]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSClusterFinderSDD.cxx
Introducing Riostream.h
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
48058160 15/*
16 $Id$
17 $Log$
b9d0a01d 18 Revision 1.23.4.2 2002/10/14 13:14:07 hristov
19 Updating VirtualMC to v3-09-02
20
21 Revision 1.26 2002/09/09 17:23:28 nilsen
22 Minor changes in support of changes to AliITSdigitS?D class'.
23
ee86d557 24 Revision 1.25 2002/05/10 22:29:40 nilsen
25 Change my Massimo Masera in the default constructor to bring things into
26 compliance.
27
355ccb70 28 Revision 1.24 2002/04/24 22:02:31 nilsen
29 New SDigits and Digits routines, and related changes, (including new
30 noise values).
31
48058160 32 */
33
a1f090e0 34#include <iostream.h>
78a228db 35#include <TFile.h>
a1f090e0 36#include <TMath.h>
37#include <math.h>
b0f5e3fc 38
39#include "AliITSClusterFinderSDD.h"
e8189707 40#include "AliITSMapA1.h"
41#include "AliITS.h"
78a228db 42#include "AliITSdigit.h"
43#include "AliITSRawCluster.h"
44#include "AliITSRecPoint.h"
45#include "AliITSsegmentation.h"
5dd4cc39 46#include "AliITSresponseSDD.h"
b0f5e3fc 47#include "AliRun.h"
48
b0f5e3fc 49ClassImp(AliITSClusterFinderSDD)
50
42da2935 51//______________________________________________________________________
52AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
50d05d7b 53 AliITSresponse *response,
54 TClonesArray *digits,
55 TClonesArray *recp){
42da2935 56 // standard constructor
78a228db 57
b48af428 58 fSegmentation = seg;
59 fResponse = response;
60 fDigits = digits;
61 fClusters = recp;
62 fNclusters = fClusters->GetEntriesFast();
b0f5e3fc 63 SetCutAmplitude();
64 SetDAnode();
65 SetDTime();
355ccb70 66 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
67 // SetMinPeak();
78a228db 68 SetMinNCells();
69 SetMaxNCells();
70 SetTimeCorr();
a1f090e0 71 SetMinCharge();
b48af428 72 fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
b0f5e3fc 73}
42da2935 74//______________________________________________________________________
75AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
76 // default constructor
b0f5e3fc 77
b48af428 78 fSegmentation = 0;
79 fResponse = 0;
80 fDigits = 0;
81 fClusters = 0;
82 fNclusters = 0;
83 fMap = 0;
84 fCutAmplitude = 0;
355ccb70 85 fDAnode = 0;
86 fDTime = 0;
87 fMinPeak = 0;
88 fMinNCells = 0;
89 fMaxNCells = 0;
90 fTimeCorr = 0;
91 fMinCharge = 0;
92 /*
b0f5e3fc 93 SetDAnode();
94 SetDTime();
48058160 95 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
78a228db 96 SetMinNCells();
97 SetMaxNCells();
98 SetTimeCorr();
a1f090e0 99 SetMinCharge();
355ccb70 100 */
b0f5e3fc 101}
42da2935 102//____________________________________________________________________________
103AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
e8189707 104 // destructor
105
106 if(fMap) delete fMap;
e8189707 107}
42da2935 108//______________________________________________________________________
109void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
110 // set the signal threshold for cluster finder
111 Float_t baseline,noise,noise_after_el;
112
113 fResponse->GetNoiseParam(noise,baseline);
114 noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
b48af428 115 fCutAmplitude = (Int_t)((baseline + nsigma*noise_after_el));
5dd4cc39 116}
42da2935 117//______________________________________________________________________
118void AliITSClusterFinderSDD::Find1DClusters(){
119 // find 1D clusters
b48af428 120 static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
a1f090e0 121
42da2935 122 // retrieve the parameters
b48af428 123 Int_t fNofMaps = fSegmentation->Npz();
42da2935 124 Int_t fMaxNofSamples = fSegmentation->Npx();
b48af428 125 Int_t fNofAnodes = fNofMaps/2;
126 Int_t dummy = 0;
127 Float_t fTimeStep = fSegmentation->Dpx(dummy);
128 Float_t fSddLength = fSegmentation->Dx();
129 Float_t fDriftSpeed = fResponse->DriftSpeed();
130 Float_t anodePitch = fSegmentation->Dpz(dummy);
42da2935 131
132 // map the signal
50d05d7b 133 fMap->ClearMap();
42da2935 134 fMap->SetThreshold(fCutAmplitude);
135 fMap->FillMap();
a1f090e0 136
42da2935 137 Float_t noise;
138 Float_t baseline;
139 fResponse->GetNoiseParam(noise,baseline);
a1f090e0 140
42da2935 141 Int_t nofFoundClusters = 0;
142 Int_t i;
143 Float_t **dfadc = new Float_t*[fNofAnodes];
144 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
b48af428 145 Float_t fadc = 0.;
42da2935 146 Float_t fadc1 = 0.;
147 Float_t fadc2 = 0.;
148 Int_t j,k,idx,l,m;
149 for(j=0;j<2;j++) {
50d05d7b 150 for(k=0;k<fNofAnodes;k++) {
151 idx = j*fNofAnodes+k;
152 // signal (fadc) & derivative (dfadc)
153 dfadc[k][255]=0.;
154 for(l=0; l<fMaxNofSamples; l++) {
155 fadc2=(Float_t)fMap->GetSignal(idx,l);
156 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
157 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
158 } // samples
159 } // anodes
42da2935 160
50d05d7b 161 for(k=0;k<fNofAnodes;k++) {
162 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
163 idx = j*fNofAnodes+k;
164 Int_t imax = 0;
165 Int_t imaxd = 0;
166 Int_t it = 0;
167 while(it <= fMaxNofSamples-3) {
168 imax = it;
169 imaxd = it;
170 // maximum of signal
171 Float_t fadcmax = 0.;
172 Float_t dfadcmax = 0.;
173 Int_t lthrmina = 1;
174 Int_t lthrmint = 3;
175 Int_t lthra = 1;
176 Int_t lthrt = 0;
