 if( steprm[k] >= d1 ) steprm[k] = d1/5;
42da2935 620 } // end for k
621 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
622 PeakFunc( xdim, zdim, param, speFit );
623 *chisqr = ChiSqr( xdim, zdim, spe, speFit );
624 return;
a1f090e0 625}
42da2935 626//_________________________________________________________________________
627Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim,
50d05d7b 628 Float_t *param, Float_t *spe,
629 Int_t *niter, Float_t *chir ){
42da2935 630 // fit method from Comput. Phys. Commun 46(1987) 149
50d05d7b 631 const Float_t kchilmt = 0.01; // relative accuracy
632 const Int_t knel = 3; // for parabolic minimization
633 const Int_t knstop = 50; // Max. iteration number
42da2935 634 const Int_t knParam = 5;
635 Int_t npeak = (Int_t)param[0];
636 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
637 if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
638 Float_t degFree = (xdim*zdim - npeak*knParam)-1;
639 Int_t n, k, iterNum = 0;
640 Float_t *prm0 = new Float_t[npeak*knParam+1];
641 Float_t *step = new Float_t[npeak*knParam+1];
642 Float_t *schi = new Float_t[npeak*knParam+1];
643 Float_t *sprm[3];
644 sprm[0] = new Float_t[npeak*knParam+1];
645 sprm[1] = new Float_t[npeak*knParam+1];
646 sprm[2] = new Float_t[npeak*knParam+1];
647 Float_t chi0, chi1, reldif, a, b, prmin, dp;
648 Float_t *speFit = new Float_t[ xdim*zdim ];
649 PeakFunc( xdim, zdim, param, speFit );
650 chi0 = ChiSqr( xdim, zdim, spe, speFit );
651 chi1 = chi0;
652 for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
50d05d7b 653 for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
654 step[k] = param[k] / 20.0 ;
655 step[k+1] = param[k+1] / 50.0;
656 step[k+2] = param[k+2] / 50.0;
657 step[k+3] = param[k+3] / 20.0;
658 step[k+4] = param[k+4] / 20.0;
659 } // end for k
42da2935 660 Int_t out = 0;
661 do{
50d05d7b 662 iterNum++;
663 chi0 = chi1;
664 Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
665 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
666 // EXIT conditions
667 if( reldif < (float) kchilmt ){
668 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
669 *niter = iterNum;
670 out = 0;
671 break;
672 } // end if
673 if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
674 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
675 *niter = iterNum;
676 out = 0;
677 break;
678 } // end if
679 if( iterNum > 5*knstop ){
680 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
681 *niter = iterNum;
682 out = 1;
683 break;
684 } // end if
685 if( iterNum <= knel ) continue;
686 n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
687 if( n > 3 || n == 0 ) continue;
688 schi[n-1] = chi1;
689 for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
690 if( n != 3 ) continue;
691 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
692 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
693 for( k=1; k<(npeak*knParam+1); k++ ){
694 Float_t tmp0 = sprm[0][k];
695 Float_t tmp1 = sprm[1][k];
696 Float_t tmp2 = sprm[2][k];
697 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
698 a += (schi[2]*(tmp0-tmp1));
699 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
700 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
701 (tmp0*tmp0-tmp1*tmp1)));
702 if ((double)a < 1.0E-6) prmin = 0;
703 else prmin = (float) (0.5*b/a);
704 dp = 5*(tmp2-tmp0);
705 if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
706 param[k] = prmin;
707 step[k] = dp/10; // OPTIMIZE SEARCH STEP
