]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSv11GeometrySPD.cxx
suppressed std:... implicit calls
[u/mrichter/AliRoot.git] / ITS / AliITSv11GeometrySPD.cxx
CommitLineData
db486a6e 1/**************************************************************************
59da35b6 2 * Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
db486a6e 3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
592651e2 15//
db486a6e 16// This class Defines the Geometry for the ITS services and support cones
d0048cec 17// outside of the central volume (except for the Central support
54c9a3d9 18// cylinders). Other classes define the rest of the ITS, specifically the
19// SSD support cone, the SSD Support central cylinder, the SDD support cone,
20// the SDD support central cylinder, the SPD Thermal Shield, The supports
db486a6e 21// and cable trays on both the RB26 (muon dump) and RB24 sides, and all of
592651e2 22// the cabling from the ladders/stave ends out past the TPC.
23//
54c9a3d9 24// Here is the calling sequence associated with this file
25// SPDSector(TGeoVolume *moth,TGeoManager *mgr)
26// -----CarbonFiberSector(TGeoVolume *moth,Double_t &xAAtubeCenter0,
27// Double_t &yAAtubeCenter0,TGeoManager *mgr)
28// -----2* SPDsectorShape(Int_t n,const Double_t *xc,const Double_t *yc,
29// | const Double_t *r,const Double_t *ths,
30// | const Double_t *the,Int_t npr,Int_t &m,
31// | Double_t **xp,Double_t **yp)
32// -----StavesInSector(TGeoVolume *moth,TGeoManager *mgr)
33// -----3* CreaeStave(Int_t layer,TArrayD &sizes,Bool_t addClips,
34// | TGeoManager *mgr)
35// | -----2* CreateHalfStave(Boot_t isRight,Int_t layer,
36// | Int_t idxCentral,Int_t idxSide,
37// | TArrayD &sizes,Bool_t addClips,
38// | TGeoManager *mgr)
39// | -----CreateGrondingFoil(Bool_t isRight,TArrayD &sizes,
40// | | TGeoManager *mgr)
41// | | -----4* CreateGroundingFoilSingle(Int_t type,
42// | | TArrayD &sizes,
43// | | TGeoManger *mgr)
44// | |----CreateLadder(Int_t layer, TArrayD &sizes,
45// | | TGeoManager *mgr)
46// | |----CreateMCM(Bool_t isRight,TArrayD &sizes,
47// | | TGeoManger *mgr)
48// | |----CreatePixelBus(Bool_t isRight,TArrayD &sizes,
49// | | TGeoManager *mgr)
50// | -----CreateClip(TArrayD &sizes,TGeoManager *mgr)
51// |----GetSectorMountingPoints(Int_t index,Double_t &x0,
52// | Double_t &y0,Double_t &x1,
53// | Double_t y1)
54// -----3* ParallelPosition(Double_t dist1,Double_t dist2,
55// Double_t phi,Double_t &x,Double_t &y)
56//
57// Obsoleate or presently unused routines are: setAddStave(Bool_t *mask),
58// CreatePixelBusAndExtensions(...) which calles CreateExtender(...).
db486a6e 59
543b7370 60/* $Id$ */
592651e2 61
4098f5dd 62
db486a6e 63// General Root includes
64#include <Riostream.h>
65#include <TMath.h>
66#include <TLatex.h>
67#include <TCanvas.h>
68#include <TPolyLine.h>
297369a1 69#include <TPolyMarker.h>
bc3498f4 70
db486a6e 71// Root Geometry includes
f7a1cc68 72#include <TGeoCompositeShape.h>
db486a6e 73#include <TGeoEltu.h>
f7a1cc68 74#include <TGeoGlobalMagField.h>
a53658c6 75#include <TGeoMaterial.h>
f7a1cc68 76#include <TGeoMatrix.h>
a53658c6 77#include <TGeoMedium.h>
f7a1cc68 78#include <TGeoTube.h> // contains TGeoTubeSeg
79#include <TGeoVolume.h>
80#include <TGeoXtru.h>
c890eba4 81#include <TGeoPcon.h>
bc3498f4 82
592651e2 83// AliRoot includes
bc3498f4 84#include "AliLog.h"
a53658c6 85#include "AliMagF.h"
86#include "AliRun.h"
bc3498f4 87
592651e2 88// Declaration file
db486a6e 89#include "AliITSv11GeometrySPD.h"
90
54c9a3d9 91// Constant definistions
d0048cec 92const Double_t AliITSv11GeometrySPD::fgkGapLadder =
54c9a3d9 93 AliITSv11Geometry::fgkmicron*75.; // 75 microns
d0048cec 94const Double_t AliITSv11GeometrySPD::fgkGapHalfStave =
54c9a3d9 95 AliITSv11Geometry::fgkmicron*120.; // 120 microns
7855ea93 96
fe7d86eb 97using std::endl;
98using std::cout;
99using std::ios;
db486a6e 100ClassImp(AliITSv11GeometrySPD)
54c9a3d9 101//______________________________________________________________________
102AliITSv11GeometrySPD::AliITSv11GeometrySPD(/*Double_t gap*/):
103AliITSv11Geometry(),// Default constructor of base class
104fAddStave(), // [DEBUG] must be TRUE for all staves which will be
105 // mounted in the sector (used to check overlaps)
106fSPDsectorX0(0), // X of first edge of sector plane for stave
107fSPDsectorY0(0), // Y of first edge of sector plane for stave
108fSPDsectorX1(0), // X of second edge of sector plane for stave
109fSPDsectorY1(0), // Y of second edge of sector plane for stave
d0048cec 110fTubeEndSector() // coordinate of cooling tube ends
54c9a3d9 111{
112 //
113 // Default constructor.
d0048cec 114 // This does not initialize anything and is provided just for
54c9a3d9 115 // completeness. It is recommended to use the other one.
116 // The alignment gap is specified as argument (default = 0.0075 cm).
117 // Inputs:
118 // none.
119 // Outputs:
120 // none.
121 // Return:
122 // A default constructed AliITSv11GeometrySPD class.
123 //
124 Int_t i = 0,j=0,k=0;
db486a6e 125
54c9a3d9 126 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
127 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
128 this->fTubeEndSector[k][0][i][j] = 0.0;
129 this->fTubeEndSector[k][1][i][j] = 0.0;
130 } // end for i,j
131}
132//______________________________________________________________________
133AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug/*, Double_t gap*/):
134AliITSv11Geometry(debug),// Default constructor of base class
135fAddStave(), // [DEBUG] must be TRUE for all staves which will be
136 // mounted in the sector (used to check overlaps)
137fSPDsectorX0(0), // X of first edge of sector plane for stave
138fSPDsectorY0(0), // Y of first edge of sector plane for stave
139fSPDsectorX1(0), // X of second edge of sector plane for stave
140fSPDsectorY1(0), // Y of second edge of sector plane for stave
d0048cec 141fTubeEndSector() // coordinate of cooling tube ends
54c9a3d9 142{
143 //
144 // Constructor with debug setting argument
145 // This is the constructor which is recommended to be used.
146 // It sets a debug level, and initializes the name of the object.
147 // The alignment gap is specified as argument (default = 0.0075 cm).
148 // Inputs:
149 // Int_t debug Debug level, 0= no debug output.
150 // Outputs:
151 // none.
152 // Return:
153 // A default constructed AliITSv11GeometrySPD class.
154 //
155 Int_t i = 0,j=0,k=0;
db486a6e 156
54c9a3d9 157 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
158 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
159 this->fTubeEndSector[k][0][i][j] = 0.0;
160 this->fTubeEndSector[k][1][i][j] = 0.0;
161 } // end for i,j
162}
163//______________________________________________________________________
164AliITSv11GeometrySPD::AliITSv11GeometrySPD(const AliITSv11GeometrySPD &s):
165AliITSv11Geometry(s),// Base Class Copy constructor
166fAddStave(), // [DEBUG] must be TRUE for all staves which will be
167 // mounted in the sector (used to check overlaps)
168fSPDsectorX0(s.fSPDsectorX0), // X of first edge of sector plane for stave
169fSPDsectorY0(s.fSPDsectorY0), // Y of first edge of sector plane for stave
170fSPDsectorX1(s.fSPDsectorX1), // X of second edge of sector plane for stave
171fSPDsectorY1(s.fSPDsectorY1) // Y of second edge of sector plane for stave
bc3498f4 172{
54c9a3d9 173 //
174 // Copy Constructor
175 // Inputs:
176 // AliITSv11GeometrySPD &s source class
177 // Outputs:
178 // none.
179 // Return:
180 // A copy of a AliITSv11GeometrySPD class.
181 //
182 Int_t i=0,j=0,k=0;
183
184 for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
185 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
186 this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
187 this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
188 } // end for i,j
bc3498f4 189}
54c9a3d9 190//______________________________________________________________________
d0048cec 191AliITSv11GeometrySPD& AliITSv11GeometrySPD::operator=(const
54c9a3d9 192 AliITSv11GeometrySPD &s)
bc3498f4 193{
54c9a3d9 194 //
195 // = operator
196 // Inputs:
197 // AliITSv11GeometrySPD &s source class
198 // Outputs:
199 // none.
200 // Return:
201 // A copy of a AliITSv11GeometrySPD class.
202 //
203 Int_t i=0,j=0,k=0;
204
205 if(this==&s) return *this;
206 for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
207 this->fSPDsectorX0=s.fSPDsectorX0;
208 this->fSPDsectorY0=s.fSPDsectorY0;
209 this->fSPDsectorX1=s.fSPDsectorX1;
210 this->fSPDsectorY1=s.fSPDsectorY1;
211 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
212 this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
213 this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
214 } // end for i,j
215 return *this;
bc3498f4 216}
54c9a3d9 217//______________________________________________________________________
218TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName,
43aefea7 219 const TGeoManager *mgr) const
bc3498f4 220{
54c9a3d9 221 //
d0048cec 222 // This function is used to recovery any medium
223 // used to build the geometry volumes.
224 // If the required medium does not exists,
54c9a3d9 225 // a NULL pointer is returned, and an error message is written.
226 //
227 Char_t itsMediumName[30];
228
6932f314 229 snprintf(itsMediumName, 30, "ITS_%s", mediumName);
54c9a3d9 230 TGeoMedium* medium = mgr->GetMedium(itsMediumName);
231 if (!medium) AliError(Form("Medium <%s> not found", mediumName));
232
233 return medium;
bc3498f4 234}
54c9a3d9 235
54c9a3d9 236//______________________________________________________________________
bc3498f4 237void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr)
238{
54c9a3d9 239 //
d0048cec 240 // Creates a single SPD carbon fiber sector and places it
54c9a3d9 241 // in a container volume passed as first argument ('moth').
242 // Second argument points to the TGeoManager which coordinates
243 // the overall volume creation.
d0048cec 244 // The position of the sector is based on distance of
245 // closest point of SPD stave to beam pipe
54c9a3d9 246 // (figures all-sections-modules.ps) of 7.22mm at section A-A.
247 //
248
249 // Begin_Html
250 /*
251 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
252 title="SPD Sector drawing with all cross sections defined">
d0048cec 253 <p>The SPD Sector definition. In
54c9a3d9 254 <a href="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.hpgl">HPGL</a> format.
255 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly-10-modules.ps"
256 titile="SPD All Sectors end view with thermal sheald">
257 <p>The SPD all sector end view with thermal sheald.
258 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
259 title="SPD side view cross section">
260 <p>SPD side view cross section with condes and thermal shealds.
261 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-A_A.jpg"
262 title="Cross section A-A"><p>Cross section A-A.
263 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-B_B.jpg"
264 title="Cross updated section A-A"><p>Cross updated section A-A.
265 <img src="http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf"
266 title="Cross section B-B"><p>Cross section B-B.
267 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-C_C.jpg"
268 title-"Cross section C-C"><p>Cross section C-C.
269 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-D_D.jpg"
270 title="Cross section D-D"><p>Cross section D-D.
271 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-E_E.jpg"
272 title="Cross section E-E"><p>Cross section E-E.
273 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-F_F.jpg"
274 title="Cross section F-F"><p>Cross section F-F.
275 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-G_G.jpg"
276 title="Cross section G-G"><p>Cross section G-G.
277 */
278 // End_Html
279
280 // Inputs:
281 // TGeoVolume *moth Pointer to mother volume where this object
282 // is to be placed in
283 // TGeoManager *mgr Pointer to the TGeoManager used, defaule is
284 // gGeoManager.
285 // Outputs:
286 // none.
287 // Return:
288 // none.
289 // Updated values for kSPDclossesStaveAA, kBeamPipeRadius, and
d0048cec 290 // staveThicknessAA are taken from
54c9a3d9 291 // http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf
292 //
3ffa185f 293 const Double_t kSPDclossesStaveAA = 7.25* fgkmm;
54c9a3d9 294 const Double_t kSectorStartingAngle = -72.0 * fgkDegree;
3ffa185f 295 const Int_t kNSectorsTotal = 10;
296 const Double_t kSectorRelativeAngle = 36.0 * fgkDegree; // = 360.0 / 10
297 const Double_t kBeamPipeRadius = 0.5 * 59.6 * fgkmm; // diam. = 59.6 mm
298 //const Double_t staveThicknessAA = 0.9 *fgkmm; // nominal thickness
299 const Double_t staveThicknessAA = 1.02 * fgkmm; // get from stave geometry.
d0048cec 300
3ffa185f 301 Int_t i, j, k;
54c9a3d9 302 Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0;
3ffa185f 303 TGeoCombiTrans *secRot = new TGeoCombiTrans(), *comrot;
30611568 304 TGeoVolume *vCarbonFiberSector[10];
54c9a3d9 305 TGeoMedium *medSPDcf;
306
d0048cec 307 // Define an assembly and fill it with the support of
54c9a3d9 308 // a single carbon fiber sector and staves in it
309 medSPDcf = GetMedium("SPD C (M55J)$", mgr);
30611568 310 for(Int_t is=0; is<10; is++)
311 {
312 vCarbonFiberSector[is] = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV");
313 vCarbonFiberSector[is]->SetMedium(medSPDcf);
314 CarbonFiberSector(vCarbonFiberSector[is], is, xAAtubeCenter0, yAAtubeCenter0, mgr);
315 }
54c9a3d9 316
317 // Compute the radial shift out of the sectors
3ffa185f 318 radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA;
319 radiusSector = GetSPDSectorTranslation(fSPDsectorX0.At(1), fSPDsectorY0.At(1),
320 fSPDsectorX1.At(1), fSPDsectorY1.At(1), radiusSector);
321 //radiusSector *= radiusSector; // squaring;
322 //radiusSector -= xAAtubeCenter0 * xAAtubeCenter0;
323 //radiusSector = -yAAtubeCenter0 + TMath::Sqrt(radiusSector);
d0048cec 324
3ffa185f 325 AliDebug(1, Form("SPDSector : radiusSector=%f\n",radiusSector));
326 i = 1;
327 AliDebug(1, Form("i= %d x0=%f y0=%f x1=%f y1=%f\n", i,
328 fSPDsectorX0.At(i), fSPDsectorY0.At(i),
329 fSPDsectorX1.At(i),fSPDsectorY1.At(i)));
d0048cec 330
54c9a3d9 331 // add 10 single sectors, by replicating the virtual sector defined above
332 // and placing at different angles
333 Double_t shiftX, shiftY, tub[2][6][3];
3ffa185f 334 for(i=0;i<2;i++)for(j=0;j<6;j++)for(k=0;k<3;k++) tub[i][j][k] = fTubeEndSector[0][i][j][k];
54c9a3d9 335 angle = kSectorStartingAngle;
336 secRot->RotateZ(angle);
337 TGeoVolumeAssembly *vcenteral = new TGeoVolumeAssembly("ITSSPD");
3ffa185f 338 moth->AddNode(vcenteral, 1, 0);
339 for(i = 0; i < kNSectorsTotal; i++) {
54c9a3d9 340 shiftX = -radiusSector * TMath::Sin(angle/fgkRadian);
341 shiftY = radiusSector * TMath::Cos(angle/fgkRadian);
d0048cec 342 //cout << "ANGLE = " << angle << endl;
3ffa185f 343 shiftX += 0.1094 * TMath::Cos((angle + 196.)/fgkRadian);
344 shiftY += 0.1094 * TMath::Sin((angle + 196.)/fgkRadian);
345 //shiftX -= 0.105;
346 //shiftY -= 0.031;
347 //shiftX -= 0.11 * TMath::Cos(angle/fgkRadian); // add by Alberto
348 //shiftY -= 0.11 * TMath::Sin(angle/fgkRadian); // don't ask me where that 0.11 comes from!
54c9a3d9 349 secRot->SetDx(shiftX);
350 secRot->SetDy(shiftY);
351 comrot = new TGeoCombiTrans(*secRot);
30611568 352 vcenteral->AddNode(vCarbonFiberSector[i],i+1,comrot);
54c9a3d9 353 for(j=0;j<2;j++)for(k=0;k<6;k++) // Transform Tube ends for each sector
354 comrot->LocalToMaster(tub[j][k],fTubeEndSector[i][j][k]);
355 if(GetDebug(5)) {
356 AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g "
357 "x=%g y=%g \n",i, angle, angle/fgkRadian,
358 radiusSector, shiftX, shiftY));
359 } // end if GetDebug(5)
360 angle += kSectorRelativeAngle;
361 secRot->RotateZ(kSectorRelativeAngle);
362 } // end for i
363 if(GetDebug(3)) moth->PrintNodes();
364 delete secRot;
d0048cec 365
7f69c251 366 CreateCones(moth);
15b84e14 367 CreateServices(moth);
a53658c6 368}
54c9a3d9 369//______________________________________________________________________
30611568 370void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth, Int_t sect,
54c9a3d9 371 Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr)
bc3498f4 372{
30611568 373 // The method has been modified in order to build a support sector
374 // whose shape is dependent on the sector number; the aim is to get
375 // as close as possible to the shape inferred from alignment
376 // and avoid as much as possible overlaps generated by alignment.
54c9a3d9 377 //
378 // Define the detail SPD Carbon fiber support Sector geometry.
379 // Based on the drawings:
380 /*
381 http:///QA-construzione-profilo-modulo.ps
382 */
383 // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004)
384 // - ALICE-SUPPORTO "Costruzione Profilo Modulo"
385 // ---
386 // Define outside radii as negative, where "outside" means that the
387 // center of the arc is outside of the object (feb 16 2004).
388 // ---
389 // Arguments [the one passed by ref contain output values]:
390 // Inputs:
391 // TGeoVolume *moth the voulme which will contain this object
392 // TGeoManager *mgr TGeo builder defauls is gGeoManager
393 // Outputs:
394 // Double_t &xAAtubeCenter0 (by ref) x location of the outer surface
395 // of the cooling tube center for tube 0.
396 // Double_t &yAAtubeCenter0 (by ref) y location of the outer surface
397 // of the cooling tube center for tube 0.
398 // Return:
399 // none.
400 // ---
401 // Int the two variables passed by reference values will be stored
402 // which will then be used to correctly locate this sector.
403 // The information used for this is the distance between the
404 // center of the #0 detector and the beam pipe.
405 // Measurements are taken at cross section A-A.
406 //
d0048cec 407
54c9a3d9 408 //TGeoMedium *medSPDfs = 0;//SPD support cone inserto stesalite 4411w
409 //TGeoMedium *medSPDfo = 0;//SPD support cone foam, Rohacell 50A.
410 //TGeoMedium *medSPDal = 0;//SPD support cone SDD mounting bracket Al
411 TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr);
412 TGeoMedium *medSPDss = GetMedium("INOX$", mgr);
413 TGeoMedium *medSPDair = GetMedium("AIR$", mgr);
414 TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid
415 //
416 const Double_t ksecDz = 0.5 * 500.0 * fgkmm;
417 //const Double_t ksecLen = 30.0 * fgkmm;
418 const Double_t ksecCthick = 0.2 * fgkmm;
419 const Double_t ksecDipLength = 3.2 * fgkmm;
420 const Double_t ksecDipRadii = 0.4 * fgkmm;
421 //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm;
422 //
423 // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#')
424 // are the centers and radii of curvature of all the rounded corners
425 // between the straight borders of the SPD sector shape.
426 // To draw this SPD sector, the following steps are followed:
427 // 1) the (ksecX, ksecY) points are plotted
428 // and circles of the specified radii are drawn around them.
429 // 2) each pair of consecutive circles is connected by a line
d0048cec 430 // tangent to them, in accordance with the radii being "internal"
431 // or "external" with respect to the closed shape which describes
54c9a3d9 432 // the sector itself.
d0048cec 433 // The resulting connected shape is the section
54c9a3d9 434 // of the SPD sector surface in the transverse plane (XY).