177 for(m=0;m<20;m++) {
178 Int_t id = it+m;
179 if(id>=fMaxNofSamples) break;
180 fadc=(float)fMap->GetSignal(idx,id);
181 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
182 if(fadc > (float)fCutAmplitude) {
183 lthrt++;
184 } // end if
185 if(dfadc[k][id] > dfadcmax) {
186 dfadcmax = dfadc[k][id];
187 imaxd = id;
188 } // end if
189 } // end for m
190 it = imaxd;
191 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
192 // cluster charge
193 Int_t tstart = it-2;
194 if(tstart < 0) tstart = 0;
195 Bool_t ilcl = 0;
196 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
197 if(ilcl) {
198 nofFoundClusters++;
199 Int_t tstop = tstart;
200 Float_t dfadcmin = 10000.;
201 Int_t ij;
202 for(ij=0; ij<20; ij++) {
203 if(tstart+ij > 255) { tstop = 255; break; }
204 fadc=(float)fMap->GetSignal(idx,tstart+ij);
205 if((dfadc[k][tstart+ij] < dfadcmin) &&
206 (fadc > fCutAmplitude)) {
207 tstop = tstart+ij+5;
208 if(tstop > 255) tstop = 255;
209 dfadcmin = dfadc[k][it+ij];
210 } // end if
211 } // end for ij
42da2935 212
50d05d7b 213 Float_t clusterCharge = 0.;
214 Float_t clusterAnode = k+0.5;
215 Float_t clusterTime = 0.;
216 Int_t clusterMult = 0;
217 Float_t clusterPeakAmplitude = 0.;
218 Int_t its,peakpos = -1;
219 Float_t n, baseline;
220 fResponse->GetNoiseParam(n,baseline);
221 for(its=tstart; its<=tstop; its++) {
222 fadc=(float)fMap->GetSignal(idx,its);
223 if(fadc>baseline) fadc -= baseline;
224 else fadc = 0.;
225 clusterCharge += fadc;
226 // as a matter of fact we should take the peak
227 // pos before FFT
228 // to get the list of tracks !!!
229 if(fadc > clusterPeakAmplitude) {
230 clusterPeakAmplitude = fadc;
231 //peakpos=fMap->GetHitIndex(idx,its);
232 Int_t shift = (int)(fTimeCorr/fTimeStep);
233 if(its>shift && its<(fMaxNofSamples-shift))
234 peakpos = fMap->GetHitIndex(idx,its+shift);
235 else peakpos = fMap->GetHitIndex(idx,its);
236 if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
237 } // end if
238 clusterTime += fadc*its;
239 if(fadc > 0) clusterMult++;
240 if(its == tstop) {
241 clusterTime /= (clusterCharge/fTimeStep); // ns
242 if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
243 //ns
244 } // end if
245 } // end for its
42da2935 246
50d05d7b 247 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
248 anodePitch;
249 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
250 clusterDriftPath = fSddLength-clusterDriftPath;
251 if(clusterCharge <= 0.) break;
252 AliITSRawClusterSDD clust(j+1,//i
253 clusterAnode,clusterTime,//ff
254 clusterCharge, //f
255 clusterPeakAmplitude, //f
256 peakpos, //i
257 0.,0.,clusterDriftPath,//fff
258 clusteranodePath, //f
259 clusterMult, //i
260 0,0,0,0,0,0,0);//7*i
261 iTS->AddCluster(1,&clust);
262 it = tstop;
263 } // ilcl
264 it++;
265 } // while (samples)
266 } // anodes
42da2935 267 } // detectors (2)
42da2935 268
269 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
270 delete [] dfadc;
a1f090e0 271
42da2935 272 return;
a1f090e0 273}
50d05d7b 274
275
276
42da2935 277//______________________________________________________________________
278void AliITSClusterFinderSDD::Find1DClustersE(){
24a1c341 279 // find 1D clusters
42da2935 280 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
281 // retrieve the parameters
282 Int_t fNofMaps = fSegmentation->Npz();
283 Int_t fMaxNofSamples = fSegmentation->Npx();
284 Int_t fNofAnodes = fNofMaps/2;
285 Int_t dummy=0;
286 Float_t fTimeStep = fSegmentation->Dpx( dummy );
287 Float_t fSddLength = fSegmentation->Dx();
288 Float_t fDriftSpeed = fResponse->DriftSpeed();
289 Float_t anodePitch = fSegmentation->Dpz( dummy );
290 Float_t n, baseline;
291 fResponse->GetNoiseParam( n, baseline );
292 // map the signal
50d05d7b 293 fMap->ClearMap();
42da2935 294 fMap->SetThreshold( fCutAmplitude );
295 fMap->FillMap();
50d05d7b 296
42da2935 297 Int_t nClu = 0;
50d05d7b 298 // cout << "Search cluster... "<< endl;
42da2935 299 for( Int_t j=0; j<2; j++ ){
50d05d7b 300 for( Int_t k=0; k<fNofAnodes; k++ ){
301 Int_t idx = j*fNofAnodes+k;
302 Bool_t on = kFALSE;
303 Int_t start = 0;
304 Int_t nTsteps = 0;
305 Float_t fmax = 0.;
306 Int_t lmax = 0;
307 Float_t charge = 0.;
308 Float_t time = 0.;
309 Float_t anode = k+0.5;
310 Int_t peakpos = -1;
311 for( Int_t l=0; l<fMaxNofSamples; l++ ){
312 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
313 if( fadc > 0.0 ){
314 if( on == kFALSE && l<fMaxNofSamples-4){
315 // star RawCluster (reset var.)
316 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
317 if( fadc1 < fadc ) continue;
318 start = l;
319 fmax = 0.;
320 lmax = 0;
321 time = 0.;
322 charge = 0.;
323 on = kTRUE;
324 nTsteps = 0;
325 } // end if on...
326 nTsteps++ ;
327 if( fadc > baseline ) fadc -= baseline;
328 else fadc=0.;
329 charge += fadc;
330 time += fadc*l;
331 if( fadc > fmax ){
332 fmax = fadc;
333 lmax = l;
334 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
335 if( l > shift && l < (fMaxNofSamples-shift) )
336 peakpos = fMap->GetHitIndex( idx, l+shift );
337 else
338 peakpos = fMap->GetHitIndex( idx, l );
339 if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
340 } // end if fadc
341 }else{ // end fadc>0
342 if( on == kTRUE ){
343 if( nTsteps > 2 ){
344 // min # of timesteps for a RawCluster
345 // Found a RawCluster...
