]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSClusterFinderSDD.cxx
Run aliroot in batch mode.
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
d86f531c 15/*
16 $Id$
17 $Log$
18 Revision 1.31.2.1 2003/07/16 13:18:04 masera
19 Proper fix to track labels associated to SDD rec-points
507cf1a7 20
d86f531c 21 Revision 1.31 2003/05/19 14:44:41 masera
22 Fix to track labels associated to SDD rec-points
bf3f2830 23
d86f531c 24 Revision 1.30 2003/03/03 16:34:35 masera
25 Corrections to comply with coding conventions
26
27 Revision 1.29 2002/10/25 18:54:22 barbera
28 Various improvements and updates from B.S.Nilsen and T. Virgili
29
30 Revision 1.28 2002/10/22 14:45:29 alibrary
31 Introducing Riostream.h
32
33 Revision 1.27 2002/10/14 14:57:00 hristov
34 Merging the VirtualMC branch to the main development branch (HEAD)
35
36 Revision 1.23.4.2 2002/10/14 13:14:07 hristov
37 Updating VirtualMC to v3-09-02
38
39 Revision 1.26 2002/09/09 17:23:28 nilsen
40 Minor changes in support of changes to AliITSdigitS?D class'.
41
42 Revision 1.25 2002/05/10 22:29:40 nilsen
43 Change my Massimo Masera in the default constructor to bring things into
44 compliance.
45
46 Revision 1.24 2002/04/24 22:02:31 nilsen
47 New SDigits and Digits routines, and related changes, (including new
48 noise values).
49
50 */
bf3f2830 51//
52// Cluster finder
53// for Silicon
54// Drift Detector
55//
4ae5bbc4 56#include <Riostream.h>
bf3f2830 57
a1f090e0 58#include <TMath.h>
59#include <math.h>
b0f5e3fc 60
61#include "AliITSClusterFinderSDD.h"
e8189707 62#include "AliITSMapA1.h"
63#include "AliITS.h"
78a228db 64#include "AliITSdigit.h"
65#include "AliITSRawCluster.h"
66#include "AliITSRecPoint.h"
67#include "AliITSsegmentation.h"
5dd4cc39 68#include "AliITSresponseSDD.h"
b0f5e3fc 69#include "AliRun.h"
70
b0f5e3fc 71ClassImp(AliITSClusterFinderSDD)
72
42da2935 73//______________________________________________________________________
74AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
50d05d7b 75 AliITSresponse *response,
76 TClonesArray *digits,
77 TClonesArray *recp){
42da2935 78 // standard constructor
78a228db 79
b48af428 80 fSegmentation = seg;
81 fResponse = response;
82 fDigits = digits;
83 fClusters = recp;
84 fNclusters = fClusters->GetEntriesFast();
b0f5e3fc 85 SetCutAmplitude();
86 SetDAnode();
87 SetDTime();
355ccb70 88 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
89 // SetMinPeak();
78a228db 90 SetMinNCells();
91 SetMaxNCells();
92 SetTimeCorr();
a1f090e0 93 SetMinCharge();
b48af428 94 fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
b0f5e3fc 95}
42da2935 96//______________________________________________________________________
97AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
98 // default constructor
b0f5e3fc 99
b48af428 100 fSegmentation = 0;
101 fResponse = 0;
102 fDigits = 0;
103 fClusters = 0;
104 fNclusters = 0;
105 fMap = 0;
106 fCutAmplitude = 0;
355ccb70 107 fDAnode = 0;
108 fDTime = 0;
109 fMinPeak = 0;
110 fMinNCells = 0;
111 fMaxNCells = 0;
112 fTimeCorr = 0;
113 fMinCharge = 0;
114 /*
b0f5e3fc 115 SetDAnode();
116 SetDTime();
48058160 117 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
78a228db 118 SetMinNCells();
119 SetMaxNCells();
120 SetTimeCorr();
a1f090e0 121 SetMinCharge();
355ccb70 122 */
b0f5e3fc 123}
42da2935 124//____________________________________________________________________________
125AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
e8189707 126 // destructor
127
128 if(fMap) delete fMap;
e8189707 129}
42da2935 130//______________________________________________________________________
131void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
132 // set the signal threshold for cluster finder
bf3f2830 133 Float_t baseline,noise,noiseAfterEl;
42da2935 134
135 fResponse->GetNoiseParam(noise,baseline);
bf3f2830 136 noiseAfterEl = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
137 fCutAmplitude = (Int_t)((baseline + nsigma*noiseAfterEl));
5dd4cc39 138}
42da2935 139//______________________________________________________________________
140void AliITSClusterFinderSDD::Find1DClusters(){
141 // find 1D clusters
b48af428 142 static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
a1f090e0 143
42da2935 144 // retrieve the parameters
b48af428 145 Int_t fNofMaps = fSegmentation->Npz();
42da2935 146 Int_t fMaxNofSamples = fSegmentation->Npx();
b48af428 147 Int_t fNofAnodes = fNofMaps/2;
148 Int_t dummy = 0;
149 Float_t fTimeStep = fSegmentation->Dpx(dummy);
150 Float_t fSddLength = fSegmentation->Dx();
151 Float_t fDriftSpeed = fResponse->DriftSpeed();
152 Float_t anodePitch = fSegmentation->Dpz(dummy);
42da2935 153
154 // map the signal
50d05d7b 155 fMap->ClearMap();
42da2935 156 fMap->SetThreshold(fCutAmplitude);
157 fMap->FillMap();
a1f090e0 158
42da2935 159 Float_t noise;
160 Float_t baseline;
161 fResponse->GetNoiseParam(noise,baseline);
a1f090e0 162
42da2935 163 Int_t nofFoundClusters = 0;
164 Int_t i;
165 Float_t **dfadc = new Float_t*[fNofAnodes];
166 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
b48af428 167 Float_t fadc = 0.;
42da2935 168 Float_t fadc1 = 0.;
169 Float_t fadc2 = 0.;
170 Int_t j,k,idx,l,m;
171 for(j=0;j<2;j++) {
50d05d7b 172 for(k=0;k<fNofAnodes;k++) {
173 idx = j*fNofAnodes+k;
174 // signal (fadc) & derivative (dfadc)
175 dfadc[k][255]=0.;