435 //
436 const Double_t ksecX0 = -10.725 * fgkmm;
437 const Double_t ksecY0 = -14.853 * fgkmm;
438 const Double_t ksecR0 = -0.8 * fgkmm; // external
3ffa185f 439
30611568 440 const Double_t ksecR1 = +0.6 * fgkmm;
441 const Double_t ksecR2 = +0.6 * fgkmm;
442 const Double_t ksecR3 = -0.6 * fgkmm;
443 const Double_t ksecR4 = +0.8 * fgkmm;
444 const Double_t ksecR5 = +0.8 * fgkmm;
445 const Double_t ksecR6 = +0.6 * fgkmm;
446 const Double_t ksecR7 = -0.6 * fgkmm;
447 const Double_t ksecR8 = +0.6 * fgkmm;
448 const Double_t ksecR9 = -0.6 * fgkmm;
449 const Double_t ksecR10 = +0.6 * fgkmm;
450 const Double_t ksecR11 = -0.6 * fgkmm;
451 const Double_t ksecR12 = +0.85 * fgkmm;
452
453// // IDEAL GEOMETRY
454// const Double_t ksecX1[10] ={-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187};
455// const Double_t ksecY1[10] ={-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964};
456// const Double_t ksecX2[10] ={-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833};
457// const Double_t ksecY2[10] ={-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805};
458// const Double_t ksecX3[10] ={-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123};
459// const Double_t ksecY3[10] ={-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618};
460// const Double_t ksecX4[10] ={+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280};
461// const Double_t ksecY4[10] ={-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473};
462// const Double_t ksecX5[10] ={+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544};
463// const Double_t ksecY5[10] ={+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961};
464// const Double_t ksecX6[10] ={+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830};
465// const Double_t ksecY6[10] ={+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868};
466// const Double_t ksecX7[10] ={+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581};
467// const Double_t ksecY7[10] ={+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317};
468// const Double_t ksecX8[10] ={-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733};
469// const Double_t ksecY8[10] ={+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486};
470// const Double_t ksecX9[10] ={+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562};
471// const Double_t ksecY9[10] ={+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107};
472// const Double_t ksecX10[10]={-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252};
473// const Double_t ksecY10[10]={+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298};
474// const Double_t ksecX11[10]={-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445};
475// const Double_t ksecY11[10]={+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162};
476// const Double_t ksecX12[10]={-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276};
477// const Double_t ksecY12[10]={+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948};
478
479
480// MODIFIED GEOMETRY according with partial alignment of Staves relative to Sectors
481// last numbers: 2010/06/11 (ML)
482
483 const Double_t ksecX1[10]={-1.305917, -1.322242, -1.300649, -1.298700, -1.290830, -1.274307, -1.276433, -1.286468, -1.274381, -1.314864};
484 const Double_t ksecY1[10]={-1.997857, -2.018611, -2.005854, -2.004897, -1.995517, -2.002552, -1.995860, -2.021062, -2.012931, -2.043967};
485 const Double_t ksecX2[10]={-0.366115, -0.385562, -0.372689, -0.365682, -0.348432, -0.348442, -0.342468, -0.354071, -0.346900, -0.381275};
486 const Double_t ksecY2[10]={-1.801679, -1.808306, -1.759315, -1.778851, -1.811655, -1.747888, -1.773811, -1.792427, -1.764514, -1.820324};
487// const Double_t ksecX1[10]={-1.305917, -1.322242, -1.300649, -1.298700, -1.290830, -1.274307, -1.276433, -1.286468, -1.274381, -1.325864};
488// const Double_t ksecY1[10]={-1.997857, -2.018611, -2.005854, -2.004897, -1.995517, -2.002552, -1.995860, -2.021062, -2.012931, -2.032967};
489// const Double_t ksecX2[10]={-0.366115, -0.385562, -0.372689, -0.365682, -0.348432, -0.348442, -0.342468, -0.354071, -0.346900, -0.392275};
490// const Double_t ksecY2[10]={-1.801679, -1.808306, -1.759315, -1.778851, -1.811655, -1.747888, -1.773811, -1.792427, -1.764514, -1.809324};
491 const Double_t ksecX3[10]={-0.314030, -0.315531, -0.347521, -0.337675, -0.300420, -0.378487, -0.330729, -0.330850, -0.362360, -0.321097};
492 const Double_t ksecY3[10]={-1.452488, -1.460418, -1.447060, -1.443146, -1.472410, -1.430019, -1.469073, -1.472048, -1.462010, -1.444355};
493 const Double_t ksecX4[10]={1.124299, 1.124162, 1.089523, 1.095520, 1.136171, 1.058616, 1.105626, 1.106433, 1.077455, 1.117946};
494 const Double_t ksecY4[10]={-1.458714, -1.452649, -1.465297, -1.492717, -1.494665, -1.447732, -1.493369, -1.488126, -1.452925, -1.443447};
495 const Double_t ksecX5[10]={1.951621, 1.939284, 1.931830, 1.935235, 1.952206, 1.939082, 1.924822, 1.940114, 1.918160, 1.960017};
496 const Double_t ksecY5[10]={1.092731, 1.118870, 1.129765, 1.129422, 1.081511, 1.127387, 1.103960, 1.101784, 1.121428, 1.150110};
497 const Double_t ksecX6[10]={1.070070, 1.048297, 1.035920, 1.049049, 1.083621, 1.045882, 1.050399, 1.067823, 1.037967, 1.070850};
498 const Double_t ksecY6[10]={1.667590, 1.678571, 1.681383, 1.696892, 1.676520, 1.683470, 1.689988, 1.691111, 1.698432, 1.712770};
499 const Double_t ksecX7[10]={1.139398, 1.150471, 1.150074, 1.132807, 1.150192, 1.124064, 1.124335, 1.137723, 1.143056, 1.130568};
500 const Double_t ksecY7[10]={1.345588, 1.356062, 1.342468, 1.320467, 1.335807, 1.334477, 1.328622, 1.347184, 1.319861, 1.308420};
501 const Double_t ksecX8[10]={-0.096963, -0.098603, -0.095286, -0.099990, -0.075132, -0.121593, -0.108673, -0.104237, -0.092082, -0.104044};
502 const Double_t ksecY8[10]={1.751207, 1.731467, 1.726908, 1.734219, 1.766159, 1.718203, 1.741891, 1.739743, 1.728288, 1.718046};
503 const Double_t ksecX9[10]={0.047615, 0.087875, 0.034917, 0.071603, 0.026468, 0.091619, 0.051994, 0.059947, 0.079785, 0.043443};
504 const Double_t ksecY9[10]={1.414699, 1.403187, 1.399061, 1.403430, 1.435056, 1.384557, 1.397692, 1.420269, 1.391372, 1.398954};
505 const Double_t ksecX10[10]={-1.233255, -1.186874, -1.246702, -1.213368, -1.259425, -1.190067, -1.225655, -1.224171, -1.197833, -1.237182};
506 const Double_t ksecY10[10]={1.635767, 1.646249, 1.617336, 1.608928, 1.636944, 1.602583, 1.630504, 1.629065, 1.624295, 1.620934};
507 const Double_t ksecX11[10]={-1.018270, -1.031317, -0.960524, -1.001155, -1.045437, -0.986867, -1.002685, -1.017369, -1.005614, -0.985385};
508 const Double_t ksecY11[10]={1.318108, 1.330683, 1.301572, 1.314410, 1.326680, 1.295226, 1.306372, 1.309414, 1.306542, 1.307086};
509 const Double_t ksecX12[10]={-2.199004, -2.214964, -2.139247, -2.180547, -2.224505, -2.165324, -2.175883, -2.193485, -2.183227, -2.161570};
510 const Double_t ksecY12[10]={1.317677, 1.303982, 1.317057, 1.324766, 1.339537, 1.312715, 1.359642, 1.343638, 1.330234, 1.340836};
511
512
54c9a3d9 513 const Double_t ksecR13 = -0.8 * fgkmm; // external
514 const Double_t ksecAngleSide13 = 36.0 * fgkDegree;
515 //
516 const Int_t ksecNRadii = 20;
517 const Int_t ksecNPointsPerRadii = 4;
518 const Int_t ksecNCoolingTubeDips = 6;
519 //
520 // Since the rounded parts are approximated by a regular polygon
521 // and a cooling tube of the propper diameter must fit, a scaling factor
522 // increases the size of the polygon for the tube to fit.
523 //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/
524 // (Double_t)ksecNPointsPerRadii);
525 const Double_t ksecZEndLen = 30.000 * fgkmm;
526 //const Double_t ksecZFlangLen = 45.000 * fgkmm;
527 const Double_t ksecTl = 0.860 * fgkmm;
528 const Double_t ksecCthick2 = 0.600 * fgkmm;
529 //const Double_t ksecCthick3 = 1.80 * fgkmm;
530 //const Double_t ksecSidelen = 22.0 * fgkmm;
531 //const Double_t ksecSideD5 = 3.679 * fgkmm;
532 //const Double_t ksecSideD12 = 7.066 * fgkmm;
533 const Double_t ksecRCoolOut = 2.400 * fgkmm;
534 const Double_t ksecRCoolIn = 2.000 * fgkmm;
535 const Double_t ksecDl1 = 5.900 * fgkmm;
536 const Double_t ksecDl2 = 8.035 * fgkmm;
537 const Double_t ksecDl3 = 4.553 * fgkmm;
538 const Double_t ksecDl4 = 6.978 * fgkmm;
539 const Double_t ksecDl5 = 6.978 * fgkmm;
540 const Double_t ksecDl6 = 6.978 * fgkmm;
541 const Double_t ksecCoolTubeThick = 0.04 * fgkmm;
542 const Double_t ksecCoolTubeROuter = 2.6 * fgkmm;
543 const Double_t ksecCoolTubeFlatX = 3.696 * fgkmm;
544 const Double_t ksecCoolTubeFlatY = 0.68 * fgkmm;
545 //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess
546 //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess
547 //
548 // redefine some of the points already defined above
549 // in the format of arrays (???)
550 const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8;
551 Double_t secX[ksecNRadii] = {
30611568 552 ksecX0, ksecX1[sect], -1000.0,
553 ksecX2[sect], ksecX3[sect], -1000.0,
554 ksecX4[sect], ksecX5[sect], -1000.0,
555 ksecX6[sect], ksecX7[sect], -1000.0,
556 ksecX8[sect], ksecX9[sect], -1000.0,
557 ksecX10[sect], ksecX11[sect], -1000.0,
558 ksecX12[sect], -1000.0
54c9a3d9 559 };
560 Double_t secY[ksecNRadii] = {
30611568 561 ksecY0, ksecY1[sect], -1000.0,
562 ksecY2[sect], ksecY3[sect], -1000.0,
563 ksecY4[sect], ksecY5[sect], -1000.0,
564 ksecY6[sect], ksecY7[sect], -1000.0,
565 ksecY8[sect], ksecY9[sect], -1000.0,
566 ksecY10[sect], ksecY11[sect], -1000.0,
567 ksecY12[sect], -1000.0
54c9a3d9 568 };
d0048cec 569 Double_t secR[ksecNRadii] = {
54c9a3d9 570 ksecR0, ksecR1, -.5 * ksecDipLength - ksecDipRadii,
571 ksecR2, ksecR3, -.5 * ksecDipLength - ksecDipRadii,
572 ksecR4, ksecR5, -.5 * ksecDipLength - ksecDipRadii,
573 ksecR6, ksecR7, -.5 * ksecDipLength - ksecDipRadii,
574 ksecR8, ksecR9, -.5 * ksecDipLength - ksecDipRadii,
575 ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii,
576 ksecR12, ksecR13
577 };
c890eba4 578
54c9a3d9 579 Double_t secX2[ksecNRadii];
580 Double_t secY2[ksecNRadii];
581 Double_t secR2[ksecNRadii] = {
582 ksecR0, ksecR1, ksecRCoolOut,
583 ksecR2, ksecR3, ksecRCoolOut,
584 ksecR4, ksecR5, ksecRCoolOut,
585 ksecR6, ksecR7, ksecRCoolOut,
586 ksecR8, ksecR9, ksecRCoolOut,
587 ksecR10, ksecR11, ksecRCoolOut,
588 ksecR12, ksecR13
589 };
d0048cec 590 Double_t secDip2[ksecNCoolingTubeDips] = {
591 ksecDl1, ksecDl2, ksecDl3,
592 ksecDl4, ksecDl5, ksecDl6
54c9a3d9 593 };
594 Double_t secX3[ksecNRadii];
595 Double_t secY3[ksecNRadii];
596 const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17};
597 Double_t secAngleStart[ksecNRadii];
598 Double_t secAngleEnd[ksecNRadii];
3b81eea3 599 for(Int_t i = 0; i < ksecNRadii; i++)secAngleEnd[i] = 0.;
54c9a3d9 600 Double_t secAngleStart2[ksecNRadii];
601 Double_t secAngleEnd2[ksecNRadii];
602 Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0};
603 //Double_t secAngleStart3[ksecNRadii];
604 //Double_t secAngleEnd3[ksecNRadii];
605 Double_t xpp[ksecNPoints], ypp[ksecNPoints];
606 Double_t xpp2[ksecNPoints], ypp2[ksecNPoints];
607 Double_t *xp[ksecNRadii], *xp2[ksecNRadii];
608 Double_t *yp[ksecNRadii], *yp2[ksecNRadii];
609 TGeoXtru *sA0, *sA1, *sB0, *sB1,*sB2;
610 TGeoBBox *sB3;
611 TGeoEltu *sTA0, *sTA1;
612 TGeoTube *sTB0, *sTB1; //,*sM0;
613 TGeoRotation *rot;
614 TGeoTranslation *trans;
615 TGeoCombiTrans *rotrans;
616 Double_t t, t0, t1, a, b, x0, y0,z0, x1, y1;
617 Int_t i, j, k, m;
618 Bool_t tst;
619
620 if(!moth) {
621 AliError("Container volume (argument) is NULL");
622 return;
623 } // end if(!moth)
624 for(i = 0; i < ksecNRadii; i++) {
625 xp[i] = &(xpp[i*(ksecNPointsPerRadii+1)]);
626 yp[i] = &(ypp[i*(ksecNPointsPerRadii+1)]);
627 xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]);
628 yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]);
629 secX2[i] = secX[i];
630 secY2[i] = secY[i];
631 secX3[i] = secX[i];
632 secY3[i] = secY[i];
633 } // end for i
634 //
635 // find starting and ending angles for all but cooling tube sections
636 secAngleStart[0] = 0.5 * ksecAngleSide13;
637 for(i = 0; i < ksecNRadii - 2; i++) {
638 tst = kFALSE;
639 for(j=0;j<ksecNCoolingTubeDips;j++) tst = (tst||i==ksecDipIndex[j]);
640 if (tst) continue;
641 tst = kFALSE;
642 for(j=0;j<ksecNCoolingTubeDips;j++) tst =(tst||(i+1)==ksecDipIndex[j]);
643 if (tst) j = i+2; else j = i+1;
644 AnglesForRoundedCorners(secX[i],secY[i],secR[i],secX[j],secY[j],
645 secR[j],t0,t1);
646 secAngleEnd[i] = t0;
647 secAngleStart[j] = t1;
648 if(secR[i] > 0.0 && secR[j] > 0.0) {
649 if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0;
650 } // end if(secR[i]>0.0 && secR[j]>0.0)
651 secAngleStart2[i] = secAngleStart[i];
652 secAngleEnd2[i] = secAngleEnd[i];
653 } // end for i
654 secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] +
655 (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]);
656 if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0;
657 secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0;
658 secAngleEnd[ksecNRadii-1] = secAngleStart[0];
659 secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2];
660 secAngleEnd2[ksecNRadii-2] = secAngleEnd[ksecNRadii-2];
661 secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1];
662 secAngleEnd2[ksecNRadii-1] = secAngleEnd[ksecNRadii-1];
663 //
664 // find location of circle last rounded corner.
665 i = 0;
666 j = ksecNRadii - 2;
667 t0 = TanD(secAngleStart[i]-90.);
668 t1 = TanD(secAngleEnd[j]-90.);
669 t = secY[i] - secY[j];
670 // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0
671 t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]);
672 t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]);
673 t += t1 * secX[j] - t0*secX[i];
674 t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]);
675 t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]);
676 secX[ksecNRadii-1] = t / (t1-t0);
677 secY[ksecNRadii-1] = TanD(90.0+0.5*ksecAngleSide13)*
678 (secX[ksecNRadii-1]-secX[0])+secY[0];
679 secX2[ksecNRadii-1] = secX[ksecNRadii-1];
680 secY2[ksecNRadii-1] = secY[ksecNRadii-1];
681 secX3[ksecNRadii-1] = secX[ksecNRadii-1];
682 secY3[ksecNRadii-1] = secY[ksecNRadii-1];
d0048cec 683
54c9a3d9 684 // find location of cooling tube centers
685 for(i = 0; i < ksecNCoolingTubeDips; i++) {
686 j = ksecDipIndex[i];
687 x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]);
688 y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]);
689 x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]);
690 y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]);
691 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
692 t = secDip2[i] / t0;
693 a = x0+(x1-x0) * t;
694 b = y0+(y1-y0) * t;
d0048cec 695 if(i == 0) {
54c9a3d9 696 // get location of tube center->Surface for locating
697 // this sector around the beam pipe.
698 // This needs to be double checked, but I need my notes for that.
699 // (Bjorn Nilsen)
700 xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5;
701 yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5;
702 }// end if i==0
703 if(a + b*(a - x0) / (b - y0) > 0.0) {
704 secX[j] = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0;
705 secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0;
706 secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0;
707 secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0;
d0048cec 708 secX3[j] = a + TMath::Abs(y1-y0) *
54c9a3d9 709 (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0;
710 secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
711 y1-y0)*(x1-x0)/t0;
712 } else {
713 secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0;
714 secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0;
715 secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0;
716 secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0;
717 secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5*
718 ksecCoolTubeFlatY)/t0;
719 secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
720 y1-y0)*(x1-x0)/t0;
721 } // end if(a+b*(a-x0)/(b-y0)>0.0)
d0048cec 722
54c9a3d9 723 // Set up Start and End angles to correspond to start/end of dips.
724 t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0;
725 secAngleStart[j] =TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
726 x0+(x1-x0)*t1-secX[j]);
727 if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0;
728 secAngleStart2[j] = secAngleStart[j];
729 t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0;
730 secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
731 x0+(x1-x0)*t1-secX[j]);
732 if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0;
733 secAngleEnd2[j] = secAngleEnd[j];
734 if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0;
735 secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii);
736 } // end for i
d0048cec 737
54c9a3d9 738 // Special cases
739 secAngleStart2[8] -= 360.;
740 secAngleStart2[11] -= 360.;
741
742 SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd,
743 ksecNPointsPerRadii, m, xp, yp);
744
745 // Fix up dips to be square.
746 for(i = 0; i < ksecNCoolingTubeDips; i++) {
747 j = ksecDipIndex[i];
748 t = 0.5*ksecDipLength+ksecDipRadii;
749 t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t);
750 t1 = secAngleEnd[j] + t0;
751 t0 = secAngleStart[j] - t0;
752 x0 = xp[j][1] = secX[j] + t*CosD(t0);
753 y0 = yp[j][1] = secY[j] + t*SinD(t0);
754 x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1);
755 y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1);
756 t0 = 1./((Double_t)(ksecNPointsPerRadii-2));
757 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
758 // extra points spread them out.
759 t = ((Double_t)(k-1)) * t0;
760 xp[j][k] = x0+(x1-x0) * t;
761 yp[j][k] = y0+(y1-y0) * t;
762 } // end for k
763 secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0);
d0048cec 764 if(GetDebug(3)) {
54c9a3d9 765 AliInfo(
766 Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)",
767 i, secAngleTurbo[i], x0, y0, x1, y1));
768 } // end if GetDebug(3)
769 } // end for i
770 sA0 = new TGeoXtru(2);
771 sA0->SetName("ITS SPD Carbon fiber support Sector A0");
772 sA0->DefinePolygon(m, xpp, ypp);
773 sA0->DefineSection(0, -ksecDz);
774 sA0->DefineSection(1, ksecDz);
d0048cec 775
54c9a3d9 776 // store the edges of each XY segment which defines
777 // one of the plane zones where staves will have to be placed
778 fSPDsectorX0.Set(ksecNCoolingTubeDips);
779 fSPDsectorY0.Set(ksecNCoolingTubeDips);
780 fSPDsectorX1.Set(ksecNCoolingTubeDips);
781 fSPDsectorY1.Set(ksecNCoolingTubeDips);
782 Int_t ixy0, ixy1;
783 for(i = 0; i < ksecNCoolingTubeDips; i++) {
784 // Find index in xpp[] and ypp[] corresponding to where the
785 // SPD ladders are to be attached. Order them according to
786 // the ALICE numbering schema. Using array of indexes (+-1 for
d0048cec 787 // cooling tubes. For any "bend/dip/edge, there are
54c9a3d9 788 // ksecNPointsPerRadii+1 points involved.
789 if(i == 0) j = 1;
790 else if (i == 1) j = 0;
791 else j = i;
792 ixy0 = (ksecDipIndex[j]-1)*(ksecNPointsPerRadii+1)+
793 (ksecNPointsPerRadii);
794 ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1);
795 fSPDsectorX0[i] = sA0->GetX(ixy0);
796 fSPDsectorY0[i] = sA0->GetY(ixy0);
797 fSPDsectorX1[i] = sA0->GetX(ixy1);
798 fSPDsectorY1[i] = sA0->GetY(ixy1);
799 } // end for i
d0048cec 800
54c9a3d9 801 //printf("SectorA#%d ",0);
802 InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],ksecCthick,
803 xpp2[0],ypp2[0]);
804 for(i = 1; i < m - 1; i++) {
805 j = i / (ksecNPointsPerRadii+1);
806 //printf("SectorA#%d ",i);
807 InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],
808 ksecCthick,xpp2[i],ypp2[i]);
809 } // end for i
810 //printf("SectorA#%d ",m);
811 InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
812 ksecCthick,xpp2[m-1],ypp2[m-1]);
813 // Fix center value of cooling tube dip and
814 // find location of cooling tube centers
815 for(i = 0; i < ksecNCoolingTubeDips; i++) {
816 j = ksecDipIndex[i];
817 x0 = xp2[j][1];
818 y0 = yp2[j][1];
819 x1 = xp2[j][ksecNPointsPerRadii-1];
820 y1 = yp2[j][ksecNPointsPerRadii-1];
821 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
822 t = secDip2[i]/t0;
823 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
824 // extra points spread them out.
825 t = ((Double_t)(k-1)) * t0;
826 xp2[j][k] = x0+(x1-x0) * t;
827 yp2[j][k] = y0+(y1-y0) * t;
828 } // end for k
829 } // end for i
830 sA1 = new TGeoXtru(2);
831 sA1->SetName("ITS SPD Carbon fiber support Sector Air A1");
832 sA1->DefinePolygon(m, xpp2, ypp2);
833 sA1->DefineSection(0, -ksecDz);
834 sA1->DefineSection(1, ksecDz);
835 //
836 // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?).
837 sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY,
838 0.5 * ksecCoolTubeFlatX, ksecDz);
d0048cec 839 sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1",
54c9a3d9 840 sTA0->GetA() - ksecCoolTubeThick,
841 sTA0->GetB()-ksecCoolTubeThick,ksecDz);
842 SPDsectorShape(ksecNRadii,secX2,secY2,secR2,secAngleStart2,secAngleEnd2,
843 ksecNPointsPerRadii, m, xp, yp);
844 sB0 = new TGeoXtru(2);
845 sB0->SetName("ITS SPD Carbon fiber support Sector End B0");
846 sB0->DefinePolygon(m, xpp, ypp);
847 sB0->DefineSection(0, ksecDz);
848 sB0->DefineSection(1, ksecDz + ksecZEndLen);
849
850 //printf("SectorB#%d ",0);
53506676 851 // Points around the most sharpened tips have to be avoided - M.S. 24 feb 09
852 const Int_t nSpecialPoints = 5;
853 const Int_t kSpecialPoints[nSpecialPoints] = {7, 17, 47, 62, 77};
854 Int_t i2 = 0;
54c9a3d9 855 InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],
53506676 856 ksecCthick2,xpp2[i2],ypp2[i2]);
54c9a3d9 857 for(i = 1; i < m - 1; i++) {
858 t = ksecCthick2;
859 for(k = 0; k < ksecNCoolingTubeDips; k++)
860 if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k])
861 if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i ||
862 ksecDipIndex[k]*(ksecNPointsPerRadii+1) +
863 ksecNPointsPerRadii == i))
864 t = ksecRCoolOut-ksecRCoolIn;
865 //printf("SectorB#%d ",i);
53506676 866 Bool_t useThisPoint = kTRUE;
867 for(Int_t ii = 0; ii < nSpecialPoints; ii++)
868 if ( (i == kSpecialPoints[ii] - 1) ||
869 (i == kSpecialPoints[ii] + 1) ) useThisPoint = kFALSE;
870 if (useThisPoint) {
871 i2++;
872 InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],t,
873 xpp2[i2],ypp2[i2]);
874 }
54c9a3d9 875 }// end for i
876 //printf("SectorB#%d ",m);
53506676 877 i2++;
54c9a3d9 878 InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
53506676 879 ksecCthick2,xpp2[i2],ypp2[i2]);
54c9a3d9 880 sB1 = new TGeoXtru(2);
881 sB1->SetName("ITS SPD Carbon fiber support Sector Air End B1");
53506676 882 sB1->DefinePolygon(i2+1, xpp2, ypp2);
54c9a3d9 883 sB1->DefineSection(0,sB0->GetZ(0));
884 sB1->DefineSection(1,sB0->GetZ(1)-ksecCthick2);
885 const Double_t kspdEndHoleRadius1=5.698*fgkmm;
886 const Double_t kspdEndHoleRadius2=2.336*fgkmm;
887 const Double_t kspdEndHoleDisplacement=6.29*fgkmm;
888 k = (m-1)/4;
889 for(i=0;i<=k;i++){
890 t= ((Double_t)i)/((Double_t)(k));
891 if(!CFHolePoints(t,kspdEndHoleRadius1,kspdEndHoleRadius2,
892 kspdEndHoleDisplacement,xpp2[i],ypp2[i])){
893 Warning("CarbonFiberSector","CFHolePoints failed "
894 "i=%d m=%d k=%d t=%e",i,m,k,t);
895 } // end if
896 // simitry in each quadrant.