708 } // end for k
42da2935 709 } while( kTRUE );
710 delete [] prm0;
711 delete [] step;
712 delete [] schi;
713 delete [] sprm[0];
714 delete [] sprm[1];
715 delete [] sprm[2];
716 delete [] speFit;
717 return( out );
a1f090e0 718}
50d05d7b 719
42da2935 720//______________________________________________________________________
721void AliITSClusterFinderSDD::ResolveClustersE(){
722 // The function to resolve clusters if the clusters overlapping exists
24a1c341 723 Int_t i;
42da2935 724 static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
725 // get number of clusters for this module
726 Int_t nofClusters = fClusters->GetEntriesFast();
727 nofClusters -= fNclusters;
728 Int_t fNofMaps = fSegmentation->Npz();
729 Int_t fNofAnodes = fNofMaps/2;
730 Int_t fMaxNofSamples = fSegmentation->Npx();
731 Int_t dummy=0;
732 Double_t fTimeStep = fSegmentation->Dpx( dummy );
733 Double_t fSddLength = fSegmentation->Dx();
734 Double_t fDriftSpeed = fResponse->DriftSpeed();
735 Double_t anodePitch = fSegmentation->Dpz( dummy );
736 Float_t n, baseline;
737 fResponse->GetNoiseParam( n, baseline );
738 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
50d05d7b 739
42da2935 740 for( Int_t j=0; j<nofClusters; j++ ){
50d05d7b 741 // get cluster information
742 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
743 Int_t astart = clusterJ->Astart();
744 Int_t astop = clusterJ->Astop();
745 Int_t tstart = clusterJ->Tstartf();
746 Int_t tstop = clusterJ->Tstopf();
747 Int_t wing = (Int_t)clusterJ->W();
748 if( wing == 2 ){
749 astart += fNofAnodes;
750 astop += fNofAnodes;
751 } // end if
752 Int_t xdim = tstop-tstart+3;
753 Int_t zdim = astop-astart+3;
2bd89e94 754 if(xdim > 50 || zdim > 30) { cout << "Warning: xdim: " << xdim << ", zdim: " << zdim << endl; continue; }
50d05d7b 755 Float_t *sp = new Float_t[ xdim*zdim+1 ];
756 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
757
758 // make a local map from cluster region
759 for( Int_t ianode=astart; ianode<=astop; ianode++ ){
760 for( Int_t itime=tstart; itime<=tstop; itime++ ){
761 Float_t fadc = fMap->GetSignal( ianode, itime );
762 if( fadc > baseline ) fadc -= (Double_t)baseline;
763 else fadc = 0.;
764 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
765 sp[index] = fadc;
766 } // time loop
767 } // anode loop
768
769 // search peaks on cluster
770 const Int_t kNp = 150;
771 Int_t peakX1[kNp];
772 Int_t peakZ1[kNp];
773 Float_t peakAmp1[kNp];
774 Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
775
776 // if multiple peaks, split cluster
777 if( npeak >= 1 )
778 {
779 // cout << "npeak " << npeak << endl;
780 // clusterJ->PrintInfo();
781 Float_t *par = new Float_t[npeak*5+1];
782 par[0] = (Float_t)npeak;
48058160 783 // Initial parameters in cell dimentions
50d05d7b 784 Int_t k1 = 1;
785 for( i=0; i<npeak; i++ ){
786 par[k1] = peakAmp1[i];
787 par[k1+1] = peakX1[i]; // local time pos. [timebin]
788 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
789 if( electronics == 1 )
790 par[k1+3] = 2.; // PASCAL
791 else if( electronics == 2 )
792 par[k1+3] = 0.7; // tau [timebin] OLA
793 par[k1+4] = .4; // sigma [anodepich]
794 k1+=5;
795 } // end for i
796 Int_t niter;
797 Float_t chir;
798 NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
799 Float_t peakX[kNp];
800 Float_t peakZ[kNp];
801 Float_t sigma[kNp];
802 Float_t tau[kNp];
803 Float_t peakAmp[kNp];
804 Float_t integral[kNp];
805 //get integrals => charge for each peak