176 for(l=0; l<fMaxNofSamples; l++) {
177 fadc2=(Float_t)fMap->GetSignal(idx,l);
178 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
179 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
180 } // samples
181 } // anodes
42da2935 182
50d05d7b 183 for(k=0;k<fNofAnodes;k++) {
184 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
185 idx = j*fNofAnodes+k;
186 Int_t imax = 0;
187 Int_t imaxd = 0;
188 Int_t it = 0;
189 while(it <= fMaxNofSamples-3) {
190 imax = it;
191 imaxd = it;
192 // maximum of signal
193 Float_t fadcmax = 0.;
194 Float_t dfadcmax = 0.;
195 Int_t lthrmina = 1;
196 Int_t lthrmint = 3;
197 Int_t lthra = 1;
198 Int_t lthrt = 0;
199 for(m=0;m<20;m++) {
200 Int_t id = it+m;
201 if(id>=fMaxNofSamples) break;
202 fadc=(float)fMap->GetSignal(idx,id);
203 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
204 if(fadc > (float)fCutAmplitude) {
205 lthrt++;
206 } // end if
207 if(dfadc[k][id] > dfadcmax) {
208 dfadcmax = dfadc[k][id];
209 imaxd = id;
210 } // end if
211 } // end for m
212 it = imaxd;
213 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
214 // cluster charge
215 Int_t tstart = it-2;
216 if(tstart < 0) tstart = 0;
217 Bool_t ilcl = 0;
218 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
219 if(ilcl) {
220 nofFoundClusters++;
221 Int_t tstop = tstart;
222 Float_t dfadcmin = 10000.;
223 Int_t ij;
224 for(ij=0; ij<20; ij++) {
225 if(tstart+ij > 255) { tstop = 255; break; }
226 fadc=(float)fMap->GetSignal(idx,tstart+ij);
227 if((dfadc[k][tstart+ij] < dfadcmin) &&
228 (fadc > fCutAmplitude)) {
229 tstop = tstart+ij+5;
230 if(tstop > 255) tstop = 255;
231 dfadcmin = dfadc[k][it+ij];
232 } // end if
233 } // end for ij
42da2935 234
50d05d7b 235 Float_t clusterCharge = 0.;
236 Float_t clusterAnode = k+0.5;
237 Float_t clusterTime = 0.;
238 Int_t clusterMult = 0;
239 Float_t clusterPeakAmplitude = 0.;
240 Int_t its,peakpos = -1;
241 Float_t n, baseline;
242 fResponse->GetNoiseParam(n,baseline);
243 for(its=tstart; its<=tstop; its++) {
244 fadc=(float)fMap->GetSignal(idx,its);
245 if(fadc>baseline) fadc -= baseline;
246 else fadc = 0.;
247 clusterCharge += fadc;
248 // as a matter of fact we should take the peak
249 // pos before FFT
250 // to get the list of tracks !!!
251 if(fadc > clusterPeakAmplitude) {
252 clusterPeakAmplitude = fadc;
253 //peakpos=fMap->GetHitIndex(idx,its);
254 Int_t shift = (int)(fTimeCorr/fTimeStep);
255 if(its>shift && its<(fMaxNofSamples-shift))
256 peakpos = fMap->GetHitIndex(idx,its+shift);
257 else peakpos = fMap->GetHitIndex(idx,its);
258 if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
259 } // end if
260 clusterTime += fadc*its;
261 if(fadc > 0) clusterMult++;
262 if(its == tstop) {
263 clusterTime /= (clusterCharge/fTimeStep); // ns
264 if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
265 //ns
266 } // end if
267 } // end for its
42da2935 268
50d05d7b 269 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
270 anodePitch;
271 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
272 clusterDriftPath = fSddLength-clusterDriftPath;
273 if(clusterCharge <= 0.) break;
274 AliITSRawClusterSDD clust(j+1,//i
275 clusterAnode,clusterTime,//ff
276 clusterCharge, //f
277 clusterPeakAmplitude, //f
278 peakpos, //i
279 0.,0.,clusterDriftPath,//fff
280 clusteranodePath, //f
281 clusterMult, //i
282 0,0,0,0,0,0,0);//7*i
283 iTS->AddCluster(1,&clust);
284 it = tstop;
285 } // ilcl
286 it++;
287 } // while (samples)
288 } // anodes
42da2935 289 } // detectors (2)
42da2935 290
291 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
292 delete [] dfadc;
a1f090e0 293
42da2935 294 return;
a1f090e0 295}
50d05d7b 296
297
298
42da2935 299//______________________________________________________________________
300void AliITSClusterFinderSDD::Find1DClustersE(){
24a1c341 301 // find 1D clusters
42da2935 302 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
303 // retrieve the parameters
304 Int_t fNofMaps = fSegmentation->Npz();
305 Int_t fMaxNofSamples = fSegmentation->Npx();
306 Int_t fNofAnodes = fNofMaps/2;
307 Int_t dummy=0;
308 Float_t fTimeStep = fSegmentation->Dpx( dummy );
309 Float_t fSddLength = fSegmentation->Dx();
310 Float_t fDriftSpeed = fResponse->DriftSpeed();
311 Float_t anodePitch = fSegmentation->Dpz( dummy );
312 Float_t n, baseline;
313 fResponse->GetNoiseParam( n, baseline );
314 // map the signal
50d05d7b 315 fMap->ClearMap();
42da2935 316 fMap->SetThreshold( fCutAmplitude );
317 fMap->FillMap();
50d05d7b 318
42da2935 319 Int_t nClu = 0;
50d05d7b 320 // cout << "Search cluster... "<< endl;
42da2935 321 for( Int_t j=0; j<2; j++ ){
50d05d7b 322 for( Int_t k=0; k<fNofAnodes; k++ ){
323 Int_t idx = j*fNofAnodes+k;
324 Bool_t on = kFALSE;
325 Int_t start = 0;
326 Int_t nTsteps = 0;
327 Float_t fmax = 0.;
328 Int_t lmax = 0;
329 Float_t charge = 0.;
330 Float_t time = 0.;
331 Float_t anode = k+0.5;
332 Int_t peakpos = -1;
333 for( Int_t l=0; l<fMaxNofSamples; l++ ){
334 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
335 if( fadc > 0.0 ){
336 if( on == kFALSE && l<fMaxNofSamples-4){
337 // star RawCluster (reset var.)
338 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
339 if( fadc1 < fadc ) continue;
340 start = l;
341 fmax = 0.;
342 lmax = 0;
343 time = 0.;
344 charge = 0.;
345 on = kTRUE;
346 nTsteps = 0;
347 } // end if on...
