]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONClusterFinderAZ.cxx
Removed with merging transform/svmap data files in one
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterFinderAZ.cxx
CommitLineData
30178c30 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
1af223d7 18// Clusterizer class developed by A. Zinchenko (Dubna)
0df3ca52 19
ae17f568 20#include <stdlib.h>
0df3ca52 21#include <Riostream.h>
1af223d7 22//#include <TROOT.h>
0df3ca52 23#include <TH2.h>
0df3ca52 24#include <TMinuit.h>
25#include <TMatrixD.h>
26
30178c30 27#include "AliMUONClusterFinderAZ.h"
1af223d7 28#include "AliMUONClusterDrawAZ.h"
0df3ca52 29#include "AliHeader.h"
30#include "AliRun.h"
31#include "AliMUON.h"
1af223d7 32//#include "AliMUONChamber.h"
0df3ca52 33#include "AliMUONDigit.h"
1af223d7 34//#include "AliMUONHit.h"
0df3ca52 35#include "AliMUONRawCluster.h"
36#include "AliMUONClusterInput.h"
37#include "AliMUONPixel.h"
1af223d7 38//#include "AliMC.h"
39//#include "AliMUONLoader.h"
8c343c7c 40#include "AliLog.h"
0df3ca52 41
0df3ca52 42ClassImp(AliMUONClusterFinderAZ)
0558a292 43
343146bf 44 const Double_t AliMUONClusterFinderAZ::fgkCouplMin = 1.e-3; // threshold on coupling
0558a292 45 AliMUONClusterFinderAZ* AliMUONClusterFinderAZ::fgClusterFinder = 0x0;
46 TMinuit* AliMUONClusterFinderAZ::fgMinuit = 0x0;
2b1e4f0e 47//FILE *lun1 = fopen("nxny.dat","w");
0df3ca52 48
0df3ca52 49//_____________________________________________________________________________
1af223d7 50AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(Bool_t draw)
74f7bbc5 51 : AliMUONClusterFinderVS()
0df3ca52 52{
53// Constructor
2b1e4f0e 54 fSegmentation[1] = fSegmentation[0] = 0;
0df3ca52 55 if (!fgClusterFinder) fgClusterFinder = this;
56 if (!fgMinuit) fgMinuit = new TMinuit(8);
0df3ca52 57 fPixArray = new TObjArray(20);
2b1e4f0e 58 fDebug = 0; //0;
1af223d7 59 if (draw) {
60 fDebug = 1;
61 fDraw = new AliMUONClusterDrawAZ(this);
62 }
5a051e34 63 AliWarning("*** Running AZ cluster finder ***");
0df3ca52 64}
65
74f7bbc5 66//_____________________________________________________________________________
67AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(const AliMUONClusterFinderAZ& rhs)
68 : AliMUONClusterFinderVS(rhs)
69{
70// Protected copy constructor
71
8c343c7c 72 AliFatal("Not implemented.");
74f7bbc5 73}
74
0df3ca52 75//_____________________________________________________________________________
76AliMUONClusterFinderAZ::~AliMUONClusterFinderAZ()
77{
78 // Destructor
79 delete fgMinuit; fgMinuit = 0; delete fPixArray; fPixArray = 0;
1af223d7 80 delete fDraw;
0df3ca52 81}
82
83//_____________________________________________________________________________
84void AliMUONClusterFinderAZ::FindRawClusters()
85{
86// To provide the same interface as in AliMUONClusterFinderVS
87
1af223d7 88 ResetRawClusters();
0df3ca52 89 EventLoop (gAlice->GetHeader()->GetEvent(), AliMUONClusterInput::Instance()->Chamber());
90}
91
92//_____________________________________________________________________________
1af223d7 93void AliMUONClusterFinderAZ::EventLoop(Int_t nev, Int_t ch)
0df3ca52 94{
2b1e4f0e 95// Loop over digits
0df3ca52 96
1af223d7 97 if (fDraw && !fDraw->FindEvCh(nev, ch)) return;
0df3ca52 98
2b1e4f0e 99 AliMUON *pMuon = (AliMUON*) gAlice->GetModule("MUON");
100 AliMUONChamber *iChamber = &(pMuon->Chamber(ch));
0df3ca52 101 fResponse = iChamber->ResponseModel();
2b1e4f0e 102 fSegmentation[0] = AliMUONClusterInput::Instance()->Segmentation2(0);
103 fSegmentation[1] = AliMUONClusterInput::Instance()->Segmentation2(1);
104 //AZ fResponse = AliMUONClusterInput::Instance()->Response();
0df3ca52 105
1af223d7 106 Int_t ndigits[2] = {9,9}, nShown[2] = {0};
107 for (Int_t i = 0; i < 2; i++) {
108 for (Int_t j = 0; j < fgkDim; j++) { fUsed[i][j] = kFALSE; }
0df3ca52 109 }
110
111next:
1af223d7 112 if (ndigits[0] == nShown[0] && ndigits[1] == nShown[1]) return;
113
0df3ca52 114 Float_t xpad, ypad, zpad, zpad0;
0df3ca52 115 Bool_t first = kTRUE;
2b1e4f0e 116 if (fDebug) cout << " *** Event # " << nev << " chamber: " << ch << endl;
0df3ca52 117 fnPads[0] = fnPads[1] = 0;
1af223d7 118 for (Int_t i = 0; i < fgkDim; i++) { fPadIJ[1][i] = 0; }
2b1e4f0e 119
1af223d7 120 for (Int_t iii = 0; iii < 2; iii++) {
0df3ca52 121 Int_t cath = TMath::Odd(iii);
1af223d7 122 ndigits[cath] = AliMUONClusterInput::Instance()->NDigits(cath);
2b1e4f0e 123 if (!ndigits[0] && !ndigits[1]) return;
0df3ca52 124 if (ndigits[cath] == 0) continue;
2b1e4f0e 125 if (fDebug) cout << " ndigits: " << ndigits[cath] << " " << cath << endl;
0df3ca52 126
127 AliMUONDigit *mdig;
128 Int_t digit;
129
c1aed84f 130 Bool_t eEOC = kTRUE; // end-of-cluster
0df3ca52 131 for (digit = 0; digit < ndigits[cath]; digit++) {
2b1e4f0e 132 mdig = AliMUONClusterInput::Instance()->Digit(cath,digit);
0df3ca52 133 if (first) {
134 // Find first unused pad
135 if (fUsed[cath][digit]) continue;
5a051e34 136 if (!fSegmentation[cath]->GetPadC(fInput->DetElemId(),mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0)) {
137 // Handle "non-existing" pads
138 fUsed[cath][digit] = kTRUE;
139 continue;
140 }
0df3ca52 141 } else {
142 if (fUsed[cath][digit]) continue;
5a051e34 143 if (!fSegmentation[cath]->GetPadC(fInput->DetElemId(),mdig->PadX(),mdig->PadY(),xpad,ypad,zpad)) {
144 // Handle "non-existing" pads
145 fUsed[cath][digit] = kTRUE;
146 continue;
147 }
2b1e4f0e 148 if (TMath::Abs(zpad-zpad0) > 0.1) continue; // different slats
0df3ca52 149 // Find a pad overlapping with the cluster
150 if (!Overlap(cath,mdig)) continue;
151 }
152 // Add pad - recursive call
153 AddPad(cath,digit);
2b1e4f0e 154 //AZ !!!!!! Temporary fix of St1 overlap regions !!!!!!!!
155 if (cath && ch < 2) {
156 Int_t npads = fnPads[0] + fnPads[1] - 1;
157 Int_t cath1 = fPadIJ[0][npads];
158 Int_t idig = TMath::Nint (fXyq[5][npads]);
159 mdig = AliMUONClusterInput::Instance()->Digit(cath1,idig);
160 fSegmentation[cath1]->GetPadC(fInput->DetElemId(),mdig->PadX(),mdig->PadY(),xpad,ypad,zpad);
161 if (TMath::Abs(zpad-zpad0) > 0.1) zpad0 = zpad;
162 }
c1aed84f 163 eEOC = kFALSE;
0df3ca52 164 if (digit >= 0) break;
165 }
c1aed84f 166 if (first && eEOC) {
0df3ca52 167 // No more unused pads
168 if (cath == 0) continue; // on cathode #0 - check #1
2b1e4f0e 169 else return; // No more clusters
0df3ca52 170 }
c1aed84f 171 if (eEOC) break; // cluster found
0df3ca52 172 first = kFALSE;
2b1e4f0e 173 if (fDebug) cout << " nPads: " << fnPads[cath] << " " << nShown[cath]+fnPads[cath] << " " << cath << endl;
0df3ca52 174 } // for (Int_t iii = 0;
175
2b1e4f0e 176 fZpad = zpad0;
1af223d7 177 if (fDraw) fDraw->DrawCluster();
2b1e4f0e 178
179 // Use MLEM for cluster finder
180 Int_t nMax = 1, localMax[100], maxPos[100];
181 Double_t maxVal[100];
0df3ca52 182
2b1e4f0e 183 if (CheckPrecluster(nShown)) {
184 BuildPixArray();
185 if (fnPads[0]+fnPads[1] > 50) nMax = FindLocalMaxima(localMax, maxVal);
186 if (nMax > 1) TMath::Sort(nMax, maxVal, maxPos, kTRUE); // in decreasing order
187 Int_t iSimple = 0, nInX = -1, nInY;
188 PadsInXandY(nInX, nInY);
189 if (fDebug) cout << "Pads in X and Y: " << nInX << " " << nInY << endl;
5a051e34 190 if (nMax == 1 && nInX < 4 && nInY < 4) iSimple = 1; //1; // simple cluster
2b1e4f0e 191 for (Int_t i=0; i<nMax; i++) {
192 if (nMax > 1) FindCluster(localMax, maxPos[i]);
193 if (!MainLoop(iSimple)) cout << " MainLoop failed " << endl;
194 if (i < nMax-1) {
195 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
196 if (fPadIJ[1][j] == 0) continue; // pad charge was not modified
197 fPadIJ[1][j] = 0;
198 fXyq[2][j] = fXyq[6][j]; // use backup charge value
199 }
200 }
201 }
202 }
1af223d7 203 if (!fDraw || fDraw->Next()) goto next;
0df3ca52 204}
205
206//_____________________________________________________________________________
207void AliMUONClusterFinderAZ::AddPad(Int_t cath, Int_t digit)
208{
209 // Add pad to the cluster
2b1e4f0e 210 AliMUONDigit *mdig = AliMUONClusterInput::Instance()->Digit(cath,digit); //AZ
0df3ca52 211
212 Int_t charge = mdig->Signal();
213 // get the center of the pad
2b1e4f0e 214 Float_t xpad, ypad, zpad0; //, zpad;
5a051e34 215 if (!fSegmentation[cath]->GetPadC(fInput->DetElemId(),mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0)) { // Handle "non-existing" pads
216 fUsed[cath][digit] = kTRUE;
217 return;
218 }
5a051e34 219 Int_t isec = fSegmentation[cath]->Sector(fInput->DetElemId(),mdig->PadX(), mdig->PadY());
0df3ca52 220 Int_t nPads = fnPads[0] + fnPads[1];
221 fXyq[0][nPads] = xpad;
222 fXyq[1][nPads] = ypad;
223 fXyq[2][nPads] = charge;
2b1e4f0e 224 fXyq[3][nPads] = fSegmentation[cath]->Dpx(fInput->DetElemId(),isec)/2;
225 fXyq[4][nPads] = fSegmentation[cath]->Dpy(fInput->DetElemId(),isec)/2;
0df3ca52 226 fXyq[5][nPads] = digit;
2b1e4f0e 227 fXyq[6][nPads] = 0;
0df3ca52 228 fPadIJ[0][nPads] = cath;
229 fPadIJ[1][nPads] = 0;
230 fUsed[cath][digit] = kTRUE;
2b1e4f0e 231 if (fDebug) printf(" bbb %d %d %f %f %f %f %f %d\n", nPads, cath, xpad, ypad, zpad0, fXyq[3][nPads]*2, fXyq[4][nPads]*2, charge);
0df3ca52 232 fnPads[cath]++;
233
234 // Check neighbours
235 Int_t nn, ix, iy, xList[10], yList[10];
236 AliMUONDigit *mdig1;
237
1af223d7 238 Int_t ndigits = AliMUONClusterInput::Instance()->NDigits(cath);
2b1e4f0e 239 fSegmentation[cath]->Neighbours(fInput->DetElemId(),mdig->PadX(),mdig->PadY(),&nn,xList,yList);
0df3ca52 240 for (Int_t in=0; in<nn; in++) {
241 ix=xList[in];
242 iy=yList[in];
243 for (Int_t digit1 = 0; digit1 < ndigits; digit1++) {
244 if (digit1 == digit) continue;
1af223d7 245 mdig1 = AliMUONClusterInput::Instance()->Digit(cath,digit1);
0df3ca52 246 if (!fUsed[cath][digit1] && mdig1->PadX() == ix && mdig1->PadY() == iy) {
2b1e4f0e 247 //AZ--- temporary fix on edges
248 //fSegmentation[cath]->GetPadC(mdig1->PadX(), mdig1->PadY(), xpad, ypad, zpad);
249 //if (TMath::Abs(zpad-zpad0) > 0.5) continue;
250 //AZ---