806 PeakFunc( xdim, zdim, par, sp, integral );
807 k1 = 1;
808 for( i=0; i<npeak; i++ ){
809 peakAmp[i] = par[k1];
810 peakX[i] = par[k1+1];
811 peakZ[i] = par[k1+2];
812 tau[i] = par[k1+3];
813 sigma[i] = par[k1+4];
814 k1+=5;
815 } // end for i
816 // calculate parameter for new clusters
817 for( i=0; i<npeak; i++ ){
818 AliITSRawClusterSDD clusterI( *clusterJ );
819 Int_t newAnode = peakZ1[i]-1 + astart;
820 Int_t newiTime = peakX1[i]-1 + tstart;
821 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
822 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) )
823 shift = 0;
824 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
825 clusterI.SetPeakPos( peakpos );
826 clusterI.SetPeakAmpl( peakAmp1[i] );
827 Float_t newAnodef = peakZ[i] - 0.5 + astart;
828 Float_t newiTimef = peakX[i] - 1 + tstart;
829 if( wing == 2 ) newAnodef -= fNofAnodes;
830 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
831 newiTimef *= fTimeStep;
832 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
833 if( electronics == 1 ){
48058160 834 // newiTimef *= 0.999438; // PASCAL
835 // newiTimef += (6./fDriftSpeed - newiTimef/3000.);
50d05d7b 836 }else if( electronics == 2 )
837 newiTimef *= 0.99714; // OLA
838 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
839 Float_t sign = ( wing == 1 ) ? -1. : 1.;
840 clusterI.SetX( driftPath*sign * 0.0001 );
841 clusterI.SetZ( anodePath * 0.0001 );
842 clusterI.SetAnode( newAnodef );
843 clusterI.SetTime( newiTimef );
844 clusterI.SetAsigma( sigma[i]*anodePitch );
845 clusterI.SetTsigma( tau[i]*fTimeStep );
846 clusterI.SetQ( integral[i] );
48058160 847 // clusterI.PrintInfo();
50d05d7b 848 iTS->AddCluster( 1, &clusterI );
849 } // end for i
850 fClusters->RemoveAt( j );
851 delete [] par;
48058160 852 } else { // something odd
853 cout << " --- Peak not found!!!! minpeak=" << fMinPeak<<
854 " cluster peak=" << clusterJ->PeakAmpl() <<
855 " module=" << fModule << endl;
50d05d7b 856 clusterJ->PrintInfo();
48058160 857 cout << " xdim=" << xdim-2 << " zdim=" << zdim-2 << endl << endl;
50d05d7b 858 }
859 delete [] sp;
42da2935 860 } // cluster loop
861 fClusters->Compress();
50d05d7b 862// fMap->ClearMap();
a1f090e0 863}
50d05d7b 864
865
42da2935 866//________________________________________________________________________
867void AliITSClusterFinderSDD::GroupClusters(){
868 // group clusters
869 Int_t dummy=0;
870 Float_t fTimeStep = fSegmentation->Dpx(dummy);
871 // get number of clusters for this module
872 Int_t nofClusters = fClusters->GetEntriesFast();
873 nofClusters -= fNclusters;
874 AliITSRawClusterSDD *clusterI;
875 AliITSRawClusterSDD *clusterJ;
876 Int_t *label = new Int_t [nofClusters];
877 Int_t i,j;
878 for(i=0; i<nofClusters; i++) label[i] = 0;
879 for(i=0; i<nofClusters; i++) {
50d05d7b 880 if(label[i] != 0) continue;
881 for(j=i+1; j<nofClusters; j++) {
882 if(label[j] != 0) continue;
883 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
884 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
885 // 1.3 good
886 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
887 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
888 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
889 if(!pair) continue;
890 // clusterI->PrintInfo();
891 // clusterJ->PrintInfo();
892 clusterI->Add(clusterJ);
893 label[j] = 1;
894 fClusters->RemoveAt(j);
895 j=i; // <- Ernesto
896 } // J clusters
897 label[i] = 1;
42da2935 898 } // I clusters
899 fClusters->Compress();
900
901 delete [] label;