897 xpp2[2*k-i] = -xpp2[i];
898 ypp2[2*k-i] = ypp2[i];
899 xpp2[2*k+i] = -xpp2[i];
900 ypp2[2*k+i] = -ypp2[i];
901 xpp2[4*k-i] = xpp2[i];
902 ypp2[4*k-i] = -ypp2[i];
903 }// end for i
904 //xpp2[m-1] = xpp2[0]; // begining point in
905 //ypp2[m-1] = ypp2[0]; // comment with end point
906 sB2 = new TGeoXtru(2);
907 sB2->SetName("ITS SPD Hole in Carbon fiber support End plate");
908 sB2->DefinePolygon(4*k, xpp2, ypp2);
909 sB2->DefineSection(0,sB1->GetZ(1));
910 sB2->DefineSection(1,sB0->GetZ(1));
911 // SPD sector mount blocks
912 const Double_t kMountBlock[3] = {0.5*(1.8-0.2)*fgkmm,0.5*22.0*fgkmm,
913 0.5*45.0*fgkmm};
914 sB3 = new TGeoBBox((Double_t*)kMountBlock);
915 // SPD sector cooling tubes
916 sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0,
7708d5f3 917 0.5*ksecCoolTubeROuter,0.5*(sB1->GetZ(1)-sB1->GetZ(0)));
54c9a3d9 918 sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0,
919 sTB0->GetRmax() - ksecCoolTubeThick,sTB0->GetDz());
920 //
921 if(GetDebug(3)) {
922 if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0");
923 if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0");
924 if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0");
925 if(medSPDcoolfl) medSPDcoolfl->Dump();else AliInfo("medSPDcoolfl = 0");
926 sA0->InspectShape();
927 sA1->InspectShape();
928 sB0->InspectShape();
929 sB1->InspectShape();
930 sB2->InspectShape();
931 } // end if(GetDebug(3))
d0048cec 932
54c9a3d9 933 // create the assembly of the support and place staves on it
934 TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly(
935 "ITSSPDSensitiveVirtualvolumeM0");
936 StavesInSector(vM0);
937 // create other volumes with some graphical settings
938 TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0",
939 sA0, medSPDcf);
940 vA0->SetVisibility(kTRUE);
941 vA0->SetLineColor(4); // Blue
942 vA0->SetLineWidth(1);
943 vA0->SetFillColor(vA0->GetLineColor());
944 vA0->SetFillStyle(4010); // 10% transparent
945 TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1",
946 sA1, medSPDair);
947 vA1->SetVisibility(kTRUE);
948 vA1->SetLineColor(7); // light Blue
949 vA1->SetLineWidth(1);
950 vA1->SetFillColor(vA1->GetLineColor());
951 vA1->SetFillStyle(4090); // 90% transparent
952 TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss);
953 vTA0->SetVisibility(kTRUE);
954 vTA0->SetLineColor(15); // gray
955 vTA0->SetLineWidth(1);
956 vTA0->SetFillColor(vTA0->GetLineColor());
957 vTA0->SetFillStyle(4000); // 0% transparent
958 TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1",
959 sTA1, medSPDcoolfl);
960 vTA1->SetVisibility(kTRUE);
961 vTA1->SetLineColor(6); // Purple
962 vTA1->SetLineWidth(1);
963 vTA1->SetFillColor(vTA1->GetLineColor());
964 vTA1->SetFillStyle(4000); // 0% transparent
965 TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0",
966 sB0, medSPDcf);
967 vB0->SetVisibility(kTRUE);
968 vB0->SetLineColor(1); // Black
969 vB0->SetLineWidth(1);
970 vB0->SetFillColor(vB0->GetLineColor());
971 vB0->SetFillStyle(4000); // 0% transparent
972 TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1",
973 sB1, medSPDair);
974 vB1->SetVisibility(kTRUE);
975 vB1->SetLineColor(0); // white
976 vB1->SetLineWidth(1);
977 vB1->SetFillColor(vB1->GetLineColor());
978 vB1->SetFillStyle(4100); // 100% transparent
979 TGeoVolume *vB2 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB2",
980 sB2, medSPDair);
981 vB2->SetVisibility(kTRUE);
982 vB2->SetLineColor(0); // white
983 vB2->SetLineWidth(1);
984 vB2->SetFillColor(vB2->GetLineColor());
985 vB2->SetFillStyle(4100); // 100% transparent
986 TGeoVolume *vB3 = new TGeoVolume(
987 "ITSSPDCarbonFiberSupportSectorMountBlockB3",sB3, medSPDcf);
988 vB3->SetVisibility(kTRUE);
989 vB3->SetLineColor(1); // Black
990 vB3->SetLineWidth(1);
991 vB3->SetFillColor(vB3->GetLineColor());
992 vB3->SetFillStyle(4000); // 0% transparent
993 TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss);
994 vTB0->SetVisibility(kTRUE);
995 vTB0->SetLineColor(15); // gray
996 vTB0->SetLineWidth(1);
997 vTB0->SetFillColor(vTB0->GetLineColor());
998 vTB0->SetFillStyle(4000); // 0% transparent
999 TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1,
1000 medSPDcoolfl);
1001 vTB1->SetVisibility(kTRUE);
1002 vTB1->SetLineColor(7); // light blue
1003 vTB1->SetLineWidth(1);
1004 vTB1->SetFillColor(vTB1->GetLineColor());
1005 vTB1->SetFillStyle(4050); // 0% transparent
d0048cec 1006
54c9a3d9 1007 // add volumes to mother container passed as argument of this method
1008 moth->AddNode(vM0,1,0); // Add virtual volume to mother
1009 vA0->AddNode(vA1,1,0); // Put air inside carbon fiber.
1010 vB0->AddNode(vB1,1,0); // Put air inside carbon fiber ends.
1011 vB0->AddNode(vB2,1,0); // Put air wholes inside carbon fiber ends
1012 vTA0->AddNode(vTA1,1,0); // Put cooling liquid indide tube middel.
1013 vTB0->AddNode(vTB1,1,0); // Put cooling liquid inside tube end.
1014 Double_t tubeEndLocal[3]={0.0,0.0,sTA0->GetDz()};
1015 for(i = 0; i < ksecNCoolingTubeDips; i++) {
1016 x0 = secX3[ksecDipIndex[i]];
1017 y0 = secY3[ksecDipIndex[i]];
1018 t = 90.0 - secAngleTurbo[i];
1019 trans = new TGeoTranslation("",x0,y0,0.5*(sB1->GetZ(0)+sB1->GetZ(1)));
1020 vB1->AddNode(vTB0, i+1, trans);
1021 // Find location of tube ends for later use.
1022 trans->LocalToMaster(tubeEndLocal,fTubeEndSector[0][0][i]);
1023 rot = new TGeoRotation("", 0.0, 0.0, t);
1024 rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot);
1025 vM0->AddNode(vTA0, i+1, rotrans);
1026 } // end for i
1027 vM0->AddNode(vA0, 1, 0);
1028 vM0->AddNode(vB0, 1, 0);
1029 // Reflection.
1030 rot = new TGeoRotation("", 90., 0., 90., 90., 180., 0.);
1031 vM0->AddNode(vB0,2,rot);
1032 // Find location of tube ends for later use.
1033 for(i=0;i<ksecNCoolingTubeDips;i++) rot->LocalToMaster(
1034 fTubeEndSector[0][0][i],fTubeEndSector[0][1][i]);
1035 // left side
1036 t = -TMath::RadToDeg()*TMath::ATan2(
1037 sB0->GetX(0)-sB0->GetX(sB0->GetNvert()-1),
1038 sB0->GetY(0)-sB0->GetY(sB0->GetNvert()-1));
1039 rot = new TGeoRotation("",t,0.0,0.0);// z axis rotation
1040 x0 = 0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))+
1041 sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
1042 y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))+
1043 sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
1044 z0 = sB0->GetZ(0)+sB3->GetDZ();
1045 rotrans = new TGeoCombiTrans("",x0,y0,z0,rot);
1046 vM0->AddNode(vB3,1,rotrans); // Put Mounting bracket on sector
1047 rotrans = new TGeoCombiTrans("",x0,y0,-z0,rot);
1048 vM0->AddNode(vB3,2,rotrans); // Put Mounting bracket on sector
54c9a3d9 1049 t *= -1.0;
1050 rot = new TGeoRotation("",t,0.0,0.0); // z axis rotation
c890eba4 1051
54c9a3d9 1052 x0 = -0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))-3.5*
1053 sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
1054 y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))-3.5*
1055 sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
22726349 1056 rotrans = new TGeoCombiTrans("",1.01*x0,y0,z0,rot);
54c9a3d9 1057 vM0->AddNode(vB3,3,rotrans); // Put Mounting bracket on sector
22726349 1058 rotrans = new TGeoCombiTrans("",1.01*x0,y0,-z0,rot);
54c9a3d9 1059 vM0->AddNode(vB3,4,rotrans); // Put Mounting bracket on sector
1060 if(GetDebug(3)){
1061 vM0->PrintNodes();
1062 vA0->PrintNodes();
1063 vA1->PrintNodes();
1064 vB0->PrintNodes();
1065 vB1->PrintNodes();
1066 vB2->PrintNodes();
1067 vB3->PrintNodes();
1068 vTA0->PrintNodes();
1069 vTA1->PrintNodes();
1070 vTB0->PrintNodes();
1071 vTB1->PrintNodes();
1072 } // end if(GetDebug(3))
bc3498f4 1073}
54c9a3d9 1074//______________________________________________________________________
1075Bool_t AliITSv11GeometrySPD::CFHolePoints(Double_t s,Double_t r1,
1076 Double_t r2,Double_t l,Double_t &x,Double_t &y) const
bc3498f4 1077{
54c9a3d9 1078 //
1079 // Step along arck a distancs ds and compute boundry of
1080 // two holes (radius r1 and r2) a distance l apart (along
1081 // x-axis).
1082 // Inputs:
1083 // Double_t s fractional Distance along arcs [0-1]
1084 // where 0-> alpha=beta=0, 1-> alpha=90 degrees.
1085 // Double_t r1 radius at center circle
1086 // Double_t r2 radius of displaced circle
1087 // Double_t l Distance displaced circle is displaces (x-axis)
1088 // Output:
1089 // Double_t x x coordinate along double circle.
1090 // Double_t y y coordinate along double circle.
1091 // Return:
1092 // logical, kFALSE if an error
1093 //
1094 Double_t alpha,beta;
1095 Double_t ac,bc,scb,sca,t,alphac,betac; // at intersection of two circles
1096
1097 x=y=0.0;
1098 ac = r1*r1-l*l-r2*r2;
1099 bc = 2.*l*r2;
1100 if(bc==0.0) {printf("bc=0 l=%e r2=%e\n",l,r2);return kFALSE;}
1101 betac = TMath::ACos(ac/bc);
60e55aee 1102 alphac = TMath::Sqrt((bc-ac)*(bc+ac))/(2.*l*r1);
54c9a3d9 1103 scb = r2*betac;
1104 sca = r1*alphac;
1105 t = r1*0.5*TMath::Pi() - sca + scb;
1106 if(s<= scb/t){
1107 beta = s*t/r2;
1108 x = r2*TMath::Cos(beta) + l;
1109 y = r2*TMath::Sin(beta);
1110 //printf("betac=%e scb=%e t=%e s=%e beta=%e x=%e y=%e\n",
1111 // betac,scb,t,s,beta,x,y);
1112 return kTRUE;
1113 }else{
1114 beta = (s*t-scb+sca)/(r1*0.5*TMath::Pi());
1115 alpha = beta*0.5*TMath::Pi();
1116 x = r1*TMath::Cos(alpha);
1117 y = r1*TMath::Sin(alpha);
1118 //printf("alphac=%e sca=%e t=%e s=%e beta=%e alpha=%e x=%e y=%e\n",
1119 // alphac,sca,t,s,beta,alpha,x,y);
1120 return kTRUE;
1121 } // end if
1122 return kFALSE;
bc3498f4 1123}
54c9a3d9 1124//______________________________________________________________________
1125Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints(Int_t index,Double_t &x0,
1126 Double_t &y0, Double_t &x1, Double_t &y1) const
bc3498f4 1127{
54c9a3d9 1128 //
1129 // Returns the edges of the straight borders in the SPD sector shape,
1130 // which are used to mount staves on them.
1131 // Coordinate system is that of the carbon fiber sector volume.
1132 // ---
1133 // Index numbering is as follows:
1134 // /5
1135 // /\/4
1136 // 1\ \/3
1137 // 0|___\/2
1138 // ---
1139 // Arguments [the ones passed by reference contain output values]:
1140 // Int_t index --> location index according to above scheme [0-5]
1141 // Double_t &x0 --> (by ref) x0 location or the ladder sector [cm]
1142 // Double_t &y0 --> (by ref) y0 location of the ladder sector [cm]
1143 // Double_t &x1 --> (by ref) x1 location or the ladder sector [cm]
1144 // Double_t &y1 --> (by ref) y1 location of the ladder sector [cm]
1145 // TGeoManager *mgr --> The TGeo builder
1146 // ---
1147 // The location is described by a line going from (x0, y0) to (x1, y1)
1148 // ---
1149 // Returns kTRUE if no problems encountered.
1150 // Returns kFALSE if a problem was encountered (e.g.: shape not found).
d0048cec 1151 //
54c9a3d9 1152 Int_t isize = fSPDsectorX0.GetSize();
1153
1154 x0 = x1 = y0 = y1 = 0.0;
1155 if(index < 0 || index > isize) {
c890eba4 1156 AliError(Form("index = %d: allowed 0 --> %d", index, isize));
1157 return kFALSE;
54c9a3d9 1158 } // end if(index<0||index>isize)
1159 x0 = fSPDsectorX0[index];
1160 x1 = fSPDsectorX1[index];
1161 y0 = fSPDsectorY0[index];
1162 y1 = fSPDsectorY1[index];
1163 return kTRUE;
bc3498f4 1164}
54c9a3d9 1165//______________________________________________________________________
d0048cec 1166void AliITSv11GeometrySPD::SPDsectorShape(Int_t n,const Double_t *xc,
54c9a3d9 1167 const Double_t *yc, const Double_t *r,
d0048cec 1168 const Double_t *ths, const Double_t *the,
54c9a3d9 1169 Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const
bc3498f4 1170{
54c9a3d9 1171 //
1172 // Code to compute the points that make up the shape of the SPD
1173 // Carbon fiber support sections
1174 // Inputs:
1175 // Int_t n size of arrays xc,yc, and r.
1176 // Double_t *xc array of x values for radii centers.
1177 // Double_t *yc array of y values for radii centers.
1178 // Double_t *r array of signed radii values.
1179 // Double_t *ths array of starting angles [degrees].
1180 // Double_t *the array of ending angles [degrees].
1181 // Int_t npr the number of lines segments to aproximate the arc.
1182 // Outputs (arguments passed by reference):
d0048cec 1183 // Int_t m the number of enetries in the arrays *xp[npr+1]
54c9a3d9 1184 // and *yp[npr+1].
1185 // Double_t **xp array of x coordinate values of the line segments
1186 // which make up the SPD support sector shape.
1187 // Double_t **yp array of y coordinate values of the line segments
1188 // which make up the SPD support sector shape.
1189 //
1190 Int_t i, k;
1191 Double_t t, t0, t1;
1192
1193 m = n*(npr + 1);
1194 if(GetDebug(2)) {
1195 cout <<" X \t Y \t R \t S \t E" << m << endl;
1196 for(i = 0; i < n; i++) {
1197 cout << "{" << xc[i] << ", ";
1198 cout << yc[i] << ", ";
1199 cout << r[i] << ", ";
1200 cout << ths[i] << ", ";
1201 cout << the[i] << "}, " << endl;
1202 } // end for i
1203 } // end if(GetDebug(2))
1204 if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"][";
1205 if (GetDebug(4)) cout << "3] {";
1206 else if(GetDebug(3)) cout <<"2] {";
1207 t0 = (Double_t)npr;
1208 for(i = 0; i < n; i++) {
1209 t1 = (the[i] - ths[i]) / t0;
1210 if(GetDebug(5)) cout << "t1 = " << t1 << endl;
1211 for(k = 0; k <= npr; k++) {
1212 t = ths[i] + ((Double_t)k) * t1;
1213 xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i];
1214 yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i];
1215 if(GetDebug(3)) {
1216 cout << "{" << xp[i][k] << "," << yp[i][k];
1217 if (GetDebug(4)) cout << "," << t;
1218 cout << "},";
1219 } // end if GetDebug
1220 } // end for k
1221 if(GetDebug(3)) cout << endl;
1222 } // end of i
1223 if(GetDebug(3)) cout << "{" << xp[0][0] << ", " << yp[0][0];
1224 if(GetDebug(4)) cout << "," << ths[0];
1225 if(GetDebug(3)) cout << "}}" << endl;
592651e2 1226}
22726349 1227
54c9a3d9 1228//______________________________________________________________________
1229TGeoVolume* AliITSv11GeometrySPD::CreateLadder(Int_t layer,TArrayD &sizes,
1230 TGeoManager *mgr) const
bc3498f4 1231{
54c9a3d9 1232 //
1233 // Creates the "ladder" = silicon sensor + 5 chips.
1234 // Returns a TGeoVolume containing the following components:
1235 // - the sensor (TGeoBBox), whose name depends on the layer
1236 // - 5 identical chips (TGeoBBox)
1237 // - a guard ring around the sensor (subtraction of TGeoBBoxes),
1238 // which is separated from the rest of sensor because it is not
1239 // a sensitive part
1240 // - bump bondings (TGeoBBox stripes for the whole width of the
1241 // sensor, one per column).
1242 // ---
1243 // Arguments:
1244 // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised)
1245 // 2 - a TArrayD passed by reference, which will contain relevant
1246 // dimensions related to this object:
1247 // size[0] = 'thickness' (the smallest dimension)
1248 // size[1] = 'length' (the direction along the ALICE Z axis)
d0048cec 1249 // size[2] = 'width' (extension in the direction perp. to the
54c9a3d9 1250 // above ones)
1251 // 3 - the used TGeoManager
1252
d0048cec 1253 // ** CRITICAL CHECK **
54c9a3d9 1254 // layer number can be ONLY 1 or 2
1255 if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
1256
1257 // ** MEDIA **
1258 TGeoMedium *medAir = GetMedium("AIR$",mgr);
1259 TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP
1260 TGeoMedium *medSi = GetMedium("SI$",mgr);
1261 TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond
d0048cec 1262
1263 // ** SIZES **
54c9a3d9 1264 Double_t chipThickness = fgkmm * 0.150;
1265 Double_t chipWidth = fgkmm * 15.950;
1266 Double_t chipLength = fgkmm * 13.600;
1267 Double_t chipSpacing = fgkmm * 0.400; // separation of chips along Z
1268 Double_t sensThickness = fgkmm * 0.200;
1269 Double_t sensLength = fgkmm * 69.600;
1270 Double_t sensWidth = fgkmm * 12.800;
d0048cec 1271 Double_t guardRingWidth = fgkmm * 0.560; // a border of this thickness
54c9a3d9 1272 // all around the sensor
1273 Double_t bbLength = fgkmm * 0.042;
1274 Double_t bbWidth = sensWidth;
1275 Double_t bbThickness = fgkmm * 0.012;
1276 Double_t bbPos = 0.080; // Z position w.r. to left pixel edge
1277 // compute the size of the container volume which
1278 // will also be returned in the referenced TArrayD;
1279 // for readability, they are linked by reference to a more meaningful name
1280 sizes.Set(3);
1281 Double_t &thickness = sizes[0];
1282 Double_t &length = sizes[1];
1283 Double_t &width = sizes[2];
1284 // the container is a box which exactly enclose all the stuff;
1285 width = chipWidth;
1286 length = sensLength + 2.0*guardRingWidth;
1287 thickness = sensThickness + chipThickness + bbThickness;
1288
1289 // ** VOLUMES **
1290 // While creating this volume, since it is a sensitive volume,
1291 // we must respect some standard criteria for its local reference frame.
1292 // Local X must correspond to x coordinate of the sensitive volume:
d0048cec 1293 // this means that we are going to create the container with a local
54c9a3d9 1294 // reference system that is **not** in the middle of the box.
d0048cec 1295 // This is accomplished by calling the shape constructor with an
54c9a3d9 1296 // additional option ('originShift'):
1297 Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
1298 Double_t originShift[3] = {-xSens, 0., 0.};
1299 TGeoBBox *shapeContainer = new TGeoBBox(0.5*width,0.5*thickness,
1300 0.5*length,originShift);
1301 // then the volume is made of air, and using this shape
1302 TGeoVolume *container = new TGeoVolume(Form("ITSSPDlay%d-Ladder",layer),
1303 shapeContainer, medAir);
1304 // the chip is a common box
1305 TGeoVolume *volChip = mgr->MakeBox("ITSSPDchip",medSPDSiChip,
1306 0.5*chipWidth,0.5*chipThickness,0.5*chipLength);
1307 // the sensor as well
1308 TGeoVolume *volSens = mgr->MakeBox(GetSenstiveVolumeName(layer),medSi,
1309 0.5*sensWidth,0.5*sensThickness,0.5*sensLength);
d0048cec 1310 // the guard ring shape is the subtraction of two boxes with the
54c9a3d9 1311 // same center.
1312 TGeoBBox *shIn = new TGeoBBox(0.5*sensWidth,sensThickness,0.5*sensLength);
1313 TGeoBBox *shOut = new TGeoBBox(0.5*sensWidth+guardRingWidth,
1314 0.5*sensThickness,0.5*sensLength+guardRingWidth);
1315 shIn->SetName("ITSSPDinnerBox");
1316 shOut->SetName("ITSSPDouterBox");
1317 TGeoCompositeShape *shBorder = new TGeoCompositeShape(
1318 "ITSSPDgaurdRingBorder",Form("%s-%s",shOut->GetName(),shIn->GetName()));
1319 TGeoVolume *volBorder = new TGeoVolume("ITSSPDgaurdRing",shBorder,medSi);
1320 // bump bonds for one whole column
1321 TGeoVolume *volBB = mgr->MakeBox("ITSSPDbb",medBumpBond,0.5*bbWidth,
1322 0.5*bbThickness,0.5*bbLength);
1323 // set colors of all objects for visualization
1324 volSens->SetLineColor(kYellow + 1);
1325 volChip->SetLineColor(kGreen);
1326 volBorder->SetLineColor(kYellow + 3);
1327 volBB->SetLineColor(kGray);
1328
1329 // ** MOVEMENTS **
1330 // sensor is translated along thickness (X) and width (Y)
1331 Double_t ySens = 0.5 * (thickness - sensThickness);
1332 Double_t zSens = 0.0;
d0048cec 1333 // we want that the x of the ladder is the same as the one of
54c9a3d9 1334 // its sensitive volume
1335 TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens);
1336 // bump bonds are translated along all axes:
1337 // keep same Y used for sensors, but change the Z
1338 TGeoTranslation *trBB[160];
1339 Double_t x = 0.0;
1340 Double_t y = 0.5 * (thickness - bbThickness) - sensThickness;
1341 Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
1342 Int_t i;
1343 for (i = 0; i < 160; i++) {
1344 trBB[i] = new TGeoTranslation(x, y, z);
1345 switch(i) {
1346 case 31:case 63:case 95:case 127:
1347 z += fgkmm * 0.625 + fgkmm * 0.2;
1348 break;
1349 default:
1350 z += fgkmm * 0.425;
1351 } // end switch
1352 } // end for i
1353 // the chips are translated along the length (Z) and thickness (X)
1354 TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
1355 x = -xSens;
1356 y = 0.5 * (chipThickness - thickness);
1357 z = 0.0;
1358 for (i = 0; i < 5; i++) {
d0048cec 1359 z = -0.5*length + guardRingWidth
54c9a3d9 1360 + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
1361 trChip[i] = new TGeoTranslation(x, y, z);
1362 } // end ofr i
d0048cec 1363
54c9a3d9 1364 // add nodes to container
1365 container->AddNode(volSens, 1, trSens);
1366 container->AddNode(volBorder, 1, trSens);
1367 for (i = 0; i < 160; i++) container->AddNode(volBB,i+1,trBB[i]);
1368 for (i = 0; i < 5; i++) container->AddNode(volChip,i+3,trChip[i]);
1369 // return the container
1370 return container;
592651e2 1371}
22726349 1372
7855ea93 1373//______________________________________________________________________
54c9a3d9 1374TGeoVolume* AliITSv11GeometrySPD::CreateClip(TArrayD &sizes,Bool_t isDummy,
1375 TGeoManager *mgr) const
1376{
1377 //
1378 // Creates the carbon fiber clips which are added to the central ladders.
1379 // They have a complicated shape which is approximated by a TGeoXtru
1380 // Implementation of a single clip over an half-stave.
1381 // It has a complicated shape which is approximated to a section like this:
d0048cec 1382 //
54c9a3d9 1383 // 6
1384 // /\ .