0df3ca52 251 fUsed[cath][digit1] = kTRUE;
252 // Add pad - recursive call
253 AddPad(cath,digit1);
254 }
255 } //for (Int_t digit1 = 0;
256 } // for (Int_t in=0;
257}
258
259//_____________________________________________________________________________
2b1e4f0e 260Bool_t AliMUONClusterFinderAZ::Overlap(Int_t cath, AliMUONDigit *mdig)
0df3ca52 261{
262 // Check if the pad from one cathode overlaps with a pad
263 // in the precluster on the other cathode
264
0df3ca52 265 Float_t xpad, ypad, zpad;
2b1e4f0e 266 fSegmentation[cath]->GetPadC(fInput->DetElemId(),mdig->PadX(),mdig->PadY(),xpad,ypad,zpad);
267 Int_t isec = fSegmentation[cath]->Sector(fInput->DetElemId(),mdig->PadX(), mdig->PadY());
002920d1 268
2b1e4f0e 269 Float_t xy1[4], xy12[4];
270 xy1[0] = xpad - fSegmentation[cath]->Dpx(fInput->DetElemId(),isec)/2;
271 xy1[1] = xy1[0] + fSegmentation[cath]->Dpx(fInput->DetElemId(),isec);
272 xy1[2] = ypad - fSegmentation[cath]->Dpy(fInput->DetElemId(),isec)/2;
273 xy1[3] = xy1[2] + fSegmentation[cath]->Dpy(fInput->DetElemId(),isec);
0df3ca52 274 //cout << " ok " << fnPads[0]+fnPads[1] << xy1[0] << xy1[1] << xy1[2] << xy1[3] << endl;
275
276 Int_t cath1 = TMath::Even(cath);
277 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
278 if (fPadIJ[0][i] != cath1) continue;
279 if (Overlap(xy1, i, xy12, 0)) return kTRUE;
280 }
281 return kFALSE;
282}
283
284//_____________________________________________________________________________
285Bool_t AliMUONClusterFinderAZ::Overlap(Float_t *xy1, Int_t iPad, Float_t *xy12, Int_t iSkip)
286{
287 // Check if the pads xy1 and iPad overlap and return overlap area
288
289 Float_t xy2[4];
290 xy2[0] = fXyq[0][iPad] - fXyq[3][iPad];
291 xy2[1] = fXyq[0][iPad] + fXyq[3][iPad];
292 if (xy1[0] > xy2[1]-1.e-4 || xy1[1] < xy2[0]+1.e-4) return kFALSE;
293 xy2[2] = fXyq[1][iPad] - fXyq[4][iPad];
294 xy2[3] = fXyq[1][iPad] + fXyq[4][iPad];
295 if (xy1[2] > xy2[3]-1.e-4 || xy1[3] < xy2[2]+1.e-4) return kFALSE;
296 if (!iSkip) return kTRUE; // just check overlap (w/out computing the area)
297 xy12[0] = TMath::Max (xy1[0],xy2[0]);
298 xy12[1] = TMath::Min (xy1[1],xy2[1]);
299 xy12[2] = TMath::Max (xy1[2],xy2[2]);
300 xy12[3] = TMath::Min (xy1[3],xy2[3]);
301 return kTRUE;
302}
303
0df3ca52 304//_____________________________________________________________________________
305Bool_t AliMUONClusterFinderAZ::CheckPrecluster(Int_t *nShown)
306{
307 // Check precluster in order to attempt to simplify it (mostly for
308 // two-cathode preclusters)
309
2b1e4f0e 310 Int_t i1, i2, cath=0, digit=0;
0df3ca52 311 Float_t xy1[4], xy12[4];
312
313 Int_t npad = fnPads[0] + fnPads[1];
2b1e4f0e 314 if (npad == 1) {
315 // Disregard one-pad clusters (leftovers from splitting)
316 nShown[0] += fnPads[0];
317 nShown[1] += fnPads[1];
318 return kFALSE;
319 }
0df3ca52 320
321 // If pads have the same size take average of pads on both cathodes
322 Int_t sameSize = (fnPads[0] && fnPads[1]) ? 1 : 0;
323 if (sameSize) {
324 Double_t xSize = -1, ySize = 0;
325 for (Int_t i=0; i<npad; i++) {
326 if (fXyq[2][i] < 0) continue;
327 if (xSize < 0) { xSize = fXyq[3][i]; ySize = fXyq[4][i]; }
328 if (TMath::Abs(xSize-fXyq[3][i]) > 1.e-4 || TMath::Abs(ySize-fXyq[4][i]) > 1.e-4) { sameSize = 0; break; }
329 }
330 } // if (sameSize)
2b1e4f0e 331 if (sameSize && fnPads[0] == 1 && fnPads[1] == 1) sameSize = 0; //AZ
5a051e34 332 // Handle shift by half a pad in Station 1
333 if (sameSize) {
334 Int_t cath0 = fPadIJ[0][0];
335 for (Int_t i = 1; i < npad; i++) {
336 if (fPadIJ[0][i] == cath0) continue;
337 Double_t dx = TMath::Abs ((fXyq[0][i] - fXyq[0][0]) / fXyq[3][i] / 2);
338 Int_t idx = (Int_t) TMath::Abs ((fXyq[0][i] - fXyq[0][0]) / fXyq[3][i] / 2);
339 if (TMath::Abs (dx - idx) > 0.001) sameSize = 0;
340 break;
341 }
342 } // if (sameSize)
343
2b1e4f0e 344 if (sameSize && (fnPads[0] >= 2 || fnPads[1] >= 2)) {
0df3ca52 345 nShown[0] += fnPads[0];
346 nShown[1] += fnPads[1];
347 fnPads[0] = fnPads[1] = 0;
348 Int_t div;
349 for (Int_t i=0; i<npad; i++) {
350 if (fXyq[2][i] < 0) continue; // used pad
351 fXyq[2][fnPads[0]] = fXyq[2][i];
352 div = 1;
2b1e4f0e 353 cath = fPadIJ[0][i];
0df3ca52 354 for (Int_t j=i+1; j<npad; j++) {
355 if (fPadIJ[0][j] == fPadIJ[0][i]) continue; // same cathode
356 if (TMath::Abs(fXyq[0][j]-fXyq[0][i]) > 1.e-4) continue;
357 if (TMath::Abs(fXyq[1][j]-fXyq[1][i]) > 1.e-4) continue;
358 fXyq[2][fnPads[0]] += fXyq[2][j];
359 div = 2;
360 fXyq[2][j] = -2;
2b1e4f0e 361 if (cath) fXyq[5][fnPads[0]] = fXyq[5][j]; // save digit number for cath 0
0df3ca52 362 break;
363 }
2b1e4f0e 364 // Flag that the digit from the other cathode
365 if (cath && div == 1) fXyq[5][fnPads[0]] = -fXyq[5][i] - 1;
366 // If low pad charge take the other equal to 0
367 if (div == 1 && fXyq[2][fnPads[0]] < fResponse->ZeroSuppression() + 1.5*3) div = 2;
0df3ca52 368 fXyq[2][fnPads[0]] /= div;
369 fXyq[0][fnPads[0]] = fXyq[0][i];
370 fXyq[1][fnPads[0]] = fXyq[1][i];
371 fPadIJ[0][fnPads[0]++] = 0;
372 }
373 } // if (sameSize)
374
375 // Check if one-cathode precluster
376 i1 = fnPads[0]!=0 ? 0 : 1;
377 i2 = fnPads[1]!=0 ? 1 : 0;
378
379 if (i1 != i2) { // two-cathode
380
381 Int_t *flags = new Int_t[npad];
382 for (Int_t i=0; i<npad; i++) { flags[i] = 0; }
383
384 // Check pad overlaps
385 for (Int_t i=0; i<npad; i++) {
386 if (fPadIJ[0][i] != i1) continue;
387 xy1[0] = fXyq[0][i] - fXyq[3][i];
388 xy1[1] = fXyq[0][i] + fXyq[3][i];
389 xy1[2] = fXyq[1][i] - fXyq[4][i];
390 xy1[3] = fXyq[1][i] + fXyq[4][i];
391 for (Int_t j=0; j<npad; j++) {
392 if (fPadIJ[0][j] != i2) continue;
393 if (!Overlap(xy1, j, xy12, 0)) continue;
394 flags[i] = flags[j] = 1; // mark overlapped pads
395 } // for (Int_t j=0;
396 } // for (Int_t i=0;
397
398 // Check if all pads overlap
2b1e4f0e 399 Int_t nFlags=0;
400 for (Int_t i=0; i<npad; i++) {
401 if (flags[i]) continue;
402 nFlags ++;
1af223d7 403 if (fDebug) cout << i << " " << fPadIJ[0][i] << " " << fXyq[0][i] << " " << fXyq[1][i] << endl;
2b1e4f0e 404 }
405 if (fDebug && nFlags) cout << " nFlags = " << nFlags << endl;
0df3ca52 406 //if (nFlags > 2 || (Float_t)nFlags / npad > 0.2) { // why 2 ??? - empirical choice
2b1e4f0e 407 if (nFlags > 1) {
0df3ca52 408 for (Int_t i=0; i<npad; i++) {
409 if (flags[i]) continue;
410 digit = TMath::Nint (fXyq[5][i]);
411 cath = fPadIJ[0][i];
1af223d7 412 // Check for edge effect (missing pads on the other cathode)
413 Int_t cath1 = TMath::Even(cath), ix, iy;
414 if (!fSegmentation[cath1]->GetPadI(fInput->DetElemId(),fXyq[0][i],fXyq[1][i],fZpad,ix,iy)) continue;
0df3ca52 415 fUsed[cath][digit] = kFALSE; // release pad
416 fXyq[2][i] = -2;
417 fnPads[cath]--;
418 }
419 } // if (nFlags > 2)
420
421 // Check correlations of cathode charges
422 if (fnPads[0] && fnPads[1]) { // two-cathode
423 Double_t sum[2]={0};
424 Int_t over[2] = {1, 1};
425 for (Int_t i=0; i<npad; i++) {
426 cath = fPadIJ[0][i];
427 if (fXyq[2][i] > 0) sum[cath] += fXyq[2][i];
2b1e4f0e 428 //AZ if (fXyq[2][i] > fResponse->MaxAdc()-1) over[cath] = 0;
429 if (fXyq[2][i] > fResponse->Saturation()-1) over[cath] = 0;
0df3ca52 430 }
2b1e4f0e 431 if (fDebug) cout << " Total charge: " << sum[0] << " " << sum[1] << endl;
0df3ca52 432 if ((over[0] || over[1]) && TMath::Abs(sum[0]-sum[1])/(sum[0]+sum[1])*2 > 1) { // 3 times difference
2b1e4f0e 433 if (fDebug) cout << " Release " << endl;
0df3ca52 434 // Big difference
435 cath = sum[0]>sum[1] ? 0 : 1;
436 Int_t imax = 0;
437 Double_t cmax=-1;
438 Double_t *dist = new Double_t[npad];
439 for (Int_t i=0; i<npad; i++) {
440 if (fPadIJ[0][i] != cath) continue;
441 if (fXyq[2][i] < cmax) continue;
442 cmax = fXyq[2][i];
443 imax = i;
444 }
445 // Arrange pads according to their distance to the max,
446 // normalized to the pad size
447 for (Int_t i=0; i<npad; i++) {
448 dist[i] = 0;
449 if (fPadIJ[0][i] != cath) continue;
450 if (i == imax) continue;
451 if (fXyq[2][i] < 0) continue;
452 dist[i] = (fXyq[0][i]-fXyq[0][imax])*(fXyq[0][i]-fXyq[0][imax])/
453 fXyq[3][imax]/fXyq[3][imax]/4;
454 dist[i] += (fXyq[1][i]-fXyq[1][imax])*(fXyq[1][i]-fXyq[1][imax])/
455 fXyq[4][imax]/fXyq[4][imax]/4;
456 dist[i] = TMath::Sqrt (dist[i]);
457 }
458 TMath::Sort(npad, dist, flags, kFALSE); // in increasing order
459 Int_t indx;
460 Double_t xmax = -1;
461 for (Int_t i=0; i<npad; i++) {
462 indx = flags[i];
463 if (fPadIJ[0][indx] != cath) continue;
464 if (fXyq[2][indx] < 0) continue;
465 if (fXyq[2][indx] <= cmax || TMath::Abs(dist[indx]-xmax)<1.e-3) {
466 // Release pads
467 if (TMath::Abs(dist[indx]-xmax)<1.e-3)
cd747ddb 468 cmax = TMath::Max((Double_t)(fXyq[2][indx]),cmax);
0df3ca52 469 else cmax = fXyq[2][indx];
470 xmax = dist[indx];
471 digit = TMath::Nint (fXyq[5][indx]);
472 fUsed[cath][digit] = kFALSE;
473 fXyq[2][indx] = -2;
474 fnPads[cath]--;
475 // xmax = dist[i]; // Bug?
2b1e4f0e 476 } else {
477 // Check pad overlaps once more
478 for (Int_t i=0; i<npad; i++) flags[i] = 0;
479 for (Int_t i=0; i<npad; i++) {
480 if (fXyq[2][i] < 0) continue;
481 if (fPadIJ[0][i] != i1) continue;
482 xy1[0] = fXyq[0][i] - fXyq[3][i];
483 xy1[1] = fXyq[0][i] + fXyq[3][i];
484 xy1[2] = fXyq[1][i] - fXyq[4][i];
485 xy1[3] = fXyq[1][i] + fXyq[4][i];
486 for (Int_t j=0; j<npad; j++) {
487 if (fXyq[2][j] < 0) continue;
488 if (fPadIJ[0][j] != i2) continue;
489 if (!Overlap(xy1, j, xy12, 0)) continue;
490 flags[i] = flags[j] = 1; // mark overlapped pads
491 } // for (Int_t j=0;
492 } // for (Int_t i=0;
493 nFlags=0;
494 for (Int_t i=0; i<npad; i++) {
495 if (fXyq[2][i] < 0 || flags[i]) continue;
496 nFlags ++;
497 }
498 if (nFlags == fnPads[0] + fnPads[1]) {
499 // No overlap
500 for (Int_t i=0; i<npad; i++) {
501 if (fXyq[2][i] < 0 || fPadIJ[0][i] != cath) continue;
502 fXyq[2][i] = -2;
503 fnPads[cath]--;
504 }
505 }
506 break;
0df3ca52 507 }
0df3ca52 508 }
509 delete [] dist; dist = 0;
510 } // TMath::Abs(sum[0]-sum[1])...