902 return;
b0f5e3fc 903}
42da2935 904//________________________________________________________________________
905void AliITSClusterFinderSDD::SelectClusters(){
906 // get number of clusters for this module
907 Int_t nofClusters = fClusters->GetEntriesFast();
b0f5e3fc 908
42da2935 909 nofClusters -= fNclusters;
910 Int_t i;
911 for(i=0; i<nofClusters; i++) {
50d05d7b 912 AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
913 Int_t rmflg = 0;
914 Float_t wy = 0.;
915 if(clusterI->Anodes() != 0.) {
916 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
917 } // end if
918 Int_t amp = (Int_t) clusterI->PeakAmpl();
919 Int_t cha = (Int_t) clusterI->Q();
920 if(amp < fMinPeak) rmflg = 1;
921 if(cha < fMinCharge) rmflg = 1;
922 if(wy < fMinNCells) rmflg = 1;
923 //if(wy > fMaxNCells) rmflg = 1;
924 if(rmflg) fClusters->RemoveAt(i);
42da2935 925 } // I clusters
926 fClusters->Compress();
927 return;
b0f5e3fc 928}
42da2935 929//__________________________________________________________________________
930void AliITSClusterFinderSDD::ResolveClusters(){
931 // The function to resolve clusters if the clusters overlapping exists
932/* AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
933 // get number of clusters for this module
934 Int_t nofClusters = fClusters->GetEntriesFast();
935 nofClusters -= fNclusters;
936 //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
937 // <<fNclusters<<endl;
938 Int_t fNofMaps = fSegmentation->Npz();
939 Int_t fNofAnodes = fNofMaps/2;
940 Int_t dummy=0;
941 Double_t fTimeStep = fSegmentation->Dpx(dummy);
942 Double_t fSddLength = fSegmentation->Dx();
943 Double_t fDriftSpeed = fResponse->DriftSpeed();
944 Double_t anodePitch = fSegmentation->Dpz(dummy);
945 Float_t n, baseline;
946 fResponse->GetNoiseParam(n,baseline);
947 Float_t dzz_1A = anodePitch * anodePitch / 12;
948 // fill Map of signals
a1f090e0 949 fMap->FillMap();
42da2935 950 Int_t j,i,ii,ianode,anode,itime;
951 Int_t wing,astart,astop,tstart,tstop,nanode;
952 Double_t fadc,ClusterTime;
953 Double_t q[400],x[400],z[400]; // digit charges and coordinates
954 for(j=0; j<nofClusters; j++) {
50d05d7b 955 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
956 Int_t ndigits = 0;
957 astart=clusterJ->Astart();
958 astop=clusterJ->Astop();
959 tstart=clusterJ->Tstartf();
960 tstop=clusterJ->Tstopf();
961 nanode=clusterJ->Anodes(); // <- Ernesto
962 wing=(Int_t)clusterJ->W();
963 if(wing == 2) {
964 astart += fNofAnodes;
965 astop += fNofAnodes;
966 } // end if
967 // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
968 // <<tstart<<","<<tstop<<endl;
969 // clear the digit arrays
970 for(ii=0; ii<400; ii++) {
971 q[ii] = 0.;
972 x[ii] = 0.;
973 z[ii] = 0.;
974 } // end for ii
42da2935 975
50d05d7b 976 for(ianode=astart; ianode<=astop; ianode++) {
977 for(itime=tstart; itime<=tstop; itime++) {
978 fadc=fMap->GetSignal(ianode,itime);
979 if(fadc>baseline) {
980 fadc-=(Double_t)baseline;
981 q[ndigits] = fadc*(fTimeStep/160); // KeV
982 anode = ianode;
983 if(wing == 2) anode -= fNofAnodes;
984 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
985 ClusterTime = itime*fTimeStep;
986 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
987 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
988 if(wing == 1) x[ndigits] *= (-1);
989 // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
990 // <<fadc<<endl;
991 // cout<<"wing,anode,ndigits,charge ="<<wing<<","
992 // <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