348 nTsteps++ ;
349 if( fadc > baseline ) fadc -= baseline;
350 else fadc=0.;
351 charge += fadc;
352 time += fadc*l;
353 if( fadc > fmax ){
354 fmax = fadc;
355 lmax = l;
356 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
357 if( l > shift && l < (fMaxNofSamples-shift) )
358 peakpos = fMap->GetHitIndex( idx, l+shift );
359 else
360 peakpos = fMap->GetHitIndex( idx, l );
361 if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
362 } // end if fadc
363 }else{ // end fadc>0
364 if( on == kTRUE ){
365 if( nTsteps > 2 ){
366 // min # of timesteps for a RawCluster
367 // Found a RawCluster...
368 Int_t stop = l-1;
369 time /= (charge/fTimeStep); // ns
370 // time = lmax*fTimeStep; // ns
371 if( time > fTimeCorr ) time -= fTimeCorr; // ns
372 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
373 Float_t driftPath = time*fDriftSpeed;
374 driftPath = fSddLength-driftPath;
375 AliITSRawClusterSDD clust(j+1,anode,time,charge,
376 fmax, peakpos,0.,0.,
377 driftPath,anodePath,
378 nTsteps,start,stop,
379 start, stop, 1, k, k );
380 iTS->AddCluster( 1, &clust );
381 // clust.PrintInfo();
382 nClu++;
383 } // end if nTsteps
384 on = kFALSE;
385 } // end if on==kTRUE
386 } // end if fadc>0
387 } // samples
388 } // anodes
42da2935 389 } // wings
50d05d7b 390 // cout << "# Rawclusters " << nClu << endl;
42da2935 391 return;
a1f090e0 392}
42da2935 393//_______________________________________________________________________
394Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
50d05d7b 395 Int_t *peakX, Int_t *peakZ,
396 Float_t *peakAmp, Float_t minpeak ){
42da2935 397 // search peaks on a 2D cluster
398 Int_t npeak = 0; // # peaks
56fff130 399 Int_t i,j;
42da2935 400 // search peaks
401 for( Int_t z=1; z<zdim-1; z++ ){
48058160 402 for( Int_t x=1; x<xdim-2; x++ ){
50d05d7b 403 Float_t sxz = spect[x*zdim+z];
404 Float_t sxz1 = spect[(x+1)*zdim+z];
405 Float_t sxz2 = spect[(x-1)*zdim+z];
406 // search a local max. in s[x,z]
407 if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
408 if( sxz >= spect[(x+1)*zdim+z ] && sxz >= spect[(x-1)*zdim+z ] &&
409 sxz >= spect[x*zdim +z+1] && sxz >= spect[x*zdim +z-1] &&
410 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
411 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
412 // peak found
413 peakX[npeak] = x;
414 peakZ[npeak] = z;
415 peakAmp[npeak] = sxz;
416 npeak++;
417 } // end if ....
418 } // end for x
42da2935 419 } // end for z
420 // search groups of peaks with same amplitude.
421 Int_t *flag = new Int_t[npeak];
422 for( i=0; i<npeak; i++ ) flag[i] = 0;
423 for( i=0; i<npeak; i++ ){
50d05d7b 424 for( j=0; j<npeak; j++ ){
425 if( i==j) continue;
426 if( flag[j] > 0 ) continue;
427 if( peakAmp[i] == peakAmp[j] &&
428 TMath::Abs(peakX[i]-peakX[j])<=1 &&
429 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
430 if( flag[i] == 0) flag[i] = i+1;
431 flag[j] = flag[i];
432 } // end if ...
433 } // end for j
42da2935 434 } // end for i
50d05d7b 435 // make average of peak groups
42da2935 436 for( i=0; i<npeak; i++ ){
50d05d7b 437 Int_t nFlag = 1;
438 if( flag[i] <= 0 ) continue;
439 for( j=0; j<npeak; j++ ){
440 if( i==j ) continue;
441 if( flag[j] != flag[i] ) continue;
442 peakX[i] += peakX[j];
443 peakZ[i] += peakZ[j];
444 nFlag++;
445 npeak--;
446 for( Int_t k=j; k<npeak; k++ ){
447 peakX[k] = peakX[k+1];
448 peakZ[k] = peakZ[k+1];
449 peakAmp[k] = peakAmp[k+1];
450 flag[k] = flag[k+1];
451 } // end for k
452 j--;
453 } // end for j
454 if( nFlag > 1 ){
455 peakX[i] /= nFlag;
456 peakZ[i] /= nFlag;
457 } // end fi nFlag
42da2935 458 } // end for i
459 delete [] flag;
460 return( npeak );
a1f090e0 461}
42da2935 462//______________________________________________________________________
463void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
50d05d7b 464 Float_t *spe, Float_t *integral){
24a1c341 465 // function used to fit the clusters
50d05d7b 466 // par -> parameters..
24a1c341 467 // par[0] number of peaks.
468 // for each peak i=1, ..., par[0]
50d05d7b 469 // par[i] = Ampl.
470 // par[i+1] = xpos
471 // par[i+2] = zpos
472 // par[i+3] = tau
473 // par[i+4] = sigma.