511 } // if (fnPads[0] && fnPads[1])
512 delete [] flags; flags = 0;
513 } // if (i1 != i2)
514
515 if (!sameSize) { nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; }
516
517 // Move released pads to the right
518 Int_t beg = 0, end = npad-1, padij;
519 Double_t xyq;
520 while (beg < end) {
521 if (fXyq[2][beg] > 0) { beg++; continue; }
522 for (Int_t j=end; j>beg; j--) {
523 if (fXyq[2][j] < 0) continue;
524 end = j - 1;
525 for (Int_t j1=0; j1<2; j1++) {
526 padij = fPadIJ[j1][beg];
527 fPadIJ[j1][beg] = fPadIJ[j1][j];
528 fPadIJ[j1][j] = padij;
529 }
530 for (Int_t j1=0; j1<6; j1++) {
531 xyq = fXyq[j1][beg];
532 fXyq[j1][beg] = fXyq[j1][j];
533 fXyq[j1][j] = xyq;
534 }
535 break;
536 } // for (Int_t j=end;
537 beg++;
538 } // while
539 npad = fnPads[0] + fnPads[1];
2b1e4f0e 540 if (npad > 500) { cout << " ***** Too large cluster. Give up. " << npad << endl; return kFALSE; }
0df3ca52 541 // Back up charge value
1af223d7 542 for (Int_t j = 0; j < npad; j++) fXyq[6][j] = fXyq[2][j];
0df3ca52 543
544 return kTRUE;
545}
546
547//_____________________________________________________________________________
548void AliMUONClusterFinderAZ::BuildPixArray()
549{
550 // Build pixel array for MLEM method
551
552 Int_t nPix=0, i1, i2;
553 Float_t xy1[4], xy12[4];
554 AliMUONPixel *pixPtr=0;
555
556 Int_t npad = fnPads[0] + fnPads[1];
557
558 // One cathode is empty
559 i1 = fnPads[0]!=0 ? 0 : 1;
560 i2 = fnPads[1]!=0 ? 1 : 0;
561
562 // Build array of pixels on anode plane
563 if (i1 == i2) { // one-cathode precluster
564 for (Int_t j=0; j<npad; j++) {
565 pixPtr = new AliMUONPixel();
566 for (Int_t i=0; i<2; i++) {
567 pixPtr->SetCoord(i, fXyq[i][j]); // pixel coordinates
568 pixPtr->SetSize(i, fXyq[i+3][j]); // pixel size
569 }
570 pixPtr->SetCharge(fXyq[2][j]); // charge
571 fPixArray->Add((TObject*)pixPtr);
572 nPix++;
573 }
574 } else { // two-cathode precluster
5a051e34 575 i1 = fPadIJ[0][0];
576 i2 = TMath::Even (i1);
577 for (Int_t i = 0; i < npad; i++) {
0df3ca52 578 if (fPadIJ[0][i] != i1) continue;
579 xy1[0] = fXyq[0][i] - fXyq[3][i];
580 xy1[1] = fXyq[0][i] + fXyq[3][i];
581 xy1[2] = fXyq[1][i] - fXyq[4][i];
582 xy1[3] = fXyq[1][i] + fXyq[4][i];
5a051e34 583 for (Int_t j = 1; j < npad; j++) {
0df3ca52 584 if (fPadIJ[0][j] != i2) continue;
585 if (!Overlap(xy1, j, xy12, 1)) continue;
586 pixPtr = new AliMUONPixel();
587 for (Int_t k=0; k<2; k++) {
588 pixPtr->SetCoord(k, (xy12[2*k]+xy12[2*k+1])/2); // pixel coordinates
589 pixPtr->SetSize(k, xy12[2*k+1]-pixPtr->Coord(k)); // size
590 }
591 pixPtr->SetCharge(TMath::Min (fXyq[2][i],fXyq[2][j])); //charge
592 fPixArray->Add((TObject*)pixPtr);
2b1e4f0e 593 //cout << nPix << " " << pixPtr->Coord(0) << " " << pixPtr->Size(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(1) << " " << pixPtr->Charge() << endl;
0df3ca52 594 nPix++;
595 } // for (Int_t j=0;
596 } // for (Int_t i=0;
597 } // else
598
5a051e34 599 Float_t xPadMin = 999, yPadMin = 999;
600 for (Int_t i = 0; i < npad; i++) {
601 xPadMin = TMath::Min (xPadMin, fXyq[3][i]);
602 yPadMin = TMath::Min (yPadMin, fXyq[4][i]);
603 }
604 if (fDebug) cout << xPadMin << " " << yPadMin << endl;
605
606 Float_t wxmin = 999, wymin = 999;
607 for (Int_t i = 0; i < nPix; i++) {
608 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
609 wxmin = TMath::Min ((Double_t)wxmin, pixPtr->Size(0));
610 wymin = TMath::Min ((Double_t)wymin, pixPtr->Size(1));
0df3ca52 611 }
2b1e4f0e 612 if (fDebug) cout << wxmin << " " << wymin << endl;
5a051e34 613 wxmin = TMath::Abs (wxmin - xPadMin/2) > 0.001 ? xPadMin : xPadMin / 2;
614 wymin = TMath::Abs (wymin - yPadMin/2) > 0.001 ? yPadMin : yPadMin / 2;
615 //wxmin = xPadMin; wymin = yPadMin;
0df3ca52 616
617 // Check if small pixel X-size
2b1e4f0e 618 AdjustPixel(wxmin, 0);
0df3ca52 619 // Check if small pixel Y-size
2b1e4f0e 620 AdjustPixel(wymin, 1);
0df3ca52 621 // Check if large pixel size
2b1e4f0e 622 AdjustPixel(wxmin, wymin);
0df3ca52 623
624 // Remove discarded pixels
625 for (Int_t i=0; i<nPix; i++) {
626 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
627 //pixPtr->Print();
628 if (pixPtr->Charge() < 1) { fPixArray->RemoveAt(i); delete pixPtr; }// discarded pixel
629 }
630 fPixArray->Compress();
631 nPix = fPixArray->GetEntriesFast();
632
633 if (nPix > npad) {
2b1e4f0e 634 if (fDebug) cout << nPix << endl;
0df3ca52 635 // Too many pixels - sort and remove pixels with the lowest signal
636 fPixArray->Sort();
637 for (Int_t i=npad; i<nPix; i++) {
638 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
639 //pixPtr->Print();
640 fPixArray->RemoveAt(i);
641 delete pixPtr;
642 }
643 nPix = npad;
644 } // if (nPix > npad)
645
646 // Set pixel charges to the same value (for MLEM)
647 for (Int_t i=0; i<nPix; i++) {
648 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
649 //pixPtr->SetCharge(10);
2b1e4f0e 650 if (fDebug) cout << i+1 << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(0) << " " << pixPtr->Size(1) << endl;
0df3ca52 651 }
652}
653
654//_____________________________________________________________________________
2b1e4f0e 655void AliMUONClusterFinderAZ::AdjustPixel(Float_t width, Int_t ixy)
0df3ca52 656{
2b1e4f0e 657 // Check if some pixels have small size (adjust if necessary)
0df3ca52 658
659 AliMUONPixel *pixPtr, *pixPtr1 = 0;
660 Int_t ixy1 = TMath::Even(ixy);
661 Int_t nPix = fPixArray->GetEntriesFast();
662
663 for (Int_t i=0; i<nPix; i++) {
664 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
665 if (pixPtr->Charge() < 1) continue; // discarded pixel
666 if (pixPtr->Size(ixy)-width < -1.e-4) {
667 // try to merge
2b1e4f0e 668 if (fDebug) cout << i << " Small X or Y: " << ixy << " " << pixPtr->Size(ixy) << " " << width << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << endl;
0df3ca52 669 for (Int_t j=i+1; j<nPix; j++) {
670 pixPtr1 = (AliMUONPixel*) fPixArray->UncheckedAt(j);
671 if (pixPtr1->Charge() < 1) continue; // discarded pixel
672 if (TMath::Abs(pixPtr1->Size(ixy)-width) < 1.e-4) continue; // right size
673 if (TMath::Abs(pixPtr1->Coord(ixy1)-pixPtr->Coord(ixy1)) > 1.e-4) continue; // different rows/columns
674 if (TMath::Abs(pixPtr1->Coord(ixy)-pixPtr->Coord(ixy)) < 2*width) {
675 // merge
2b1e4f0e 676 //AZ-problem in slats for new segment. pixPtr->SetCoord(ixy, (pixPtr->Coord(ixy)+pixPtr1->Coord(ixy))/2);
677 Double_t tmp = pixPtr->Coord(ixy) + pixPtr1->Size(ixy) *
678 TMath::Sign (1., pixPtr1->Coord(ixy) - pixPtr->Coord(ixy));
679 pixPtr->SetCoord(ixy, tmp);
0df3ca52 680 pixPtr->SetSize(ixy, width);
0df3ca52 681 pixPtr->SetCharge(TMath::Min (pixPtr->Charge(),pixPtr1->Charge()));
682 pixPtr1->SetCharge(0);
683 pixPtr1 = 0;
684 break;
685 }
686 } // for (Int_t j=i+1;
687 //if (!pixPtr1) { cout << " I am here!" << endl; pixPtr->SetSize(ixy, width); } // ???
688 //else if (pixPtr1->Charge() > 0.5 || i == nPix-1) {
689 if (pixPtr1 || i == nPix-1) {
690 // edge pixel - just increase its size
2b1e4f0e 691 if (fDebug) cout << " Edge ..." << endl;
0df3ca52 692 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2b1e4f0e 693 //if (fPadIJ[0][j] != ixy1) continue;
5a051e34 694 //???-check if (TMath::Abs(pixPtr->Coord(ixy1)-fXyq[ixy1][j]) > 1.e-4) continue;
0df3ca52 695 if (pixPtr->Coord(ixy) < fXyq[ixy][j])
2b1e4f0e 696 //pixPtr->Shift(ixy, -pixPtr->Size(ixy));
697 pixPtr->Shift(ixy, pixPtr->Size(ixy)-width);
698 //else pixPtr->Shift(ixy, pixPtr->Size(ixy));
699 else pixPtr->Shift(ixy, -pixPtr->Size(ixy)+width);
0df3ca52 700 pixPtr->SetSize(ixy, width);
701 break;
702 }
703 }
704 } // if (pixPtr->Size(ixy)-width < -1.e-4)
705 } // for (Int_t i=0; i<nPix;
706 return;
707}
708
709//_____________________________________________________________________________
2b1e4f0e 710void AliMUONClusterFinderAZ::AdjustPixel(Float_t wxmin, Float_t wymin)
0df3ca52 711{
2b1e4f0e 712 // Check if some pixels have large size (adjust if necessary)
0df3ca52 713
714 Int_t nx, ny;
715 Int_t nPix = fPixArray->GetEntriesFast();
716 AliMUONPixel *pixPtr, *pixPtr1, pix;
717
718 // Check if large pixel size
719 for (Int_t i=0; i<nPix; i++) {
720 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
721 if (pixPtr->Charge() < 1) continue; // discarded pixel
722 if (pixPtr->Size(0)-wxmin > 1.e-4 || pixPtr->Size(1)-wymin > 1.e-4) {
2b1e4f0e 723 if (fDebug) cout << " Different " << pixPtr->Size(0) << " " << wxmin << " " << pixPtr->Size(1) << " " << wymin << endl;
0df3ca52 724 pix = *pixPtr;
725 nx = TMath::Nint (pix.Size(0)/wxmin);
726 ny = TMath::Nint (pix.Size(1)/wymin);
727 pix.Shift(0, -pix.Size(0)-wxmin);
728 pix.Shift(1, -pix.Size(1)-wymin);
729 pix.SetSize(0, wxmin);
730 pix.SetSize(1, wymin);
731 for (Int_t ii=0; ii<nx; ii++) {
732 pix.Shift(0, wxmin*2);
733 for (Int_t jj=0; jj<ny; jj++) {
734 pix.Shift(1, wymin*2);
735 pixPtr1 = new AliMUONPixel(pix);
736 fPixArray->Add((TObject*)pixPtr1);
737 }
738 }
739 pixPtr->SetCharge(0);
740 }
741 } // for (Int_t i=0; i<nPix;