346 Int_t stop = l-1;
347 time /= (charge/fTimeStep); // ns
348 // time = lmax*fTimeStep; // ns
349 if( time > fTimeCorr ) time -= fTimeCorr; // ns
350 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
351 Float_t driftPath = time*fDriftSpeed;
352 driftPath = fSddLength-driftPath;
353 AliITSRawClusterSDD clust(j+1,anode,time,charge,
354 fmax, peakpos,0.,0.,
355 driftPath,anodePath,
356 nTsteps,start,stop,
357 start, stop, 1, k, k );
358 iTS->AddCluster( 1, &clust );
359 // clust.PrintInfo();
360 nClu++;
361 } // end if nTsteps
362 on = kFALSE;
363 } // end if on==kTRUE
364 } // end if fadc>0
365 } // samples
366 } // anodes
42da2935 367 } // wings
50d05d7b 368 // cout << "# Rawclusters " << nClu << endl;
42da2935 369 return;
a1f090e0 370}
42da2935 371//_______________________________________________________________________
372Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
50d05d7b 373 Int_t *peakX, Int_t *peakZ,
374 Float_t *peakAmp, Float_t minpeak ){
42da2935 375 // search peaks on a 2D cluster
376 Int_t npeak = 0; // # peaks
56fff130 377 Int_t i,j;
42da2935 378 // search peaks
379 for( Int_t z=1; z<zdim-1; z++ ){
48058160 380 for( Int_t x=1; x<xdim-2; x++ ){
50d05d7b 381 Float_t sxz = spect[x*zdim+z];
382 Float_t sxz1 = spect[(x+1)*zdim+z];
383 Float_t sxz2 = spect[(x-1)*zdim+z];
384 // search a local max. in s[x,z]
385 if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
386 if( sxz >= spect[(x+1)*zdim+z ] && sxz >= spect[(x-1)*zdim+z ] &&
387 sxz >= spect[x*zdim +z+1] && sxz >= spect[x*zdim +z-1] &&
388 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
389 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
390 // peak found
391 peakX[npeak] = x;
392 peakZ[npeak] = z;
393 peakAmp[npeak] = sxz;
394 npeak++;
395 } // end if ....
396 } // end for x
42da2935 397 } // end for z
398 // search groups of peaks with same amplitude.
399 Int_t *flag = new Int_t[npeak];
400 for( i=0; i<npeak; i++ ) flag[i] = 0;
401 for( i=0; i<npeak; i++ ){
50d05d7b 402 for( j=0; j<npeak; j++ ){
403 if( i==j) continue;
404 if( flag[j] > 0 ) continue;
405 if( peakAmp[i] == peakAmp[j] &&
406 TMath::Abs(peakX[i]-peakX[j])<=1 &&
407 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
408 if( flag[i] == 0) flag[i] = i+1;
409 flag[j] = flag[i];
410 } // end if ...
411 } // end for j
42da2935 412 } // end for i
50d05d7b 413 // make average of peak groups
42da2935 414 for( i=0; i<npeak; i++ ){
50d05d7b 415 Int_t nFlag = 1;
416 if( flag[i] <= 0 ) continue;
417 for( j=0; j<npeak; j++ ){
418 if( i==j ) continue;
419 if( flag[j] != flag[i] ) continue;
420 peakX[i] += peakX[j];
421 peakZ[i] += peakZ[j];
422 nFlag++;
423 npeak--;
424 for( Int_t k=j; k<npeak; k++ ){
425 peakX[k] = peakX[k+1];
426 peakZ[k] = peakZ[k+1];
427 peakAmp[k] = peakAmp[k+1];
428 flag[k] = flag[k+1];
429 } // end for k
430 j--;
431 } // end for j
432 if( nFlag > 1 ){
433 peakX[i] /= nFlag;
434 peakZ[i] /= nFlag;
435 } // end fi nFlag
42da2935 436 } // end for i
437 delete [] flag;
438 return( npeak );
a1f090e0 439}
42da2935 440//______________________________________________________________________
441void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
50d05d7b 442 Float_t *spe, Float_t *integral){
24a1c341 443 // function used to fit the clusters
50d05d7b 444 // par -> parameters..
24a1c341 445 // par[0] number of peaks.
446 // for each peak i=1, ..., par[0]
50d05d7b 447 // par[i] = Ampl.
448 // par[i+1] = xpos
449 // par[i+2] = zpos
450 // par[i+3] = tau
451 // par[i+4] = sigma.