24a1c341 474 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
475 const Int_t knParam = 5;
476 Int_t npeak = (Int_t)par[0];
42da2935 477
24a1c341 478 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
42da2935 479
24a1c341 480 Int_t k = 1;
42da2935 481 for( Int_t i=0; i<npeak; i++ ){
24a1c341 482 if( integral != 0 ) integral[i] = 0.;
483 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
bf3f2830 484 Float_t t2 = par[k+3]; // PASCAL
485 if( electronics == 2 ) { t2 *= t2; t2 *= 2; } // OLA
42da2935 486 for( Int_t z=0; z<zdim; z++ ){
487 for( Int_t x=0; x<xdim; x++ ){
24a1c341 488 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
489 Float_t x2 = 0.;
490 Float_t signal = 0.;
42da2935 491 if( electronics == 1 ){ // PASCAL
bf3f2830 492 x2 = (x-par[k+1]+t2)/t2;
42da2935 493 signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
494 // signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
495 }else if( electronics == 2 ) { // OLA
bf3f2830 496 x2 = (x-par[k+1])*(x-par[k+1])/t2;
50d05d7b 497 signal = par[k] * exp( -x2 - z2 );
498 } else {
bf3f2830 499 Warning("PeakFunc","Wrong SDD Electronics = %d",electronics);
50d05d7b 500 // exit( 1 );
501 } // end if electronicx
24a1c341 502 spe[x*zdim+z] += signal;
503 if( integral != 0 ) integral[i] += signal;
42da2935 504 } // end for x
505 } // end for z
24a1c341 506 k += knParam;
42da2935 507 } // end for i
24a1c341 508 return;
a1f090e0 509}
42da2935 510//__________________________________________________________________________
511Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
bf3f2830 512 Float_t *speFit ) const{
42da2935 513 // EVALUATES UNNORMALIZED CHI-SQUARED
514 Float_t chi2 = 0.;
515 for( Int_t z=0; z<zdim; z++ ){
50d05d7b 516 for( Int_t x=1; x<xdim-1; x++ ){
517 Int_t index = x*zdim+z;
518 Float_t tmp = spe[index] - speFit[index];
519 chi2 += tmp*tmp;
520 } // end for x
42da2935 521 } // end for z
522 return( chi2 );
a1f090e0 523}
42da2935 524//_______________________________________________________________________
525void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
50d05d7b 526 Float_t *prm0,Float_t *steprm,
527 Float_t *chisqr,Float_t *spe,
528 Float_t *speFit ){
42da2935 529 //
530 Int_t k, nnn, mmm, i;
531 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
532 const Int_t knParam = 5;
533 Int_t npeak = (Int_t)param[0];
534 for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
535 for( k=1; k<(npeak*knParam+1); k++ ){
50d05d7b 536 p1 = param[k];
537 delta = steprm[k];
538 d1 = delta;
539 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
540 if( fabs( p1 ) > 1.0E-6 )
541 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
542 else delta = (Float_t)1.0E-4;
543 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
544 PeakFunc( xdim, zdim, param, speFit );
545 chisq1 = ChiSqr( xdim, zdim, spe, speFit );
546 p2 = p1+delta;
547 param[k] = p2;
548 PeakFunc( xdim, zdim, param, speFit );
549 chisq2 = ChiSqr( xdim, zdim, spe, speFit );
550 if( chisq1 < chisq2 ){
551 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
552 delta = -delta;
553 t = p1;
554 p1 = p2;
555 p2 = t;
556 t = chisq1;
557 chisq1 = chisq2;
558 chisq2 = t;
559 } // end if
560 i = 1; nnn = 0;
561 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
562 nnn++;
563 p3 = p2 + delta;
564 mmm = nnn - (nnn/5)*5; // multiplo de 5
565 if( mmm == 0 ){
566 d1 = delta;
567 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
568 delta *= 5;
569 } // end if
570 param[k] = p3;
571 // Constrain paramiters
572 Int_t kpos = (k-1) % knParam;
573 switch( kpos ){
574 case 0 :
575 if( param[k] <= 20 ) param[k] = fMinPeak;
576 break;
577 case 1 :
578 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
579 break;
580 case 2 :
581 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
582 break;
583 case 3 :
584 if( param[k] < .5 ) param[k] = .5;
585 break;
586 case 4 :
587 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
588 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
589 break;
590 }; // end switch
591 PeakFunc( xdim, zdim, param, speFit );
592 chisq3 = ChiSqr( xdim, zdim, spe, speFit );
593 if( chisq3 < chisq2 && nnn < 50 ){
594 p1 = p2;
595 p2 = p3;
596 chisq1 = chisq2;
597 chisq2 = chisq3;
598 }else i=0;
599 } while( i );
600 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
601 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
602 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
603 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
604 else p0 = 10000;
605 //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
606 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
607 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
608 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
609 //if( fabs( p2-p0 ) > dp ) p0 = p2;
610 param[k] = p0;
611 // Constrain paramiters
612 Int_t kpos = (k-1) % knParam;
613 switch( kpos ){
614 case 0 :
615 if( param[k] <= 20 ) param[k] = fMinPeak;
616 break;
617 case 1 :
618 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
619 break;
620 case 2 :
621 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
622 break;
623 case 3 :
624 if( param[k] < .5 ) param[k] = .5;
625 break;
626 case 4 :
627 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
628 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
629 break;
630 }; // end switch
631 PeakFunc( xdim, zdim, param, speFit );
632 chisqt = ChiSqr( xdim, zdim, spe, speFit );
633 // DO NOT ALLOW ERRONEOUS INTERPOLATION
634 if( chisqt <= *chisqr ) *chisqr = chisqt;
635 else param[k] = prm0[k];
636 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
637 steprm[k] = (param[k]-prm0[k])/5;
638 if( steprm[k] >= d1 ) steprm[k] = d1/5;
42da2935 639 } // end for k
640 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
641 PeakFunc( xdim, zdim, param, speFit );
642 *chisqr = ChiSqr( xdim, zdim, spe, speFit );
643 return;
a1f090e0 644}
42da2935 645//_________________________________________________________________________
646Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim,
50d05d7b 647 Float_t *param, Float_t *spe,
648 Int_t *niter, Float_t *chir ){
42da2935 649 // fit method from Comput. Phys. Commun 46(1987) 149
50d05d7b 650 const Float_t kchilmt = 0.01; // relative accuracy
651 const Int_t knel = 3; // for parabolic minimization
652 const Int_t knstop = 50; // Max. iteration number
42da2935 653 const Int_t knParam = 5;
654 Int_t npeak = (Int_t)param[0];