742 return;
743}
744
745//_____________________________________________________________________________
2b1e4f0e 746Bool_t AliMUONClusterFinderAZ::MainLoop(Int_t iSimple)
0df3ca52 747{
748 // Repeat MLEM algorithm until pixel size becomes sufficiently small
749
750 TH2D *mlem;
751
752 Int_t ix, iy;
753 //Int_t nn, xList[10], yList[10];
754 Int_t nPix = fPixArray->GetEntriesFast();
0df3ca52 755 AliMUONPixel *pixPtr = 0;
756 Double_t *coef = 0, *probi = 0;
2b1e4f0e 757 AddVirtualPad(); // add virtual pads if necessary
758 Int_t npadTot = fnPads[0] + fnPads[1], npadOK = 0;
1af223d7 759 for (Int_t i = 0; i < npadTot; i++) if (fPadIJ[1][i] == 0) npadOK++;
760 if (fDraw) fDraw->ResetMuon();
0df3ca52 761
762 while (1) {
763
764 mlem = (TH2D*) gROOT->FindObject("mlem");
765 if (mlem) mlem->Delete();
766 // Calculate coefficients
2b1e4f0e 767 if (fDebug) cout << " nPix, npadTot, npadOK " << nPix << " " << npadTot << " " << npadOK << endl;
0df3ca52 768
769 // Calculate coefficients and pixel visibilities
770 coef = new Double_t [npadTot*nPix];
771 probi = new Double_t [nPix];
2b1e4f0e 772 for (Int_t ipix=0; ipix<nPix; ipix++) probi[ipix] = 0;
773 Int_t indx = 0, indx1 = 0, cath = 0;
774
775 for (Int_t j=0; j<npadTot; j++) {
776 indx = j*nPix;
777 if (fPadIJ[1][j] == 0) {
0df3ca52 778 cath = fPadIJ[0][j];
2b1e4f0e 779 fSegmentation[cath]->GetPadI(fInput->DetElemId(),fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
780 fSegmentation[cath]->SetPad(fInput->DetElemId(),ix,iy);
781 /*
782 fSegmentation[cath]->Neighbours(fInput->DetElemId(),ix,iy,&nn,xList,yList);
783 if (nn != 4) {
784 cout << nn << ": ";
785 for (Int_t i=0; i<nn; i++) {cout << xList[i] << " " << yList[i] << ", ";}
786 cout << endl;
787 }
788 */
789 }
790
791 for (Int_t ipix=0; ipix<nPix; ipix++) {
792 indx1 = indx + ipix;
793 if (fPadIJ[1][j] < 0) { coef[indx1] = 0; continue; }
794 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
795 fSegmentation[cath]->SetHit(fInput->DetElemId(),pixPtr->Coord(0),pixPtr->Coord(1),fZpad);
796 coef[indx1] = fResponse->IntXY(fInput->DetElemId(),fSegmentation[cath]);
797 probi[ipix] += coef[indx1];
798 } // for (Int_t ipix=0;
799 } // for (Int_t j=0;
800 for (Int_t ipix=0; ipix<nPix; ipix++) if (probi[ipix] < 0.01) pixPtr->SetCharge(0); // "invisible" pixel
0df3ca52 801
802 // MLEM algorithm
2b1e4f0e 803 Mlem(coef, probi, 15);
0df3ca52 804
cd747ddb 805 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 806 for (Int_t ipix=0; ipix<nPix; ipix++) {
807 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
808 for (Int_t i=0; i<4; i++)
809 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
810 //cout << ipix+1; pixPtr->Print();
811 }
812 for (Int_t i=0; i<4; i++) {
2b1e4f0e 813 xylim[i] -= pixPtr->Size(i/2); if (fDebug) cout << (i%2 ? -1 : 1)*xylim[i] << " "; }
814 if (fDebug) cout << endl;
0df3ca52 815
2b1e4f0e 816 // Adjust histogram to approximately the same limits as for the pads
0df3ca52 817 // (for good presentation)
1af223d7 818 if (fDraw) fDraw->AdjustHist(xylim, pixPtr);
819
0df3ca52 820 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
821 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
2b1e4f0e 822
0df3ca52 823 mlem = new TH2D("mlem","mlem",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
824 for (Int_t ipix=0; ipix<nPix; ipix++) {
825 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
826 mlem->Fill(pixPtr->Coord(0),pixPtr->Coord(1),pixPtr->Charge());
827 }
1af223d7 828 if (fDraw) fDraw->DrawHist("c2", mlem);
0df3ca52 829
830 // Check if the total charge of pixels is too low
831 Double_t qTot = 0;
832 for (Int_t i=0; i<nPix; i++) {
833 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
834 qTot += pixPtr->Charge();
835 }
1af223d7 836 //AZ if (qTot < 1.e-4 || npadOK < 3 && qTot < 50) {
2b1e4f0e 837 if (qTot < 1.e-4 || npadOK < 3 && qTot < 7) {
0df3ca52 838 delete [] coef; delete [] probi; coef = 0; probi = 0;
839 fPixArray->Delete();
2b1e4f0e 840 for (Int_t i=0; i<npadTot; i++) if (fPadIJ[1][i] == 0) fPadIJ[1][i] = -1;
0df3ca52 841 return kFALSE;
842 }
843
844 // Plot data - expectation
845 /*
846 Double_t x, y, cont;
847 for (Int_t j=0; j<npadTot; j++) {
848 Double_t sum1 = 0;
849 for (Int_t i=0; i<nPix; i++) {
850 // Caculate expectation
851 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
852 sum1 += pixPtr->Charge()*coef[j*nPix+i];
853 }
2b1e4f0e 854 //AZsum1 = TMath::Min (sum1,(Double_t)fResponse->MaxAdc());
855 sum1 = TMath::Min (sum1,(Double_t)fResponse->Saturation());
0df3ca52 856 x = fXyq[0][j];
857 y = fXyq[1][j];
858 cath = fPadIJ[0][j];
859 Int_t ihist = cath*2;
860 ix = fHist[ihist]->GetXaxis()->FindBin(x);
861 iy = fHist[ihist]->GetYaxis()->FindBin(y);
862 cont = fHist[ihist]->GetCellContent(ix,iy);
863 if (cont == 0 && fHist[ihist+1]) {
864 ihist += 1;
865 ix = fHist[ihist]->GetXaxis()->FindBin(x);
866 iy = fHist[ihist]->GetYaxis()->FindBin(y);
867 }
868 fHist[ihist]->SetBinContent(ix,iy,fXyq[2][j]-sum1);
869 }
870 ((TCanvas*)gROOT->FindObject("c1"))->cd(1);
871 //gPad->SetTheta(55);
872 //gPad->SetPhi(30);
873 //mlem->Draw("lego1");
874 gPad->Modified();
875 ((TCanvas*)gROOT->FindObject("c1"))->cd(2);
876 gPad->Modified();
877 */
878
2b1e4f0e 879 if (iSimple) {
880 // Simple cluster - skip further passes thru EM-procedure
1af223d7 881 //fxyMu[0][6] = fxyMu[1][6] = 9999;
2b1e4f0e 882 Simple();
883 delete [] coef; delete [] probi; coef = 0; probi = 0;
884 fPixArray->Delete();
885 return kTRUE;
886 }
887
0df3ca52 888 // Calculate position of the center-of-gravity around the maximum pixel
889 Double_t xyCOG[2];
890 FindCOG(mlem, xyCOG);
891
892 if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.07 && pixPtr->Size(0) > pixPtr->Size(1)) break;
2b1e4f0e 893 //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.007 && pixPtr->Size(0) > pixPtr->Size(1)) break;
0df3ca52 894 //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) >= 0.07 || pixPtr->Size(0) < pixPtr->Size(1)) {
895 // Sort pixels according to the charge
896 fPixArray->Sort();
897 /*
898 for (Int_t i=0; i<nPix; i++) {
899 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
900 cout << i+1; pixPtr->Print();
901 }
902 */
903 Double_t pixMin = 0.01*((AliMUONPixel*)fPixArray->UncheckedAt(0))->Charge();
904 pixMin = TMath::Min (pixMin,50.);
905
906 // Decrease pixel size and shift pixels to make them centered at
907 // the maximum one
908 indx = (pixPtr->Size(0)>pixPtr->Size(1)) ? 0 : 1;
909 Double_t width = 0, shift[2]={0};
910 ix = 1;
911 for (Int_t i=0; i<4; i++) xylim[i] = 999;
912 Int_t nPix1 = nPix; nPix = 0;
913 for (Int_t ipix=0; ipix<nPix1; ipix++) {
914 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
915 if (nPix >= npadOK) { // too many pixels already
916 fPixArray->RemoveAt(ipix);
917 delete pixPtr;
918 continue;
919 }
920 if (pixPtr->Charge() < pixMin) { // low charge
921 fPixArray->RemoveAt(ipix);
922 delete pixPtr;
923 continue;
924 }
925 for (Int_t i=0; i<2; i++) {
926 if (!i) {
927 pixPtr->SetCharge(10);
928 pixPtr->SetSize(indx, pixPtr->Size(indx)/2);
929 width = -pixPtr->Size(indx);
930 pixPtr->Shift(indx, width);
931 // Shift pixel position
932 if (ix) {
933 ix = 0;
934 for (Int_t j=0; j<2; j++) {
935 shift[j] = pixPtr->Coord(j) - xyCOG[j];
936 shift[j] -= ((Int_t)(shift[j]/pixPtr->Size(j)/2))*pixPtr->Size(j)*2;
937 }
938 //cout << ipix << " " << i << " " << shift[0] << " " << shift[1] << endl;
939 } // if (ix)
940 pixPtr->Shift(0, -shift[0]);
941 pixPtr->Shift(1, -shift[1]);
942 } else {
943 pixPtr = new AliMUONPixel(*pixPtr);
944 pixPtr->Shift(indx, -2*width);
945 fPixArray->Add((TObject*)pixPtr);
946 } // else
947 //pixPtr->Print();
948 for (Int_t i=0; i<4; i++)
949 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
950 } // for (Int_t i=0; i<2;
951 nPix += 2;
952 } // for (Int_t ipix=0;
953
954 fPixArray->Compress();
955 nPix = fPixArray->GetEntriesFast();
956
957 // Remove excessive pixels
958 if (nPix > npadOK) {
959 for (Int_t ipix=npadOK; ipix<nPix; ipix++) {
960 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
961 fPixArray->RemoveAt(ipix);
962 delete pixPtr;
963 }
964 } else {
965 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(0);
966 // add pixels if the maximum is at the limit of pixel area
967 // start from Y-direction
968 Int_t j = 0;
969 for (Int_t i=3; i>-1; i--) {
970 if (nPix < npadOK &&
971 TMath::Abs((i%2 ? -1 : 1)*xylim[i]-xyCOG[i/2]) < pixPtr->Size(i/2)) {
972 pixPtr = new AliMUONPixel(*pixPtr);
973 pixPtr->SetCoord(i/2, xyCOG[i/2]+(i%2 ? 2:-2)*pixPtr->Size(i/2));
974 j = TMath::Even (i/2);
975 pixPtr->SetCoord(j, xyCOG[j]);
976 fPixArray->Add((TObject*)pixPtr);
977 nPix++;
978 }
979 }
980 } // else
981
982 fPixArray->Compress();
983 nPix = fPixArray->GetEntriesFast();
984 delete [] coef; delete [] probi; coef = 0; probi = 0;
985 } // while (1)
986
987 // remove pixels with low signal or low visibility
988 // Cuts are empirical !!!