993 ndigits++;
994 continue;
995 } // end if
996 fadc=0;
997 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
998 } // time loop
999 } // anode loop
1000 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
1001 // Fit cluster to resolve for two separate ones --------------------
1002 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1003 Double_t dxx=0., dzz=0., dxz=0.;
1004 Double_t scl = 0., tmp, tga, elps = -1.;
1005 Double_t xfit[2], zfit[2], qfit[2];
1006 Double_t pitchz = anodePitch*1.e-4; // cm
1007 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
1008 Double_t sigma2;
1009 Int_t nfhits;
1010 Int_t nbins = ndigits;
1011 Int_t separate = 0;
1012 // now, all lengths are in microns
1013 for (ii=0; ii<nbins; ii++) {
1014 qq += q[ii];
1015 xm += x[ii]*q[ii];
1016 zm += z[ii]*q[ii];
1017 xx += x[ii]*x[ii]*q[ii];
1018 zz += z[ii]*z[ii]*q[ii];
1019 xz += x[ii]*z[ii]*q[ii];
1020 } // end for ii
1021 xm /= qq;
1022 zm /= qq;
1023 xx /= qq;
1024 zz /= qq;
1025 xz /= qq;
1026 dxx = xx - xm*xm;
1027 dzz = zz - zm*zm;
1028 dxz = xz - xm*zm;
42da2935 1029
50d05d7b 1030 // shrink the cluster in the time direction proportionaly to the
1031 // dxx/dzz, which lineary depends from the drift path
1032 // new Ernesto........
1033 if( nanode == 1 ){
1034 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1035 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1036 } // end if
1037 if( nanode == 2 ){
1038 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1039 } // end if
1040 if( nanode == 3 ){
1041 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1042 } // end if
1043 if( nanode > 3 ){
1044 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1045 } // end if
1046 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1047 // <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1048 // old Boris.........
1049 // tmp=29730. - 585.*fabs(xm/1000.);
1050 // scl=TMath::Sqrt(tmp/130000.);
a1f090e0 1051
50d05d7b 1052 xm *= scl;
1053 xx *= scl*scl;
1054 xz *= scl;
42da2935 1055
50d05d7b 1056 dxx = xx - xm*xm;
1057 // dzz = zz - zm*zm;
1058 dxz = xz - xm*zm;
1059 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1060 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1061 // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
a1f090e0 1062
50d05d7b 1063 if (dxx < 0.) dxx=0.;
1064 // the data if no cluster overlapping (the coordunates are in cm)
1065 nfhits = 1;
1066 xfit[0] = xm*1.e-4;
1067 zfit[0] = zm*1.e-4;
1068 qfit[0] = qq;
1069 // if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
a1f090e0 1070
50d05d7b 1071 if (nbins >= 7) {
1072 if (dxz==0.) tga=0.;
1073 else {
1074 tmp=0.5*(dzz-dxx)/dxz;
1075 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) :
1076 tmp+TMath::Sqrt(tmp*tmp+1);
1077 } // end if dxz
1078 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1079 // change from microns to cm
1080 xm *= 1.e-4;
1081 zm *= 1.e-4;
1082 zz *= 1.e-8;
1083 xx *= 1.e-8;
1084 xz *= 1.e-8;
1085 dxz *= 1.e-8;
1086 dxx *= 1.e-8;
1087 dzz *= 1.e-8;
1088 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1089 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1090 for (i=0; i<nbins; i++) {
1091 x[i] = x[i] *= scl;
1092 x[i] = x[i] *= 1.e-4;
1093 z[i] = z[i] *= 1.e-4;
1094 } // end for i
1095 // cout<<"!!! elps ="<<elps<<endl;
1096 if (elps < 0.3) { // try to separate hits
1097 separate = 1;
1098 tmp=atan(tga);
1099 Double_t cosa=cos(tmp),sina=sin(tmp);
1100 Double_t a1=0., x1=0., xxx=0.;