655 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
656 if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
657 Float_t degFree = (xdim*zdim - npeak*knParam)-1;
658 Int_t n, k, iterNum = 0;
659 Float_t *prm0 = new Float_t[npeak*knParam+1];
660 Float_t *step = new Float_t[npeak*knParam+1];
661 Float_t *schi = new Float_t[npeak*knParam+1];
662 Float_t *sprm[3];
663 sprm[0] = new Float_t[npeak*knParam+1];
664 sprm[1] = new Float_t[npeak*knParam+1];
665 sprm[2] = new Float_t[npeak*knParam+1];
666 Float_t chi0, chi1, reldif, a, b, prmin, dp;
667 Float_t *speFit = new Float_t[ xdim*zdim ];
668 PeakFunc( xdim, zdim, param, speFit );
669 chi0 = ChiSqr( xdim, zdim, spe, speFit );
670 chi1 = chi0;
671 for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
50d05d7b 672 for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
673 step[k] = param[k] / 20.0 ;
674 step[k+1] = param[k+1] / 50.0;
675 step[k+2] = param[k+2] / 50.0;
676 step[k+3] = param[k+3] / 20.0;
677 step[k+4] = param[k+4] / 20.0;
678 } // end for k
42da2935 679 Int_t out = 0;
680 do{
50d05d7b 681 iterNum++;
682 chi0 = chi1;
683 Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
684 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
685 // EXIT conditions
686 if( reldif < (float) kchilmt ){
687 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
688 *niter = iterNum;
689 out = 0;
690 break;
691 } // end if
692 if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
693 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
694 *niter = iterNum;
695 out = 0;
696 break;
697 } // end if
698 if( iterNum > 5*knstop ){
699 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
700 *niter = iterNum;
701 out = 1;
702 break;
703 } // end if
704 if( iterNum <= knel ) continue;
705 n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
706 if( n > 3 || n == 0 ) continue;
707 schi[n-1] = chi1;
708 for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
709 if( n != 3 ) continue;
710 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
711 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
712 for( k=1; k<(npeak*knParam+1); k++ ){
713 Float_t tmp0 = sprm[0][k];
714 Float_t tmp1 = sprm[1][k];
715 Float_t tmp2 = sprm[2][k];
716 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
717 a += (schi[2]*(tmp0-tmp1));
718 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
719 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
720 (tmp0*tmp0-tmp1*tmp1)));
721 if ((double)a < 1.0E-6) prmin = 0;
722 else prmin = (float) (0.5*b/a);
723 dp = 5*(tmp2-tmp0);
724 if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
725 param[k] = prmin;
726 step[k] = dp/10; // OPTIMIZE SEARCH STEP
727 } // end for k
42da2935 728 } while( kTRUE );
729 delete [] prm0;
730 delete [] step;
731 delete [] schi;
732 delete [] sprm[0];
733 delete [] sprm[1];
734 delete [] sprm[2];
735 delete [] speFit;
736 return( out );
a1f090e0 737}
50d05d7b 738
42da2935 739//______________________________________________________________________
740void AliITSClusterFinderSDD::ResolveClustersE(){
741 // The function to resolve clusters if the clusters overlapping exists
24a1c341 742 Int_t i;
42da2935 743 static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
744 // get number of clusters for this module
745 Int_t nofClusters = fClusters->GetEntriesFast();
746 nofClusters -= fNclusters;
747 Int_t fNofMaps = fSegmentation->Npz();
748 Int_t fNofAnodes = fNofMaps/2;
d86f531c 749// Int_t fMaxNofSamples = fSegmentation->Npx();
42da2935 750 Int_t dummy=0;
751 Double_t fTimeStep = fSegmentation->Dpx( dummy );
752 Double_t fSddLength = fSegmentation->Dx();
753 Double_t fDriftSpeed = fResponse->DriftSpeed();
754 Double_t anodePitch = fSegmentation->Dpz( dummy );
755 Float_t n, baseline;
756 fResponse->GetNoiseParam( n, baseline );
757 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
50d05d7b 758
42da2935 759 for( Int_t j=0; j<nofClusters; j++ ){
50d05d7b 760 // get cluster information
761 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
762 Int_t astart = clusterJ->Astart();
763 Int_t astop = clusterJ->Astop();
764 Int_t tstart = clusterJ->Tstartf();
765 Int_t tstop = clusterJ->Tstopf();
766 Int_t wing = (Int_t)clusterJ->W();
767 if( wing == 2 ){
768 astart += fNofAnodes;
769 astop += fNofAnodes;
770 } // end if
771 Int_t xdim = tstop-tstart+3;
772 Int_t zdim = astop-astart+3;
d86f531c 773 if( xdim > 50 || zdim > 30 ) {
774 Warning("ResolveClustersE","xdim: %d , zdim: %d ",xdim,zdim);
775 continue;
776 }
50d05d7b 777 Float_t *sp = new Float_t[ xdim*zdim+1 ];
778 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
779
780 // make a local map from cluster region
781 for( Int_t ianode=astart; ianode<=astop; ianode++ ){
782 for( Int_t itime=tstart; itime<=tstop; itime++ ){
783 Float_t fadc = fMap->GetSignal( ianode, itime );
784 if( fadc > baseline ) fadc -= (Double_t)baseline;
785 else fadc = 0.;
786 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
787 sp[index] = fadc;
788 } // time loop
789 } // anode loop
790
791 // search peaks on cluster
792 const Int_t kNp = 150;
793 Int_t peakX1[kNp];
794 Int_t peakZ1[kNp];
795 Float_t peakAmp1[kNp];
796 Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
797
798 // if multiple peaks, split cluster
799 if( npeak >= 1 )
800 {
801 // cout << "npeak " << npeak << endl;
802 // clusterJ->PrintInfo();
803 Float_t *par = new Float_t[npeak*5+1];
804 par[0] = (Float_t)npeak;
48058160 805 // Initial parameters in cell dimentions
50d05d7b 806 Int_t k1 = 1;
807 for( i=0; i<npeak; i++ ){
808 par[k1] = peakAmp1[i];
809 par[k1+1] = peakX1[i]; // local time pos. [timebin]
810 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
811 if( electronics == 1 )
812 par[k1+3] = 2.; // PASCAL
813 else if( electronics == 2 )
814 par[k1+3] = 0.7; // tau [timebin] OLA
815 par[k1+4] = .4; // sigma [anodepich]
816 k1+=5;
817 } // end for i
818 Int_t niter;
819 Float_t chir;
820 NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
821 Float_t peakX[kNp];
822 Float_t peakZ[kNp];
823 Float_t sigma[kNp];
824 Float_t tau[kNp];
825 Float_t peakAmp[kNp];
826 Float_t integral[kNp];
827 //get integrals => charge for each peak
828 PeakFunc( xdim, zdim, par, sp, integral );
829 k1 = 1;
830 for( i=0; i<npeak; i++ ){
831 peakAmp[i] = par[k1];
d86f531c 832 peakX[i] = par[k1+1];
833 peakZ[i] = par[k1+2];
834 tau[i] = par[k1+3];
835 sigma[i] = par[k1+4];
50d05d7b 836 k1+=5;
837 } // end for i
838 // calculate parameter for new clusters