989 Double_t thresh = TMath::Max (mlem->GetMaximum()/100.,1.);
990 thresh = TMath::Min (thresh,50.);
991 Double_t cmax = -1, charge = 0;
992 for (Int_t i=0; i<nPix; i++) cmax = TMath::Max (cmax,probi[i]);
2b1e4f0e 993 //cout << thresh << " " << cmax << " " << cmax*0.9 << endl;
0df3ca52 994 // Mark pixels which should be removed
995 for (Int_t i=0; i<nPix; i++) {
996 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
997 charge = pixPtr->Charge();
998 if (charge < thresh) pixPtr->SetCharge(-charge);
2b1e4f0e 999 //else if (cmax > 1.91) {
1000 // if (probi[i] < 1.9) pixPtr->SetCharge(-charge);
1001 //}
1002 //AZ else if (probi[i] < cmax*0.9) pixPtr->SetCharge(-charge);
1003 else if (probi[i] < cmax*0.8) pixPtr->SetCharge(-charge);
1004 //cout << i << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << charge << " " << probi[i] << endl;
0df3ca52 1005 }
1006 // Move charge of removed pixels to their nearest neighbour (to keep total charge the same)
1007 Int_t near = 0;
1008 for (Int_t i=0; i<nPix; i++) {
1009 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1010 charge = pixPtr->Charge();
1011 if (charge > 0) continue;
1012 near = FindNearest(pixPtr);
1013 pixPtr->SetCharge(0);
2b1e4f0e 1014 probi[i] = 0; // make it "invisible"
0df3ca52 1015 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(near);
2b1e4f0e 1016 pixPtr->SetCharge(pixPtr->Charge() + (-charge));
0df3ca52 1017 }
2b1e4f0e 1018 Mlem(coef,probi,2);
0df3ca52 1019 // Update histogram
1020 for (Int_t i=0; i<nPix; i++) {
1021 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1022 ix = mlem->GetXaxis()->FindBin(pixPtr->Coord(0));
1023 iy = mlem->GetYaxis()->FindBin(pixPtr->Coord(1));
1024 mlem->SetBinContent(ix, iy, pixPtr->Charge());
1025 }
1af223d7 1026 if (fDraw) fDraw->DrawHist("c2", mlem);
0df3ca52 1027
1af223d7 1028 //fxyMu[0][6] = fxyMu[1][6] = 9999;
0df3ca52 1029 // Try to split into clusters
1030 Bool_t ok = kTRUE;
1031 if (mlem->GetSum() < 1) ok = kFALSE;
1032 else Split(mlem, coef);
1033 delete [] coef; delete [] probi; coef = 0; probi = 0;
1034 fPixArray->Delete();
1035 return ok;
1036}
1037
1038//_____________________________________________________________________________
2b1e4f0e 1039void AliMUONClusterFinderAZ::Mlem(Double_t *coef, Double_t *probi, Int_t nIter)
0df3ca52 1040{
1041 // Use MLEM to find pixel charges
1042
1043 Int_t nPix = fPixArray->GetEntriesFast();
1044 Int_t npad = fnPads[0] + fnPads[1];
1045 Double_t *probi1 = new Double_t [nPix];
2b1e4f0e 1046 Double_t probMax = 0;
0df3ca52 1047 Int_t indx, indx1;
1048 AliMUONPixel *pixPtr;
1049
2b1e4f0e 1050 for (Int_t ipix=0; ipix<nPix; ipix++) if (probi[ipix] > probMax) probMax = probi[ipix];
1051 for (Int_t iter=0; iter<nIter; iter++) {
0df3ca52 1052 // Do iterations
1053 for (Int_t ipix=0; ipix<nPix; ipix++) {
1054 // Correct each pixel
1055 if (probi[ipix] < 0.01) continue; // skip "invisible" pixel
1056 Double_t sum = 0;
2b1e4f0e 1057 //probi1[ipix] = probi[ipix];
1058 probi1[ipix] = probMax;
0df3ca52 1059 for (Int_t j=0; j<npad; j++) {
1060 if (fPadIJ[1][j] < 0) continue;
1061 Double_t sum1 = 0;
1062 indx1 = j*nPix;
1063 indx = indx1 + ipix;
1064 for (Int_t i=0; i<nPix; i++) {
1065 // Caculate expectation
1066 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1067 sum1 += pixPtr->Charge()*coef[indx1+i];
1068 } // for (Int_t i=0;
2b1e4f0e 1069 //AZ if (fXyq[2][j] > fResponse->MaxAdc()-1 && sum1 > fResponse->MaxAdc()) { probi1[ipix] -= coef[indx]; continue; } // correct for pad charge overflows
1070 if (fXyq[2][j] > fResponse->Saturation()-1 && sum1 > fResponse->Saturation()) { probi1[ipix] -= coef[indx]; continue; } // correct for pad charge overflows
0df3ca52 1071 //cout << sum1 << " " << fXyq[2][j] << " " << coef[j*nPix+ipix] << endl;
1072 if (coef[indx] > 1.e-6) sum += fXyq[2][j]*coef[indx]/sum1;
1073 } // for (Int_t j=0;
1074 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1075 if (probi1[ipix] > 1.e-6) pixPtr->SetCharge(pixPtr->Charge()*sum/probi1[ipix]);
1076 } // for (Int_t ipix=0;
1077 } // for (Int_t iter=0;
1078 delete [] probi1;
1079 return;
1080}
1081
1082//_____________________________________________________________________________
1083void AliMUONClusterFinderAZ::FindCOG(TH2D *mlem, Double_t *xyc)
1084{
1085 // Calculate position of the center-of-gravity around the maximum pixel
1086
1087 Int_t ixmax, iymax, ix, nsumx=0, nsumy=0, nsum=0;
1088 Int_t i1 = -9, j1 = -9;
1089 mlem->GetMaximumBin(ixmax,iymax,ix);
1090 Int_t nx = mlem->GetNbinsX();
1091 Int_t ny = mlem->GetNbinsY();
1092 Double_t thresh = mlem->GetMaximum()/10;
1093 Double_t x, y, cont, xq=0, yq=0, qq=0;
1094
1095 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
2b1e4f0e 1096 //for (Int_t i=TMath::Max(1,iymax-9); i<=TMath::Min(ny,iymax+9); i++) {
0df3ca52 1097 y = mlem->GetYaxis()->GetBinCenter(i);
1098 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
2b1e4f0e 1099 //for (Int_t j=TMath::Max(1,ixmax-9); j<=TMath::Min(nx,ixmax+9); j++) {
0df3ca52 1100 cont = mlem->GetCellContent(j,i);
1101 if (cont < thresh) continue;
1102 if (i != i1) {i1 = i; nsumy++;}
1103 if (j != j1) {j1 = j; nsumx++;}
1104 x = mlem->GetXaxis()->GetBinCenter(j);
1105 xq += x*cont;
1106 yq += y*cont;
1107 qq += cont;
1108 nsum++;
1109 }
1110 }
1111
1112 Double_t cmax = 0;
1113 Int_t i2 = 0, j2 = 0;
1114 x = y = 0;
1115 if (nsumy == 1) {
1116 // one bin in Y - add one more (with the largest signal)
1117 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1118 if (i == iymax) continue;
1119 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1120 cont = mlem->GetCellContent(j,i);
1121 if (cont > cmax) {
1122 cmax = cont;
1123 x = mlem->GetXaxis()->GetBinCenter(j);
1124 y = mlem->GetYaxis()->GetBinCenter(i);
1125 i2 = i;
1126 j2 = j;
1127 }
1128 }
1129 }
1130 xq += x*cmax;
1131 yq += y*cmax;
1132 qq += cmax;
1133 if (i2 != i1) nsumy++;
1134 if (j2 != j1) nsumx++;
1135 nsum++;
1136 } // if (nsumy == 1)
1137
1138 if (nsumx == 1) {
1139 // one bin in X - add one more (with the largest signal)
1140 cmax = x = y = 0;
1141 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1142 if (j == ixmax) continue;
1143 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1144 cont = mlem->GetCellContent(j,i);
1145 if (cont > cmax) {
1146 cmax = cont;
1147 x = mlem->GetXaxis()->GetBinCenter(j);
1148 y = mlem->GetYaxis()->GetBinCenter(i);
1149 i2 = i;
1150 j2 = j;
1151 }
1152 }
1153 }
1154 xq += x*cmax;
1155 yq += y*cmax;
1156 qq += cmax;
1157 if (i2 != i1) nsumy++;
1158 if (j2 != j1) nsumx++;
1159 nsum++;
1160 } // if (nsumx == 1)
1161
1162 xyc[0] = xq/qq; xyc[1] = yq/qq;
2b1e4f0e 1163 if (fDebug) cout << xyc[0] << " " << xyc[1] << " " << qq << " " << nsum << " " << nsumx << " " << nsumy << endl;
0df3ca52 1164 return;
1165}
1166
1167//_____________________________________________________________________________
1168Int_t AliMUONClusterFinderAZ::FindNearest(AliMUONPixel *pixPtr0)
1169{
1170 // Find the pixel nearest to the given one
1171 // (algorithm may be not very efficient)
1172
1173 Int_t nPix = fPixArray->GetEntriesFast(), imin = 0;
1174 Double_t rmin = 99999, dx = 0, dy = 0, r = 0;
1175 Double_t xc = pixPtr0->Coord(0), yc = pixPtr0->Coord(1);
1176 AliMUONPixel *pixPtr;
1177
1178 for (Int_t i=0; i<nPix; i++) {
1179 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1180 if (pixPtr->Charge() < 0.5) continue;
1181 dx = (xc - pixPtr->Coord(0)) / pixPtr->Size(0);
1182 dy = (yc - pixPtr->Coord(1)) / pixPtr->Size(1);
1183 r = dx *dx + dy * dy;
1184 if (r < rmin) { rmin = r; imin = i; }
1185 }
1186 return imin;
1187}
1188
1189//_____________________________________________________________________________
1190void AliMUONClusterFinderAZ::Split(TH2D *mlem, Double_t *coef)
1191{
1192 // The main steering function to work with clusters of pixels in anode
1193 // plane (find clusters, decouple them from each other, merge them (if
1194 // necessary), pick up coupled pads, call the fitting function)
1195
1196 Int_t nx = mlem->GetNbinsX();
1197 Int_t ny = mlem->GetNbinsY();
1198 Int_t nPix = fPixArray->GetEntriesFast();
1199
1200 Bool_t *used = new Bool_t[ny*nx];
1201 Double_t cont;
1202 Int_t nclust = 0, indx, indx1;
1203
1204 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
1205
1206 TObjArray *clusters[200]={0};
1207 TObjArray *pix;
1208
1209 // Find clusters of histogram bins (easier to work in 2-D space)
1210 for (Int_t i=1; i<=ny; i++) {
1211 for (Int_t j=1; j<=nx; j++) {
1212 indx = (i-1)*nx + j - 1;
1213 if (used[indx]) continue;
1214 cont = mlem->GetCellContent(j,i);
1215 if (cont < 0.5) continue;
1216 pix = new TObjArray(20);
1217 used[indx] = 1;
1218 pix->Add(BinToPix(mlem,j,i));
1219 AddBin(mlem, i, j, 0, used, pix); // recursive call
2b1e4f0e 1220 if (nclust >= 200) AliFatal(" Too many clusters !!!");
0df3ca52 1221 clusters[nclust++] = pix;
0df3ca52 1222 } // for (Int_t j=1; j<=nx; j++) {
1223 } // for (Int_t i=1; i<=ny;
2b1e4f0e 1224 if (fDebug) cout << nclust << endl;
0df3ca52 1225 delete [] used; used = 0;
1226
1227 // Compute couplings between clusters and clusters to pads
1228 Int_t npad = fnPads[0] + fnPads[1];
1229
2b1e4f0e 1230 // Write out some information for algorithm development
1231 Int_t cath=0, npadx[2]={0}, npady[2]={0};
1232 Double_t xlow[2]={9999,9999}, xhig[2]={-9999,-9999};
1233 Double_t ylow[2]={9999,9999}, yhig[2]={-9999,-9999};
1234 for (Int_t j=0; j<npad; j++) {
1235 if (fXyq[3][j] < 0) continue; // exclude virtual pads
1236 cath = fPadIJ[0][j];
1237 if (fXyq[0][j] < xlow[cath]-0.001) {
1238 if (fXyq[0][j]+fXyq[3][j] <= xlow[cath] && npadx[cath]) npadx[cath]++;
1239 xlow[cath] = fXyq[0][j];
1240 }
1241 if (fXyq[0][j] > xhig[cath]+0.001) {
1242 if (fXyq[0][j]-fXyq[3][j] >= xhig[cath]) npadx[cath]++;
1243 xhig[cath] = fXyq[0][j];
1244 }
1245 if (fXyq[1][j] < ylow[cath]-0.001) {
1246 if (fXyq[1][j]+fXyq[4][j] <= ylow[cath] && npady[cath]) npady[cath]++;
1247 ylow[cath] = fXyq[1][j];
1248 }
1249 if (fXyq[1][j] > yhig[cath]+0.001) {
1250 if (fXyq[1][j]-fXyq[4][j] >= yhig[cath]) npady[cath]++;
1251 yhig[cath] = fXyq[1][j];
1252 }
1253 }
1254 //if (lun1) fprintf(lun1," %4d %2d %3d %3d %3d %3d \n",gAlice->GetHeader()->GetEvent(),AliMUONClusterInput::Instance()->Chamber(), npadx[0], npadx[1], npady[0], npady[1]);
1255
0df3ca52 1256 // Exclude pads with overflows
1257 for (Int_t j=0; j<npad; j++) {
2b1e4f0e 1258 //AZ if (fXyq[2][j] > fResponse->MaxAdc()-1) fPadIJ[1][j] = -5;
1259 if (fXyq[2][j] > fResponse->Saturation()-1) fPadIJ[1][j] = -5;
0df3ca52 1260 else fPadIJ[1][j] = 0;
1261 }
1262
1263 // Compute couplings of clusters to pads
c1aed84f 1264 TMatrixD *aijclupad = new TMatrixD(nclust,npad);
1265 *aijclupad = 0;
0df3ca52 1266 Int_t npxclu;
1267 for (Int_t iclust=0; iclust<nclust; iclust++) {
1268 pix = clusters[iclust];
1269 npxclu = pix->GetEntriesFast();
1270 for (Int_t i=0; i<npxclu; i++) {
1271 indx = fPixArray->IndexOf(pix->UncheckedAt(i));
1272 for (Int_t j=0; j<npad; j++) {
2b1e4f0e 1273 if (fPadIJ[1][j] < 0 && fPadIJ[1][j] != -5) continue;
343146bf 1274 if (coef[j*nPix+indx] < fgkCouplMin) continue;
c1aed84f 1275 (*aijclupad)(iclust,j) += coef[j*nPix+indx];
0df3ca52 1276 }
1277 }
1278 }
1279 // Compute couplings between clusters
c1aed84f 1280 TMatrixD *aijcluclu = new TMatrixD(nclust,nclust);
1281 *aijcluclu = 0;
0df3ca52 1282 for (Int_t iclust=0; iclust<nclust; iclust++) {
1283 for (Int_t j=0; j<npad; j++) {
1284 // Exclude overflows
1285 if (fPadIJ[1][j] < 0) continue;
343146bf 1286 if ((*aijclupad)(iclust,j) < fgkCouplMin) continue;
0df3ca52 1287 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
343146bf 1288 if ((*aijclupad)(iclust1,j) < fgkCouplMin) continue;
c1aed84f 1289 (*aijcluclu)(iclust,iclust1) +=
1290 TMath::Sqrt ((*aijclupad)(iclust,j)*(*aijclupad)(iclust1,j));
0df3ca52 1291 }
1292 }
1293 }
1294 for (Int_t iclust=0; iclust<nclust; iclust++) {
1295 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
c1aed84f 1296 (*aijcluclu)(iclust1,iclust) = (*aijcluclu)(iclust,iclust1);
0df3ca52 1297 }
1298 }
1299
2b1e4f0e 1300 if (fDebug && nclust > 1) aijcluclu->Print();
0df3ca52 1301
1302 // Find groups of coupled clusters
1303 used = new Bool_t[nclust];
1304 for (Int_t i=0; i<nclust; i++) used[i] = kFALSE;
1305 Int_t *clustNumb = new Int_t[nclust];
1306 Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
1307 Double_t parOk[8];
1308
1309 for (Int_t igroup=0; igroup<nclust; igroup++) {
1310 if (used[igroup]) continue;
1311 used[igroup] = kTRUE;
1312 clustNumb[0] = igroup;
1313 nCoupled = 1;
1314 // Find group of coupled clusters
c1aed84f 1315 AddCluster(igroup, nclust, aijcluclu, used, clustNumb, nCoupled); // recursive
2b1e4f0e 1316 if (fDebug) {
1317 cout << " nCoupled: " << nCoupled << endl;
1318 for (Int_t i=0; i<nCoupled; i++) cout << clustNumb[i] << " "; cout << endl;
1319 }
1320 fnCoupled = nCoupled;
0df3ca52 1321
1322 while (nCoupled > 0) {
1323
1324 if (nCoupled < 4) {
1325 nForFit = nCoupled;
1326 for (Int_t i=0; i<nCoupled; i++) clustFit[i] = clustNumb[i];
1327 } else {
1328 // Too many coupled clusters to fit - try to decouple them
1329 // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
1330 // all the others in the group
1331 for (Int_t j=0; j<3; j++) minGroup[j] = -1;
c1aed84f 1332 Double_t coupl = MinGroupCoupl(nCoupled, clustNumb, aijcluclu, minGroup);
0df3ca52 1333
1334 // Flag clusters for fit
1335 nForFit = 0;
1336 while (minGroup[nForFit] >= 0 && nForFit < 3) {
2b1e4f0e 1337 if (fDebug) cout << clustNumb[minGroup[nForFit]] << " ";
0df3ca52 1338 clustFit[nForFit] = clustNumb[minGroup[nForFit]];
1339 clustNumb[minGroup[nForFit]] -= 999;
1340 nForFit++;
1341 }
2b1e4f0e 1342 if (fDebug) cout << nForFit << " " << coupl << endl;
0df3ca52 1343 } // else
1344
1345 // Select pads for fit.