24a1c341 452 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
453 const Int_t knParam = 5;
454 Int_t npeak = (Int_t)par[0];
42da2935 455
24a1c341 456 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
42da2935 457
24a1c341 458 Int_t k = 1;
42da2935 459 for( Int_t i=0; i<npeak; i++ ){
24a1c341 460 if( integral != 0 ) integral[i] = 0.;
461 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
462 Float_t T2 = par[k+3]; // PASCAL
463 if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
42da2935 464 for( Int_t z=0; z<zdim; z++ ){
465 for( Int_t x=0; x<xdim; x++ ){
24a1c341 466 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
467 Float_t x2 = 0.;
468 Float_t signal = 0.;
42da2935 469 if( electronics == 1 ){ // PASCAL
24a1c341 470 x2 = (x-par[k+1]+T2)/T2;
42da2935 471 signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
472 // signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
473 }else if( electronics == 2 ) { // OLA
50d05d7b 474 x2 = (x-par[k+1])*(x-par[k+1])/T2;
475 signal = par[k] * exp( -x2 - z2 );
476 } else {
477 cout << "Wrong SDD Electronics =" << electronics << endl;
478 // exit( 1 );
479 } // end if electronicx
24a1c341 480 spe[x*zdim+z] += signal;
481 if( integral != 0 ) integral[i] += signal;
42da2935 482 } // end for x
483 } // end for z
24a1c341 484 k += knParam;
42da2935 485 } // end for i
24a1c341 486 return;
a1f090e0 487}
42da2935 488//__________________________________________________________________________
489Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
50d05d7b 490 Float_t *speFit ){
42da2935 491 // EVALUATES UNNORMALIZED CHI-SQUARED
492 Float_t chi2 = 0.;
493 for( Int_t z=0; z<zdim; z++ ){
50d05d7b 494 for( Int_t x=1; x<xdim-1; x++ ){
495 Int_t index = x*zdim+z;
496 Float_t tmp = spe[index] - speFit[index];
497 chi2 += tmp*tmp;
498 } // end for x
42da2935 499 } // end for z
500 return( chi2 );
a1f090e0 501}
42da2935 502//_______________________________________________________________________
503void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
50d05d7b 504 Float_t *prm0,Float_t *steprm,
505 Float_t *chisqr,Float_t *spe,
506 Float_t *speFit ){
42da2935 507 //
508 Int_t k, nnn, mmm, i;
509 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
510 const Int_t knParam = 5;
511 Int_t npeak = (Int_t)param[0];
512 for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
513 for( k=1; k<(npeak*knParam+1); k++ ){
50d05d7b 514 p1 = param[k];
515 delta = steprm[k];
516 d1 = delta;
517 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
518 if( fabs( p1 ) > 1.0E-6 )
519 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
520 else delta = (Float_t)1.0E-4;
521 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
522 PeakFunc( xdim, zdim, param, speFit );
523 chisq1 = ChiSqr( xdim, zdim, spe, speFit );
524 p2 = p1+delta;
525 param[k] = p2;
526 PeakFunc( xdim, zdim, param, speFit );
527 chisq2 = ChiSqr( xdim, zdim, spe, speFit );
528 if( chisq1 < chisq2 ){
529 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
530 delta = -delta;
531 t = p1;
532 p1 = p2;
533 p2 = t;
534 t = chisq1;
535 chisq1 = chisq2;
536 chisq2 = t;
537 } // end if
538 i = 1; nnn = 0;
539 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
540 nnn++;
541 p3 = p2 + delta;
542 mmm = nnn - (nnn/5)*5; // multiplo de 5
543 if( mmm == 0 ){
544 d1 = delta;
545 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
546 delta *= 5;
547 } // end if
548 param[k] = p3;
549 // Constrain paramiters
550 Int_t kpos = (k-1) % knParam;
551 switch( kpos ){
552 case 0 :
553 if( param[k] <= 20 ) param[k] = fMinPeak;
554 break;
555 case 1 :
556 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
557 break;
558 case 2 :
559 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
560 break;
561 case 3 :
562 if( param[k] < .5 ) param[k] = .5;
563 break;
564 case 4 :
565 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
566 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
567 break;
568 }; // end switch
569 PeakFunc( xdim, zdim, param, speFit );
570 chisq3 = ChiSqr( xdim, zdim, spe, speFit );
571 if( chisq3 < chisq2 && nnn < 50 ){
572 p1 = p2;
573 p2 = p3;
574 chisq1 = chisq2;
575 chisq2 = chisq3;
576 }else i=0;
577 } while( i );
578 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
579 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
580 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
581 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
582 else p0 = 10000;
583 //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
584 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
585 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
586 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
587 //if( fabs( p2-p0 ) > dp ) p0 = p2;
588 param[k] = p0;
589 // Constrain paramiters
590 Int_t kpos = (k-1) % knParam;
591 switch( kpos ){
592 case 0 :
593 if( param[k] <= 20 ) param[k] = fMinPeak;
594 break;
595 case 1 :
596 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
597 break;
598 case 2 :
599 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
600 break;
601 case 3 :
602 if( param[k] < .5 ) param[k] = .5;
603 break;
604 case 4 :
605 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
606 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
607 break;
608 }; // end switch
609 PeakFunc( xdim, zdim, param, speFit );
610 chisqt = ChiSqr( xdim, zdim, spe, speFit );
611 // DO NOT ALLOW ERRONEOUS INTERPOLATION
612 if( chisqt <= *chisqr ) *chisqr = chisqt;
613 else param[k] = prm0[k];
614 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
615 steprm[k] = (param[k]-prm0[k])/5;
616 if( steprm[k] >= d1 ) steprm[k] = d1/5;
42da2935 617 } // end for k
618 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
619 PeakFunc( xdim, zdim, param, speFit );
620 *chisqr = ChiSqr( xdim, zdim, spe, speFit );
621 return;
a1f090e0 622}
42da2935 623//_________________________________________________________________________
624Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim,
50d05d7b 625 Float_t *param, Float_t *spe,
626 Int_t *niter, Float_t *chir ){
42da2935 627 // fit method from Comput. Phys. Commun 46(1987) 149
50d05d7b 628 const Float_t kchilmt = 0.01; // relative accuracy
629 const Int_t knel = 3; // for parabolic minimization