1385 // 7 //\\ 5
1386 // / 1\\___________________4
1387 // 0 \___________________
1388 // 2 3
d0048cec 1389 // with a finite thickness for all the shape
54c9a3d9 1390 // Its local reference frame is such that point A corresponds to origin.
d0048cec 1391 //
30611568 1392
1393 // MODIFIED geometry
1394 Double_t sposty = fgkmm * -0.5; // lower internal side to avoid overlaps with modified geometry
1395
54c9a3d9 1396 Double_t fullLength = fgkmm * 12.6; // = x4 - x0
1397 Double_t flatLength = fgkmm * 5.4; // = x4 - x3
1398 Double_t inclLongLength = fgkmm * 5.0; // = 5-6
1399 Double_t inclShortLength = fgkmm * 2.0; // = 6-7
1400 Double_t fullHeight = fgkmm * 2.8; // = y6 - y3
3ffa185f 1401 Double_t thickness = fgkmm * 0.18; // thickness
54c9a3d9 1402 Double_t totalLength = fgkmm * 52.0; // total length in Z
d0048cec 1403 Double_t holeSize = fgkmm * 5.0; // dimension of cubic
54c9a3d9 1404 // hole inserted for pt1000
1405 Double_t angle1 = 27.0; // supplementary of angle DCB
1406 Double_t angle2; // angle DCB
1407 Double_t angle3; // angle of GH with vertical
d0048cec 1408
54c9a3d9 1409 angle2 = 0.5 * (180.0 - angle1);
d0048cec 1410 angle3 = 90.0 - TMath::ACos(fullLength - flatLength -
1411 inclLongLength*TMath::Cos(angle1)) *
54c9a3d9 1412 TMath::RadToDeg();
1413 angle1 *= TMath::DegToRad();
1414 angle2 *= TMath::DegToRad();
1415 angle3 *= TMath::DegToRad();
1416
1417 Double_t x[8], y[8];
d0048cec 1418
54c9a3d9 1419 x[0] = 0.0;
1420 x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1);
1421 x[2] = x[0] + fullLength - flatLength;
1422 x[3] = x[0] + fullLength;
1423 x[4] = x[3];
1424 x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2);
1425 x[6] = x[1];
1426 x[7] = x[0];
d0048cec 1427
54c9a3d9 1428 y[0] = 0.0;
1429 y[1] = y[0] + inclShortLength * TMath::Cos(angle3);
1430 y[2] = y[1] - inclLongLength * TMath::Sin(angle1);
1431 y[3] = y[2];
1432 y[4] = y[3] + thickness;
1433 y[5] = y[4];
1434 y[6] = y[1] + thickness;
1435 y[7] = y[0] + thickness;
d0048cec 1436
30611568 1437 y[0] += sposty;
1438 y[7] += sposty;
1439
54c9a3d9 1440 sizes.Set(7);
1441 sizes[0] = totalLength;
1442 sizes[1] = fullHeight;
1443 sizes[2] = y[2];
1444 sizes[3] = y[6];
1445 sizes[4] = x[0];
1446 sizes[5] = x[3];
1447 sizes[6] = x[2];
1448
1449 if(isDummy){// use this argument when on ewant just the
1450 // positions without create any volume
1451 return NULL;
1452 } // end if isDummy
1453
1454 TGeoXtru *shClip = new TGeoXtru(2);
1455 shClip->SetName("ITSSPDshclip");
1456 shClip->DefinePolygon(8, x, y);
1457 shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0);
1458 shClip->DefineSection(1, 0.5*totalLength, 0., 0., 1.0);
d0048cec 1459
54c9a3d9 1460 TGeoBBox *shHole = new TGeoBBox("ITSSPDSHClipHole",0.5*holeSize,
1461 0.5*holeSize,0.5*holeSize);
1462 TGeoTranslation *tr1 = new TGeoTranslation("ITSSPDTRClipHole1",x[2],0.0,
1463 fgkmm*14.);
1464 TGeoTranslation *tr2 = new TGeoTranslation("ITSSPDTRClipHole2",x[2],0.0,
1465 0.0);
1466 TGeoTranslation *tr3 = new TGeoTranslation("ITSSPDTRClipHole3",x[2],0.0,
1467 -fgkmm*14.);
1468 tr1->RegisterYourself();
1469 tr2->RegisterYourself();
1470 tr3->RegisterYourself();
1471
1472 //TString strExpr("ITSSPDshclip-(");
1473 TString strExpr(shClip->GetName());
1474 strExpr.Append("-(");
1475 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName()));
1476 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName()));
1477 strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName()));
1478 TGeoCompositeShape *shClipHole = new TGeoCompositeShape(
1479 "ITSSPDSHClipHoles",strExpr.Data());
1480
1481 TGeoMedium *mat = GetMedium("SPD C (M55J)$", mgr);
1482 TGeoVolume *vClip = new TGeoVolume("ITSSPDclip", shClipHole, mat);
1483 vClip->SetLineColor(kGray + 2);
1484 return vClip;
45c52bb2 1485}
1486
1487//______________________________________________________________________
1488TGeoVolume* AliITSv11GeometrySPD::CreatePatchPanel(TArrayD &sizes,
1489 TGeoManager *mgr) const
1490{
1491 //
1492 // Creates the patch panel approximated with a "L"-shaped TGeoXtru
1493 // with a finite thickness for all the shape
1494 // Its local reference frame is such that point A corresponds to origin.
1495 //
1496 Double_t hLength = fgkmm * 50.0; // horizontal length
1497 Double_t vLength = fgkmm * 50.0; // vertical length
c890eba4 1498 Double_t angle = 88.3; // angle between hor and vert
45c52bb2 1499 Double_t thickness = fgkmm * 4.0; // thickness
1500 Double_t width = fgkmm * 100.0; // width looking from cone
1501
1502 Double_t x[7], y[7];
1503
1504 y[0] = 0.0;
1505 y[1] = y[0] + hLength;
1506 y[2] = y[1];
1507 y[3] = y[0] + thickness;
1508 y[4] = y[3] + vLength * TMath::Cos(angle*TMath::DegToRad());
1509 y[5] = y[4] - thickness / TMath::Sin(angle*TMath::DegToRad());
1510 y[6] = y[0];
1511
1512 x[0] = 0.0;
1513 x[1] = x[0];
1514 x[2] = x[1] + thickness;
1515 x[3] = x[2];
1516 x[4] = x[3] + vLength * TMath::Sin(angle*TMath::DegToRad());
1517 x[5] = x[4];
1518 x[6] = x[0] + thickness;
1519
1520 sizes.Set(3);
1521 sizes[0] = hLength;
1522 sizes[1] = vLength;
1523 sizes[2] = thickness;
1524
1525 TGeoXtru *shPatch = new TGeoXtru(2);
1526 shPatch->SetName("ITSSPDpatchShape1");
1527 shPatch->DefinePolygon(7, x, y);
1528 shPatch->DefineSection(0, -0.5*width, 0., 0., 1.0);
1529 shPatch->DefineSection(1, 0.5*width, 0., 0., 1.0);
1530
1531 /*
1532 Double_t subThickness = 10.0 * fgkmm;
1533 Double_t subWidth = 55.0 * fgkmm;
1534 new TGeoBBox("ITSSPDpatchShape2", 0.5*subThickness, 60.0 * fgkmm, 0.5*subWidth);
1535 TGeoRotation *rotSub = new TGeoRotation(*gGeoIdentity);
1536 rotSub->SetName("shPatchSubRot");
1537 rotSub->RotateZ(50.0);
1538 rotSub->RegisterYourself();
1539 TGeoCombiTrans *trSub = new TGeoCombiTrans(0.26*hLength, 0.26*vLength, 0.0, rotSub);
1540 trSub->SetName("shPatchSubTr");
1541 trSub->RegisterYourself();
1542
1543 TGeoCompositeShape *shPatchFinal = new TGeoCompositeShape("ITSSPDpatchShape1-(ITSSPDpatchShape2:shPatchSubTr)");
1544 */
1545
1546 TGeoMedium *mat = GetMedium("AL$", mgr);
1547 //TGeoVolume *vPatch = new TGeoVolume("ITSSPDpatchPanel", shPatchFinal, mat);
1548 TGeoVolume *vPatch = new TGeoVolume("ITSSPDpatchPanel", shPatch, mat);
1549 vPatch->SetLineColor(kAzure);
1550
1551 return vPatch;
1552}
1553
c890eba4 1554//___________________________________________________________________
7855ea93 1555TGeoCompositeShape* AliITSv11GeometrySPD::CreateGroundingFoilShape
54c9a3d9 1556 (Int_t itype,Double_t &length,Double_t &width,
1557 Double_t thickness,TArrayD &sizes)
bc3498f4 1558{
54c9a3d9 1559 //
d0048cec 1560 // Creates the typical composite shape of the grounding foil:
1561 //
54c9a3d9 1562 // +---------------------------------------------------------+
1563 // | 5 6 9 |
1564 // | +-----------+ +------------+ 10
1565 // | O | | |
1566 // | 3 /-----+ 4 +------+
1567 // | 1 / 7 8
1568 // | /----------/
1569 // +-----/ 2 +
1570 // 0
1571 // Z + 11
1572 //
d0048cec 1573 // This shape is used 4 times: two layers of glue, one in kapton
1574 // and one in aluminum, taking into account that the aliminum
54c9a3d9 1575 // layer has small differences in the size of some parts.
1576 // ---
d0048cec 1577 // In order to overcome problems apparently due to a large number
1578 // of points, the shape creation is done according the following
54c9a3d9 1579 // steps:
d0048cec 1580 // 1) a TGeoBBox is created with a size right enough to contain
54c9a3d9 1581 // the whole shape (0-1-X-13)
d0048cec 1582 // 2) holes are defined as other TGeoBBox which are subtracted
54c9a3d9 1583 // from the main shape
d0048cec 1584 // 3) a TGeoXtru is defined connecting the points (0-->11-->0)
54c9a3d9 1585 // and is also subtracted from the main shape
1586 // ---
d0048cec 1587 // The argument ("type") is used to choose between all these
54c9a3d9 1588 // possibilities:
1589 // - type = 0 --> kapton layer
1590 // - type = 1 --> aluminum layer
1591 // - type = 2 --> glue layer between support and GF
1592 // - type = 3 --> glue layer between GF and ladders
d0048cec 1593 // Returns: a TGeoCompositeShape which will then be used to shape
1594 // several volumes. Since TGeoXtru is used, the local reference
54c9a3d9 1595 // frame of this object has X horizontal and Y vertical w.r to
1596 // the shape drawn above, and Z axis going perpendicularly to the screen.
d0048cec 1597 // This is not the correct reference for the half stave, for which
1598 // the "long" dimension is Z and the "short" is X, while Y goes in
1599 // the direction of thickness. This will imply some rotations when
54c9a3d9 1600 // using the volumes created with this shape.
d0048cec 1601
54c9a3d9 1602 // suffix to differentiate names
1603 Char_t type[10];
d0048cec 1604
54c9a3d9 1605 // size of the virtual box containing exactly this volume
1606 length = fgkmm * 243.18;
1607 width = fgkmm * 15.95;
1608 if (itype == 1) {
1609 length -= fgkmm * 0.4;
1610 width -= fgkmm * 0.4;
1611 } // end if itype==1
1612 switch (itype) {
1613 case 0:
6932f314 1614 snprintf(type,10,"Kap");
54c9a3d9 1615 break;
1616 case 1:
6932f314 1617 snprintf(type,10, "Alu");
54c9a3d9 1618 break;
1619 case 2:
6932f314 1620 snprintf(type,10,"Glue1");
54c9a3d9 1621 break;
1622 case 3:
6932f314 1623 snprintf(type,10,"Glue2");
54c9a3d9 1624 break;
1625 }
d0048cec 1626 // we divide the shape in several slices along the horizontal
1627 // direction (local X) here we define define the length of all
54c9a3d9 1628 // sectors (from leftmost to rightmost)
1629 Int_t i;
1630 Double_t sliceLength[] = { 140.71, 2.48, 26.78, 4.00,
1631 10.00, 24.40, 10.00, 24.81 };
1632 for (i = 0; i < 8; i++) sliceLength[i] *= fgkmm;
1633 if (itype == 1) {
1634 sliceLength[0] -= fgkmm * 0.2;
1635 sliceLength[4] -= fgkmm * 0.2;
1636 sliceLength[5] += fgkmm * 0.4;
1637 sliceLength[6] -= fgkmm * 0.4;
1638 } // end if itype ==1
d0048cec 1639
1640 // as shown in the drawing, we have four different widths
54c9a3d9 1641 // (along local Y) in this shape:
1642 Double_t widthMax = fgkmm * 15.95;
1643 Double_t widthMed1 = fgkmm * 15.00;
1644 Double_t widthMed2 = fgkmm * 11.00;
1645 Double_t widthMin = fgkmm * 4.40;
1646 if (itype == 1) {
1647 widthMax -= fgkmm * 0.4;
1648 widthMed1 -= fgkmm * 0.4;
1649 widthMed2 -= fgkmm * 0.4;
1650 widthMin -= fgkmm * 0.4;
1651 } // end if itype==1
d0048cec 1652
54c9a3d9 1653 // create the main shape
1654 TGeoBBox *shGroundFull = 0;
1655 shGroundFull = new TGeoBBox(Form("ITSSPDSHgFoil%sFull", type),
1656 0.5*length,0.5*width, 0.5*thickness);
d0048cec 1657
6932f314 1658 if(GetDebug(5)) shGroundFull->Print(); // Avoid Coverity warning
1659
d0048cec 1660 // create the polygonal shape to be subtracted to give the correct
1661 // shape to the borders its vertices are defined in sugh a way that
1662 // this polygonal will be placed in the correct place considered
1663 // that the origin of the local reference frame is in the center
1664 // of the main box: we fix the starting point at the lower-left
1665 // edge of the shape (point 12), and add all points in order,
54c9a3d9 1666 // following a clockwise rotation
d0048cec 1667
54c9a3d9 1668 Double_t x[13], y[13];
1669 x[ 0] = -0.5 * length + sliceLength[0];
1670 y[ 0] = -0.5 * widthMax;
1671
1672 x[ 1] = x[0] + sliceLength[1];
1673 y[ 1] = y[0] + (widthMax - widthMed1);
1674
1675 x[ 2] = x[1] + sliceLength[2];
1676 y[ 2] = y[1];
1677
1678 x[ 3] = x[2] + sliceLength[3];
1679 y[ 3] = y[2] + (widthMed1 - widthMed2);
1680
1681 x[ 4] = x[3] + sliceLength[4];
1682 y[ 4] = y[3];
1683
1684 x[ 5] = x[4];
1685 y[ 5] = y[4] + (widthMed2 - widthMin);
1686
1687 x[ 6] = x[5] + sliceLength[5];
1688 y[ 6] = y[5];
1689
1690 x[ 7] = x[6];
1691 y[ 7] = y[4];
1692
1693 x[ 8] = x[7] + sliceLength[6];
1694 y[ 8] = y[7];
1695
1696 x[ 9] = x[8];
1697 y[ 9] = y[6];
1698
1699 x[10] = x[9] + sliceLength[7] + 0.5;
1700 y[10] = y[9];
1701
1702 x[11] = x[10];
1703 y[11] = y[0] - 0.5;
1704
1705 x[12] = x[0];
1706 y[12] = y[11];
1707
1708 // create the shape
1709 TGeoXtru *shGroundXtru = new TGeoXtru(2);
1710 shGroundXtru->SetName(Form("ITSSPDSHgFoil%sXtru", type));
1711 shGroundXtru->DefinePolygon(13, x, y);
1712 shGroundXtru->DefineSection(0, -thickness, 0., 0., 1.0);
1713 shGroundXtru->DefineSection(1, thickness, 0., 0., 1.0);
d0048cec 1714
54c9a3d9 1715 // define a string which will express the algebric operations among volumes
1716 // and add the subtraction of this shape from the main one
1717 TString strComposite(Form("ITSSPDSHgFoil%sFull-(%s+", type,
1718 shGroundXtru->GetName()));
d0048cec 1719
54c9a3d9 1720 // define the holes according to size information coming from drawings:
1721 Double_t holeLength = fgkmm * 10.00;
1722 Double_t holeWidth = fgkmm * 7.50;
d0048cec 1723 Double_t holeSepX0 = fgkmm * 7.05; // separation between center
54c9a3d9 1724 // of first hole and left border
d0048cec 1725 Double_t holeSepXC = fgkmm * 14.00; // separation between the centers
54c9a3d9 1726 // of two consecutive holes
d0048cec 1727 Double_t holeSepX1 = fgkmm * 15.42; // separation between centers of
54c9a3d9 1728 // 5th and 6th hole
d0048cec 1729 Double_t holeSepX2 = fgkmm * 22.00; // separation between centers of
54c9a3d9 1730 // 10th and 11th hole
1731 if (itype == 1) {
1732 holeSepX0 -= fgkmm * 0.2;
1733 holeLength += fgkmm * 0.4;
1734 holeWidth += fgkmm * 0.4;
1735 } // end if itype==1
1736 sizes.Set(7);
1737 sizes[0] = holeLength;
1738 sizes[1] = holeWidth;
1739 sizes[2] = holeSepX0;
1740 sizes[3] = holeSepXC;
1741 sizes[4] = holeSepX1;
1742 sizes[5] = holeSepX2;
1743 sizes[6] = fgkmm * 4.40;
d0048cec 1744
54c9a3d9 1745 // X position of hole center (will change for each hole)
1746 Double_t holeX = -0.5*length;
1747 // Y position of center of all holes (= 4.4 mm from upper border)
1748 Double_t holeY = 0.5*(width - holeWidth) - widthMin;
d0048cec 1749
54c9a3d9 1750 // create a shape for the holes (common)
c0fc8108 1751 new TGeoBBox(Form("ITSSPD%sGfoilHole", type),0.5*holeLength,
1752 0.5*holeWidth, thickness);
d0048cec 1753
54c9a3d9 1754 // insert the holes in the XTRU shape:
d0048cec 1755 // starting from the first value of X, they are simply
54c9a3d9 1756 // shifted along this axis
1757 char name[200];
1758 TGeoTranslation *transHole[11];
4adcf390 1759 for (i = 0; i < 11; i++) {
54c9a3d9 1760 // set the position of the hole, depending on index
1761 if (i == 0) {
1762 holeX += holeSepX0;
1763 }else if (i < 5) {
1764 holeX += holeSepXC;
1765 }else if (i == 5) {
1766 holeX += holeSepX1;
1767 }else if (i < 10) {
1768 holeX += holeSepXC;
1769 }else {
1770 holeX += holeSepX2;
1771 } // end if else if's
1772 //cout << i << " --> X = " << holeX << endl;
6932f314 1773 snprintf(name,200,"ITSSPDTRgFoil%sHole%d", type, i);
54c9a3d9 1774 transHole[i] = new TGeoTranslation(name, holeX, holeY, 0.0);
1775 transHole[i]->RegisterYourself();
1776 strComposite.Append(Form("ITSSPD%sGfoilHole:%s", type, name));
1777 if (i < 10) strComposite.Append("+"); else strComposite.Append(")");
1778 } // end for i
d0048cec 1779
54c9a3d9 1780 // create composite shape
1781 TGeoCompositeShape *shGround = new TGeoCompositeShape(
1782 Form("ITSSPDSHgFoil%s", type), strComposite.Data());
1783
1784 return shGround;
592651e2 1785}
54c9a3d9 1786//______________________________________________________________________
d0048cec 1787TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateGroundingFoil(Bool_t isRight,
54c9a3d9 1788 TArrayD &sizes, TGeoManager *mgr)
bc3498f4 1789{
54c9a3d9 1790 //
d0048cec 1791 // Create a volume containing all parts of the grounding foil a
1792 // for a half-stave.
54c9a3d9 1793 // It consists of 4 layers with the same shape but different thickness:
1794 // 1) a layer of glue
1795 // 2) the aluminum layer
1796 // 3) the kapton layer
1797 // 4) another layer of glue
1798 // ---
1799 // Arguments:
d0048cec 1800 // 1: a boolean value to know if it is the grounding foir for
54c9a3d9 1801 // the right or left side
1802 // 2: a TArrayD which will contain the dimension of the container box:
1803 // - size[0] = length along Z (the beam line direction)
d0048cec 1804 // - size[1] = the 'width' of the stave, which defines, together
54c9a3d9 1805 // with Z, the plane of the carbon fiber support
d0048cec 1806 // - size[2] = 'thickness' (= the direction along which all
54c9a3d9 1807 // stave components are superimposed)
1808 // 3: the TGeoManager
1809 // ---
d0048cec 1810 // The return value is a TGeoBBox volume containing all grounding
54c9a3d9 1811 // foil components.
1812 // to avoid strange behaviour of the geometry manager,
1813 // create a suffix to be used in the names of all shapes
1814 //
1815 char suf[5];
6932f314 1816 if (isRight) strncpy(suf, "R", 5); else strncpy(suf, "L", 5);
d0048cec 1817 // this volume will be created in order to ease its placement in
1818 // the half-stave; then, it is added here the small distance of
1819 // the "central" edge of each volume from the Z=0 plane in the stave
54c9a3d9 1820 // reference (which coincides with ALICE one)
1821 Double_t dist = fgkmm * 0.71;
d0048cec 1822
54c9a3d9 1823 // define materials
1824 TGeoMedium *medKap = GetMedium("SPD KAPTON(POLYCH2)$", mgr);
1825 TGeoMedium *medAlu = GetMedium("AL$", mgr);
1826 TGeoMedium *medGlue = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT
d0048cec 1827
54c9a3d9 1828 // compute the volume shapes (thicknesses change from one to the other)
1829 Double_t kpLength, kpWidth, alLength, alWidth;
1830 TArrayD kpSize, alSize, glSize;
ed0e944d 1831 Double_t kpThickness = fgkmm * 0.04;
1832 Double_t alThickness = fgkmm * 0.01;
1833//cout << "AL THICKNESS" << alThickness << endl;
1834 //Double_t g0Thickness = fgkmm * 0.1175 - fgkGapHalfStave;
1835 //Double_t g1Thickness = fgkmm * 0.1175 - fgkGapLadder;
1836 Double_t g0Thickness = fgkmm * 0.1275 - fgkGapHalfStave;
1837 Double_t g1Thickness = fgkmm * 0.1275 - fgkGapLadder;
54c9a3d9 1838 TGeoCompositeShape *kpShape = CreateGroundingFoilShape(0,kpLength,kpWidth,
1839 kpThickness, kpSize);
1840 TGeoCompositeShape *alShape = CreateGroundingFoilShape(1,alLength,alWidth,
1841 alThickness, alSize);
3ffa185f 1842 TGeoCompositeShape *g0Shape = CreateGroundingFoilShape(2,kpLength,kpWidth,
1843 g0Thickness, glSize);
1844 TGeoCompositeShape *g1Shape = CreateGroundingFoilShape(3,kpLength,kpWidth,
1845 g1Thickness, glSize);
d0048cec 1846 // create the component volumes and register their sizes in the
1847 // passed arrays for readability reasons, some reference variables
54c9a3d9 1848 // explicit the meaning of the array slots
1849 TGeoVolume *kpVol = new TGeoVolume(Form("ITSSPDgFoilKap%s",suf),
1850 kpShape, medKap);
1851 TGeoVolume *alVol = new TGeoVolume(Form("ITSSPDgFoilAlu%s",suf),
1852 alShape, medAlu);
3ffa185f 1853 TGeoVolume *g0Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf),
1854 g0Shape, medGlue);
1855 TGeoVolume *g1Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf),
1856 g1Shape, medGlue);
54c9a3d9 1857 // set colors for the volumes
1858 kpVol->SetLineColor(kRed);
1859 alVol->SetLineColor(kGray);
3ffa185f 1860 g0Vol->SetLineColor(kYellow);
1861 g1Vol->SetLineColor(kYellow);
54c9a3d9 1862 // create references for the final size object
1863 if (sizes.GetSize() != 3) sizes.Set(3);
1864 Double_t &fullThickness = sizes[0];
1865 Double_t &fullLength = sizes[1];
1866 Double_t &fullWidth = sizes[2];
d0048cec 1867 // kapton leads the larger dimensions of the foil
54c9a3d9 1868 // (including the cited small distance from Z=0 stave reference plane)
1869 // the thickness is the sum of the ones of all components
1870 fullLength = kpLength + dist;
1871 fullWidth = kpWidth;
3ffa185f 1872 fullThickness = kpThickness + alThickness + g0Thickness + g1Thickness;
54c9a3d9 1873 // create the container
d0048cec 1874// TGeoMedium *air = GetMedium("AIR$", mgr);
1875 TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("ITSSPDgFOIL-%s",suf));
1876// TGeoVolume *container = mgr->MakeBox(Form("ITSSPDgFOIL-%s",suf),
1877// air, 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength);
1878 // create the common correction rotation (which depends of what side
54c9a3d9 1879 // we are building)
1880 TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity);
1881 if (isRight) rotCorr->RotateY(90.0);
d0048cec 1882 else rotCorr->RotateY(-90.0);
1883 // compute the translations, which are in the length and
54c9a3d9 1884 // thickness directions
1885 Double_t x, y, z, shift = 0.0;
1886 if (isRight) shift = dist;
1887 // glue (bottom)
3ffa185f 1888 x = -0.5*(fullThickness - g0Thickness);
54c9a3d9 1889 z = 0.5*(fullLength - kpLength) - shift;
1890 TGeoCombiTrans *glTrans0 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
1891 // kapton
3ffa185f 1892 x += 0.5*(g0Thickness + kpThickness);
54c9a3d9 1893 TGeoCombiTrans *kpTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
1894 // aluminum
1895 x += 0.5*(kpThickness + alThickness);
1896 z = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength);
1897 TGeoCombiTrans *alTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
1898 // glue (top)
3ffa185f 1899 x += 0.5*(alThickness + g1Thickness);
54c9a3d9 1900 z = 0.5*(fullLength - kpLength) - shift;
1901 TGeoCombiTrans *glTrans1 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
d0048cec 1902
ed0e944d 1903 //cout << fgkGapHalfStave << endl;
1904 //cout << g0Thickness << endl;
1905 //cout << kpThickness << endl;
1906 //cout << alThickness << endl;
1907 //cout << g1Thickness << endl;
54c9a3d9 1908
1909 // add to container
22726349 1910 container->SetLineColor(kMagenta-10);
54c9a3d9 1911 container->AddNode(kpVol, 1, kpTrans);
1912 container->AddNode(alVol, 1, alTrans);
3ffa185f 1913 container->AddNode(g0Vol, 1, glTrans0);
d0048cec 1914 container->AddNode(g1Vol, 2, glTrans1);
1915 // to add the grease we remember the sizes of the holes, stored as
54c9a3d9 1916 // additional parameters in the kapton layer size:
1917 // - sizes[3] = hole length
1918 // - sizes[4] = hole width
1919 // - sizes[5] = position of first hole center
1920 // - sizes[6] = standard separation between holes
1921 // - sizes[7] = separation between 5th and 6th hole
1922 // - sizes[8] = separation between 10th and 11th hole
d0048cec 1923 // - sizes[9] = separation between the upper hole border and
54c9a3d9 1924 // the foil border
1925 Double_t holeLength = kpSize[0];
1926 Double_t holeWidth = kpSize[1];
1927 Double_t holeFirstZ = kpSize[2];
1928 Double_t holeSepZ = kpSize[3];
1929 Double_t holeSep5th6th = kpSize[4];
1930 Double_t holeSep10th11th = kpSize[5];
1931 Double_t holeSepY = kpSize[6];
1932 // volume (common)
1933 // Grease has not been defined to date. Need much more information
1934 // no this material!