c1aed84f 1346 if (SelectPad(nCoupled, nForFit, clustNumb, clustFit, aijclupad) < 3 && nCoupled > 1) {
0df3ca52 1347 // Deselect pads
2b1e4f0e 1348 for (Int_t j=0; j<npad; j++) {
1349 if (TMath::Abs(fPadIJ[1][j]) == 1) fPadIJ[1][j] = 0;
1350 if (TMath::Abs(fPadIJ[1][j]) == -9) fPadIJ[1][j] = -5;
1351 }
0df3ca52 1352 // Merge the failed cluster candidates (with too few pads to fit) with
1353 // the one with the strongest coupling
c1aed84f 1354 Merge(nForFit, nCoupled, clustNumb, clustFit, clusters, aijcluclu, aijclupad);
0df3ca52 1355 } else {
1356 // Do the fit
1357 nfit = Fit(nForFit, clustFit, clusters, parOk);
1358 }
1359
1360 // Subtract the fitted charges from pads with strong coupling and/or
1361 // return pads for further use
1362 UpdatePads(nfit, parOk);
1363
1364 // Mark used pads
2b1e4f0e 1365 for (Int_t j=0; j<npad; j++) {
1366 if (fPadIJ[1][j] == 1) fPadIJ[1][j] = -1;
1367 if (fPadIJ[1][j] == -9) fPadIJ[1][j] = -5;
1368 }
0df3ca52 1369
1370 // Sort the clusters (move to the right the used ones)
1371 Int_t beg = 0, end = nCoupled - 1;
1372 while (beg < end) {
1373 if (clustNumb[beg] >= 0) { beg++; continue; }
1374 for (Int_t j=end; j>beg; j--) {
1375 if (clustNumb[j] < 0) continue;
1376 end = j - 1;
1377 indx = clustNumb[beg];
1378 clustNumb[beg] = clustNumb[j];
1379 clustNumb[j] = indx;
1380 break;
1381 }
1382 beg++;
1383 }
1384
1385 nCoupled -= nForFit;
1386 if (nCoupled > 3) {
1387 // Remove couplings of used clusters
1388 for (Int_t iclust=nCoupled; iclust<nCoupled+nForFit; iclust++) {
1389 indx = clustNumb[iclust] + 999;
1390 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1391 indx1 = clustNumb[iclust1];
c1aed84f 1392 (*aijcluclu)(indx,indx1) = (*aijcluclu)(indx1,indx) = 0;
0df3ca52 1393 }
1394 }
1395
1396 // Update the remaining clusters couplings (exclude couplings from
1397 // the used pads)
1398 for (Int_t j=0; j<npad; j++) {
1399 if (fPadIJ[1][j] != -1) continue;
1400 for (Int_t iclust=0; iclust<nCoupled; iclust++) {
1401 indx = clustNumb[iclust];
343146bf 1402 if ((*aijclupad)(indx,j) < fgkCouplMin) continue;
0df3ca52 1403 for (Int_t iclust1=iclust+1; iclust1<nCoupled; iclust1++) {
1404 indx1 = clustNumb[iclust1];
343146bf 1405 if ((*aijclupad)(indx1,j) < fgkCouplMin) continue;
0df3ca52 1406 // Check this
c1aed84f 1407 (*aijcluclu)(indx,indx1) -=
1408 TMath::Sqrt ((*aijclupad)(indx,j)*(*aijclupad)(indx1,j));
1409 (*aijcluclu)(indx1,indx) = (*aijcluclu)(indx,indx1);
0df3ca52 1410 }
1411 }
2b1e4f0e 1412 fPadIJ[1][j] = -8;
0df3ca52 1413 } // for (Int_t j=0; j<npad;
1414 } // if (nCoupled > 3)
1415 } // while (nCoupled > 0)
1416 } // for (Int_t igroup=0; igroup<nclust;
1417
c1aed84f 1418 //delete aij_clu; aij_clu = 0; delete aijclupad; aijclupad = 0;
1419 aijcluclu->Delete(); aijclupad->Delete();
0df3ca52 1420 for (Int_t iclust=0; iclust<nclust; iclust++) {
1421 pix = clusters[iclust];
1422 pix->Clear();
1423 delete pix; pix = 0;
1424 }
1425 delete [] clustNumb; clustNumb = 0; delete [] used; used = 0;
1426}
1427
1428//_____________________________________________________________________________
1429void AliMUONClusterFinderAZ::AddBin(TH2D *mlem, Int_t ic, Int_t jc, Int_t mode, Bool_t *used, TObjArray *pix)
1430{
1431 // Add a bin to the cluster
1432
1433 Int_t nx = mlem->GetNbinsX();
1434 Int_t ny = mlem->GetNbinsY();
1435 Double_t cont1, cont = mlem->GetCellContent(jc,ic);
1436 AliMUONPixel *pixPtr = 0;
1437
1438 for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) {
1439 for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) {
1440 if (i != ic && j != jc) continue;
1441 if (used[(i-1)*nx+j-1]) continue;
1442 cont1 = mlem->GetCellContent(j,i);
1443 if (mode && cont1 > cont) continue;
1444 used[(i-1)*nx+j-1] = kTRUE;
1445 if (cont1 < 0.5) continue;
1446 if (pix) pix->Add(BinToPix(mlem,j,i));
1447 else {
1448 pixPtr = new AliMUONPixel (mlem->GetXaxis()->GetBinCenter(j),
1449 mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
1450 fPixArray->Add((TObject*)pixPtr);
1451 }
1452 AddBin(mlem, i, j, mode, used, pix); // recursive call
1453 }
1454 }
1455}
1456
1457//_____________________________________________________________________________
1458TObject* AliMUONClusterFinderAZ::BinToPix(TH2D *mlem, Int_t jc, Int_t ic)
1459{
1460 // Translate histogram bin to pixel
1461
1462 Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
1463 Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
1464
1465 Int_t nPix = fPixArray->GetEntriesFast();
1466 AliMUONPixel *pixPtr;
1467
1468 // Compare pixel and bin positions
1469 for (Int_t i=0; i<nPix; i++) {
1470 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1471 if (pixPtr->Charge() < 0.5) continue;
1472 if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4) return (TObject*) pixPtr;
1473 }
2b1e4f0e 1474 AliWarning(Form(" Something wrong ??? %f %f ", xc, yc));
0df3ca52 1475 return NULL;
1476}
1477
1478//_____________________________________________________________________________
c1aed84f 1479void AliMUONClusterFinderAZ::AddCluster(Int_t ic, Int_t nclust, TMatrixD *aijcluclu, Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
0df3ca52 1480{
1481 // Add a cluster to the group of coupled clusters
1482
1483 for (Int_t i=0; i<nclust; i++) {
1484 if (used[i]) continue;
343146bf 1485 if ((*aijcluclu)(i,ic) < fgkCouplMin) continue;
0df3ca52 1486 used[i] = kTRUE;
1487 clustNumb[nCoupled++] = i;
c1aed84f 1488 AddCluster(i, nclust, aijcluclu, used, clustNumb, nCoupled);
0df3ca52 1489 }
1490}
1491
1492//_____________________________________________________________________________
c1aed84f 1493Double_t AliMUONClusterFinderAZ::MinGroupCoupl(Int_t nCoupled, Int_t *clustNumb, TMatrixD *aijcluclu, Int_t *minGroup)
0df3ca52 1494{
1495 // Find group of clusters with minimum coupling to all the others
1496
1497 Int_t i123max = TMath::Min(3,nCoupled/2);
1498 Int_t indx, indx1, indx2, indx3, nTot = 0;
1499 Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1500
1501 for (Int_t i123=1; i123<=i123max; i123++) {
1502
1503 if (i123 == 1) {
1504 coupl1 = new Double_t [nCoupled];
1505 for (Int_t i=0; i<nCoupled; i++) coupl1[i] = 0;
1506 }
1507 else if (i123 == 2) {
1508 nTot = nCoupled*nCoupled;
1509 coupl2 = new Double_t [nTot];
1510 for (Int_t i=0; i<nTot; i++) coupl2[i] = 9999;
1511 } else {
1512 nTot = nTot*nCoupled;
1513 coupl3 = new Double_t [nTot];
1514 for (Int_t i=0; i<nTot; i++) coupl3[i] = 9999;
1515 } // else
1516
1517 for (Int_t i=0; i<nCoupled; i++) {
1518 indx1 = clustNumb[i];
1519 for (Int_t j=i+1; j<nCoupled; j++) {
1520 indx2 = clustNumb[j];
1521 if (i123 == 1) {
c1aed84f 1522 coupl1[i] += (*aijcluclu)(indx1,indx2);
1523 coupl1[j] += (*aijcluclu)(indx1,indx2);
0df3ca52 1524 }
1525 else if (i123 == 2) {
1526 indx = i*nCoupled + j;
1527 coupl2[indx] = coupl1[i] + coupl1[j];
c1aed84f 1528 coupl2[indx] -= 2 * ((*aijcluclu)(indx1,indx2));
0df3ca52 1529 } else {
1530 for (Int_t k=j+1; k<nCoupled; k++) {
1531 indx3 = clustNumb[k];
1532 indx = i*nCoupled*nCoupled + j*nCoupled + k;
1533 coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
c1aed84f 1534 coupl3[indx] -= 2 * ((*aijcluclu)(indx1,indx3)+(*aijcluclu)(indx2,indx3));
0df3ca52 1535 }
1536 } // else
1537 } // for (Int_t j=i+1;
1538 } // for (Int_t i=0;
1539 } // for (Int_t i123=1;
1540
1541 // Find minimum coupling
1542 Double_t couplMin = 9999;
1543 Int_t locMin = 0;
1544
1545 for (Int_t i123=1; i123<=i123max; i123++) {
1546 if (i123 == 1) {
1547 locMin = TMath::LocMin(nCoupled, coupl1);
1548 couplMin = coupl1[locMin];
1549 minGroup[0] = locMin;
1550 delete [] coupl1; coupl1 = 0;
1551 }
1552 else if (i123 == 2) {
1553 locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1554 if (coupl2[locMin] < couplMin) {
1555 couplMin = coupl2[locMin];
1556 minGroup[0] = locMin/nCoupled;
1557 minGroup[1] = locMin%nCoupled;
1558 }
1559 delete [] coupl2; coupl2 = 0;
1560 } else {
1561 locMin = TMath::LocMin(nTot, coupl3);
1562 if (coupl3[locMin] < couplMin) {
1563 couplMin = coupl3[locMin];
1564 minGroup[0] = locMin/nCoupled/nCoupled;
1565 minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1566 minGroup[2] = locMin%nCoupled;
1567 }
1568 delete [] coupl3; coupl3 = 0;
1569 } // else
1570 } // for (Int_t i123=1;
1571 return couplMin;
1572}
1573
1574//_____________________________________________________________________________
c1aed84f 1575Int_t AliMUONClusterFinderAZ::SelectPad(Int_t nCoupled, Int_t nForFit, Int_t *clustNumb, Int_t *clustFit, TMatrixD *aijclupad)
0df3ca52 1576{
1577 // Select pads for fit. If too many coupled clusters, find pads giving
1578 // the strongest coupling with the rest of clusters and exclude them from the fit.