630 const Int_t knstop = 50; // Max. iteration number
42da2935 631 const Int_t knParam = 5;
632 Int_t npeak = (Int_t)param[0];
633 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
634 if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
635 Float_t degFree = (xdim*zdim - npeak*knParam)-1;
636 Int_t n, k, iterNum = 0;
637 Float_t *prm0 = new Float_t[npeak*knParam+1];
638 Float_t *step = new Float_t[npeak*knParam+1];
639 Float_t *schi = new Float_t[npeak*knParam+1];
640 Float_t *sprm[3];
641 sprm[0] = new Float_t[npeak*knParam+1];
642 sprm[1] = new Float_t[npeak*knParam+1];
643 sprm[2] = new Float_t[npeak*knParam+1];
644 Float_t chi0, chi1, reldif, a, b, prmin, dp;
645 Float_t *speFit = new Float_t[ xdim*zdim ];
646 PeakFunc( xdim, zdim, param, speFit );
647 chi0 = ChiSqr( xdim, zdim, spe, speFit );
648 chi1 = chi0;
649 for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
50d05d7b 650 for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
651 step[k] = param[k] / 20.0 ;
652 step[k+1] = param[k+1] / 50.0;
653 step[k+2] = param[k+2] / 50.0;
654 step[k+3] = param[k+3] / 20.0;
655 step[k+4] = param[k+4] / 20.0;
656 } // end for k
42da2935 657 Int_t out = 0;
658 do{
50d05d7b 659 iterNum++;
660 chi0 = chi1;
661 Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
662 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
663 // EXIT conditions
664 if( reldif < (float) kchilmt ){
665 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
666 *niter = iterNum;
667 out = 0;
668 break;
669 } // end if
670 if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
671 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
672 *niter = iterNum;
673 out = 0;
674 break;
675 } // end if
676 if( iterNum > 5*knstop ){
677 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
678 *niter = iterNum;
679 out = 1;
680 break;
681 } // end if
682 if( iterNum <= knel ) continue;
683 n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
684 if( n > 3 || n == 0 ) continue;
685 schi[n-1] = chi1;
686 for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
687 if( n != 3 ) continue;
688 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
689 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
690 for( k=1; k<(npeak*knParam+1); k++ ){
691 Float_t tmp0 = sprm[0][k];
692 Float_t tmp1 = sprm[1][k];
693 Float_t tmp2 = sprm[2][k];
694 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
695 a += (schi[2]*(tmp0-tmp1));
696 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
697 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
698 (tmp0*tmp0-tmp1*tmp1)));
699 if ((double)a < 1.0E-6) prmin = 0;
700 else prmin = (float) (0.5*b/a);
701 dp = 5*(tmp2-tmp0);
702 if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
703 param[k] = prmin;
704 step[k] = dp/10; // OPTIMIZE SEARCH STEP
705 } // end for k
42da2935 706 } while( kTRUE );
707 delete [] prm0;
708 delete [] step;
709 delete [] schi;
710 delete [] sprm[0];
711 delete [] sprm[1];
712 delete [] sprm[2];
713 delete [] speFit;
714 return( out );
a1f090e0 715}
50d05d7b 716
42da2935 717//______________________________________________________________________
718void AliITSClusterFinderSDD::ResolveClustersE(){
719 // The function to resolve clusters if the clusters overlapping exists
24a1c341 720 Int_t i;
42da2935 721 static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
722 // get number of clusters for this module
723 Int_t nofClusters = fClusters->GetEntriesFast();
724 nofClusters -= fNclusters;
725 Int_t fNofMaps = fSegmentation->Npz();
726 Int_t fNofAnodes = fNofMaps/2;
727 Int_t fMaxNofSamples = fSegmentation->Npx();
728 Int_t dummy=0;
729 Double_t fTimeStep = fSegmentation->Dpx( dummy );
730 Double_t fSddLength = fSegmentation->Dx();
731 Double_t fDriftSpeed = fResponse->DriftSpeed();
732 Double_t anodePitch = fSegmentation->Dpz( dummy );
733 Float_t n, baseline;
734 fResponse->GetNoiseParam( n, baseline );
735 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
50d05d7b 736
42da2935 737 for( Int_t j=0; j<nofClusters; j++ ){
50d05d7b 738 // get cluster information
739 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
740 Int_t astart = clusterJ->Astart();
741 Int_t astop = clusterJ->Astop();
742 Int_t tstart = clusterJ->Tstartf();
743 Int_t tstop = clusterJ->Tstopf();
744 Int_t wing = (Int_t)clusterJ->W();
745 if( wing == 2 ){
746 astart += fNofAnodes;
747 astop += fNofAnodes;
748 } // end if
749 Int_t xdim = tstop-tstart+3;
750 Int_t zdim = astop-astart+3;
2bd89e94 751 if(xdim > 50 || zdim > 30) { cout << "Warning: xdim: " << xdim << ", zdim: " << zdim << endl; continue; }
50d05d7b 752 Float_t *sp = new Float_t[ xdim*zdim+1 ];
753 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
754
755 // make a local map from cluster region
756 for( Int_t ianode=astart; ianode<=astop; ianode++ ){
757 for( Int_t itime=tstart; itime<=tstop; itime++ ){
758 Float_t fadc = fMap->GetSignal( ianode, itime );
759 if( fadc > baseline ) fadc -= (Double_t)baseline;
760 else fadc = 0.;
761 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
762 sp[index] = fadc;
763 } // time loop
764 } // anode loop
765
766 // search peaks on cluster
767 const Int_t kNp = 150;
768 Int_t peakX1[kNp];
769 Int_t peakZ1[kNp];
770 Float_t peakAmp1[kNp];
771 Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
772
773 // if multiple peaks, split cluster
774 if( npeak >= 1 )
775 {
776 // cout << "npeak " << npeak << endl;
777 // clusterJ->PrintInfo();
778 Float_t *par = new Float_t[npeak*5+1];
779 par[0] = (Float_t)npeak;
48058160 780 // Initial parameters in cell dimentions
50d05d7b 781 Int_t k1 = 1;
782 for( i=0; i<npeak; i++ ){
783 par[k1] = peakAmp1[i];
784 par[k1+1] = peakX1[i]; // local time pos. [timebin]
785 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
786 if( electronics == 1 )
787 par[k1+3] = 2.; // PASCAL
788 else if( electronics == 2 )
789 par[k1+3] = 0.7; // tau [timebin] OLA
790 par[k1+4] = .4; // sigma [anodepich]
791 k1+=5;
792 } // end for i
793 Int_t niter;
794 Float_t chir;
795 NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
796 Float_t peakX[kNp];
797 Float_t peakZ[kNp];
798 Float_t sigma[kNp];
799 Float_t tau[kNp];
800 Float_t peakAmp[kNp];
801 Float_t integral[kNp];
802 //get integrals => charge for each peak