1935 TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE
1936 TGeoVolume *hVol = mgr->MakeBox("ITSSPDGrease", grease,
1937 0.5*fullThickness, 0.5*holeWidth, 0.5*holeLength);
1938 hVol->SetLineColor(kBlue);
1939 // displacement of volumes in the container
1940 Int_t idx = 1; // copy numbers start from 1.
1941 x = 0.0;
1942 y = 0.5*(fullWidth - holeWidth) - holeSepY;
1943 if (isRight) z = holeFirstZ - 0.5*fullLength + dist;
1944 else z = 0.5*fullLength - holeFirstZ - dist;
1945 for (Int_t i = 0; i < 11; i++) {
1946 TGeoTranslation *t = 0;
1947 t = new TGeoTranslation(x, y, -z);
1948 container->AddNode(hVol, idx++, t);
1949 if (i < 4) shift = holeSepZ;
1950 else if (i == 4) shift = holeSep5th6th;
1951 else if (i < 9) shift = holeSepZ;
1952 else shift = holeSep10th11th;
1953 if (isRight) z += shift;
1954 else z -= shift;
1955 } // end for i
1956 return container;
592651e2 1957}
54c9a3d9 1958//___________________________________________________________________
1959TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM(Bool_t isRight,
1960 TArrayD &sizes, TGeoManager *mgr) const
bc3498f4 1961{
54c9a3d9 1962 //
1963 // Create a TGeoAssembly containing all the components of the MCM.
1964 // The TGeoVolume container is rejected due to the possibility of overlaps
1965 // when placing this object on the carbon fiber sector.
1966 // The assembly contains:
1967 // - the thin part of the MCM (integrated circuit)
1968 // - the MCM chips (specifications from EDMS)
1969 // - the cap which covers the zone where chips are bound to MCM
1970 // ---
d0048cec 1971 // The local reference frame of this assembly is defined in such a way
1972 // that all volumes are contained in a virtual box whose center
1973 // is placed exactly in the middle of the occupied space w.r to all
1974 // directions. This will ease the positioning of this object in the
1975 // half-stave. The sizes of this virtual box are stored in
54c9a3d9 1976 // the array passed by reference.
1977 // ---
1978 // Arguments:
d0048cec 1979 // - a boolean flag to know if this is the "left" or "right" MCM, when
1980 // looking at the stave from above (i.e. the direction from which
1981 // one sees bus over ladders over grounding foil) and keeping the
1982 // continuous border in the upper part, one sees the thicker part
54c9a3d9 1983 // on the left or right.
d0048cec 1984 // - an array passed by reference which will contain the size of
54c9a3d9 1985 // the virtual container.
1986 // - a pointer to the used TGeoManager.
1987 //
1988
1989 // to distinguish the "left" and "right" objects, a suffix is created
1990 char suf[5];
6932f314 1991 if (isRight) strncpy(suf, "R", 5); else strncpy(suf, "L", 5);
54c9a3d9 1992
1993 // ** MEDIA **
1994 TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE
1995 TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr);
1996 TGeoMedium *medCap = GetMedium("AL$",mgr);
1997
d0048cec 1998 // The shape of the MCM is divided into 3 sectors with different
54c9a3d9 1999 // widths (Y) and lengths (X), like in this sketch:
2000 //
d0048cec 2001 // 0 1 2
54c9a3d9 2002 // +---------------------+-----------------------------------+
2003 // | 4 sect 2 |
2004 // | 6 sect 1 /-------------------+
2005 // | sect 0 /--------------/ 3
2006 // +--------------------/ 5
2007 // 8 7
2008 //
2009 // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees.
2010 // From drawings we can parametrize the dimensions of all these sectors,
2011 // then the shape of this part of the MCM is implemented as a
d0048cec 2012 // TGeoXtru centerd in the virtual XY space.
54c9a3d9 2013 // The first step is definig the relevant sizes of this shape:
2014 Int_t i, j;
2015 Double_t mcmThickness = fgkmm * 0.35;
2016 Double_t sizeXtot = fgkmm * 105.6; // total distance (0-2)
2017 // resp. 7-8, 5-6 and 3-4
2018 Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8};
2019 // resp. 0-8, 1-6 and 2-3
2020 Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm * 8.0};
2021 Double_t sizeSep01 = fgkmm * 4.0; // x(6)-x(7)
2022 Double_t sizeSep12 = fgkmm * 3.0; // x(4)-x(5)
2023
2024 // define sizes of chips (last is the thickest)
2025 Double_t chipLength[5] = { 4.00, 6.15, 3.85, 5.60, 18.00 };
2026 Double_t chipWidth[5] = { 3.00, 4.10, 3.85, 5.60, 5.45 };
2027 Double_t chipThickness[5] = { 0.60, 0.30, 0.30, 1.00, 1.20 };
2028 TString name[5];
2029 name[0] = "ITSSPDanalog";
2030 name[1] = "ITSSPDpilot";
2031 name[2] = "ITSSPDgol";
2032 name[3] = "ITSSPDrx40";
2033 name[4] = "ITSSPDoptical";
2034 Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange };
2035
2036 // define the sizes of the cover
2037 Double_t capThickness = fgkmm * 0.3;
2038 Double_t capHeight = fgkmm * 1.7;
2039
2040 // compute the total size of the virtual container box
2041 sizes.Set(3);
2042 Double_t &thickness = sizes[0];
2043 Double_t &length = sizes[1];
2044 Double_t &width = sizes[2];
2045 length = sizeXtot;
2046 width = sizeYsector[0];
2047 thickness = mcmThickness + capHeight;
2048
d0048cec 2049 // define all the relevant vertices of the polygon
54c9a3d9 2050 // which defines the transverse shape of the MCM.
d0048cec 2051 // These values are used to several purposes, and
54c9a3d9 2052 // for each one, some points must be excluded
2053 Double_t xRef[9], yRef[9];
2054 xRef[0] = -0.5*sizeXtot;
2055 yRef[0] = 0.5*sizeYsector[0];
2056 xRef[1] = xRef[0] + sizeXsector[0] + sizeSep01;
2057 yRef[1] = yRef[0];
2058 xRef[2] = -xRef[0];
2059 yRef[2] = yRef[0];
2060 xRef[3] = xRef[2];
2061 yRef[3] = yRef[2] - sizeYsector[2];
2062 xRef[4] = xRef[3] - sizeXsector[2];
2063 yRef[4] = yRef[3];
2064 xRef[5] = xRef[4] - sizeSep12;
2065 yRef[5] = yRef[4] - sizeSep12;
2066 xRef[6] = xRef[5] - sizeXsector[1];
2067 yRef[6] = yRef[5];
2068 xRef[7] = xRef[6] - sizeSep01;
2069 yRef[7] = yRef[6] - sizeSep01;
2070 xRef[8] = xRef[0];
2071 yRef[8] = -yRef[0];
2072
d0048cec 2073 // the above points are defined for the "right" MCM (if ve view the
2074 // stave from above) in order to change to the "left" one, we must
54c9a3d9 2075 // change the sign to all X values:
2076 if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i];
d0048cec 2077
2078 // the shape of the MCM and glue layer are done excluding point 1,
54c9a3d9 2079 // which is not necessary and cause the geometry builder to get confused
2080 j = 0;
2081 Double_t xBase[8], yBase[8];
2082 for (i = 0; i < 9; i++) {
2083 if (i == 1) continue;
2084 xBase[j] = xRef[i];
2085 yBase[j] = yRef[i];
2086 j++;
2087 } // end for i
2088
2089 // the MCM cover is superimposed over the zones 1 and 2 only
2090 Double_t xCap[6], yCap[6];
2091 j = 0;
2092 for (i = 1; i <= 6; i++) {
2093 xCap[j] = xRef[i];
2094 yCap[j] = yRef[i];
2095 j++;
2096 } // end for i
2097
d0048cec 2098 // define positions of chips,
54c9a3d9 2099 // which must be added to the bottom-left corner of MCM
2100 // and divided by 1E4;
2101 Double_t chipX[5], chipY[5];
2102 if (isRight) {
2103 chipX[0] = 666320.;
2104 chipX[1] = 508320.;
2105 chipX[2] = 381320.;
2106 chipX[3] = 295320.;
2107 chipX[4] = 150320.;
2108 chipY[0] = 23750.;
2109 chipY[1] = 27750.;
2110 chipY[2] = 20750.;
2111 chipY[3] = 42750.;
2112 chipY[4] = 39750.;
2113 } else {
2114 chipX[0] = 389730.;
2115 chipX[1] = 548630.;
2116 chipX[2] = 674930.;
2117 chipX[3] = 761430.;
2118 chipX[4] = 905430.;
2119 chipY[0] = 96250.;
2120 chipY[1] = 91950.;
2121 chipY[2] = 99250.;
2122 chipY[3] = 107250.;
2123 chipY[4] = 109750.;
2124 } // end if isRight
2125 for (i = 0; i < 5; i++) {
2126 chipX[i] *= 0.00001;
2127 chipY[i] *= 0.00001;
2128 if (isRight) {
2129 chipX[i] += xRef[3];
2130 chipY[i] += yRef[3];
2131 } else {
2132 chipX[i] += xRef[8];
2133 chipY[i] += yRef[8];
2134 } // end for isRight
2135 chipLength[i] *= fgkmm;
2136 chipWidth[i] *= fgkmm;
2137 chipThickness[i] *= fgkmm;
2138 } // end for i
2139
d0048cec 2140 // create shapes for MCM
54c9a3d9 2141 Double_t z1, z2;
2142 TGeoXtru *shBase = new TGeoXtru(2);
2143 z1 = -0.5*thickness;
2144 z2 = z1 + mcmThickness;
2145 shBase->DefinePolygon(8, xBase, yBase);
2146 shBase->DefineSection(0, z1, 0., 0., 1.0);
2147 shBase->DefineSection(1, z2, 0., 0., 1.0);
2148
2149 // create volumes of MCM
2150 TGeoVolume *volBase = new TGeoVolume("ITSSPDbase", shBase, medBase);
2151 volBase->SetLineColor(kRed);
2152
d0048cec 2153 // to create the border of the MCM cover, it is required the
2154 // subtraction of two shapes the outer is created using the
54c9a3d9 2155 // reference points defined here
2156 TGeoXtru *shCapOut = new TGeoXtru(2);
2157 shCapOut->SetName(Form("ITSSPDshCAPOUT%s", suf));
2158 z1 = z2;
2159 z2 = z1 + capHeight - capThickness;
2160 shCapOut->DefinePolygon(6, xCap, yCap);
2161 shCapOut->DefineSection(0, z1, 0., 0., 1.0);
2162 shCapOut->DefineSection(1, z2, 0., 0., 1.0);
2163 // the inner is built similarly but subtracting the thickness
2164 Double_t angle, cs;
2165 Double_t xin[6], yin[6];
2166 if (!isRight) {
2167 angle = 45.0;
2168 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
2169 xin[0] = xCap[0] + capThickness;
2170 yin[0] = yCap[0] - capThickness;
2171 xin[1] = xCap[1] - capThickness;
2172 yin[1] = yin[0];
2173 xin[2] = xin[1];
2174 yin[2] = yCap[2] + capThickness;
2175 xin[3] = xCap[3] - capThickness*cs;
2176 yin[3] = yin[2];
2177 xin[4] = xin[3] - sizeSep12;
2178 yin[4] = yCap[4] + capThickness;
2179 xin[5] = xin[0];
2180 yin[5] = yin[4];
2181 } else {
2182 angle = 45.0;
2183 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
2184 xin[0] = xCap[0] - capThickness;
2185 yin[0] = yCap[0] - capThickness;
2186 xin[1] = xCap[1] + capThickness;
2187 yin[1] = yin[0];
2188 xin[2] = xin[1];
2189 yin[2] = yCap[2] + capThickness;
2190 xin[3] = xCap[3] - capThickness*cs;
2191 yin[3] = yin[2];
2192 xin[4] = xin[3] + sizeSep12;
2193 yin[4] = yCap[4] + capThickness;
2194 xin[5] = xin[0];
2195 yin[5] = yin[4];
2196 } // end if !isRight
2197 TGeoXtru *shCapIn = new TGeoXtru(2);
2198 shCapIn->SetName(Form("ITSSPDshCAPIN%s", suf));
2199 shCapIn->DefinePolygon(6, xin, yin);
2200 shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0);
2201 shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0);
2202 // compose shapes
2203 TGeoCompositeShape *shCapBorder = new TGeoCompositeShape(
d0048cec 2204 Form("ITSSPDshBORDER%s", suf),
54c9a3d9 2205 Form("%s-%s", shCapOut->GetName(),
2206 shCapIn->GetName()));
2207 // create volume
2208 TGeoVolume *volCapBorder = new TGeoVolume("ITSSPDcapBoarder",
2209 shCapBorder,medCap);
2210 volCapBorder->SetLineColor(kGreen);
d0048cec 2211 // finally, we create the top of the cover, which has the same
2212 // shape of outer border and a thickness equal of the one othe
54c9a3d9 2213 // cover border one
2214 TGeoXtru *shCapTop = new TGeoXtru(2);
2215 z1 = z2;
2216 z2 = z1 + capThickness;
2217 shCapTop->DefinePolygon(6, xCap, yCap);
2218 shCapTop->DefineSection(0, z1, 0., 0., 1.0);
2219 shCapTop->DefineSection(1, z2, 0., 0., 1.0);
2220 TGeoVolume *volCapTop = new TGeoVolume("ITSSPDcapTop", shCapTop, medCap);
2221 volCapTop->SetLineColor(kBlue);
2222
2223 // create container assembly with right suffix
2224 TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly(
2225 Form("ITSSPDmcm%s", suf));
2226
2227 // add mcm layer
2228 mcmAssembly->AddNode(volBase, 1, gGeoIdentity);
2229 // add chips
2230 for (i = 0; i < 5; i++) {
2231 TGeoVolume *box = gGeoManager->MakeBox(name[i],medChip,
2232 0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]);
2233 TGeoTranslation *tr = new TGeoTranslation(chipX[i],chipY[i],
2234 0.5*(-thickness + chipThickness[i]) + mcmThickness);
2235 box->SetLineColor(color[i]);
2236 mcmAssembly->AddNode(box, 1, tr);
2237 } // end for i
2238 // add cap border
2239 mcmAssembly->AddNode(volCapBorder, 1, gGeoIdentity);
2240 // add cap top
d0048cec 2241 mcmAssembly->AddNode(volCapTop, 1, gGeoIdentity);
54c9a3d9 2242
2243 return mcmAssembly;
592651e2 2244}
7f69c251 2245
54c9a3d9 2246//______________________________________________________________________
bc3498f4 2247TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
22726349 2248(Bool_t isRight, Int_t ilayer, TArrayD &sizes, TGeoManager *mgr) const
bc3498f4 2249{
54c9a3d9 2250 //
d0048cec 2251 // The pixel bus is implemented as a TGeoBBox with some objects on it,
54c9a3d9 2252 // which could affect the particle energy loss.
2253 // ---
d0048cec 2254 // In order to avoid confusion, the bus is directly displaced
54c9a3d9 2255 // according to the axis orientations which are used in the final stave:
2256 // X --> thickness direction
2257 // Y --> width direction
2258 // Z --> length direction
2259 //
d0048cec 2260
22726349 2261 // ** CRITICAL CHECK ******************************************************
2262 // layer number can be ONLY 1 or 2
2263 if (ilayer != 1 && ilayer != 2) AliFatal("Layer number MUST be 1 or 2");
54c9a3d9 2264
2265 // ** MEDIA **
2266 //PIXEL BUS
2267 TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
2268 TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000
2269 // Capacity
2270 TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr);
2271 // ??? Resistance
d0048cec 2272 //TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr);
7f69c251 2273 TGeoMedium *medRes = GetMedium("ALUMINUM$",mgr);
45c52bb2 2274 //TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
2275 TGeoMedium *medExt = GetMedium("SPD-MIX CU KAPTON$", mgr);
54c9a3d9 2276 // ** SIZES & POSITIONS **
2277 Double_t busLength = 170.501 * fgkmm; // length of plane part
2278 Double_t busWidth = 13.800 * fgkmm; // width
2279 Double_t busThickness = 0.280 * fgkmm; // thickness
2280 Double_t pt1000Length = fgkmm * 1.50;
2281 Double_t pt1000Width = fgkmm * 3.10;
2282 Double_t pt1000Thickness = fgkmm * 0.60;
2283 Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
2284 Double_t capLength = fgkmm * 2.55;
2285 Double_t capWidth = fgkmm * 1.50;
2286 Double_t capThickness = fgkmm * 1.35;
2287 Double_t capY[2], capZ[2];
d0048cec 2288
54c9a3d9 2289 Double_t resLength = fgkmm * 2.20;
2290 Double_t resWidth = fgkmm * 0.80;
2291 Double_t resThickness = fgkmm * 0.35;
2292 Double_t resY[2], resZ[2];
d0048cec 2293
7f69c251 2294 Double_t extThickness = fgkmm * 0.25;
3ffa185f 2295 Double_t ext1Length = fgkmm * (26.7 - 10.0);
ddf00e3c 2296 Double_t ext2Length = fgkmm * 284.0 - ext1Length + extThickness;
3ffa185f 2297 Double_t extWidth = fgkmm * 11.0;
2298 Double_t extHeight = fgkmm * 2.5;
d0048cec 2299
2300 // position of pt1000, resistors and capacitors depends on the
54c9a3d9 2301 // bus if it's left or right one
2302 if (!isRight) {
2303 pt1000Y = 64400.;
2304 pt1000Z[0] = 66160.;
2305 pt1000Z[1] = 206200.;
2306 pt1000Z[2] = 346200.;
2307 pt1000Z[3] = 486200.;
2308 pt1000Z[4] = 626200.;
2309 pt1000Z[5] = 776200.;
2310 pt1000Z[6] = 916200.;
2311 pt1000Z[7] = 1056200.;
2312 pt1000Z[8] = 1196200.;
d0048cec 2313 pt1000Z[9] = 1336200.;
54c9a3d9 2314 resZ[0] = 1397500.;
2315 resY[0] = 26900.;
2316 resZ[1] = 682500.;
2317 resY[1] = 27800.;
2318 capZ[0] = 1395700.;
2319 capY[0] = 45700.;
2320 capZ[1] = 692600.;
2321 capY[1] = 45400.;
2322 } else {
2323 pt1000Y = 66100.;
2324 pt1000Z[0] = 319700.;
2325 pt1000Z[1] = 459700.;
2326 pt1000Z[2] = 599700.;
2327 pt1000Z[3] = 739700.;
2328 pt1000Z[4] = 879700.;
2329 pt1000Z[5] = 1029700.;
2330 pt1000Z[6] = 1169700.;
2331 pt1000Z[7] = 1309700.;
2332 pt1000Z[8] = 1449700.;
d0048cec 2333 pt1000Z[9] = 1589700.;
54c9a3d9 2334 capY[0] = 44500.;
2335 capZ[0] = 266700.;
2336 capY[1] = 44300.;
2337 capZ[1] = 974700.;
2338 resZ[0] = 266500.;
2339 resY[0] = 29200.;
2340 resZ[1] = 974600.;
2341 resY[1] = 29900.;
2342 } // end if isRight
2343 Int_t i;
2344 pt1000Y *= 1E-4 * fgkmm;
2345 for (i = 0; i < 10; i++) {
2346 pt1000Z[i] *= 1E-4 * fgkmm;
2347 if (i < 2) {
2348 capZ[i] *= 1E-4 * fgkmm;
2349 capY[i] *= 1E-4 * fgkmm;
2350 resZ[i] *= 1E-4 * fgkmm;
2351 resY[i] *= 1E-4 * fgkmm;
2352 } // end if iM2
2353 } // end for i
d0048cec 2354
54c9a3d9 2355 Double_t &fullLength = sizes[1];
2356 Double_t &fullWidth = sizes[2];
2357 Double_t &fullThickness = sizes[0];
2358 fullLength = busLength;
2359 fullWidth = busWidth;
2360 // add the thickness of the thickest component on bus (capacity)
d0048cec 2361 fullThickness = busThickness + capThickness;
54c9a3d9 2362
2363 // ** VOLUMES **
2364 TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDpixelBus");
d0048cec 2365 TGeoVolume *bus = mgr->MakeBox("ITSSPDbus", medBus, 0.5*busThickness,
54c9a3d9 2366 0.5*busWidth, 0.5*busLength);
2367 TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",medPt1000,
2368 0.5*pt1000Thickness,0.5*pt1000Width, 0.5*pt1000Length);
2369 TGeoVolume *res = mgr->MakeBox("ITSSPDresistor", medRes, 0.5*resThickness,
2370 0.5*resWidth, 0.5*resLength);
2371 TGeoVolume *cap = mgr->MakeBox("ITSSPDcapacitor", medCap, 0.5*capThickness,
2372 0.5*capWidth, 0.5*capLength);
d0048cec 2373
954323d3 2374 char extname[12];
6932f314 2375 snprintf(extname,12,"Extender1l%d",ilayer);
954323d3 2376 TGeoVolume *ext1 = mgr->MakeBox(extname, medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length);
6932f314 2377 snprintf(extname,12,"Extender2l%d",ilayer);
954323d3 2378 TGeoVolume *ext2 = mgr->MakeBox(extname, medExt, 0.5*extHeight - 2.*extThickness, 0.5*extWidth, 0.5*extThickness);
2379 TGeoVolume *ext3=0;
6932f314 2380 snprintf(extname,12,"Extender3l%d",ilayer);
954323d3 2381 if (ilayer==1) {
2382 Double_t halflen=(0.5*ext2Length + extThickness);
2383 Double_t xprof[6],yprof[6];
2384 Double_t alpha=24;
2385 xprof[0] = -halflen;
2386 yprof[0] = -0.5*extThickness;
2387 xprof[1] = halflen/2;
2388 yprof[1] = yprof[0];
2389 xprof[2] = xprof[1] + 0.5*halflen*CosD(alpha);
2390 yprof[2] = yprof[1] + 0.5*halflen*SinD(alpha);
2391 xprof[3] = xprof[2] - extThickness*SinD(alpha);
2392 yprof[3] = yprof[2] + extThickness*CosD(alpha);
2393 InsidePoint(xprof[0], yprof[0], xprof[1], yprof[1], xprof[2], yprof[2],
2394 extThickness, xprof[4], yprof[4]);
2395 xprof[5] = xprof[0];
2396 yprof[5] = 0.5*extThickness;
2397 TGeoXtru *ext3sh = new TGeoXtru(2);
2398 ext3sh->DefinePolygon(6, xprof, yprof);
2399 ext3sh->DefineSection(0, -0.5*(extWidth-0.8*fgkmm));
2400 ext3sh->DefineSection(1, 0.5*(extWidth-0.8*fgkmm));
2401 ext3 = new TGeoVolume(extname, ext3sh, medExt);
2402 } else
2403 ext3 = mgr->MakeBox(extname, medExt, 0.5*extThickness, 0.5*(extWidth-0.8*fgkmm), 0.5*ext2Length + extThickness); // Hardcode fix of a small overlap
54c9a3d9 2404 bus->SetLineColor(kYellow + 2);
2405 pt1000->SetLineColor(kGreen + 3);
2406 res->SetLineColor(kRed + 1);
2407 cap->SetLineColor(kBlue - 7);
7f69c251 2408 ext1->SetLineColor(kGray);
3ffa185f 2409 ext2->SetLineColor(kGray);
2410 ext3->SetLineColor(kGray);
54c9a3d9 2411
2412 // ** MOVEMENTS AND POSITIONEMENT **
2413 // bus
d0048cec 2414 TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness -
54c9a3d9 2415 fullThickness), 0.0, 0.0);
2416 container->AddNode(bus, 1, trBus);
2417 Double_t zRef, yRef, x, y, z;