839 for( i=0; i<npeak; i++ ){
840 AliITSRawClusterSDD clusterI( *clusterJ );
d86f531c 841
50d05d7b 842 Int_t newAnode = peakZ1[i]-1 + astart;
d86f531c 843
844 // Int_t newiTime = peakX1[i]-1 + tstart;
845 // Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
846 // if( newiTime > shift && newiTime < (fMaxNofSamples-shift) )
847 // shift = 0;
848 // Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
849 // clusterI.SetPeakPos( peakpos );
850
50d05d7b 851 clusterI.SetPeakAmpl( peakAmp1[i] );
852 Float_t newAnodef = peakZ[i] - 0.5 + astart;
853 Float_t newiTimef = peakX[i] - 1 + tstart;
854 if( wing == 2 ) newAnodef -= fNofAnodes;
855 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
856 newiTimef *= fTimeStep;
857 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
858 if( electronics == 1 ){
48058160 859 // newiTimef *= 0.999438; // PASCAL
860 // newiTimef += (6./fDriftSpeed - newiTimef/3000.);
50d05d7b 861 }else if( electronics == 2 )
862 newiTimef *= 0.99714; // OLA
d86f531c 863
864 Int_t timeBin = (Int_t)(newiTimef/fTimeStep+0.5);
865 Int_t peakpos = fMap->GetHitIndex( newAnode, timeBin );
866 if( peakpos < 0 ) {
867 for( Int_t ii=0; ii<3; ii++ ) {
868 peakpos = fMap->GetHitIndex( newAnode, timeBin+ii );
869 if( peakpos > 0 ) break;
870 peakpos = fMap->GetHitIndex( newAnode, timeBin-ii );
871 if( peakpos > 0 ) break;
872 }
873 }
874
875 if( peakpos < 0 ) {
876 // Warning( "ResolveClustersE", "Digit not found for cluster:\n" );
877 // clusterI.PrintInfo();
878 continue;
879 }
880 clusterI.SetPeakPos( peakpos );
50d05d7b 881 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
882 Float_t sign = ( wing == 1 ) ? -1. : 1.;
883 clusterI.SetX( driftPath*sign * 0.0001 );
884 clusterI.SetZ( anodePath * 0.0001 );
885 clusterI.SetAnode( newAnodef );
886 clusterI.SetTime( newiTimef );
887 clusterI.SetAsigma( sigma[i]*anodePitch );
888 clusterI.SetTsigma( tau[i]*fTimeStep );
889 clusterI.SetQ( integral[i] );
d86f531c 890
50d05d7b 891 iTS->AddCluster( 1, &clusterI );
892 } // end for i
893 fClusters->RemoveAt( j );
894 delete [] par;
48058160 895 } else { // something odd
d86f531c 896 Warning( "ResolveClustersE","--- Peak not found!!!! minpeak=%d ,cluster peak= %f , module= %d",
897 fMinPeak, clusterJ->PeakAmpl(), fModule );
898 clusterJ->PrintInfo();
899 Warning( "ResolveClustersE"," xdim= %d zdim= %d", xdim-2, zdim-2 );
50d05d7b 900 }
901 delete [] sp;
42da2935 902 } // cluster loop
903 fClusters->Compress();
50d05d7b 904// fMap->ClearMap();
a1f090e0 905}
50d05d7b 906
907
42da2935 908//________________________________________________________________________
909void AliITSClusterFinderSDD::GroupClusters(){
910 // group clusters
911 Int_t dummy=0;
912 Float_t fTimeStep = fSegmentation->Dpx(dummy);
913 // get number of clusters for this module
914 Int_t nofClusters = fClusters->GetEntriesFast();
915 nofClusters -= fNclusters;
916 AliITSRawClusterSDD *clusterI;
917 AliITSRawClusterSDD *clusterJ;
918 Int_t *label = new Int_t [nofClusters];
919 Int_t i,j;
920 for(i=0; i<nofClusters; i++) label[i] = 0;
921 for(i=0; i<nofClusters; i++) {
50d05d7b 922 if(label[i] != 0) continue;
923 for(j=i+1; j<nofClusters; j++) {
924 if(label[j] != 0) continue;
925 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
926 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
927 // 1.3 good
928 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
929 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
930 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
931 if(!pair) continue;
932 // clusterI->PrintInfo();
933 // clusterJ->PrintInfo();
934 clusterI->Add(clusterJ);
935 label[j] = 1;
936 fClusters->RemoveAt(j);
937 j=i; // <- Ernesto
938 } // J clusters
939 label[i] = 1;
42da2935 940 } // I clusters
941 fClusters->Compress();
942
943 delete [] label;
944 return;
b0f5e3fc 945}
42da2935 946//________________________________________________________________________
947void AliITSClusterFinderSDD::SelectClusters(){
948 // get number of clusters for this module
949 Int_t nofClusters = fClusters->GetEntriesFast();
b0f5e3fc 950
42da2935 951 nofClusters -= fNclusters;
952 Int_t i;
953 for(i=0; i<nofClusters; i++) {
50d05d7b 954 AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
955 Int_t rmflg = 0;
956 Float_t wy = 0.;
957 if(clusterI->Anodes() != 0.) {
958 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
959 } // end if
960 Int_t amp = (Int_t) clusterI->PeakAmpl();
961 Int_t cha = (Int_t) clusterI->Q();
962 if(amp < fMinPeak) rmflg = 1;
963 if(cha < fMinCharge) rmflg = 1;
964 if(wy < fMinNCells) rmflg = 1;
965 //if(wy > fMaxNCells) rmflg = 1;
966 if(rmflg) fClusters->RemoveAt(i);
42da2935 967 } // I clusters
968 fClusters->Compress();
969 return;
b0f5e3fc 970}
42da2935 971//__________________________________________________________________________
972void AliITSClusterFinderSDD::ResolveClusters(){
973 // The function to resolve clusters if the clusters overlapping exists
974/* AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
975 // get number of clusters for this module
976 Int_t nofClusters = fClusters->GetEntriesFast();
977 nofClusters -= fNclusters;
978 //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
979 // <<fNclusters<<endl;
980 Int_t fNofMaps = fSegmentation->Npz();
981 Int_t fNofAnodes = fNofMaps/2;
982 Int_t dummy=0;
983 Double_t fTimeStep = fSegmentation->Dpx(dummy);
984 Double_t fSddLength = fSegmentation->Dx();
985 Double_t fDriftSpeed = fResponse->DriftSpeed();
986 Double_t anodePitch = fSegmentation->Dpz(dummy);
987 Float_t n, baseline;
988 fResponse->GetNoiseParam(n,baseline);
989 Float_t dzz_1A = anodePitch * anodePitch / 12;
990 // fill Map of signals
a1f090e0 991 fMap->FillMap();
42da2935 992 Int_t j,i,ii,ianode,anode,itime;
993 Int_t wing,astart,astop,tstart,tstop,nanode;
994 Double_t fadc,ClusterTime;
995 Double_t q[400],x[400],z[400]; // digit charges and coordinates
996 for(j=0; j<nofClusters; j++) {
50d05d7b 997 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
998 Int_t ndigits = 0;
999 astart=clusterJ->Astart();
1000 astop=clusterJ->Astop();
1001 tstart=clusterJ->Tstartf();
1002 tstop=clusterJ->Tstopf();
1003 nanode=clusterJ->Anodes(); // <- Ernesto
1004 wing=(Int_t)clusterJ->W();
1005 if(wing == 2) {
1006 astart += fNofAnodes;
1007 astop += fNofAnodes;
1008 } // end if
1009 // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
1010 // <<tstart<<","<<tstop<<endl;
1011 // clear the digit arrays
1012 for(ii=0; ii<400; ii++) {