803 PeakFunc( xdim, zdim, par, sp, integral );
804 k1 = 1;
805 for( i=0; i<npeak; i++ ){
806 peakAmp[i] = par[k1];
807 peakX[i] = par[k1+1];
808 peakZ[i] = par[k1+2];
809 tau[i] = par[k1+3];
810 sigma[i] = par[k1+4];
811 k1+=5;
812 } // end for i
813 // calculate parameter for new clusters
814 for( i=0; i<npeak; i++ ){
815 AliITSRawClusterSDD clusterI( *clusterJ );
816 Int_t newAnode = peakZ1[i]-1 + astart;
817 Int_t newiTime = peakX1[i]-1 + tstart;
818 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
819 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) )
820 shift = 0;
821 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
822 clusterI.SetPeakPos( peakpos );
823 clusterI.SetPeakAmpl( peakAmp1[i] );
824 Float_t newAnodef = peakZ[i] - 0.5 + astart;
825 Float_t newiTimef = peakX[i] - 1 + tstart;
826 if( wing == 2 ) newAnodef -= fNofAnodes;
827 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
828 newiTimef *= fTimeStep;
829 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
830 if( electronics == 1 ){
48058160 831 // newiTimef *= 0.999438; // PASCAL
832 // newiTimef += (6./fDriftSpeed - newiTimef/3000.);
50d05d7b 833 }else if( electronics == 2 )
834 newiTimef *= 0.99714; // OLA
835 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
836 Float_t sign = ( wing == 1 ) ? -1. : 1.;
837 clusterI.SetX( driftPath*sign * 0.0001 );
838 clusterI.SetZ( anodePath * 0.0001 );
839 clusterI.SetAnode( newAnodef );
840 clusterI.SetTime( newiTimef );
841 clusterI.SetAsigma( sigma[i]*anodePitch );
842 clusterI.SetTsigma( tau[i]*fTimeStep );
843 clusterI.SetQ( integral[i] );
48058160 844 // clusterI.PrintInfo();
50d05d7b 845 iTS->AddCluster( 1, &clusterI );
846 } // end for i
847 fClusters->RemoveAt( j );
848 delete [] par;
48058160 849 } else { // something odd
850 cout << " --- Peak not found!!!! minpeak=" << fMinPeak<<
851 " cluster peak=" << clusterJ->PeakAmpl() <<
852 " module=" << fModule << endl;
50d05d7b 853 clusterJ->PrintInfo();
48058160 854 cout << " xdim=" << xdim-2 << " zdim=" << zdim-2 << endl << endl;
50d05d7b 855 }
856 delete [] sp;
42da2935 857 } // cluster loop
858 fClusters->Compress();
50d05d7b 859// fMap->ClearMap();
a1f090e0 860}
50d05d7b 861
862
42da2935 863//________________________________________________________________________
864void AliITSClusterFinderSDD::GroupClusters(){
865 // group clusters
866 Int_t dummy=0;
867 Float_t fTimeStep = fSegmentation->Dpx(dummy);
868 // get number of clusters for this module
869 Int_t nofClusters = fClusters->GetEntriesFast();
870 nofClusters -= fNclusters;
871 AliITSRawClusterSDD *clusterI;
872 AliITSRawClusterSDD *clusterJ;
873 Int_t *label = new Int_t [nofClusters];
874 Int_t i,j;
875 for(i=0; i<nofClusters; i++) label[i] = 0;
876 for(i=0; i<nofClusters; i++) {
50d05d7b 877 if(label[i] != 0) continue;
878 for(j=i+1; j<nofClusters; j++) {
879 if(label[j] != 0) continue;
880 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
881 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
882 // 1.3 good
883 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
884 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
885 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
886 if(!pair) continue;
887 // clusterI->PrintInfo();
888 // clusterJ->PrintInfo();
889 clusterI->Add(clusterJ);
890 label[j] = 1;
891 fClusters->RemoveAt(j);
892 j=i; // <- Ernesto
893 } // J clusters
894 label[i] = 1;
42da2935 895 } // I clusters
896 fClusters->Compress();
897
898 delete [] label;
899 return;
b0f5e3fc 900}
42da2935 901//________________________________________________________________________
902void AliITSClusterFinderSDD::SelectClusters(){
903 // get number of clusters for this module
904 Int_t nofClusters = fClusters->GetEntriesFast();
b0f5e3fc 905
42da2935 906 nofClusters -= fNclusters;
907 Int_t i;
908 for(i=0; i<nofClusters; i++) {
50d05d7b 909 AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
910 Int_t rmflg = 0;
911 Float_t wy = 0.;
912 if(clusterI->Anodes() != 0.) {
913 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
914 } // end if
915 Int_t amp = (Int_t) clusterI->PeakAmpl();
916 Int_t cha = (Int_t) clusterI->Q();
917 if(amp < fMinPeak) rmflg = 1;
918 if(cha < fMinCharge) rmflg = 1;
919 if(wy < fMinNCells) rmflg = 1;
920 //if(wy > fMaxNCells) rmflg = 1;
921 if(rmflg) fClusters->RemoveAt(i);
42da2935 922 } // I clusters
923 fClusters->Compress();
924 return;
b0f5e3fc 925}
42da2935 926//__________________________________________________________________________
927void AliITSClusterFinderSDD::ResolveClusters(){
928 // The function to resolve clusters if the clusters overlapping exists
929/* AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
930 // get number of clusters for this module
931 Int_t nofClusters = fClusters->GetEntriesFast();
932 nofClusters -= fNclusters;
933 //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
934 // <<fNclusters<<endl;
935 Int_t fNofMaps = fSegmentation->Npz();
936 Int_t fNofAnodes = fNofMaps/2;
937 Int_t dummy=0;
938 Double_t fTimeStep = fSegmentation->Dpx(dummy);
939 Double_t fSddLength = fSegmentation->Dx();
940 Double_t fDriftSpeed = fResponse->DriftSpeed();
941 Double_t anodePitch = fSegmentation->Dpz(dummy);
942 Float_t n, baseline;
943 fResponse->GetNoiseParam(n,baseline);
944 Float_t dzz_1A = anodePitch * anodePitch / 12;
945 // fill Map of signals
a1f090e0 946 fMap->FillMap();
42da2935 947 Int_t j,i,ii,ianode,anode,itime;
948 Int_t wing,astart,astop,tstart,tstop,nanode;
949 Double_t fadc,ClusterTime;
950 Double_t q[400],x[400],z[400]; // digit charges and coordinates
951 for(j=0; j<nofClusters; j++) {
50d05d7b 952 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
953 Int_t ndigits = 0;
954 astart=clusterJ->Astart();
955 astop=clusterJ->Astop();
956 tstart=clusterJ->Tstartf();
957 tstop=clusterJ->Tstopf();
958 nanode=clusterJ->Anodes(); // <- Ernesto
959 wing=(Int_t)clusterJ->W();
960 if(wing == 2) {
961 astart += fNofAnodes;
962 astop += fNofAnodes;
963 } // end if
964 // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
965 // <<tstart<<","<<tstop<<endl;
966 // clear the digit arrays
967 for(ii=0; ii<400; ii++) {
968 q[ii] = 0.;
969 x[ii] = 0.;
970 z[ii] = 0.;
971 } // end for ii
42da2935 972
50d05d7b 973 for(ianode=astart; ianode<=astop; ianode++) {