1579
1580 Int_t npad = fnPads[0] + fnPads[1];
c1aed84f 1581 Double_t *padpix = 0;
0df3ca52 1582
1583 if (nCoupled > 3) {
c1aed84f 1584 padpix = new Double_t[npad];
1585 for (Int_t i=0; i<npad; i++) padpix[i] = 0;
0df3ca52 1586 }
1587
1588 Int_t nOK = 0, indx, indx1;
1589 for (Int_t iclust=0; iclust<nForFit; iclust++) {
1590 indx = clustFit[iclust];
1591 for (Int_t j=0; j<npad; j++) {
343146bf 1592 if ((*aijclupad)(indx,j) < fgkCouplMin) continue;
2b1e4f0e 1593 if (fPadIJ[1][j] == -5) fPadIJ[1][j] = -9; // flag overflow
1594 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
1595 if (!fPadIJ[1][j]) { fPadIJ[1][j] = 1; nOK++; } // pad to be used in fit
0df3ca52 1596 if (nCoupled > 3) {
1597 // Check other clusters
1598 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1599 indx1 = clustNumb[iclust1];
1600 if (indx1 < 0) continue;
343146bf 1601 if ((*aijclupad)(indx1,j) < fgkCouplMin) continue;
c1aed84f 1602 padpix[j] += (*aijclupad)(indx1,j);
0df3ca52 1603 }
1604 } // if (nCoupled > 3)
1605 } // for (Int_t j=0; j<npad;
1606 } // for (Int_t iclust=0; iclust<nForFit
1607 if (nCoupled < 4) return nOK;
1608
1609 Double_t aaa = 0;
1610 for (Int_t j=0; j<npad; j++) {
343146bf 1611 if (padpix[j] < fgkCouplMin) continue;
2b1e4f0e 1612 if (fDebug) cout << j << " " << padpix[j] << " " << fXyq[0][j] << " " << fXyq[1][j] << endl;
c1aed84f 1613 aaa += padpix[j];
0df3ca52 1614 fPadIJ[1][j] = -1; // exclude pads with strong coupling to the other clusters
1615 nOK--;
1616 }
c1aed84f 1617 delete [] padpix; padpix = 0;
0df3ca52 1618 return nOK;
1619}
1620
1621//_____________________________________________________________________________
c1aed84f 1622void AliMUONClusterFinderAZ::Merge(Int_t nForFit, Int_t nCoupled, Int_t *clustNumb, Int_t *clustFit, TObjArray **clusters, TMatrixD *aijcluclu, TMatrixD *aijclupad)
0df3ca52 1623{
1624 // Merge the group of clusters with the one having the strongest coupling with them
1625
1626 Int_t indx, indx1, npxclu, npxclu1, imax=0;
1627 TObjArray *pix, *pix1;
1628 Double_t couplMax;
1629
1630 for (Int_t icl=0; icl<nForFit; icl++) {
1631 indx = clustFit[icl];
1632 pix = clusters[indx];
1633 npxclu = pix->GetEntriesFast();
1634 couplMax = -1;
1635 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1636 indx1 = clustNumb[icl1];
1637 if (indx1 < 0) continue;
c1aed84f 1638 if ((*aijcluclu)(indx,indx1) > couplMax) {
1639 couplMax = (*aijcluclu)(indx,indx1);
0df3ca52 1640 imax = indx1;
1641 }
1642 } // for (Int_t icl1=0;
343146bf 1643 /*if (couplMax < fgkCouplMin) {
0df3ca52 1644 cout << " Oops " << couplMax << endl;
c1aed84f 1645 aijcluclu->Print();
0df3ca52 1646 cout << icl << " " << indx << " " << npxclu << " " << nLinks << endl;
1647 ::exit(0);
1648 }*/
1649 // Add to it
1650 pix1 = clusters[imax];
1651 npxclu1 = pix1->GetEntriesFast();
1652 // Add pixels
1653 for (Int_t i=0; i<npxclu; i++) { pix1->Add(pix->UncheckedAt(i)); pix->RemoveAt(i); }
2b1e4f0e 1654 if (fDebug) cout << " New number of pixels: " << npxclu1 << " " << pix1->GetEntriesFast() << endl;
0df3ca52 1655 //Add cluster-to-cluster couplings
c1aed84f 1656 //aijcluclu->Print();
0df3ca52 1657 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1658 indx1 = clustNumb[icl1];
1659 if (indx1 < 0 || indx1 == imax) continue;
c1aed84f 1660 (*aijcluclu)(indx1,imax) += (*aijcluclu)(indx,indx1);
1661 (*aijcluclu)(imax,indx1) = (*aijcluclu)(indx1,imax);
0df3ca52 1662 }
c1aed84f 1663 (*aijcluclu)(indx,imax) = (*aijcluclu)(imax,indx) = 0;
1664 //aijcluclu->Print();
0df3ca52 1665 //Add cluster-to-pad couplings
1666 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2b1e4f0e 1667 if (fPadIJ[1][j] < 0 && fPadIJ[1][j] != -5) continue; // exclude used pads
c1aed84f 1668 (*aijclupad)(imax,j) += (*aijclupad)(indx,j);
1669 (*aijclupad)(indx,j) = 0;
0df3ca52 1670 }
1671 } // for (Int_t icl=0; icl<nForFit;
1672}
1673
1674//_____________________________________________________________________________
1675Int_t AliMUONClusterFinderAZ::Fit(Int_t nfit, Int_t *clustFit, TObjArray **clusters, Double_t *parOk)
1676{
1677 // Find selected clusters to selected pad charges
1678
1679 TH2D *mlem = (TH2D*) gROOT->FindObject("mlem");
1680 //Int_t nx = mlem->GetNbinsX();
1681 //Int_t ny = mlem->GetNbinsY();
1682 Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
1683 Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
1684 Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
1685 Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
1686 //Double_t qmin = 0, qmax = 1;
2b1e4f0e 1687 Double_t step[3]={0.01,0.002,0.02}, xPad = 0, yPad = 99999;
1688 Double_t qPad[2] = {0}, xyqPad[2] = {0};
0df3ca52 1689
2b1e4f0e 1690 // Number of pads to use and number of virtual pads
1691 Int_t npads = 0, nVirtual = 0;
1692 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
1693 if (fPadIJ[1][i] == -9 || fPadIJ[1][i] == 1) {
1694 if (fPadIJ[0][i]) xyqPad[1] += fXyq[0][i] * fXyq[2][i];
1695 else xyqPad[0] += fXyq[1][i] * fXyq[2][i];
1696 qPad[fPadIJ[0][i]] += fXyq[2][i];
1697 }
1698 if (fXyq[3][i] < 0) nVirtual++;
1699 if (fPadIJ[1][i] != 1) continue;
1700 if (fXyq[3][i] > 0) npads++;
1701 if (yPad > 9999) { xPad = fXyq[0][i]; yPad = fXyq[1][i]; }
1702 //if (fPadIJ[0][i]) xPad = fXyq[0][i];
1703 }
1704 if (fDebug) {
1705 for (Int_t i=0; i<nfit; i++) {cout << i+1 << " " << clustFit[i] << " ";}
1706 cout << nfit << endl;
1707 cout << " Number of pads to fit: " << npads << endl;
1708 }
0df3ca52 1709 fNpar = 0;
1710 fQtot = 0;
1711 if (npads < 2) return 0;
1712
2b1e4f0e 1713 Int_t digit = 0, nfit0 = nfit;
1714 AliMUONDigit *mdig = 0;
1715 Int_t tracks[3] = {-1, -1, -1};
1716 for (Int_t cath=0; cath<2; cath++) {
1717 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
1718 if (fPadIJ[0][i] != cath) continue;
1719 if (fPadIJ[1][i] != 1) continue;
1720 if (fXyq[3][i] < 0) continue; // exclude virtual pads
1721 digit = TMath::Nint (fXyq[5][i]);
1722 if (digit >= 0) mdig = fInput->Digit(cath,digit);
1723 else mdig = fInput->Digit(TMath::Even(cath),-digit-1);
1724 //if (!mdig) mdig = fInput->Digit(TMath::Even(cath),digit);
1725 if (!mdig) continue; // protection for cluster display
1726 if (mdig->Hit() >= 0) {
1727 if (tracks[0] < 0) {
1728 tracks[0] = mdig->Hit();
1729 tracks[1] = mdig->Track(0);
1730 } else if (mdig->Track(0) < tracks[1]) {
1731 tracks[0] = mdig->Hit();
1732 tracks[1] = mdig->Track(0);
1733 }
1734 }
1735 //AZif (mdig->Track(1)) {
1736 if (mdig->Track(1) >= 0 && mdig->Track(1) != tracks[1]) {
1737 if (tracks[2] < 0) tracks[2] = mdig->Track(1);
1738 else tracks[2] = TMath::Min (tracks[2], mdig->Track(1));
1739 }
1740 //if (!mdig) break;
1741 //cout << mdig->Hit() << " " << mdig->Track(0) << " " << mdig->Track(1) <<endl;
1742 } // for (Int_t i=0;
1743 } // for (Int_t cath=0;
1744 //cout << tracks[0] << " " << tracks[1] << " " << tracks[2] <<endl;
1745
1746 // Get number of pads in X and Y
1747 Int_t nInX = 0, nInY;
1748 PadsInXandY(nInX, nInY);
1af223d7 1749 //cout << " nInX and Y: " << nInX << " " << nInY << endl;
2b1e4f0e 1750
0df3ca52 1751 // Take cluster maxima as fitting seeds
2b1e4f0e 1752 TObjArray *pix;
0df3ca52 1753 AliMUONPixel *pixPtr;
2b1e4f0e 1754 Int_t npxclu;
1755 Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8], qq = 0;
f29ba3e1 1756 Double_t xyseed[3][2], qseed[3], xyCand[3][2] = {{0},{0}}, sigCand[3][2] = {{0},{0}};
2b1e4f0e 1757
0df3ca52 1758 for (Int_t ifit=1; ifit<=nfit; ifit++) {
1759 cmax = 0;
1760 pix = clusters[clustFit[ifit-1]];
1761 npxclu = pix->GetEntriesFast();
2b1e4f0e 1762 //qq = 0;
0df3ca52 1763 for (Int_t clu=0; clu<npxclu; clu++) {
1764 pixPtr = (AliMUONPixel*) pix->UncheckedAt(clu);
1765 cont = pixPtr->Charge();
1766 fQtot += cont;
1767 if (cont > cmax) {
1768 cmax = cont;
1769 xseed = pixPtr->Coord(0);
1770 yseed = pixPtr->Coord(1);
1771 }
2b1e4f0e 1772 qq += cont;
1773 /*
f29ba3e1 1774 xyCand[ifit-1][0] += pixPtr->Coord(0) * cont;
1775 xyCand[ifit-1][1] += pixPtr->Coord(1) * cont;
1776 sigCand[ifit-1][0] += pixPtr->Coord(0) * pixPtr->Coord(0) * cont;
1777 sigCand[ifit-1][1] += pixPtr->Coord(1) * pixPtr->Coord(1) * cont;
2b1e4f0e 1778 */
f29ba3e1 1779 xyCand[0][0] += pixPtr->Coord(0) * cont;
1780 xyCand[0][1] += pixPtr->Coord(1) * cont;
1781 sigCand[0][0] += pixPtr->Coord(0) * pixPtr->Coord(0) * cont;
1782 sigCand[0][1] += pixPtr->Coord(1) * pixPtr->Coord(1) * cont;
0df3ca52 1783 }
1784 xyseed[ifit-1][0] = xseed;
1785 xyseed[ifit-1][1] = yseed;
1786 qseed[ifit-1] = cmax;
2b1e4f0e 1787 /*
f29ba3e1 1788 xyCand[ifit-1][0] /= qq; // <x>
1789 xyCand[ifit-1][1] /= qq; // <y>
1790 sigCand[ifit-1][0] = sigCand[ifit-1][0]/qq - xyCand[ifit-1][0]*xyCand[ifit-1][0]; // <x^2> - <x>^2
1791 sigCand[ifit-1][0] = sigCand[ifit-1][0] > 0 ? TMath::Sqrt (sigCand[ifit-1][0]) : 0;
1792 sigCand[ifit-1][1] = sigCand[ifit-1][1]/qq - xyCand[ifit-1][1]*xyCand[ifit-1][1]; // <y^2> - <y>^2
1793 sigCand[ifit-1][1] = sigCand[ifit-1][1] > 0 ? TMath::Sqrt (sigCand[ifit-1][1]) : 0;
1794 cout << xyCand[ifit-1][0] << " " << xyCand[ifit-1][1] << " " << sigCand[ifit-1][0] << " " << sigCand[ifit-1][1] << endl;
2b1e4f0e 1795 */
0df3ca52 1796 } // for (Int_t ifit=1;
1797
f29ba3e1 1798 xyCand[0][0] /= qq; // <x>
1799 xyCand[0][1] /= qq; // <y>
1800 sigCand[0][0] = sigCand[0][0]/qq - xyCand[0][0]*xyCand[0][0]; // <x^2> - <x>^2
1801 sigCand[0][0] = sigCand[0][0] > 0 ? TMath::Sqrt (sigCand[0][0]) : 0;
1802 sigCand[0][1] = sigCand[0][1]/qq - xyCand[0][1]*xyCand[0][1]; // <y^2> - <y>^2
1803 sigCand[0][1] = sigCand[0][1] > 0 ? TMath::Sqrt (sigCand[0][1]) : 0;
1804 if (fDebug) cout << xyCand[0][0] << " " << xyCand[0][1] << " " << sigCand[0][0] << " " << sigCand[0][1] << endl;
2b1e4f0e 1805
0df3ca52 1806 Int_t nDof, maxSeed[3];
1807 Double_t fmin, chi2o = 9999, chi2n;
1808
1809 // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
1810 // lower, try 3-track (if number of pads is sufficient).