1101 for (i=0; i<nbins; i++) {
1102 tmp=x[i]*cosa + z[i]*sina;
1103 if (q[i] > a1) {
1104 a1=q[i];
1105 x1=tmp;
1106 } // end if
1107 xxx += tmp*tmp*tmp*q[i];
1108 } // end for i
1109 xxx /= qq;
1110 Double_t z12=-sina*xm + cosa*zm;
1111 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1112 xm=cosa*xm + sina*zm;
1113 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1114 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1115 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1116 for (i=0; i<33; i++) { // solve a system of equations
1117 Double_t x1_old=x1, x2_old=x2, r_old=r;
1118 Double_t c11=x1-x2;
1119 Double_t c12=r;
1120 Double_t c13=1-r;
1121 Double_t c21=x1*x1 - x2*x2;
1122 Double_t c22=2*r*x1;
1123 Double_t c23=2*(1-r)*x2;
1124 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1125 Double_t c32=3*r*(sigma2 + x1*x1);
1126 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1127 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1128 Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1129 Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1130 (3*sigma2+x2*x2)-xxx);
1131 Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1132 c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1133 if (d==0.) {
1134 cout<<"*********** d=0 ***********\n";
1135 break;
1136 } // end if
1137 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1138 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1139 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1140 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1141 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1142 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1143 r += dr/d;
1144 x1 += d1/d;
1145 x2 += d2/d;
1146 if (fabs(x1-x1_old) > 0.0001) continue;
1147 if (fabs(x2-x2_old) > 0.0001) continue;
1148 if (fabs(r-r_old)/5 > 0.001) continue;
1149 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1150 Double_t a2=a1*(1-r)/r;
1151 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina +
1152 z12*cosa;
1153 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina +
1154 z12*cosa;
1155 nfhits=2;
1156 break; // Ok !
1157 } // end for i
1158 if (i==33) cerr<<"No more iterations ! "<<endl;
1159 } // end of attempt to separate overlapped clusters
1160 } // end of nbins cut
1161 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1162 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1163 <<elps<<","<<nfhits<<endl;
1164 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1165 for (i=0; i<nfhits; i++) {
1166 xfit[i] *= (1.e+4/scl);
1167 if(wing == 1) xfit[i] *= (-1);
1168 zfit[i] *= 1.e+4;
1169 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","
1170 // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1171 } // end for i
1172 Int_t ncl = nfhits;
1173 if(nfhits == 1 && separate == 1) {
1174 cout<<"!!!!! no separate"<<endl;
1175 ncl = -2;
1176 } // end if
1177 if(nfhits == 2) {
1178 cout << "Split cluster: " << endl;
1179 clusterJ->PrintInfo();
1180 cout << " in: " << endl;
1181 for (i=0; i<nfhits; i++) {
1182 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
42da2935 1183 -1,-1,(Float_t)qfit[i],ncl,0,0,
1184 (Float_t)xfit[i],
1185 (Float_t)zfit[i],0,0,0,0,
1186 tstart,tstop,astart,astop);
50d05d7b 1187 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1188 // -1,(Float_t)qfit[i],0,0,0,
1189 // (Float_t)xfit[i],
1190 // (Float_t)zfit[i],0,0,0,0,
1191 // tstart,tstop,astart,astop,ncl);
1192 // ???????????