2418 if (isRight) {
2419 zRef = -0.5*fullLength;
2420 yRef = -0.5*fullWidth;
2421 } else {
2422 zRef = -0.5*fullLength;
2423 yRef = -0.5*fullWidth;
2424 } // end if isRight
2425 // pt1000
2426 x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
2427 for (i = 0; i < 10; i++) {
2428 y = yRef + pt1000Y;
2429 z = zRef + pt1000Z[i];
2430 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2431 container->AddNode(pt1000, i+1, tr);
2432 } // end for i
2433 // capacitors
2434 x = 0.5*(capThickness - fullThickness) + busThickness;
2435 for (i = 0; i < 2; i++) {
2436 y = yRef + capY[i];
2437 z = zRef + capZ[i];
2438 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2439 container->AddNode(cap, i+1, tr);
2440 } // end for i
2441 // resistors
2442 x = 0.5*(resThickness - fullThickness) + busThickness;
2443 for (i = 0; i < 2; i++) {
2444 y = yRef + resY[i];
2445 z = zRef + resZ[i];
2446 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2447 container->AddNode(res, i+1, tr);
2448 } // end for i
d0048cec 2449
7f69c251 2450 // extender
22726349 2451 if (ilayer == 2) {
3ffa185f 2452 if (isRight) {
2453 y = 0.5 * (fullWidth - extWidth) - 0.1;
2454 z = 0.5 * (-fullLength + fgkmm * 10.0);
2455 }
2456 else {
2457 y = 0.5 * (fullWidth - extWidth) - 0.1;
2458 z = 0.5 * ( fullLength - fgkmm * 10.0);
2459 }
22726349 2460 }
2461 else {
2462 if (isRight) {
2463 y = -0.5 * (fullWidth - extWidth);
2464 z = 0.5 * (-fullLength + fgkmm * 10.0);
2465 }
2466 else {
2467 y = -0.5 * (fullWidth - extWidth);
2468 z = 0.5 * ( fullLength - fgkmm * 10.0);
2469 }
2470 }
3ffa185f 2471 x = 0.5 * (extThickness - fullThickness) + busThickness;
2472 //y = 0.5 * (fullWidth - extWidth);
2473 TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z);
2474 if (isRight) {
2475 z -= 0.5 * (ext1Length - extThickness);
2476 }
2477 else {
2478 z += 0.5 * (ext1Length - extThickness);
2479 }
2480 x += 0.5*(extHeight - 3.*extThickness);
2481 TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z);
2482 if (isRight) {
2483 z -= 0.5 * (ext2Length - extThickness) + 2.5*extThickness;
2484 }
2485 else {
2486 z += 0.5 * (ext2Length - extThickness) + 2.5*extThickness;
2487 }
2488 x += 0.5*(extHeight - extThickness) - 2.*extThickness;
954323d3 2489 TGeoCombiTrans *trExt3=0;
2490 if (ilayer==1) {
2491 if (isRight)
2492 trExt3 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",0.,-90.,90.));
2493 else
2494 trExt3 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",0., 90.,90.));
2495 } else
2496 trExt3 = new TGeoCombiTrans(x, y, z, 0);
3ffa185f 2497 container->AddNode(ext1, 0, trExt1);
2498 container->AddNode(ext2, 0, trExt2);
2499 container->AddNode(ext3, 0, trExt3);
d0048cec 2500
54c9a3d9 2501 sizes[3] = yRef + pt1000Y;
2502 sizes[4] = zRef + pt1000Z[2];
2503 sizes[5] = zRef + pt1000Z[7];
d0048cec 2504
54c9a3d9 2505 return container;
592651e2 2506}
7f69c251 2507
2508//______________________________________________________________________
44d18d38 2509TList* AliITSv11GeometrySPD::CreateConeModule(Bool_t sideC, const Double_t angrot,
96eb8210 2510 TGeoManager *mgr) const
7f69c251 2511{
96eb8210 2512 //
2513 // Creates all services modules and places them in a TList
2514 // angrot is the rotation angle (passed as an argument to avoid
2515 // defining the same quantity in two different places)
2516 //
45c52bb2 2517 // Created: ?? ??? 2008 A. Pulvirenti
2518 // Updated: 03 May 2010 M. Sitta
2519 // Updated: 20 Jun 2010 A. Pulvirenti Optical patch panels
2520 // Updated: 22 Jun 2010 M. Sitta Fiber cables
c890eba4 2521 // Updated: 04 Jul 2010 M. Sitta Water cooling
44d18d38 2522 // Updated: 08 Jul 2010 A. Pulvirenti Air cooling on Side C
96eb8210 2523 //
2524
7f69c251 2525 TGeoMedium *medInox = GetMedium("INOX$",mgr);
45c52bb2 2526 //TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
2527 TGeoMedium *medExtB = GetMedium("SPD-BUS CU KAPTON$", mgr);
2528 TGeoMedium *medExtM = GetMedium("SPD-MCM CU KAPTON$", mgr);
3ffa185f 2529 TGeoMedium *medPlate = GetMedium("SPD C (M55J)$", mgr);
96eb8210 2530 TGeoMedium *medFreon = GetMedium("Freon$", mgr);
2531 TGeoMedium *medGas = GetMedium("GASEOUS FREON$", mgr);
45c52bb2 2532 TGeoMedium *medFibs = GetMedium("SDD OPTICFIB$",mgr);
c890eba4 2533 TGeoMedium *medCopper= GetMedium("COPPER$",mgr);
44d18d38 2534 TGeoMedium *medPVC = GetMedium("PVC$",mgr);
d0048cec 2535
3ffa185f 2536 Double_t extThickness = fgkmm * 0.25;
2537 Double_t ext1Length = fgkmm * (26.7 - 10.0);
96eb8210 2538// Double_t ext2Length = fgkmm * (285.0 - ext1Length + extThickness);
2539 Double_t ext2Length = fgkmm * 285.0 - ext1Length + extThickness;
d0048cec 2540
96eb8210 2541 const Double_t kCableThickness = 1.5 *fgkmm;
954323d3 2542 Double_t cableL0 = 10.0 * fgkmm;
96eb8210 2543 Double_t cableL1 = 340.0 * fgkmm - extThickness - ext1Length - ext2Length;
2544 Double_t cableL2 = 300.0 * fgkmm;
7f69c251 2545 //Double_t cableL3 = 570.0 * fgkmm;
2546 Double_t cableL3 = 57.0 * fgkmm;
2547 Double_t cableW1 = 11.0 * fgkmm;
2548 Double_t cableW2 = 30.0 * fgkmm;
2549 Double_t cableW3 = 50.0 * fgkmm;
d0048cec 2550
954323d3 2551 const Double_t kMCMLength = cableL0 + cableL1 + cableL2 + cableL3;
96eb8210 2552 const Double_t kMCMWidth = cableW1;
2553 const Double_t kMCMThickness = 1.2 *fgkmm;
d0048cec 2554
96eb8210 2555 const Double_t kPlateLength = 200.0 *fgkmm;
2556 const Double_t kPlateWidth = 50.0 *fgkmm;
2557 const Double_t kPlateThickness = 5.0 *fgkmm;
2558
45c52bb2 2559 const Double_t kConeTubeRmin = 2.0 *fgkmm;
2560 const Double_t kConeTubeRmax = 3.0 *fgkmm;
96eb8210 2561
45c52bb2 2562 const Double_t kHorizTubeLen = 150.0 *fgkmm;
4c8afd2e 2563 const Double_t kYtoHalfStave = 9.5 *fgkmm;
c890eba4 2564
2565 const Double_t kWaterCoolRMax = 2.6 *fgkmm;
2566 const Double_t kWaterCoolThick = 0.04 *fgkmm;
2567 const Double_t kWaterCoolLen = 250.0 *fgkmm;
2568 const Double_t kWCPlateThick = 0.5 *fgkmm;
2569 const Double_t kWCPlateWide = 33.0 *fgkmm;
2570 const Double_t kWCPlateLen = 230.0 *fgkmm;
2571 const Double_t kWCFittingRext1 = 2.4 *fgkmm;
2572 const Double_t kWCFittingRext2 = 3.7 *fgkmm;
2573 const Double_t kWCFittingRint1 = 1.9 *fgkmm;
2574 const Double_t kWCFittingRint2 = kWaterCoolRMax;
2575 const Double_t kWCFittingLen1 = 7.0 *fgkmm;
2576 const Double_t kWCFittingLen2 = 8.0 *fgkmm;
44d18d38 2577
2578 const Double_t kCollWidth = 40.0 *fgkmm;
2579 const Double_t kCollLength = 60.0 *fgkmm;
2580 const Double_t kCollThickness = 10.0 *fgkmm;
2581 const Double_t kCollTubeThick = 1.0 *fgkmm;
2582 const Double_t kCollTubeRadius = 7.0 *fgkmm;
8bb39321 2583 const Double_t kCollTubeLength = 205.0 *fgkmm;
45c52bb2 2584
2585 const Double_t kOptFibDiamet = 4.5 *fgkmm;
d0048cec 2586
7f69c251 2587 Double_t x[12], y[12];
96eb8210 2588 Double_t xloc, yloc, zloc;
2589
2590 Int_t kPurple = 6; // Purple (Root does not define it)
2591
c890eba4 2592 TGeoVolumeAssembly* container[5];
8bb39321 2593 if (sideC)
2594 container[0] = new TGeoVolumeAssembly("ITSSPDConeModuleC");
2595 else
2596 container[0] = new TGeoVolumeAssembly("ITSSPDConeModuleA");
96eb8210 2597 container[1] = new TGeoVolumeAssembly("ITSSPDCoolingModuleSideA");
2598 container[2] = new TGeoVolumeAssembly("ITSSPDCoolingModuleSideC");
45c52bb2 2599 container[3] = new TGeoVolumeAssembly("ITSSPDPatchPanelModule");
c890eba4 2600 container[4] = new TGeoVolumeAssembly("ITSSPDWaterCooling");
d0048cec 2601
96eb8210 2602 // The extender on the cone as a Xtru
954323d3 2603 x[0] = -cableL0;
7f69c251 2604 y[0] = 0.0 + 0.5 * cableW1;
d0048cec 2605
954323d3 2606 x[1] = x[0] + cableL0 + cableL1 - 0.5*(cableW2 - cableW1);
7f69c251 2607 y[1] = y[0];
d0048cec 2608
954323d3 2609 x[2] = x[0] + cableL0 + cableL1;
7f69c251 2610 y[2] = y[1] + 0.5*(cableW2 - cableW1);
d0048cec 2611
7f69c251 2612 x[3] = x[2] + cableL2;
2613 y[3] = y[2];
d0048cec 2614
7f69c251 2615 x[4] = x[3] + 0.5*(cableW3 - cableW2);
2616 y[4] = y[3] + 0.5*(cableW3 - cableW2);
d0048cec 2617
7f69c251 2618 x[5] = x[4] + cableL3 - 0.5*(cableW3 - cableW2);
2619 y[5] = y[4];
d0048cec 2620
7f69c251 2621 for (Int_t i = 6; i < 12; i++) {
2622 x[i] = x[11 - i];
2623 y[i] = -y[11 - i];
2624 }
d0048cec 2625
7f69c251 2626 TGeoXtru *shCable = new TGeoXtru(2);
2627 shCable->DefinePolygon(12, x, y);
96eb8210 2628 shCable->DefineSection(0, 0.0);
2629 shCable->DefineSection(1, kCableThickness);
d0048cec 2630
45c52bb2 2631 TGeoVolume *volCable = new TGeoVolume("ITSSPDExtender", shCable, medExtB);
7f69c251 2632 volCable->SetLineColor(kGreen);
d0048cec 2633
96eb8210 2634 // The MCM extender on the cone as a Xtru
2635 TGeoBBox *shMCMExt = new TGeoBBox(0.5*kMCMLength,
2636 0.5*kMCMWidth,
2637 0.5*kMCMThickness);
d0048cec 2638
96eb8210 2639 TGeoVolume *volMCMExt = new TGeoVolume("ITSSPDExtenderMCM",
45c52bb2 2640 shMCMExt, medExtM);
7f69c251 2641 volMCMExt->SetLineColor(kGreen+3);
d0048cec 2642
96eb8210 2643 // The support plate on the cone as a composite shape
2644 Double_t thickness = kCableThickness + kMCMThickness;
2645 TGeoBBox *shOut = new TGeoBBox("ITSSPD_shape_plateout",
2646 0.5*kPlateLength,
2647 0.5*kPlateWidth,
2648 0.5*kPlateThickness);
2649 TGeoBBox *shIn = new TGeoBBox("ITSSPD_shape_platein" ,
2650 0.5*kPlateLength,
2651 0.5*cableW2,
2652 0.5*thickness);
2653 Char_t string[255];
6932f314 2654 snprintf(string, 255, "%s-%s", shOut->GetName(), shIn->GetName());
96eb8210 2655 TGeoCompositeShape *shPlate = new TGeoCompositeShape("ITSSPDPlate_shape",
2656 string);
d0048cec 2657
96eb8210 2658 TGeoVolume *volPlate = new TGeoVolume("ITSSPDPlate",
2659 shPlate, medPlate);
2660 volPlate->SetLineColor(kRed);
44d18d38 2661
2662 // The air cooling tubes
2663 TGeoBBox *shCollBox = new TGeoBBox("ITSSPD_shape_collector_box", 0.5*kCollLength, 0.5*kCollWidth, 0.5*kCollThickness);
2664 TGeoTube *shCollTube = new TGeoTube("ITSSPD_shape_collector_tube",kCollTubeRadius - kCollTubeThick, kCollTubeRadius, 0.5*kCollTubeLength);
2665 TGeoVolume *volCollBox = new TGeoVolume("ITSSPDCollectorBox", shCollBox, medPVC);
2666 TGeoVolume *volCollTube = new TGeoVolume("ITSSPDCollectorTube", shCollTube, medPVC);
2667 volCollBox->SetLineColor(kAzure);
2668 volCollTube->SetLineColor(kAzure);
d0048cec 2669
96eb8210 2670 // The cooling tube on the cone as a Ctub
8bb39321 2671 Double_t tubeLength = shCable->GetX(5) - shCable->GetX(0) + kYtoHalfStave -0.85;
96eb8210 2672 TGeoCtub *shTube = new TGeoCtub(0, kConeTubeRmax, 0.5*tubeLength, 0, 360,
2673 0, SinD(angrot/2), -CosD(angrot/2),
2674 0, 0, 1);
2675
2676 TGeoVolume *volTubeA = new TGeoVolume("ITSSPDCoolingTubeOnConeA",
2677 shTube, medInox);
2678 volTubeA->SetLineColor(kGray);
2679
2680 TGeoVolume *volTubeC = new TGeoVolume("ITSSPDCoolingTubeOnConeC",
2681 shTube, medInox);
2682 volTubeC->SetLineColor(kGray);
2683
2684 // The freon in the cooling tubes on the cone as a Ctub
2685 TGeoCtub *shFreon = new TGeoCtub(0, kConeTubeRmin, 0.5*tubeLength, 0, 360,
2686 0, SinD(angrot/2), -CosD(angrot/2),
2687 0, 0, 1);
2688
2689 TGeoVolume *volFreon = new TGeoVolume("ITSSPDCoolingFreonOnCone",
2690 shFreon, medFreon);
2691 volFreon->SetLineColor(kPurple);
2692
2693 TGeoVolume *volGasFr = new TGeoVolume("ITSSPDCoolingFreonGasOnCone",
2694 shFreon, medGas);
2695 volGasFr->SetLineColor(kPurple);
2696
2697 // The cooling tube inside the cylinder as a Ctub
2698 TGeoCtub *shCylTub = new TGeoCtub(0, kConeTubeRmax,
2699 0.5*kHorizTubeLen, 0, 360,
2700 0, 0, -1,
2701 0, SinD(angrot/2), CosD(angrot/2));
2702
2703 TGeoVolume *volCylTubA = new TGeoVolume("ITSSPDCoolingTubeOnCylA",
2704 shCylTub, medInox);
2705 volCylTubA->SetLineColor(kGray);
2706
2707 TGeoVolume *volCylTubC = new TGeoVolume("ITSSPDCoolingTubeOnCylC",
2708 shCylTub, medInox);
2709 volCylTubC->SetLineColor(kGray);
2710
2711 // The freon in the cooling tubes in the cylinder as a Ctub
2712 TGeoCtub *shCylFr = new TGeoCtub(0, kConeTubeRmin,
2713 0.5*kHorizTubeLen, 0, 360,
2714 0, 0, -1,
2715 0, SinD(angrot/2), CosD(angrot/2));
2716
2717 TGeoVolume *volCylFr = new TGeoVolume("ITSSPDCoolingFreonOnCyl",
2718 shCylFr, medFreon);
2719 volCylFr->SetLineColor(kPurple);
2720
2721 TGeoVolume *volCylGasFr = new TGeoVolume("ITSSPDCoolingFreonGasOnCyl",
2722 shCylFr, medGas);
2723 volCylGasFr->SetLineColor(kPurple);
2724
45c52bb2 2725 // The optical fibers bundle on the cone as a Tube
5d9d4033 2726 Double_t optLength = shCable->GetX(5) - shCable->GetX(0) + kYtoHalfStave -0.85;
45c52bb2 2727 TGeoTube *shOptFibs = new TGeoTube(0., 0.5*kOptFibDiamet, 0.5*optLength);
2728
2729 TGeoVolume *volOptFibs = new TGeoVolume("ITSSPDOpticalFibersOnCone",
2730 shOptFibs, medFibs);
2731 volOptFibs->SetLineColor(kOrange);
2732
2733 // The optical patch panels
2734 TArrayD psizes;
2735 TGeoVolume *volPatch = CreatePatchPanel(psizes, mgr);
2736
c890eba4 2737 // The water cooling tube as a Tube
2738 TGeoTube *shWatCool = new TGeoTube(kWaterCoolRMax-kWaterCoolThick,
2739 kWaterCoolRMax, kWaterCoolLen/2);
2740
2741 TGeoVolume *volWatCool = new TGeoVolume("ITSSPDWaterCoolingOnCone",
2742 shWatCool, medInox);
2743 volWatCool->SetLineColor(kGray);
2744
2745 // The support plate for the water tubes: a Tubs and a BBox
2746 TGeoTubeSeg *shWCPltT = new TGeoTubeSeg(kWaterCoolRMax,
2747 kWaterCoolRMax+kWCPlateThick,
2748 kWCPlateLen/2, 180., 360.);
2749
2750 Double_t plateBoxWide = (kWCPlateWide - 2*kWaterCoolRMax)/2;
2751 TGeoBBox *shWCPltB = new TGeoBBox(plateBoxWide/2,
2752 kWCPlateThick/2,
2753 kWCPlateLen/2);
2754
2755 TGeoVolume *volWCPltT = new TGeoVolume("ITSSPDWaterCoolingTubsPlate",
2756 shWCPltT, medPlate);
2757 volWCPltT->SetLineColor(kRed);
2758
2759 TGeoVolume *volWCPltB = new TGeoVolume("ITSSPDWaterCoolingBoxPlate",
2760 shWCPltB, medPlate);
2761 volWCPltB->SetLineColor(kRed);
2762
2763 // The fitting for the water cooling tube: a Pcon
2764 TGeoPcon *shFitt = new TGeoPcon(0., 360., 4);
2765 shFitt->Z(0) = -kWCFittingLen1;
2766 shFitt->Rmin(0) = kWCFittingRint1;
2767 shFitt->Rmax(0) = kWCFittingRext1;
2768
2769 shFitt->Z(1) = 0;
2770 shFitt->Rmin(1) = kWCFittingRint1;
2771 shFitt->Rmax(1) = kWCFittingRext1;
2772
2773 shFitt->Z(2) = 0;
2774 shFitt->Rmin(2) = kWCFittingRint2;
2775 shFitt->Rmax(2) = kWCFittingRext2;
2776
2777 shFitt->Z(3) = kWCFittingLen2;
2778 shFitt->Rmin(3) = kWCFittingRint2;
2779 shFitt->Rmax(3) = kWCFittingRext2;
2780
2781 TGeoVolume *volFitt = new TGeoVolume("ITSSPDWaterCoolingFitting",
2782 shFitt, medCopper);
2783 volFitt->SetLineColor(kOrange);
2784
96eb8210 2785 // Now place everything in the containers
2786 volTubeA->AddNode(volGasFr, 1, 0);
2787 volTubeC->AddNode(volFreon, 1, 0);
2788
2789 volCylTubA->AddNode(volCylGasFr, 1, 0);
2790 volCylTubC->AddNode(volCylFr , 1, 0);
2791
2792 container[0]->AddNode(volCable, 1, 0);
2793
954323d3 2794 xloc = shMCMExt->GetDX() - cableL0;
96eb8210 2795 zloc = shMCMExt->GetDZ();
2796 container[0]->AddNode(volMCMExt, 1,
2797 new TGeoTranslation( xloc, 0.,-zloc));
2798
2799 xloc = shMCMExt->GetDX();
2800 zloc = shCable->GetZ(1)/2 - shMCMExt->GetDZ();
2801 container[0]->AddNode(volPlate, 1,
2802 new TGeoTranslation( xloc, 0., zloc));
2803
45c52bb2 2804 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
2805 rot2->SetName("rotPatch");
2806 rot2->RotateX(90.0);
2807 rot2->RotateY(163.0);
2808 //rot2->RotateZ(132.5);
2809
44d18d38 2810 // add collectors only on side C
2811 if (sideC)
2812 {
2813 TGeoTranslation *trCollBox = new TGeoTranslation(xloc - 0.5*kPlateLength + 0.5*kCollLength, 0.0, +0.5*(kPlateThickness+1.1*kCollThickness));
2814 TGeoRotation *rotCollTube = new TGeoRotation(*gGeoIdentity);
2815 rotCollTube->RotateY(90.0);
2816 TGeoCombiTrans *trCollTube = new TGeoCombiTrans(xloc + 0.5*kCollTubeLength - (0.5*kPlateLength - kCollLength), 0.0, +0.5*(kPlateThickness+2.0*kCollTubeRadius+kCollTubeThick), rotCollTube);
2817 container[0]->AddNode(volCollBox, 1, trCollBox);
2818 container[0]->AddNode(volCollTube, 1, trCollTube);
2819 }
2820
5d9d4033 2821 Double_t dxPatch = 2.75;
45c52bb2 2822 Double_t dzPatch = 2.8;
2823 TGeoCombiTrans *tr2 = new TGeoCombiTrans(1.7*ext2Length - dxPatch, 0.0, dzPatch, rot2);
2824 container[3]->AddNode(volPatch, 0, tr2);
2825
96eb8210 2826 xloc = shTube->GetRmax();
2827 yloc = shTube->GetRmax();
2828 zloc = shTube->GetDz() - shTube->GetRmax() - kYtoHalfStave;
2829 container[1]->AddNode(volTubeA, 1,
2830 new TGeoTranslation(-xloc, -yloc, zloc));
2831 container[2]->AddNode(volTubeC, 1,
2832 new TGeoTranslation(-xloc, -yloc, zloc));
2833
2834 xloc = shTube->GetRmax();
2835 yloc = (shCylTub->GetDz())*SinD(angrot) - shTube->GetRmax();
2836 zloc = (shCylTub->GetDz())*CosD(angrot) + shTube->GetRmax() +kYtoHalfStave;
2837 container[1]->AddNode(volCylTubA, 1,
2838 new TGeoCombiTrans(-xloc, yloc,-zloc,
2839 new TGeoRotation("",0.,angrot,0.)));
2840 container[2]->AddNode(volCylTubC, 1,
2841 new TGeoCombiTrans(-xloc, yloc,-zloc,
2842 new TGeoRotation("",0.,angrot,0.)));
2843
45c52bb2 2844 xloc = shOptFibs->GetRmax() + 2*shTube->GetRmax();
c890eba4 2845 yloc = 1.6*shOptFibs->GetRmax();
45c52bb2 2846 zloc = shOptFibs->GetDZ() - shTube->GetRmax() - kYtoHalfStave;
2847 container[1]->AddNode(volOptFibs, 1,
2848 new TGeoTranslation(-xloc, -yloc, zloc));
2849 container[2]->AddNode(volOptFibs, 1,
2850 new TGeoTranslation(-xloc, -yloc, zloc));
2851
c890eba4 2852 yloc = shWatCool->GetRmax();
2853 zloc = (2*shTube->GetDz() - shTube->GetRmax() - kYtoHalfStave)/2;
2854 container[4]->AddNode(volWatCool, 1,
2855 new TGeoTranslation(0, -yloc, zloc));
2856
2857 container[4]->AddNode(volWCPltT, 1,
2858 new TGeoTranslation(0, -yloc, zloc));
2859
2860 yloc -= shWCPltB->GetDY();
2861 xloc = shWatCool->GetRmax() + shWCPltB->GetDX();
2862 container[4]->AddNode(volWCPltB, 1,
2863 new TGeoTranslation( xloc, -yloc, zloc));
2864 container[4]->AddNode(volWCPltB, 2,
2865 new TGeoTranslation(-xloc, -yloc, zloc));
2866
2867 yloc = shWatCool->GetRmax();
2868 zloc -= shWatCool->GetDz();
2869 container[4]->AddNode(volFitt, 1,
2870 new TGeoTranslation(0, -yloc, zloc));
2871
96eb8210 2872 // Finally create the list of assemblies and return it to the caller
0b9c8a10 2873 TList* conemodulelist = new TList();
0b9c8a10 2874 conemodulelist->Add(container[0]);
2875 conemodulelist->Add(container[1]);
96eb8210 2876 conemodulelist->Add(container[2]);
45c52bb2 2877 conemodulelist->Add(container[3]);
c890eba4 2878 conemodulelist->Add(container[4]);
d0048cec 2879
0b9c8a10 2880 return conemodulelist;
7f69c251 2881}
2882
2883//______________________________________________________________________
2884void AliITSv11GeometrySPD::CreateCones(TGeoVolume *moth) const
2885{
96eb8210 2886 //
2887 // Places all services modules in the mother reference system
2888 //
2889 // Created: ?? ??? 2008 Alberto Pulvirenti
2890 // Updated: 03 May 2010 Mario Sitta
c890eba4 2891 // Updated: 04 Jul 2010 Mario Sitta Water cooling
96eb8210 2892 //
d0048cec 2893
96eb8210 2894 const Int_t kNumberOfModules = 10;
2895
2896 const Double_t kInnerRadius = 80.775*fgkmm;
8bb39321 2897 const Double_t kZTrans = 451.800*fgkmm;