974 for(itime=tstart; itime<=tstop; itime++) {
975 fadc=fMap->GetSignal(ianode,itime);
976 if(fadc>baseline) {
977 fadc-=(Double_t)baseline;
978 q[ndigits] = fadc*(fTimeStep/160); // KeV
979 anode = ianode;
980 if(wing == 2) anode -= fNofAnodes;
981 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
982 ClusterTime = itime*fTimeStep;
983 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
984 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
985 if(wing == 1) x[ndigits] *= (-1);
986 // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
987 // <<fadc<<endl;
988 // cout<<"wing,anode,ndigits,charge ="<<wing<<","
989 // <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
990 ndigits++;
991 continue;
992 } // end if
993 fadc=0;
994 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
995 } // time loop
996 } // anode loop
997 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
998 // Fit cluster to resolve for two separate ones --------------------
999 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1000 Double_t dxx=0., dzz=0., dxz=0.;
1001 Double_t scl = 0., tmp, tga, elps = -1.;
1002 Double_t xfit[2], zfit[2], qfit[2];
1003 Double_t pitchz = anodePitch*1.e-4; // cm
1004 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
1005 Double_t sigma2;
1006 Int_t nfhits;
1007 Int_t nbins = ndigits;
1008 Int_t separate = 0;
1009 // now, all lengths are in microns
1010 for (ii=0; ii<nbins; ii++) {
1011 qq += q[ii];
1012 xm += x[ii]*q[ii];
1013 zm += z[ii]*q[ii];
1014 xx += x[ii]*x[ii]*q[ii];
1015 zz += z[ii]*z[ii]*q[ii];
1016 xz += x[ii]*z[ii]*q[ii];
1017 } // end for ii
1018 xm /= qq;
1019 zm /= qq;
1020 xx /= qq;
1021 zz /= qq;
1022 xz /= qq;
1023 dxx = xx - xm*xm;
1024 dzz = zz - zm*zm;
1025 dxz = xz - xm*zm;
42da2935 1026
50d05d7b 1027 // shrink the cluster in the time direction proportionaly to the
1028 // dxx/dzz, which lineary depends from the drift path
1029 // new Ernesto........
1030 if( nanode == 1 ){
1031 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1032 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1033 } // end if
1034 if( nanode == 2 ){
1035 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1036 } // end if
1037 if( nanode == 3 ){
1038 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1039 } // end if
1040 if( nanode > 3 ){
1041 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1042 } // end if
1043 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1044 // <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1045 // old Boris.........
1046 // tmp=29730. - 585.*fabs(xm/1000.);
1047 // scl=TMath::Sqrt(tmp/130000.);
a1f090e0 1048
50d05d7b 1049 xm *= scl;
1050 xx *= scl*scl;
1051 xz *= scl;
42da2935 1052
50d05d7b 1053 dxx = xx - xm*xm;
1054 // dzz = zz - zm*zm;
1055 dxz = xz - xm*zm;
1056 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1057 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1058 // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
a1f090e0 1059
50d05d7b 1060 if (dxx < 0.) dxx=0.;
1061 // the data if no cluster overlapping (the coordunates are in cm)
1062 nfhits = 1;
1063 xfit[0] = xm*1.e-4;
1064 zfit[0] = zm*1.e-4;
1065 qfit[0] = qq;
1066 // if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
a1f090e0 1067
50d05d7b 1068 if (nbins >= 7) {
1069 if (dxz==0.) tga=0.;
1070 else {
1071 tmp=0.5*(dzz-dxx)/dxz;
1072 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) :
1073 tmp+TMath::Sqrt(tmp*tmp+1);
1074 } // end if dxz
1075 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1076 // change from microns to cm
1077 xm *= 1.e-4;
1078 zm *= 1.e-4;
1079 zz *= 1.e-8;
1080 xx *= 1.e-8;
1081 xz *= 1.e-8;
1082 dxz *= 1.e-8;
1083 dxx *= 1.e-8;
1084 dzz *= 1.e-8;
1085 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1086 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1087 for (i=0; i<nbins; i++) {
1088 x[i] = x[i] *= scl;
1089 x[i] = x[i] *= 1.e-4;
1090 z[i] = z[i] *= 1.e-4;
1091 } // end for i
1092 // cout<<"!!! elps ="<<elps<<endl;
1093 if (elps < 0.3) { // try to separate hits
1094 separate = 1;
1095 tmp=atan(tga);
1096 Double_t cosa=cos(tmp),sina=sin(tmp);
1097 Double_t a1=0., x1=0., xxx=0.;
1098 for (i=0; i<nbins; i++) {
1099 tmp=x[i]*cosa + z[i]*sina;
1100 if (q[i] > a1) {
1101 a1=q[i];
1102 x1=tmp;
1103 } // end if
1104 xxx += tmp*tmp*tmp*q[i];
1105 } // end for i
1106 xxx /= qq;
1107 Double_t z12=-sina*xm + cosa*zm;
1108 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1109 xm=cosa*xm + sina*zm;
1110 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1111 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1112 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1113 for (i=0; i<33; i++) { // solve a system of equations
1114 Double_t x1_old=x1, x2_old=x2, r_old=r;
1115 Double_t c11=x1-x2;
1116 Double_t c12=r;
1117 Double_t c13=1-r;
1118 Double_t c21=x1*x1 - x2*x2;
1119 Double_t c22=2*r*x1;
1120 Double_t c23=2*(1-r)*x2;
1121 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1122 Double_t c32=3*r*(sigma2 + x1*x1);
1123 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1124 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1125 Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1126 Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1127 (3*sigma2+x2*x2)-xxx);
1128 Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1129 c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1130 if (d==0.) {
1131 cout<<"*********** d=0 ***********\n";
1132 break;
1133 } // end if
1134 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1135 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1136 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1137 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1138 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1139 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1140 r += dr/d;
1141 x1 += d1/d;
1142 x2 += d2/d;
1143 if (fabs(x1-x1_old) > 0.0001) continue;
1144 if (fabs(x2-x2_old) > 0.0001) continue;
1145 if (fabs(r-r_old)/5 > 0.001) continue;
1146 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1147 Double_t a2=a1*(1-r)/r;
1148 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina +
1149 z12*cosa;
1150 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina +
1151 z12*cosa;
1152 nfhits=2;
1153 break; // Ok !