1013 q[ii] = 0.;
1014 x[ii] = 0.;
1015 z[ii] = 0.;
1016 } // end for ii
42da2935 1017
50d05d7b 1018 for(ianode=astart; ianode<=astop; ianode++) {
1019 for(itime=tstart; itime<=tstop; itime++) {
1020 fadc=fMap->GetSignal(ianode,itime);
1021 if(fadc>baseline) {
1022 fadc-=(Double_t)baseline;
1023 q[ndigits] = fadc*(fTimeStep/160); // KeV
1024 anode = ianode;
1025 if(wing == 2) anode -= fNofAnodes;
1026 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
1027 ClusterTime = itime*fTimeStep;
1028 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
1029 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
1030 if(wing == 1) x[ndigits] *= (-1);
1031 // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
1032 // <<fadc<<endl;
1033 // cout<<"wing,anode,ndigits,charge ="<<wing<<","
1034 // <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
1035 ndigits++;
1036 continue;
1037 } // end if
1038 fadc=0;
1039 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
1040 } // time loop
1041 } // anode loop
1042 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
1043 // Fit cluster to resolve for two separate ones --------------------
1044 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1045 Double_t dxx=0., dzz=0., dxz=0.;
1046 Double_t scl = 0., tmp, tga, elps = -1.;
1047 Double_t xfit[2], zfit[2], qfit[2];
1048 Double_t pitchz = anodePitch*1.e-4; // cm
1049 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
1050 Double_t sigma2;
1051 Int_t nfhits;
1052 Int_t nbins = ndigits;
1053 Int_t separate = 0;
1054 // now, all lengths are in microns
1055 for (ii=0; ii<nbins; ii++) {
1056 qq += q[ii];
1057 xm += x[ii]*q[ii];
1058 zm += z[ii]*q[ii];
1059 xx += x[ii]*x[ii]*q[ii];
1060 zz += z[ii]*z[ii]*q[ii];
1061 xz += x[ii]*z[ii]*q[ii];
1062 } // end for ii
1063 xm /= qq;
1064 zm /= qq;
1065 xx /= qq;
1066 zz /= qq;
1067 xz /= qq;
1068 dxx = xx - xm*xm;
1069 dzz = zz - zm*zm;
1070 dxz = xz - xm*zm;
42da2935 1071
50d05d7b 1072 // shrink the cluster in the time direction proportionaly to the
1073 // dxx/dzz, which lineary depends from the drift path
1074 // new Ernesto........
1075 if( nanode == 1 ){
1076 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1077 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1078 } // end if
1079 if( nanode == 2 ){
1080 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1081 } // end if
1082 if( nanode == 3 ){
1083 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1084 } // end if
1085 if( nanode > 3 ){
1086 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1087 } // end if
1088 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1089 // <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1090 // old Boris.........
1091 // tmp=29730. - 585.*fabs(xm/1000.);
1092 // scl=TMath::Sqrt(tmp/130000.);
a1f090e0 1093
50d05d7b 1094 xm *= scl;
1095 xx *= scl*scl;
1096 xz *= scl;
42da2935 1097
50d05d7b 1098 dxx = xx - xm*xm;
1099 // dzz = zz - zm*zm;
1100 dxz = xz - xm*zm;
1101 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1102 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1103 // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
a1f090e0 1104
50d05d7b 1105 if (dxx < 0.) dxx=0.;
1106 // the data if no cluster overlapping (the coordunates are in cm)
1107 nfhits = 1;
1108 xfit[0] = xm*1.e-4;
1109 zfit[0] = zm*1.e-4;
1110 qfit[0] = qq;
1111 // if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
a1f090e0 1112
50d05d7b 1113 if (nbins >= 7) {
1114 if (dxz==0.) tga=0.;
1115 else {
1116 tmp=0.5*(dzz-dxx)/dxz;
1117 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) :
1118 tmp+TMath::Sqrt(tmp*tmp+1);
1119 } // end if dxz
1120 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1121 // change from microns to cm
1122 xm *= 1.e-4;
1123 zm *= 1.e-4;
1124 zz *= 1.e-8;
1125 xx *= 1.e-8;
1126 xz *= 1.e-8;
1127 dxz *= 1.e-8;
1128 dxx *= 1.e-8;
1129 dzz *= 1.e-8;
1130 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1131 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1132 for (i=0; i<nbins; i++) {
1133 x[i] = x[i] *= scl;
1134 x[i] = x[i] *= 1.e-4;
1135 z[i] = z[i] *= 1.e-4;
1136 } // end for i
1137 // cout<<"!!! elps ="<<elps<<endl;
1138 if (elps < 0.3) { // try to separate hits
1139 separate = 1;
1140 tmp=atan(tga);
1141 Double_t cosa=cos(tmp),sina=sin(tmp);
1142 Double_t a1=0., x1=0., xxx=0.;
1143 for (i=0; i<nbins; i++) {
1144 tmp=x[i]*cosa + z[i]*sina;
1145 if (q[i] > a1) {
1146 a1=q[i];
1147 x1=tmp;
1148 } // end if
1149 xxx += tmp*tmp*tmp*q[i];
1150 } // end for i
1151 xxx /= qq;
1152 Double_t z12=-sina*xm + cosa*zm;
1153 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1154 xm=cosa*xm + sina*zm;
1155 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1156 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1157 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1158 for (i=0; i<33; i++) { // solve a system of equations
1159 Double_t x1_old=x1, x2_old=x2, r_old=r;
1160 Double_t c11=x1-x2;
1161 Double_t c12=r;
1162 Double_t c13=1-r;
1163 Double_t c21=x1*x1 - x2*x2;
1164 Double_t c22=2*r*x1;
1165 Double_t c23=2*(1-r)*x2;
1166 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1167 Double_t c32=3*r*(sigma2 + x1*x1);
1168 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1169 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1170 Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1171 Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1172 (3*sigma2+x2*x2)-xxx);
1173 Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1174 c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1175 if (d==0.) {
1176 cout<<"*********** d=0 ***********\n";
1177 break;
1178 } // end if
1179 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1180 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1181 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1182 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1183 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1184 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1185 r += dr/d;
1186 x1 += d1/d;
1187 x2 += d2/d;
1188 if (fabs(x1-x1_old) > 0.0001) continue;
1189 if (fabs(x2-x2_old) > 0.0001) continue;
1190 if (fabs(r-r_old)/5 > 0.001) continue;
1191 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1192 Double_t a2=a1*(1-r)/r;
1193 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina +
1194 z12*cosa;
1195 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina +
1196 z12*cosa;
1197 nfhits=2;
1198 break; // Ok !