96eb8210 2898 const Double_t kAlphaRot = 46.500*fgkDegree;
c890eba4 2899 const Double_t kAlphaSpaceCool = 9.200*fgkDegree;
96eb8210 2900
44d18d38 2901 TList* modulelistA = CreateConeModule(kFALSE, 90-kAlphaRot);
2902 TList* modulelistC = CreateConeModule(kTRUE , 90-kAlphaRot);
2903 TList* &modulelist = modulelistC;
2904 TGeoVolumeAssembly* module, *moduleA, *moduleC;
d0048cec 2905
96eb8210 2906 Double_t xloc, yloc, zloc;
2907
7f69c251 2908 //Double_t angle[10] = {18., 54., 90., 126., 162., -18., -54., -90., -126., -162.};
45c52bb2 2909 // anglem for cone modules (cables and cooling tubes)
2910 // anglep for pathc panels
96eb8210 2911 Double_t anglem[10] = {18., 54., 90., 126., 162., 198., 234., 270., 306., 342.};
45c52bb2 2912 Double_t anglep[10] = {18., 62., 90., 115., 162., 198., 242., 270., 295., 342.};
96eb8210 2913// Double_t angle1m[10] = {23., 53., 90., 127., 157., 203.0, 233.0, 270.0, 307.0, 337.0};
2914// Double_t angle2m[10] = {18., 53., 90., 126., 162., 198.0, 233.0, 270.0, 309.0, 342.0};
2915// Double_t angle1c[10] = {23., 53., 90., 124., 157., 203.0, 233.0, 270.0, 304.0, 337.0};
2916// Double_t angle2c[10] = {18., 44., 90., 126., 162., 198.0, 223.0, 270.0, 309.0, 342.0};
0b9c8a10 2917
2918 // First add the cables
44d18d38 2919 moduleA = (TGeoVolumeAssembly*)modulelistA->At(0);
2920 moduleC = (TGeoVolumeAssembly*)modulelistC->At(0);
96eb8210 2921 for (Int_t i = 0; i < kNumberOfModules; i++) {
7f69c251 2922 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
96eb8210 2923 rot1->RotateY(-kAlphaRot);
2924 rot1->RotateZ(anglem[i]);
2925 xloc = kInnerRadius*CosD(anglem[i]);
2926 yloc = kInnerRadius*SinD(anglem[i]);
2927 zloc = kZTrans;
44d18d38 2928 moth->AddNode(moduleA, 2*i+2,
96eb8210 2929 new TGeoCombiTrans( xloc, yloc, zloc, rot1));
2930
7f69c251 2931 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
96eb8210 2932 rot2->RotateY(180.-kAlphaRot);
2933 rot2->RotateZ(anglem[i]);
2934 xloc = kInnerRadius*CosD(anglem[i]);
2935 yloc = kInnerRadius*SinD(anglem[i]);
2936 zloc = kZTrans;
44d18d38 2937 moth->AddNode(moduleC, 2*i+1,
96eb8210 2938 new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2));
0b9c8a10 2939 }
2940
96eb8210 2941 // Then the cooling tubes on Side A
0b9c8a10 2942 module = (TGeoVolumeAssembly*)modulelist->At(1);
96eb8210 2943 Double_t anglec;
2944 for (Int_t i = 0; i < kNumberOfModules; i++) {
2945 anglec = anglem[i] + kAlphaSpaceCool;
0b9c8a10 2946 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
c890eba4 2947 rot1->RotateX(-90.0+kAlphaRot-0.04); // 0.04 fixes small overlap
2948 rot1->RotateZ(-90.0+anglec);
96eb8210 2949 xloc = kInnerRadius*CosD(anglec);
2950 yloc = kInnerRadius*SinD(anglec);
c890eba4 2951 zloc = kZTrans+0.162; // 0.162 fixes small overlap
2952 moth->AddNode(module, 2*i+2,
96eb8210 2953 new TGeoCombiTrans( xloc, yloc, zloc, rot1));
2954 }
2955
45c52bb2 2956 // And the cooling tubes on Side C
96eb8210 2957 module = (TGeoVolumeAssembly*)modulelist->At(2);
2958 for (Int_t i = 0; i < kNumberOfModules; i++) {
2959 anglec = anglem[i] - kAlphaSpaceCool;
0b9c8a10 2960 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
c890eba4 2961 rot2->RotateX(-90.0+kAlphaRot-0.04); // 0.04 fixes small overlap
96eb8210 2962 rot2->RotateY(180.);
c890eba4 2963 rot2->RotateZ(90.0+anglec);
96eb8210 2964 xloc = kInnerRadius*CosD(anglec);
2965 yloc = kInnerRadius*SinD(anglec);
c890eba4 2966 zloc = kZTrans+0.162; // 0.162 fixes small overlap
96eb8210 2967 moth->AddNode(module, 2*i+1,
2968 new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2));
7f69c251 2969 }
96eb8210 2970
c890eba4 2971 // Then the water cooling tubes
2972 module = (TGeoVolumeAssembly*)modulelist->At(4);
2973 for (Int_t i = 1; i < kNumberOfModules; i++) { // i = 1,2,...,9
2974 if (i != 5) { // There is no tube in this position
2975 anglec = (anglem[i-1]+anglem[i])/2;
2976 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
2977 rot1->RotateX(-90.0+kAlphaRot);
2978 rot1->RotateZ(-90.0+anglec);
2979 xloc = kInnerRadius*CosD(anglec);
2980 yloc = kInnerRadius*SinD(anglec);
2981 zloc = kZTrans;
2982 moth->AddNode(module, 2*i+2,
2983 new TGeoCombiTrans( xloc, yloc, zloc, rot1));
2984
2985 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
2986 rot2->RotateX(-90.0+kAlphaRot);
2987 rot2->RotateY(180.);
2988 rot2->RotateZ(90.0+anglec);
2989 xloc = kInnerRadius*CosD(anglec);
2990 yloc = kInnerRadius*SinD(anglec);
2991 zloc = kZTrans;
2992 moth->AddNode(module, 2*i+1,
2993 new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2));
2994 }
2995 }
2996
45c52bb2 2997 // Finally the optical patch panels
2998 module = (TGeoVolumeAssembly*)modulelist->At(3);
2999 for (Int_t i = 0; i < kNumberOfModules; i++) {
3000 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
3001 rot1->RotateY(-kAlphaRot);
3002 rot1->RotateZ(anglep[i]);
3003 xloc = kInnerRadius*CosD(anglep[i]);
3004 yloc = kInnerRadius*SinD(anglep[i]);
3005 zloc = kZTrans;
c890eba4 3006 moth->AddNode(module, 2*i+2,
45c52bb2 3007 new TGeoCombiTrans( xloc, yloc, zloc, rot1));
3008
3009 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
3010 rot2->RotateY(180.-kAlphaRot);
3011 rot2->RotateZ(anglep[i]);
3012 xloc = kInnerRadius*CosD(anglep[i]);
3013 yloc = kInnerRadius*SinD(anglep[i]);
3014 zloc = kZTrans;
3015 moth->AddNode(module, 2*i+1,
3016 new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2));
3017 }
3018
7f69c251 3019}
3020
c890eba4 3021
15b84e14 3022//______________________________________________________________________
3023void AliITSv11GeometrySPD::CreateServices(TGeoVolume *moth) const
3024{
3025 //
3026 // New method to implement SPD services
3027 //
3028 // Created: 25 Jul 2012 Mario Sitta
3029 //
3030 // Data provided by C.Gargiulo from CAD
3031
3032 // Cooling manifolds
3033 const Double_t kCoolManifWidth = fgkmm * 22.0;
3034 const Double_t kCoolManifLength = fgkmm * 50.0;
3035 const Double_t kCoolManifThick = fgkmm * 7.0;
3036 const Double_t kCoolManifFitR1out = fgkmm * 4.0; // TO BE CHECKED!
3037 const Double_t kCoolManifFitH1 = fgkmm * 2.5;
3038 const Double_t kCoolManifFitR2out = fgkmm * 4.0;
3039 const Double_t kCoolManifFitR2in = fgkmm * 3.2;
3040 const Double_t kCoolManifFitH2 = fgkmm * 7.0;
3041 const Double_t kCoolManifFitZPos = fgkmm * 2.0; // TO BE CHECKED!
3042 const Double_t kCoolManifCollR1 = fgkmm * 3.0;
3043 const Double_t kCoolManifCollH1 = fgkmm * 2.5;
3044 const Double_t kCoolManifCollR2 = fgkmm * 1.5;
3045 const Double_t kCoolManifCollH2 = fgkmm * 5.0;
3046 const Double_t kCoolManifCollDX = fgkmm * 6.0;
3047 const Double_t kCoolManifCollDZ = fgkmm * 13.0;
3048 const Double_t kCoolManifCollZ0 = fgkmm * 6.0; // ??? should be 9...
3049
3050 const Double_t kCoolManifRPos = fgkmm * 76.2;
3051 const Double_t kCoolManifZPos = fgkcm * 34.0;
3052
3053
3054 // Local variables
3055 Double_t radius, theta;
3056 Double_t xpos, ypos, zpos;
3057
3058 // The cooling manifold: an Assembly
3059 TGeoVolumeAssembly *coolmanif = new TGeoVolumeAssembly("ITSSPDCoolManif");
3060
3061 // The various parts of the manifold
3062 TGeoBBox *manifblksh = new TGeoBBox(kCoolManifWidth/2,
3063 kCoolManifThick/2,
3064 kCoolManifLength/2);
3065
3066 TGeoBBox *manifinscubesh = new TGeoBBox(kCoolManifFitR2out,
3067 kCoolManifFitR2out,
3068 kCoolManifFitR2out);
3069
3070 TGeoTube *manifinscyl1sh = new TGeoTube(0, // TO BE CHECKED!
3071 kCoolManifFitR1out,
3072 kCoolManifFitH1/2);
3073
3074 TGeoTube *manifinscyl2sh = new TGeoTube(kCoolManifFitR2in,
3075 kCoolManifFitR2out,
3076 kCoolManifFitH2/2);
3077
3078 TGeoTube *manifcollcyl1sh = new TGeoTube(0,
3079 kCoolManifCollR1,
3080 kCoolManifCollH1/2);
3081
3082 TGeoTube *manifcollcyl2sh = new TGeoTube(0,
3083 kCoolManifCollR2,
3084 kCoolManifCollH2/2);
3085
3086
3087 // We have the shapes: now create the real volumes
3088 TGeoMedium *medInox = GetMedium("INOX$");
3089 TGeoMedium *medCu = GetMedium("COPPER$");
3090
3091 TGeoVolume *manifblk = new TGeoVolume("ITSSPDBlkManif",
3092 manifblksh,medInox);
3093 manifblk->SetLineColor(kGreen+2);
3094
3095 TGeoVolume *manifinscube = new TGeoVolume("ITSSPDInsCubeManif",
3096 manifinscubesh,medCu);
3097 manifinscube->SetLineColor(kYellow);
3098
3099 TGeoVolume *manifinscyl1 = new TGeoVolume("ITSSPDInsCyl1Manif",
3100 manifinscyl1sh,medCu);
3101 manifinscyl1->SetLineColor(kYellow);
3102
3103 TGeoVolume *manifinscyl2 = new TGeoVolume("ITSSPDInsCyl2Manif",
3104 manifinscyl2sh,medCu);
3105 manifinscyl2->SetLineColor(kYellow);
3106
3107 TGeoVolume *manifcollcyl1 = new TGeoVolume("ITSSPDCollCyl1Manif",
3108 manifcollcyl1sh,medCu);
3109 manifcollcyl1->SetLineColor(kYellow);
3110
3111 TGeoVolume *manifcollcyl2 = new TGeoVolume("ITSSPDCollCyl2Manif",
3112 manifcollcyl2sh,medCu);
3113 manifcollcyl2->SetLineColor(kYellow);
3114
3115
3116 // Add all volumes in the assemblies
3117 coolmanif->AddNode(manifblk,1,0);
3118
3119 ypos = manifblksh->GetDY() + manifinscyl1sh->GetDz();
3120 zpos = manifblksh->GetDZ() - manifinscyl1sh->GetRmax() - kCoolManifFitZPos;
3121 coolmanif->AddNode(manifinscyl1, 1, new TGeoCombiTrans(0, -ypos, zpos,
3122 new TGeoRotation("",0,90,0)));
3123
3124 ypos += (manifinscyl1sh->GetDz() + manifinscubesh->GetDY());
3125 coolmanif->AddNode(manifinscube, 1, new TGeoTranslation(0, -ypos, zpos));
3126
3127 zpos += (manifinscubesh->GetDZ() + manifinscyl2sh->GetDz());
3128 coolmanif->AddNode(manifinscyl2, 1, new TGeoTranslation(0, -ypos, zpos));
3129
3130 xpos = kCoolManifCollDX;
3131 ypos = manifblksh->GetDY() + manifcollcyl1sh->GetDz();
3132 zpos =-manifblksh->GetDZ() + manifcollcyl1sh->GetRmax() + kCoolManifCollZ0;
3133 for (Int_t i=0; i<3; i++) {
3134 coolmanif->AddNode(manifcollcyl1, 2*i+1,
3135 new TGeoCombiTrans( xpos, -ypos, zpos,
3136 new TGeoRotation("",0,90,0)));
3137 coolmanif->AddNode(manifcollcyl1, 2*i+2,
3138 new TGeoCombiTrans(-xpos, -ypos, zpos,
3139 new TGeoRotation("",0,90,0)));
3140 Double_t y = ypos + manifcollcyl1sh->GetDz() + manifcollcyl2sh->GetDz();
3141 coolmanif->AddNode(manifcollcyl2, 2*i+1,
3142 new TGeoCombiTrans( xpos, -y, zpos,
3143 new TGeoRotation("",0,90,0)));
3144 coolmanif->AddNode(manifcollcyl2, 2*i+2,
3145 new TGeoCombiTrans(-xpos, -y, zpos,
3146 new TGeoRotation("",0,90,0)));
3147 zpos += kCoolManifCollDZ;
3148 }
3149
3150
3151 // Finally put everything in the mother volume
3152 radius = kCoolManifRPos + (manifinscubesh->GetDY() +
3153 2*manifinscyl1sh->GetDz() +
3154 manifblksh->GetDY() );
3155 zpos = kCoolManifZPos + manifblksh->GetDZ();
3156 for (Int_t i=0; i<10; i++) {
3157 theta = 36.*i;
3158 moth->AddNode(coolmanif, 2*i+1, new TGeoCombiTrans(radius*SinD(theta),
3159 radius*CosD(theta),
3160 zpos,
3161 new TGeoRotation("",-theta,0,0)));
3162 moth->AddNode(coolmanif, 2*i+2, new TGeoCombiTrans(radius*SinD(theta),
3163 radius*CosD(theta),
3164 -zpos,
3165 new TGeoRotation("",90-theta,180,-90)));
3166 }
3167
3168}
3169
3170
54c9a3d9 3171//______________________________________________________________________
3172TGeoVolume* AliITSv11GeometrySPD::CreateExtender(
3173 const Double_t *extenderParams, const TGeoMedium *extenderMedium,
3174 TArrayD& sizes) const
bc3498f4 3175{
54c9a3d9 3176 //
3177 // ------------------ CREATE AN EXTENDER ------------------------
3178 //
3179 // This function creates the following picture (in plane xOy)
3180 // Should be useful for the definition of the pixel bus and MCM extenders
d0048cec 3181 // The origin corresponds to point 0 on the picture, at half-width
3182 // in Z direction
54c9a3d9 3183 //
3184 // Y 7 6 5
3185 // ^ +---+---------------------+
3186 // | / |
3187 // | / |
3188 // 0------> X / +---------------------+
3189 // / / 3 4
3190 // / /
3191 // 9 8 / /
3192 // +-----------+ /
3193 // | /
3194 // | /
3195 // ---> +-----------+---+
3196 // | 0 1 2
3197 // |
3198 // origin (0,0,0)
3199 //
3200 //
3201 // Takes 6 parameters in the following order :
3202 // |--> par 0 : inner length [0-1] / [9-8]
3203 // |--> par 1 : thickness ( = [0-9] / [4-5])
3204 // |--> par 2 : angle of the slope
3205 // |--> par 3 : total height in local Y direction
3206 // |--> par 4 : outer length [3-4] / [6-5]
3207 // |--> par 5 : width in local Z direction
3208 //
d0048cec 3209 Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1]
3210 * TMath::Cos(extenderParams[2])) /
54c9a3d9 3211 TMath::Tan(extenderParams[2]);
3212 Double_t extenderXtruX[10] = {
3213 0 ,
3214 extenderParams[0] ,
d0048cec 3215 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2]) ,
54c9a3d9 3216 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3217 slopeDeltaX ,
3218 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
d0048cec 3219 slopeDeltaX + extenderParams[4],
54c9a3d9 3220 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
d0048cec 3221 slopeDeltaX + extenderParams[4],
54c9a3d9 3222 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
d0048cec 3223 slopeDeltaX ,
54c9a3d9 3224 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3225 slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) ,
3226 extenderParams[0] ,
3227 0
3228 };
3229 Double_t extenderXtruY[10] = {
3230 0 ,
3231 0 ,
3232 extenderParams[1] * (1-TMath::Cos(extenderParams[2])) ,
3233 extenderParams[3] - extenderParams[1] ,
3234 extenderParams[3] - extenderParams[1] ,
3235 extenderParams[3] ,
3236 extenderParams[3] ,
3237 extenderParams[3]-extenderParams[1]*(1-TMath::Cos(extenderParams[2])) ,
3238 extenderParams[1] ,
3239 extenderParams[1]
3240 };
592651e2 3241
54c9a3d9 3242 if (sizes.GetSize() != 3) sizes.Set(3);
3243 Double_t &thickness = sizes[0];
3244 Double_t &length = sizes[1];
3245 Double_t &width = sizes[2];
3246
3247 thickness = extenderParams[3];
3248 width = extenderParams[5];
3249 length = extenderParams[0]+extenderParams[1]*
3250 TMath::Sin(extenderParams[2])+slopeDeltaX+extenderParams[4];
3251
3252 // creation of the volume
3253 TGeoXtru *extenderXtru = new TGeoXtru(2);
3254 TGeoVolume *extenderXtruVol = new TGeoVolume("ITSSPDextender",extenderXtru,
3255 extenderMedium);
3256 extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY);
3257 extenderXtru->DefineSection(0,-0.5*extenderParams[4]);
3258 extenderXtru->DefineSection(1, 0.5*extenderParams[4]);
3259 return extenderXtruVol;
3260}
c890eba4 3261
54c9a3d9 3262//______________________________________________________________________
3263TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave(Bool_t isRight,
3264Int_t layer,Int_t idxCentral,Int_t idxSide,TArrayD &sizes,TGeoManager *mgr)
bc3498f4 3265{
54c9a3d9 3266 //
d0048cec 3267 // Implementation of an half-stave, which depends on the side where
3268 // we are on the stave. The convention for "left" and "right" is the
3269 // same as for the MCM. The return value is a TGeoAssembly which is
3270 // structured in such a way that the origin of its local reference
54c9a3d9 3271 // frame coincides with the origin of the whole stave.
3272 // The TArrayD passed by reference will contain details of the shape:
3273 // - sizes[0] = thickness
3274 // - sizes[1] = length
3275 // - sizes[2] = width
3276 // - sizes[3] = common 'x' position for eventual clips
3277 // - sizes[4] = common 'y' position for eventual clips
3278 // - sizes[5] = 'z' position of first clip
3279 // - sizes[6] = 'z' position of second clip
3280 //
3281
3282 // ** CHECK **
3283
3284 // idxCentral and idxSide must be different
3285 if (idxCentral == idxSide) {
3286 AliInfo("Ladders must be inserted in half-stave with "
3287 "different indexes.");
3288 idxSide = idxCentral + 1;
3289 AliInfo(Form("Central ladder will be inserted with index %d",
3290 idxCentral));
3291 AliInfo(Form("Side ladder will be inserted with index %d",idxSide));
3292 } // end if
3293
3294 // define the separations along Z direction between the objects
3295 Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders
d0048cec 3296 Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder
54c9a3d9 3297 // and the Z=0 plane in stave ref.
3298 Double_t sepLadderMCM = fgkmm * 0.3; // sep. btw the "external" ladder
3299 // and MCM
d0048cec 3300 Double_t sepBusCenter = fgkmm * 0.3; // sep. btw the bus central edge
54c9a3d9 3301 // and the Z=0 plane in stave ref.
3302
3303 // ** VOLUMES **
3304
3305 // grounding foil
3306 TArrayD grndSize(3);
3307 // This one line repalces the 3 bellow, BNS.
3308 TGeoVolume *grndVol = CreateGroundingFoil(isRight, grndSize, mgr);
3309 Double_t &grndThickness = grndSize[0];
3310 Double_t &grndLength = grndSize[1];
3311
3312 // ladder
3313 TArrayD ladderSize(3);
3314 TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr);
3315 Double_t ladderThickness = ladderSize[0];
3316 Double_t ladderLength = ladderSize[1];
3317 Double_t ladderWidth = ladderSize[2];
3318
3319 // MCM
3320 TArrayD mcmSize(3);
3321 TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr);
3322 Double_t mcmThickness = mcmSize[0];
3323 Double_t mcmLength = mcmSize[1];
3324 Double_t mcmWidth = mcmSize[2];
d0048cec 3325
54c9a3d9 3326 // bus
3327 TArrayD busSize(6);
22726349 3328 TGeoVolumeAssembly *bus = CreatePixelBus(isRight, layer, busSize, mgr);
54c9a3d9 3329 Double_t busThickness = busSize[0];
3330 Double_t busLength = busSize[1];
3331 Double_t busWidth = busSize[2];
3332
3333 // glue between ladders and pixel bus
3334 TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr);
3335 Double_t ladGlueThickness = fgkmm * 0.1175 - fgkGapLadder;
3336 TGeoVolume *ladderGlue = mgr->MakeBox("ITSSPDladderGlue",medLadGlue,
3337 0.5*ladGlueThickness, 0.5*busWidth, 0.5*busLength);
3338 ladderGlue->SetLineColor(kYellow + 5);
3339
3340 // create references for the whole object, as usual
3341 sizes.Set(7);
3342 Double_t &fullThickness = sizes[0];
3343 Double_t &fullLength = sizes[1];
3344 Double_t &fullWidth = sizes[2];
d0048cec 3345
54c9a3d9 3346 // compute the full size of the container
3347 fullLength = sepLadderCenter+2.0*ladderLength+sepLadderMCM+
3348 sepLadderLadder+mcmLength;
3349 fullWidth = ladderWidth;
3350 fullThickness = grndThickness + fgkGapLadder + mcmThickness + busThickness;
ed0e944d 3351 //cout << "HSTAVE FULL THICKNESS = " << fullThickness << endl;
54c9a3d9 3352
3353 // ** MOVEMENTS **
3354
3355 // grounding foil (shifted only along thickness)
3356 Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness;
3357 Double_t zGrnd = -0.5*grndLength;
3358 if (!isRight) zGrnd = -zGrnd;
3359 TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd);
3360
3361 // ladders (translations along thickness and length)
d0048cec 3362 // layers must be sorted going from the one at largest Z to the
54c9a3d9 3363 // one at smallest Z:
3364 // -|Zmax| ------> |Zmax|
3365 // 3 2 1 0
d0048cec 3366 // then, for layer 1 ladders they must be placed exactly this way,
3367 // and in layer 2 at the opposite. In order to remember the placements,
3368 // we define as "inner" and "outer" ladder respectively the one close
54c9a3d9 3369 // to barrel center, and the one closer to MCM, respectively.