1193 // if(wing == 1) xfit[i] *= (-1);
1194 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1195 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1196 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1197 Float_t peakpos = clusterJ->PeakPos();
1198 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1199 Float_t clusterDriftPath = Time*fDriftSpeed;
1200 clusterDriftPath = fSddLength-clusterDriftPath;
1201 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1202 Time,qfit[i],
42da2935 1203 clusterPeakAmplitude,peakpos,
1204 0.,0.,clusterDriftPath,
1205 clusteranodePath,clusterJ->Samples()/2
50d05d7b 1206 ,tstart,tstop,0,0,0,astart,astop);
1207 clust->PrintInfo();
1208 iTS->AddCluster(1,clust);
1209 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1210 // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1211 // <<","<<ncl<<endl;
1212 delete clust;
1213 }// nfhits loop
1214 fClusters->RemoveAt(j);
42da2935 1215 } // if nfhits = 2
1216} // cluster loop
1217fClusters->Compress();
1218fMap->ClearMap();
1219*/
1220 return;
a1f090e0 1221}
42da2935 1222//______________________________________________________________________
1223void AliITSClusterFinderSDD::GetRecPoints(){
1224 // get rec points
1225 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1226 // get number of clusters for this module
1227 Int_t nofClusters = fClusters->GetEntriesFast();
1228 nofClusters -= fNclusters;
1229 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1230 const Float_t kconv = 1.0e-4;
1231 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1232 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
ee86d557 1233 Int_t i,j;
42da2935 1234 Int_t ix, iz, idx=-1;
1235 AliITSdigitSDD *dig=0;
1236 Int_t ndigits=fDigits->GetEntriesFast();
1237 for(i=0; i<nofClusters; i++) {
50d05d7b 1238 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1239 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1240 if(clusterI) idx=clusterI->PeakPos();
1241 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1242 // try peak neighbours - to be done
1243 if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1244 if(!dig) {
1245 // try cog
1246 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1247 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1248 // if null try neighbours
1249 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1250 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1251 if (!dig) printf("SDD: cannot assign the track number!\n");
1252 } // end if !dig
1253 AliITSRecPoint rnew;
1254 rnew.SetX(clusterI->X());
1255 rnew.SetZ(clusterI->Z());
1256 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
1257 rnew.SetdEdX(kconvGeV*clusterI->Q());
1258 rnew.SetSigmaX2(kRMSx*kRMSx);
1259 rnew.SetSigmaZ2(kRMSz*kRMSz);
ee86d557 1260 if(dig){
1261 rnew.fTracks[0] = dig->fTracks[0];
1262 rnew.fTracks[1] = -3;
1263 rnew.fTracks[2] = -3;
1264 j=1;
1265 while(rnew.fTracks[0]==dig->fTracks[j] &&
1266 j<dig->GetNTracks()) j++;
1267 if(j<dig->GetNTracks()){
1268 rnew.fTracks[1] = dig->fTracks[j];
1269 while(rnew.fTracks[1]==dig->fTracks[j] &&
1270 j<dig->GetNTracks()) j++;
1271 if(j<dig->GetNTracks()) rnew.fTracks[2] = dig->fTracks[j];
1272 } // end if
1273 } // end if
50d05d7b 1274 //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1275 // i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1276 // lusterI->X(),clusterI->Z());
1277 iTS->AddRecPoint(rnew);
42da2935 1278 } // I clusters
50d05d7b 1279// fMap->ClearMap();
b0f5e3fc 1280}
42da2935 1281//______________________________________________________________________
1282void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1283 // find raw clusters
50d05d7b 1284
1285 fModule = mod;
1286
a1f090e0 1287 Find1DClustersE();
b0f5e3fc 1288 GroupClusters();
1289 SelectClusters();
a1f090e0 1290 ResolveClustersE();
b0f5e3fc 1291 GetRecPoints();
1292}
42da2935 1293//_______________________________________________________________________
1294void AliITSClusterFinderSDD::Print(){
1295 // Print SDD cluster finder Parameters
1296
1297 cout << "**************************************************" << endl;
1298 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1299 cout << "**************************************************" << endl;
1300 cout << "Number of Clusters: " << fNclusters << endl;
1301 cout << "Anode Tolerance: " << fDAnode << endl;
1302 cout << "Time Tolerance: " << fDTime << endl;
1303 cout << "Time correction (electronics): " << fTimeCorr << endl;
1304 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1305 cout << "Minimum Amplitude: " << fMinPeak << endl;
1306 cout << "Minimum Charge: " << fMinCharge << endl;
1307 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1308 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1309 cout << "**************************************************" << endl;
a1f090e0 1310}