1199 } // end for i
1200 if (i==33) cerr<<"No more iterations ! "<<endl;
1201 } // end of attempt to separate overlapped clusters
1202 } // end of nbins cut
1203 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1204 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1205 <<elps<<","<<nfhits<<endl;
1206 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1207 for (i=0; i<nfhits; i++) {
1208 xfit[i] *= (1.e+4/scl);
1209 if(wing == 1) xfit[i] *= (-1);
1210 zfit[i] *= 1.e+4;
1211 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","
1212 // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1213 } // end for i
1214 Int_t ncl = nfhits;
1215 if(nfhits == 1 && separate == 1) {
1216 cout<<"!!!!! no separate"<<endl;
1217 ncl = -2;
1218 } // end if
1219 if(nfhits == 2) {
1220 cout << "Split cluster: " << endl;
1221 clusterJ->PrintInfo();
1222 cout << " in: " << endl;
1223 for (i=0; i<nfhits; i++) {
1224 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
42da2935 1225 -1,-1,(Float_t)qfit[i],ncl,0,0,
1226 (Float_t)xfit[i],
1227 (Float_t)zfit[i],0,0,0,0,
1228 tstart,tstop,astart,astop);
50d05d7b 1229 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1230 // -1,(Float_t)qfit[i],0,0,0,
1231 // (Float_t)xfit[i],
1232 // (Float_t)zfit[i],0,0,0,0,
1233 // tstart,tstop,astart,astop,ncl);
1234 // ???????????
1235 // if(wing == 1) xfit[i] *= (-1);
1236 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1237 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1238 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1239 Float_t peakpos = clusterJ->PeakPos();
1240 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1241 Float_t clusterDriftPath = Time*fDriftSpeed;
1242 clusterDriftPath = fSddLength-clusterDriftPath;
1243 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1244 Time,qfit[i],
42da2935 1245 clusterPeakAmplitude,peakpos,
1246 0.,0.,clusterDriftPath,
1247 clusteranodePath,clusterJ->Samples()/2
50d05d7b 1248 ,tstart,tstop,0,0,0,astart,astop);
1249 clust->PrintInfo();
1250 iTS->AddCluster(1,clust);
1251 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1252 // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1253 // <<","<<ncl<<endl;
1254 delete clust;
1255 }// nfhits loop
1256 fClusters->RemoveAt(j);
42da2935 1257 } // if nfhits = 2
1258} // cluster loop
1259fClusters->Compress();
1260fMap->ClearMap();
1261*/
1262 return;
a1f090e0 1263}
42da2935 1264//______________________________________________________________________
1265void AliITSClusterFinderSDD::GetRecPoints(){
1266 // get rec points
1267 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1268 // get number of clusters for this module
1269 Int_t nofClusters = fClusters->GetEntriesFast();
1270 nofClusters -= fNclusters;
1271 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1272 const Float_t kconv = 1.0e-4;
1273 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1274 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
d86f531c 1275 Int_t i;
42da2935 1276 Int_t ix, iz, idx=-1;
1277 AliITSdigitSDD *dig=0;
1278 Int_t ndigits=fDigits->GetEntriesFast();
1279 for(i=0; i<nofClusters; i++) {
50d05d7b 1280 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1281 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1282 if(clusterI) idx=clusterI->PeakPos();
1283 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1284 // try peak neighbours - to be done
1285 if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
d86f531c 1286 if(!dig) {
50d05d7b 1287 // try cog
1288 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1289 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1290 // if null try neighbours
1291 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1292 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1293 if (!dig) printf("SDD: cannot assign the track number!\n");
1294 } // end if !dig
1295 AliITSRecPoint rnew;
1296 rnew.SetX(clusterI->X());
1297 rnew.SetZ(clusterI->Z());
1298 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
1299 rnew.SetdEdX(kconvGeV*clusterI->Q());
1300 rnew.SetSigmaX2(kRMSx*kRMSx);
1301 rnew.SetSigmaZ2(kRMSz*kRMSz);
d86f531c 1302
1303 if(dig) rnew.fTracks[0]=dig->fTracks[0];
1304 if(dig) rnew.fTracks[1]=dig->fTracks[1];
1305 if(dig) rnew.fTracks[2]=dig->fTracks[2];
507cf1a7 1306
50d05d7b 1307 iTS->AddRecPoint(rnew);
42da2935 1308 } // I clusters
50d05d7b 1309// fMap->ClearMap();
b0f5e3fc 1310}
42da2935 1311//______________________________________________________________________
1312void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1313 // find raw clusters
50d05d7b 1314
1315 fModule = mod;
1316
a1f090e0 1317 Find1DClustersE();
b0f5e3fc 1318 GroupClusters();
1319 SelectClusters();
a1f090e0 1320 ResolveClustersE();
b0f5e3fc 1321 GetRecPoints();
1322}
42da2935 1323//_______________________________________________________________________
bf3f2830 1324void AliITSClusterFinderSDD::Print() const{
42da2935 1325 // Print SDD cluster finder Parameters
1326
1327 cout << "**************************************************" << endl;
1328 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1329 cout << "**************************************************" << endl;
1330 cout << "Number of Clusters: " << fNclusters << endl;
1331 cout << "Anode Tolerance: " << fDAnode << endl;
1332 cout << "Time Tolerance: " << fDTime << endl;
1333 cout << "Time correction (electronics): " << fTimeCorr << endl;
1334 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1335 cout << "Minimum Amplitude: " << fMinPeak << endl;
1336 cout << "Minimum Charge: " << fMinCharge << endl;
1337 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1338 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1339 cout << "**************************************************" << endl;
a1f090e0 1340}