3370 Double_t xLad, zLadIn, zLadOut;
3371 xLad = xGrnd + 0.5*(grndThickness + ladderThickness) +
3372 0.01175 - fgkGapLadder;
3373 zLadIn = -sepLadderCenter - 0.5*ladderLength;
3374 zLadOut = zLadIn - sepLadderLadder - ladderLength;
3375 if (!isRight) {
3376 zLadIn = -zLadIn;
3377 zLadOut = -zLadOut;
3378 } // end if !isRight
3379 TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity);
3380 rotLad->RotateZ(90.0);
3381 rotLad->RotateY(180.0);
3382 Double_t sensWidth = fgkmm * 12.800;
3383 Double_t chipWidth = fgkmm * 15.950;
3384 Double_t guardRingWidth = fgkmm * 0.560;
3385 Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth);
3386 TGeoCombiTrans *trLadIn = new TGeoCombiTrans(xLad,ladderShift,zLadIn,
3387 rotLad);
3388 TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad,ladderShift,zLadOut,
3389 rotLad);
3390
d0048cec 3391 // MCM (length and thickness direction, placing at same level as the
3392 // ladder, which implies to recompute the position of center, because
3393 // ladder and MCM have NOT the same thickness) the two copies of the
54c9a3d9 3394 // MCM are placed at the same distance from the center, on both sides
d0048cec 3395 Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness +
54c9a3d9 3396 0.01175 - fgkGapLadder;
3397 Double_t yMCM = 0.5*(fullWidth - mcmWidth);
3398 Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM;
d0048cec 3399 if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength +
54c9a3d9 3400 sepLadderMCM;
3401
3402 // create the correction rotations
3403 TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity);
3404 rotMCM->RotateY(90.0);
3405 TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM);
3406
3407 // glue between ladders and pixel bus
d0048cec 3408 Double_t xLadGlue = xLad + 0.5*ladderThickness + 0.01175 -
54c9a3d9 3409 fgkGapLadder + 0.5*ladGlueThickness;
3410
3411 // bus (length and thickness direction)
3412 Double_t xBus = xLadGlue + 0.5*ladGlueThickness + 0.5*busThickness;
7708d5f3 3413 Double_t yBus = 0.5*(fullWidth - busWidth) + 0.075; // Hardcode fix of a small overlap
54c9a3d9 3414 Double_t zBus = -0.5*busLength - sepBusCenter;
3415 if (!isRight) zBus = -zBus;
3416 TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus);
3417
3418 TGeoTranslation *trLadGlue = new TGeoTranslation(xLadGlue, 0.0, zBus);
3419
3420 // create the container
3421 TGeoVolumeAssembly *container = 0;
3422 if (idxCentral+idxSide==5) {
3423 container = new TGeoVolumeAssembly("ITSSPDhalf-Stave1");
3424 } else {
3425 container = new TGeoVolumeAssembly("ITSSPDhalf-Stave0");
3426 } // end if
3427
3428 // add to container all objects
3429 container->AddNode(grndVol, 1, grndTrans);
3430 // ladders are inserted in different order to respect numbering scheme
3431 // which is inverted when going from outer to inner layer
3432 container->AddNode(ladder, idxCentral+1, trLadIn);
3433 container->AddNode(ladder, idxSide+1, trLadOut);
3434 container->AddNode(ladderGlue, 1, trLadGlue);
3435 container->AddNode(mcm, 1, trMCM);
3436 container->AddNode(bus, 1, trBus);
3437
3438 // since the clips are placed in correspondence of two pt1000s,
3439 // their position is computed here, but they are not added by default
3440 // it will be the StavesInSector method which will decide to add them
3441 // anyway, to recovery some size informations on the clip, it must be
3442 // created
3443 TArrayD clipSize;
3ffa185f 3444 // TGeoVolume *clipDummy = CreateClip(clipSize, kTRUE, mgr);
54c9a3d9 3445 CreateClip(clipSize, kTRUE, mgr);
3446 // define clip movements (width direction)
3447 sizes[3] = xBus + 0.5*busThickness;
4f7d5a2a 3448 sizes[4] = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.26;
54c9a3d9 3449 sizes[5] = zBus + busSize[4];
3450 sizes[6] = zBus + busSize[5];
3451
3452 return container;
592651e2 3453}
54c9a3d9 3454//______________________________________________________________________
3455TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave(Int_t layer,
3456 TArrayD &sizes, TGeoManager *mgr)
7855ea93 3457{
54c9a3d9 3458 //
3459 // This method uses all other ones which create pieces of the stave
3460 // and assemblies everything together, in order to return the whole
3461 // stave implementation, which is returned as a TGeoVolumeAssembly,
3462 // due to the presence of some parts which could generate fake overlaps
3463 // when put on the sector.
3464 // This assembly contains, going from bottom to top in the thickness
3465 // direction:
d0048cec 3466 // - the complete grounding foil, defined by the "CreateGroundingFoil"
3467 // method which already joins some glue and real groudning foil
54c9a3d9 3468 // layers for the whole stave (left + right);
d0048cec 3469 // - 4 ladders, which are sorted according to the ALICE numbering
54c9a3d9 3470 // scheme, which depends on the layer we are building this stave for;
3471 // - 2 MCMs (a left and a right one);
3472 // - 2 pixel buses (a left and a right one);
3473 // ---
3474 // Arguments:
d0048cec 3475 // - the layer number, which determines the displacement and naming
54c9a3d9 3476 // of sensitive volumes
d0048cec 3477 // - a TArrayD passed by reference which will contain the size
54c9a3d9 3478 // of virtual box containing the stave
3479 // - the TGeoManager
3480 //
3481
3482 // create the container
3483 TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form(
3484 "ITSSPDlay%d-Stave",layer));
3485 // define the indexes of the ladders in order to have the correct order
d0048cec 3486 // keeping in mind that the staves will be inserted as they are on layer
3487 // 2, while they are rotated around their local Y axis when inserted
3488 // on layer 1, so in this case they must be put in the "wrong" order
3489 // to turn out to be right at the end. The convention is:
54c9a3d9 3490 // -|Zmax| ------> |Zmax|
3491 // 3 2 1 0
d0048cec 3492 // with respect to the "native" stave reference frame, "left" is in
54c9a3d9 3493 // the positive Z this leads the definition of these indexes:
3494 Int_t idxCentralL, idxSideL, idxCentralR, idxSideR;
3495
3496 if (layer == 1) {
3497 idxSideL = 3;
3498 idxCentralL = 2;
3499 idxCentralR = 1;
3500 idxSideR = 0;
3501 } else {
3502 idxSideL = 0;
3503 idxCentralL = 1;
3504 idxCentralR = 2;
3505 idxSideR = 3;
3506 } // end if layer ==1
d0048cec 3507
54c9a3d9 3508 // create the two half-staves
3509 TArrayD sizeL, sizeR;
3510 TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL,
3511 idxSideL, sizeL,mgr);
3512 TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR,
3513 idxSideR, sizeR, mgr);
3514 // copy the size to the stave's one
3515 sizes.Set(9);
3516 sizes[0] = sizeL[0];
3517 sizes[1] = sizeR[1] + sizeL[1];
3518 sizes[2] = sizeL[2];
3519 sizes[3] = sizeL[3];
3520 sizes[4] = sizeL[4];
3521 sizes[5] = sizeL[5];
3522 sizes[6] = sizeL[6];
3523 sizes[7] = sizeR[5];
3524 sizes[8] = sizeR[6];
3525
3526 // add to container all objects
3527 container->AddNode(hstaveL, 1);
3528 container->AddNode(hstaveR, 1);
3529
3530 return container;
bc3498f4 3531}
54c9a3d9 3532//______________________________________________________________________
bc3498f4 3533void AliITSv11GeometrySPD::SetAddStave(Bool_t *mask)
3534{
54c9a3d9 3535 //
3536 // Define a mask which states qhich staves must be placed.
d0048cec 3537 // It is a string which must contain '0' or '1' depending if
54c9a3d9 3538 // a stave must be placed or not.
d0048cec 3539 // Each place is referred to one of the staves, so the first
54c9a3d9 3540 // six characters of the string will be checked.
3541 //
3542 Int_t i;
3543
3544 for (i = 0; i < 6; i++) fAddStave[i] = mask[i];
bc3498f4 3545}
54c9a3d9 3546//______________________________________________________________________
3547void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr)
3548{
3549 //
3550 // Unification of essentially two methods:
3551 // - the one which creates the sector structure
3552 // - the one which returns the complete stave
3553 // ---
3554 // For compatibility, this method requires the same arguments
3555 // asked by "CarbonFiberSector" method, which is recalled here.
3556 // Like this cited method, this one does not return any value,
3557 // but it inserts in the mother volume (argument 'moth') all the stuff
3558 // which composes the complete SPD sector.
3559 // ---
d0048cec 3560 // In the following, the stave numbering order used for arrays is the
54c9a3d9 3561 // same as defined in the GetSectorMountingPoints():
3562 // /5
3563 // /\/4
3564 // 1\ \/3
3565 // 0|___\/2
3566 // ---
3567 // Arguments: see description of "CarbonFiberSector" method.
3568 //
3569
d0048cec 3570 Double_t shift[6]; // shift from the innermost position in the
3571 // sector placement plane (where the stave
3572 // edge is in the point where the rounded
54c9a3d9 3573 // corner begins)
3574
3575 shift[0] = fgkmm * -0.691;
3576 shift[1] = fgkmm * 5.041;
3577 shift[2] = fgkmm * 1.816;
3578 shift[3] = fgkmm * -0.610;
3579 shift[4] = fgkmm * -0.610;
3580 shift[5] = fgkmm * -0.610;
d0048cec 3581
3ffa185f 3582 // corrections after interaction with Andrea and CAD
3583 Double_t corrX[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
3584 Double_t corrY[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
d0048cec 3585
3ffa185f 3586 corrX[0] = 0.0046;
3587 corrX[1] = -0.0041;
3588 corrX[2] = corrX[3] = corrX[4] = corrX[5] = -0.0016;
d0048cec 3589
3ffa185f 3590 corrY[0] = -0.0007;
3591 corrY[1] = -0.0009;
3592 corrY[2] = corrY[3] = corrY[4] = corrY[5] = -0.0003;
d0048cec 3593
3ffa185f 3594 corrX[0] += 0.00026;
3595 corrY[0] += -0.00080;
d0048cec 3596
3ffa185f 3597 corrX[1] += 0.00018;
3598 corrY[1] += -0.00086;
d0048cec 3599
3ffa185f 3600 corrX[2] += 0.00020;
3601 corrY[2] += -0.00062;
d0048cec 3602
3ffa185f 3603 corrX[3] += 0.00017;
3604 corrY[3] += -0.00076;
d0048cec 3605
3ffa185f 3606 corrX[4] += 0.00016;
3607 corrY[4] += -0.00096;
d0048cec 3608
3ffa185f 3609 corrX[5] += 0.00018;
3610 corrY[5] += -0.00107;
d0048cec 3611
54c9a3d9 3612 // create stave volumes (different for layer 1 and 2)
3613 TArrayD staveSizes1(9), staveSizes2(9), clipSize(5);
3614 Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0];
3615 TGeoVolume *stave1 = CreateStave(1, staveSizes1, mgr);
3616 TGeoVolume *stave2 = CreateStave(2, staveSizes2, mgr);
3617 TGeoVolume *clip = CreateClip(clipSize, kFALSE, mgr);
3618
3619 Double_t xL, yL; // leftmost edge of mounting point (XY projection)
3620 Double_t xR, yR; // rightmost edge of mounting point (XY projection)
3621 Double_t xM, yM; // middle point of the segment L-R
3622 Double_t dx, dy; // (xL - xR) and (yL - yR)
3623 Double_t widthLR; // width of the segment L-R
3624 Double_t angle; // stave rotation angle in degrees
d0048cec 3625 Double_t diffWidth; // difference between mounting plane width and
54c9a3d9 3626 // stave width (smaller)
3627 Double_t xPos, yPos; // final translation of the stave
3628 Double_t parMovement; // translation in the LR plane direction
d0048cec 3629
54c9a3d9 3630 staveThickness += fgkGapHalfStave;
d0048cec 3631
54c9a3d9 3632 // loop on staves
3633 Int_t i, iclip = 1;
3634 for (i = 0; i < 6; i++) {
3635 // in debug mode, if this stave is not required, it is skipped
3636 if (!fAddStave[i]) continue;
3637 // retrieve reference points
3638 GetSectorMountingPoints(i, xL, yL, xR, yR);
3639 xM = 0.5 * (xL + xR);
3640 yM = 0.5 * (yL + yR);
3641 dx = xL - xR;
3642 dy = yL - yR;
3643 angle = TMath::ATan2(dy, dx);
3644 widthLR = TMath::Sqrt(dx*dx + dy*dy);
3645 diffWidth = 0.5*(widthLR - staveHeight);
3646 // first, a movement along this plane must be done
3647 // by an amount equal to the width difference
3648 // and then the fixed shift must also be added
3649 parMovement = diffWidth + shift[i];
d0048cec 3650 // due to stave thickness, another movement must be done
54c9a3d9 3651 // in the direction normal to the mounting plane
d0048cec 3652 // which is computed using an internal method, in a reference
3653 // frame where the LR segment has its middle point in the origin
54c9a3d9 3654 // and axes parallel to the master reference frame
3655 if (i == 0) {
d0048cec 3656 ParallelPosition(-0.5*staveThickness, -parMovement, angle,
54c9a3d9 3657 xPos, yPos);
3658 } // end if i==0
3659 if (i == 1) {
d0048cec 3660 ParallelPosition( 0.5*staveThickness, -parMovement, angle,
54c9a3d9 3661 xPos, yPos);
3662 }else {
d0048cec 3663 ParallelPosition( 0.5*staveThickness, parMovement, angle,
54c9a3d9 3664 xPos, yPos);
3665 } // end if i==1
3666 // then we go into the true reference frame
3667 xPos += xM;
3668 yPos += yM;
3ffa185f 3669 xPos += corrX[i];
3670 yPos += corrY[i];
d0048cec 3671 // using the parameters found here, compute the
54c9a3d9 3672 // translation and rotation of this stave:
3673 TGeoRotation *rot = new TGeoRotation(*gGeoIdentity);
3674 if (i == 0 || i == 1) rot->RotateX(180.0);
3675 rot->RotateZ(90.0 + angle * TMath::RadToDeg());
3676 TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot);
3677 if (i == 0 || i == 1) {
3678 moth->AddNode(stave1, i+1, trans);
3679 }else {
3680 moth->AddNode(stave2, i - 1, trans);
3681 if (i != 2) {
3682 // except in the case of stave #2,
3683 // clips must be added, and this is done directly on the sector
3684 Int_t j;
4adcf390 3685 //TArrayD clipSize;
54c9a3d9 3686 TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity);
3687 rotClip->RotateZ(-90.0);
3688 rotClip->RotateX(180.0);
3689 Double_t x = staveSizes2[3] + fgkGapHalfStave;
3690 Double_t y = staveSizes2[4];
d0048cec 3691 Double_t z[4] = { staveSizes2[5], staveSizes2[6],
54c9a3d9 3692 staveSizes2[7], staveSizes2[8] };
3693 for (j = 0; j < 4; j++) {
3694 TGeoCombiTrans *trClip = new TGeoCombiTrans(x, y, z[j],
3695 rotClip);
3696 *trClip = *trans * *trClip;
3697 moth->AddNode(clip, iclip++, trClip);
3698 } // end for j
3699 } // end if i!=2
3700 } // end if i==0||i==1 else
3701 } // end for i
e0b38446 3702
3703
3704 // Add a box representing the collector for cooling tubes
15b84e14 3705 // MOVED TO CreateServices() - M.S. 25 jul 12
e0b38446 3706
592651e2 3707}
54c9a3d9 3708//______________________________________________________________________
bc3498f4 3709void AliITSv11GeometrySPD::ParallelPosition(Double_t dist1, Double_t dist2,
54c9a3d9 3710 Double_t phi, Double_t &x, Double_t &y) const
3711{
3712 //
3713 // Performs the following steps:
d0048cec 3714 // 1 - finds a straight line parallel to the one passing through
54c9a3d9 3715 // the origin and with angle 'phi' with X axis(phi in RADIANS);
d0048cec 3716 // 2 - finds another line parallel to the previous one, with a
54c9a3d9 3717 // distance 'dist1' from it
d0048cec 3718 // 3 - takes a reference point in the second line in the intersection
54c9a3d9 3719 // between the normal to both lines passing through the origin
d0048cec 3720 // 4 - finds a point whith has distance 'dist2' from this reference,
54c9a3d9 3721 // in the second line (point 2)
3722 // ----
d0048cec 3723 // According to the signs given to dist1 and dist2, the point is
54c9a3d9 3724 // found in different position w.r. to the origin
3725 // compute the point
3726 //
3727 Double_t cs = TMath::Cos(phi);
3728 Double_t sn = TMath::Sin(phi);
3729
3730 x = dist2*cs - dist1*sn;
3731 y = dist1*cs + dist2*sn;
592651e2 3732}
54c9a3d9 3733//______________________________________________________________________
3734Double_t AliITSv11GeometrySPD::GetSPDSectorTranslation(
3735 Double_t x0,Double_t y0,Double_t x1,Double_t y1,Double_t r) const
3736{
3737 //
3738 // Comutes the radial translation of a sector to give the
3739 // proper distance between SPD detectors and the beam pipe.
3740 // Units in are units out.
3741 //
3742
3743 //Begin_Html
3744 /*
3745 <A HREF="http://www.physics.ohio-state.edu/HIRG/SoftWareDoc/SPD_Sector_Position.png">
3746 Figure showing the geometry used in the computation below. </A>
3747 */
3748 //End_Html
3749
3750 // Inputs:
3751 // Double_t x0 Point x0 on Sector surface for the inner
3752 // most detector mounting
3753 // Double_t y0 Point y0 on Sector surface for the innor
3754 // most detector mounting
3755 // Double_t x1 Point x1 on Sector surface for the inner
3756 // most detector mounting
3757 // Double_t y1 Point y1 on Sector surface for the innor
3758 // most detector mounting
3759 // Double_t r The radial distance this mounting surface
3760 // should be from the center of the beam pipe.
3761 // Outputs:
3762 // none.
3763 // Return:
3764 // The distance the SPD sector should be displaced radialy.
3765 //
3766 Double_t a,b,c;
3767
3768 a = x0-x1;
3769 if(a==0.0) return 0.0;
3770 a = (y0-y1)/a;
3771 b = TMath::Sqrt(1.0+a*a);
3772 c = y0-a*x0-r*b;
3773 return -c;
3774}
c890eba4 3775
54c9a3d9 3776//______________________________________________________________________
3777void AliITSv11GeometrySPD::PrintAscii(ostream *os) const
3778{
3779 //
bc3498f4 3780 // Print out class data values in Ascii Form to output stream
3781 // Inputs:
3782 // ostream *os Output stream where Ascii data is to be writen
3783 // Outputs:
3784 // none.
3785 // Return:
3786 // none.
54c9a3d9 3787 //
3788 Int_t i,j,k;
bc3498f4 3789#if defined __GNUC__
3790#if __GNUC__ > 2
3791 ios::fmtflags fmt = cout.flags();
3792#else
3793 Int_t fmt;
3794#endif
3795#else
3796#if defined __ICC || defined __ECC || defined __xlC__
3797 ios::fmtflags fmt;
3798#else
3799 Int_t fmt;
3800#endif
3801#endif
54c9a3d9 3802
3803 *os<< fgkGapLadder <<" "<< fgkGapHalfStave<<" "<< 6 <<" ";
3804 for(i=0;i<6;i++) *os<< fAddStave[i] <<" "<<fSPDsectorX0.GetSize();
3805 for(i=0;i<fSPDsectorX0.GetSize();i++) *os<< fSPDsectorX0.GetAt(i) << " ";
3806 for(i=0;i<fSPDsectorX0.GetSize();i++) *os<< fSPDsectorY0.GetAt(i) << " ";
3807 for(i=0;i<fSPDsectorX1.GetSize();i++) *os<< fSPDsectorX1.GetAt(i) << " ";
3808 for(i=0;i<fSPDsectorX1.GetSize();i++) *os<< fSPDsectorY1.GetAt(i) << " ";
3809 *os<<10<<" "<< 2 <<" " << 6 << " "<< 3 <<" ";
d0048cec 3810 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
54c9a3d9 3811 *os<<fTubeEndSector[k][0][i][j]<<" ";
d0048cec 3812 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
54c9a3d9 3813 *os<<fTubeEndSector[k][1][i][j]<<" ";
bc3498f4 3814 os->flags(fmt); // reset back to old Formating.
3815 return;
3816}
3817//
54c9a3d9 3818//______________________________________________________________________
3819void AliITSv11GeometrySPD::ReadAscii(istream* is)
3820{
3821 //
bc3498f4 3822 // Read in class data values in Ascii Form to output stream
3823 // Inputs:
3824 // istream *is Input stream where Ascii data is to be read in from
3825 // Outputs:
3826 // none.
3827 // Return:
3828 // none.
54c9a3d9 3829 //
3830 Int_t i,j,k,n;
43aefea7 3831 Double_t gapLadder,gapHalfStave;
c0fc8108 3832 const Int_t kLimits = 100;
43aefea7 3833 *is>>gapLadder>>gapHalfStave>>n;
54c9a3d9 3834 if(n!=6){
c0fc8108 3835 AliError(Form("fAddStave Array !=6 n=%d",n));
54c9a3d9 3836 return;
3837 } // end if
3838 for(i=0;i<n;i++) *is>>fAddStave[i];
3839 *is>>n;
c0fc8108 3840 if(n<0 || n> kLimits){
3841 AliError("Anomalous value for parameter n");
3842 return;
3843 }
54c9a3d9 3844 fSPDsectorX0.Set(n);
3845 fSPDsectorY0.Set(n);
3846 fSPDsectorX1.Set(n);
3847 fSPDsectorY1.Set(n);
3848 for(i=0;i<n;i++) *is>>fSPDsectorX0[i];
3849 for(i=0;i<n;i++) *is>>fSPDsectorY0[i];
3850 for(i=0;i<n;i++) *is>>fSPDsectorX1[i];
3851 for(i=0;i<n;i++) *is>>fSPDsectorY1[i];
3852 *is>> i>>j>>n;
3853 if(i!=2||j!=6||n!=3){
3854 Warning("ReadAscii","fTubeEndSector array wrong size [2][6][3],"
3855 "found [%d][%d][%d]",i,j,n);
3856 return;
3857 } // end if
d0048cec 3858 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
54c9a3d9 3859 *is>>fTubeEndSector[k][0][i][j];
d0048cec 3860 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
54c9a3d9 3861 *is>>fTubeEndSector[k][1][i][j];
3862 return;
bc3498f4 3863}
3864//
54c9a3d9 3865//______________________________________________________________________
3866ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s)
3867{
3868 //
bc3498f4 3869 // Standard output streaming function
3870 // Inputs:
3871 // ostream &os output steam
3872 // AliITSvPPRasymmFMD &s class to be streamed.
3873 // Output:
3874 // none.
3875 // Return:
3876 // ostream &os The stream pointer
54c9a3d9 3877 //
bc3498f4 3878 s.PrintAscii(&os);
3879 return os;
3880}
3881//
54c9a3d9 3882//______________________________________________________________________
3883istream &operator>>(istream &is,AliITSv11GeometrySPD &s)
3884{
3885 //
bc3498f4 3886 // Standard inputput streaming function
3887 // Inputs:
3888 // istream &is input steam
3889 // AliITSvPPRasymmFMD &s class to be streamed.
3890 // Output:
3891 // none.
3892 // Return:
3893 // ostream &os The stream pointer
54c9a3d9 3894 //
bc3498f4 3895 s.ReadAscii(&is);
3896 return is;
3897}
c890eba4 3898