1154 } // end for i
1155 if (i==33) cerr<<"No more iterations ! "<<endl;
1156 } // end of attempt to separate overlapped clusters
1157 } // end of nbins cut
1158 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1159 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1160 <<elps<<","<<nfhits<<endl;
1161 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1162 for (i=0; i<nfhits; i++) {
1163 xfit[i] *= (1.e+4/scl);
1164 if(wing == 1) xfit[i] *= (-1);
1165 zfit[i] *= 1.e+4;
1166 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","
1167 // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1168 } // end for i
1169 Int_t ncl = nfhits;
1170 if(nfhits == 1 && separate == 1) {
1171 cout<<"!!!!! no separate"<<endl;
1172 ncl = -2;
1173 } // end if
1174 if(nfhits == 2) {
1175 cout << "Split cluster: " << endl;
1176 clusterJ->PrintInfo();
1177 cout << " in: " << endl;
1178 for (i=0; i<nfhits; i++) {
1179 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
42da2935 1180 -1,-1,(Float_t)qfit[i],ncl,0,0,
1181 (Float_t)xfit[i],
1182 (Float_t)zfit[i],0,0,0,0,
1183 tstart,tstop,astart,astop);
50d05d7b 1184 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1185 // -1,(Float_t)qfit[i],0,0,0,
1186 // (Float_t)xfit[i],
1187 // (Float_t)zfit[i],0,0,0,0,
1188 // tstart,tstop,astart,astop,ncl);
1189 // ???????????
1190 // if(wing == 1) xfit[i] *= (-1);
1191 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1192 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1193 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1194 Float_t peakpos = clusterJ->PeakPos();
1195 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1196 Float_t clusterDriftPath = Time*fDriftSpeed;
1197 clusterDriftPath = fSddLength-clusterDriftPath;
1198 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1199 Time,qfit[i],
42da2935 1200 clusterPeakAmplitude,peakpos,
1201 0.,0.,clusterDriftPath,
1202 clusteranodePath,clusterJ->Samples()/2
50d05d7b 1203 ,tstart,tstop,0,0,0,astart,astop);
1204 clust->PrintInfo();
1205 iTS->AddCluster(1,clust);
1206 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1207 // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1208 // <<","<<ncl<<endl;
1209 delete clust;
1210 }// nfhits loop
1211 fClusters->RemoveAt(j);
42da2935 1212 } // if nfhits = 2
1213} // cluster loop
1214fClusters->Compress();
1215fMap->ClearMap();
1216*/
1217 return;
a1f090e0 1218}
42da2935 1219//______________________________________________________________________
1220void AliITSClusterFinderSDD::GetRecPoints(){
1221 // get rec points
1222 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1223 // get number of clusters for this module
1224 Int_t nofClusters = fClusters->GetEntriesFast();
1225 nofClusters -= fNclusters;
1226 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1227 const Float_t kconv = 1.0e-4;
1228 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1229 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
ee86d557 1230 Int_t i,j;
42da2935 1231 Int_t ix, iz, idx=-1;
1232 AliITSdigitSDD *dig=0;
1233 Int_t ndigits=fDigits->GetEntriesFast();
1234 for(i=0; i<nofClusters; i++) {
50d05d7b 1235 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1236 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1237 if(clusterI) idx=clusterI->PeakPos();
1238 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1239 // try peak neighbours - to be done
1240 if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1241 if(!dig) {
1242 // try cog
1243 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1244 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1245 // if null try neighbours
1246 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1247 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1248 if (!dig) printf("SDD: cannot assign the track number!\n");
1249 } // end if !dig
1250 AliITSRecPoint rnew;
1251 rnew.SetX(clusterI->X());
1252 rnew.SetZ(clusterI->Z());
1253 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
1254 rnew.SetdEdX(kconvGeV*clusterI->Q());
1255 rnew.SetSigmaX2(kRMSx*kRMSx);
1256 rnew.SetSigmaZ2(kRMSz*kRMSz);
ee86d557 1257 if(dig){
1258 rnew.fTracks[0] = dig->fTracks[0];
1259 rnew.fTracks[1] = -3;
1260 rnew.fTracks[2] = -3;
1261 j=1;
1262 while(rnew.fTracks[0]==dig->fTracks[j] &&
1263 j<dig->GetNTracks()) j++;
1264 if(j<dig->GetNTracks()){
1265 rnew.fTracks[1] = dig->fTracks[j];
1266 while(rnew.fTracks[1]==dig->fTracks[j] &&
1267 j<dig->GetNTracks()) j++;
1268 if(j<dig->GetNTracks()) rnew.fTracks[2] = dig->fTracks[j];
1269 } // end if
1270 } // end if
50d05d7b 1271 //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1272 // i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1273 // lusterI->X(),clusterI->Z());
1274 iTS->AddRecPoint(rnew);
42da2935 1275 } // I clusters
50d05d7b 1276// fMap->ClearMap();
b0f5e3fc 1277}
42da2935 1278//______________________________________________________________________
1279void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1280 // find raw clusters
50d05d7b 1281
1282 fModule = mod;
1283
a1f090e0 1284 Find1DClustersE();
b0f5e3fc 1285 GroupClusters();
1286 SelectClusters();
a1f090e0 1287 ResolveClustersE();
b0f5e3fc 1288 GetRecPoints();
1289}
42da2935 1290//_______________________________________________________________________
1291void AliITSClusterFinderSDD::Print(){
1292 // Print SDD cluster finder Parameters
1293
1294 cout << "**************************************************" << endl;
1295 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1296 cout << "**************************************************" << endl;
1297 cout << "Number of Clusters: " << fNclusters << endl;
1298 cout << "Anode Tolerance: " << fDAnode << endl;
1299 cout << "Time Tolerance: " << fDTime << endl;
1300 cout << "Time correction (electronics): " << fTimeCorr << endl;
1301 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1302 cout << "Minimum Amplitude: " << fMinPeak << endl;
1303 cout << "Minimum Charge: " << fMinCharge << endl;
1304 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1305 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1306 cout << "**************************************************" << endl;
a1f090e0 1307}