1811
1812 TMath::Sort(nfit, qseed, maxSeed, kTRUE); // in decreasing order
1813 nfit = TMath::Min (nfit, (npads + 1) / 3);
2b1e4f0e 1814 if (nfit > 1) {
1815 if (nInX < 3 && nInY < 3 || nInX == 3 && nInY < 3 || nInX < 3 && nInY == 3) nfit = 1; // not enough pads in each direction
1816 }
1817 //if (nfit > 1) nfit --;
1818 // One pad per direction
1819 //if (nInX == 1) { step[0] /= 1; xyseed[0][0] = xPad; }
1820 //if (nInY == 1) { step[1] /= 1; xyseed[0][1] = yPad; }
0df3ca52 1821
1822 Double_t *gin = 0, func0, func1, param[8], param0[2][8], deriv[2][8], step0[8];
1823 Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0;
1824 Double_t delta[8], scMax, dder[8], estim, shiftSave = 0;
1825 Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail;
2b1e4f0e 1826 Double_t rad, dist[3] = {0};
0df3ca52 1827
1828 for (Int_t iseed=0; iseed<nfit; iseed++) {
1829
2b1e4f0e 1830 if (iseed) { for (Int_t j=0; j<fNpar; j++) param[j] = parOk[j]; } // for bounded params
0df3ca52 1831 for (Int_t j=0; j<3; j++) step0[fNpar+j] = shift[fNpar+j] = step[j];
1832 param[fNpar] = xyseed[maxSeed[iseed]][0];
1833 parmin[fNpar] = xmin;
1834 parmax[fNpar++] = xmax;
1835 param[fNpar] = xyseed[maxSeed[iseed]][1];
1836 parmin[fNpar] = ymin;
1837 parmax[fNpar++] = ymax;
1838 if (fNpar > 2) {
1839 param[fNpar] = fNpar == 4 ? 0.5 : 0.3;
1840 parmin[fNpar] = 0;
1841 parmax[fNpar++] = 1;
1842 }
5a051e34 1843 if (iseed) { for (Int_t j=0; j<fNpar; j++) param0[1][j] = 0; }
0df3ca52 1844
1845 // Try new algorithm
1846 min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
1847
1848 while (1) {
1849 max = !min;
30178c30 1850 Fcn1(fNpar, gin, func0, param, 1); nCall++;
0df3ca52 1851 //cout << " Func: " << func0 << endl;
1852
1853 func2[max] = func0;
1854 for (Int_t j=0; j<fNpar; j++) {
1855 param0[max][j] = param[j];
1856 delta[j] = step0[j];
1857 param[j] += delta[j] / 10;
1858 if (j > 0) param[j-1] -= delta[j-1] / 10;
30178c30 1859 Fcn1(fNpar, gin, func1, param, 1); nCall++;
0df3ca52 1860 deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
1861 //cout << j << " " << deriv[max][j] << endl;
1862 dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
1863 (param0[0][j] - param0[1][j]) : 0; // second derivative
1864 }
1865 param[fNpar-1] -= delta[fNpar-1] / 10;
2b1e4f0e 1866 if (nCall > 2000) break;
0df3ca52 1867
1868 min = func2[0] < func2[1] ? 0 : 1;
1869 nFail = min == max ? 0 : nFail + 1;
1870
1871 stepMax = derMax = estim = 0;
1872 for (Int_t j=0; j<fNpar; j++) {
1873 // Estimated distance to minimum
1874 shift0 = shift[j];
1875 if (nLoop == 1) shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
1876 else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3) shift[j] = 0;
1877 else if (deriv[min][j]*deriv[!min][j] > 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])
2b1e4f0e 1878 //|| TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) {
1879 || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3 || TMath::Abs(dder[j]) < 1.e-6) {
0df3ca52 1880 shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
1881 if (min == max) {
1882 if (memory[j] > 1) { shift[j] *= 2; } //cout << " Memory " << memory[j] << " " << shift[j] << endl; }
1883 memory[j]++;
1884 }
1885 } else {
2b1e4f0e 1886 shift[j] = dder[j] != 0 ? -deriv[min][j] / dder[j] : 0;
0df3ca52 1887 memory[j] = 0;
1888 }
1889 if (TMath::Abs(shift[j])/step0[j] > estim) {
1890 estim = TMath::Abs(shift[j])/step0[j];
1891 iestMax = j;
1892 }
1893
1894 // Too big step
1895 if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
1896
1897 // Failed to improve minimum
1898 if (min != max) {
1899 memory[j] = 0;
1900 param[j] = param0[min][j];
1901 if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j]) shift[j] = (shift[j] + shift0) / 2;
1902 else shift[j] /= -2;
1903 }
1904
1905 // Too big step
1906 if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
1907 shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
1908
1909 // Introduce step relaxation factor
1910 if (memory[j] < 3) {
1911 scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
1912 if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
1913 shift[j] = TMath::Sign (shift0*scMax, shift[j]);
1914 }
1915 param[j] += shift[j];
2b1e4f0e 1916 //AZ Check parameter limits 27-12-2004
1917 if (param[j] < parmin[j]) {
1918 shift[j] = parmin[j] - param[j];
1919 param[j] = parmin[j];
1920 } else if (param[j] > parmax[j]) {
1921 shift[j] = parmax[j] - param[j];
1922 param[j] = parmax[j];
1923 }
0df3ca52 1924 //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
1925 stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
1926 if (TMath::Abs(deriv[min][j]) > derMax) {
1927 idMax = j;
1928 derMax = TMath::Abs (deriv[min][j]);
1929 }
1930 } // for (Int_t j=0; j<fNpar;
1931 //cout << max << " " << func2[min] << " " << derMax << " " << stepMax << " " << estim << " " << iestMax << " " << nCall << endl;
2b1e4f0e 1932 if (estim < 1 && derMax < 2 || nLoop > 150) break; // minimum was found
0df3ca52 1933
1934 nLoop++;
1935 // Check for small step
1936 if (shift[idMax] == 0) { shift[idMax] = step0[idMax]/10; param[idMax] += shift[idMax]; continue; }
1937 if (!memory[idMax] && derMax > 0.5 && nLoop > 10) {
1938 //cout << " ok " << deriv[min][idMax] << " " << deriv[!min][idMax] << " " << dder[idMax]*shift[idMax] << " " << shift[idMax] << endl;
1939 if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10) {
1940 if (min == max) dder[idMax] = -dder[idMax];
1941 shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
1942 param[idMax] += shift[idMax];
1943 stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
1944 //cout << shift[idMax] << " " << param[idMax] << endl;
1945 if (min == max) shiftSave = shift[idMax];
1946 }
1947 if (nFail > 10) {
1948 param[idMax] -= shift[idMax];
1949 shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
1950 param[idMax] += shift[idMax];
1951 //cout << shift[idMax] << endl;
1952 }
1953 }
1954 } // while (1)
1955 fmin = func2[min];
1956
2b1e4f0e 1957 nDof = npads - fNpar + nVirtual;
1958 if (!nDof) nDof++;
1959 chi2n = fmin / nDof;
1960 if (fDebug) cout << " Chi2 " << chi2n << " " << fNpar << endl;
0df3ca52 1961
1962 if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; }
2b1e4f0e 1963
0df3ca52 1964 // Save parameters and errors
2b1e4f0e 1965
1966 if (nInX == 1 && qPad[1] > 1) {
1967 // One pad per direction
1968 xPad = xyqPad[1] / qPad[1]; // take COG for this case
1969 for (Int_t i=0; i<fNpar; i++) if (i == 0 || i == 2 || i == 5) param0[min][i] = xPad;
1970 }
1971 if (nInY == 1 && qPad[0] > 1) {
1972 // One pad per direction
1973 yPad = xyqPad[0] / qPad[0]; // take COG for this case
1974 for (Int_t i=0; i<fNpar; i++) if (i == 1 || i == 3 || i == 6) param0[min][i] = yPad;
1975 }
1976
1977 /*
1978 if (iseed > 0) {
1979 // Find distance to the nearest neighbour
1980 dist[0] = dist[1] = TMath::Sqrt ((param0[min][0]-param0[min][2])*
1981 (param0[min][0]-param0[min][2])
1982 +(param0[min][1]-param0[min][3])*
1983 (param0[min][1]-param0[min][3]));
1984 if (iseed > 1) {
1985 dist[2] = TMath::Sqrt ((param0[min][0]-param0[min][5])*
1986 (param0[min][0]-param0[min][5])
1987 +(param0[min][1]-param0[min][6])*
1988 (param0[min][1]-param0[min][6]));
1989 rad = TMath::Sqrt ((param0[min][2]-param0[min][5])*
1990 (param0[min][2]-param0[min][5])
1991 +(param0[min][3]-param0[min][6])*
1992 (param0[min][3]-param0[min][6]));
1993 if (dist[2] < dist[0]) dist[0] = dist[2];
1994 if (rad < dist[1]) dist[1] = rad;
1995 if (rad < dist[2]) dist[2] = rad;
1996 }
1997 cout << dist[0] << " " << dist[1] << " " << dist[2] << endl;
1998 if (dist[TMath::LocMin(iseed+1,dist)] < 1.) { fNpar -= 3; break; }
1999 }
2000 */
2001
0df3ca52 2002 for (Int_t i=0; i<fNpar; i++) {
2003 parOk[i] = param0[min][i];
2004 errOk[i] = fmin;
2b1e4f0e 2005 // Bounded params
2006 parOk[i] = TMath::Max (parOk[i], parmin[i]);
2007 parOk[i] = TMath::Min (parOk[i], parmax[i]);
0df3ca52 2008 }
2009
0df3ca52 2010 chi2o = chi2n;
2011 if (fmin < 0.1) break; // !!!???
2012 } // for (Int_t iseed=0;
2013
2b1e4f0e 2014 if (fDebug) {
2015 for (Int_t i=0; i<fNpar; i++) {
2016 //if (i == 4 || i == 7) continue;
2017 if (i == 4 || i == 7) {
2018 if (i == 7 || i == 4 && fNpar < 7) cout << parOk[i] << endl;
2019 else cout << parOk[i] * (1-parOk[7]) << endl;
2020 continue;
2021 }
2022 cout << parOk[i] << " " << errOk[i] << endl;
2023 }
0df3ca52 2024 }
2025 nfit = (fNpar + 1) / 3;
2b1e4f0e 2026 dist[0] = dist[1] = dist[2] = 0;
2027
2028 if (nfit > 1) {
2029 // Find distance to the nearest neighbour
2030 dist[0] = dist[1] = TMath::Sqrt ((parOk[0]-parOk[2])*
2031 (parOk[0]-parOk[2])
2032 +(parOk[1]-parOk[3])*
2033 (parOk[1]-parOk[3]));
2034 if (nfit > 2) {
2035 dist[2] = TMath::Sqrt ((parOk[0]-parOk[5])*
2036 (parOk[0]-parOk[5])
2037 +(parOk[1]-parOk[6])*
2038 (parOk[1]-parOk[6]));
2039 rad = TMath::Sqrt ((parOk[2]-parOk[5])*
2040 (parOk[2]-parOk[5])
2041 +(parOk[3]-parOk[6])*
2042 (parOk[3]-parOk[6]));
2043 if (dist[2] < dist[0]) dist[0] = dist[2];
2044 if (rad < dist[1]) dist[1] = rad;
2045 if (rad < dist[2]) dist[2] = rad;
2046 }
2047 }
2048
1af223d7 2049 Int_t indx;
2b1e4f0e 2050 fnPads[1] -= nVirtual;
1af223d7 2051 Double_t coef = 0;
2052 //for (Int_t j=0; j<nfit; j++) {
2053 for (Int_t j=nfit-1; j>=0; j--) {
2054 indx = j<2 ? j*2 : j*2+1;
2055 if (nfit == 1) coef = 1;
2056 else coef = j==nfit-1 ? parOk[indx+2] : 1-coef;
2057 coef = TMath::Max (coef, 0.);
2058 if (nfit == 3 && j < 2) coef = j==1 ? coef*parOk[indx+2] : coef - parOk[7];
2059 coef = TMath::Max (coef, 0.);
2060 AddRawCluster (parOk[indx], parOk[indx+1], coef*fQtot, errOk[indx], nfit0+10*nfit, tracks,
2061 //sigCand[maxSeed[j]][0], sigCand[maxSeed[j]][1]);
2062 //sigCand[0][0], sigCand[0][1], dist[j]);
2063 sigCand[0][0], sigCand[0][1], dist[TMath::LocMin(nfit,dist)]);
0df3ca52 2064 }
1af223d7 2065 if (fDraw) fDraw->FillMuon(nfit, parOk, errOk);
0df3ca52 2066 return nfit;
2067}
2068
2069//_____________________________________________________________________________
30178c30 2070void AliMUONClusterFinderAZ::Fcn1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
0df3ca52 2071{
2072 // Fit for one track
2b1e4f0e 2073 //AZ for Muinuit AliMUONClusterFinderAZ& c = *(AliMUONClusterFinderAZ::fgClusterFinder);
2074 AliMUONClusterFinderAZ& c = *this; //AZ
0df3ca52 2075
2076 Int_t cath, ix, iy, indx, npads=0;
2b1e4f0e 2077 Double_t charge, delta, coef=0, chi2=0, qTot = 0;
0df3ca52 2078 for (Int_t j=0; j<c.fnPads[0]+c.fnPads[1]; j++) {
2079 if (c.fPadIJ[1][j] != 1) continue;
2080 cath = c.fPadIJ[0][j];
2b1e4f0e 2081 if (c.fXyq[3][j] > 0) npads++; // exclude virtual pads
2082 qTot += c.fXyq[2][j];
2083 c.fSegmentation[cath]->GetPadI(fInput->DetElemId(),c.fXyq[0][j],c.fXyq[1][j],c.fZpad,ix,iy);
2084 c.fSegmentation[cath]->SetPad(fInput->DetElemId(),ix,iy);
0df3ca52 2085 charge = 0;
2086 for (Int_t i=c.fNpar/3; i>=0; i--) { // sum over tracks
2087 indx = i<2 ? 2*i : 2*i+1;
2b1e4f0e 2088 c.fSegmentation[cath]->SetHit(fInput->DetElemId(),par[indx],par[indx+1],c.fZpad);
2089 //charge += c.fResponse->IntXY(fInput->DetElemId(),c.fSegmentation[cath])*par[icl*3+2];
0df3ca52 2090 if (c.fNpar == 2) coef = 1;
2091 else coef = i==c.fNpar/3 ? par[indx+2] : 1-coef;
2b1e4f0e 2092 coef = TMath::Max (coef, 0.);
0df3ca52 2093 if (c.fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2b1e4f0e 2094 coef = TMath::Max (coef, 0.);
2095 charge += c.fResponse->IntXY(fInput->DetElemId(),c.fSegmentation[cath])*coef;
0df3ca52 2096 }
2097 charge *= c.fQtot;
2098 //if (c.fXyq[2][j] > c.fResponse->MaxAdc()-1 && charge >
2099 // c.fResponse->MaxAdc()) charge = c.fResponse->MaxAdc();
2100 delta = charge - c.fXyq[2][j];
2b1e4f0e 2101 delta *= delta;
2102 delta /= c.fXyq[2][j];
2103 //if (cath) delta /= 5; // just for test
2104 chi2 += delta;
0df3ca52 2105 } // for (Int_t j=0;
2106 f = chi2;
2b1e4f0e 2107 Double_t qAver = qTot/npads; //(c.fnPads[0]+c.fnPads[1]);
0df3ca52 2108 f = chi2/qAver;
2109}
2110
2111//_____________________________________________________________________________
6aaf81e6 2112void AliMUONClusterFinderAZ::UpdatePads(Int_t /*nfit*/, Double_t *par)
0df3ca52 2113{
2114 // Subtract the fitted charges from pads with strong coupling
2115
2116 Int_t cath, ix, iy, indx;
2117 Double_t charge, coef=0;
2118 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2119 if (fPadIJ[1][j] != -1) continue;
2120 if (fNpar != 0) {
2121 cath = fPadIJ[0][j];
2b1e4f0e 2122 fSegmentation[cath]->GetPadI(fInput->DetElemId(),fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
2123 fSegmentation[cath]->SetPad(fInput->DetElemId(),ix,iy);
0df3ca52 2124 charge = 0;
2125 for (Int_t i=fNpar/3; i>=0; i--) { // sum over tracks
2126 indx = i<2 ? 2*i : 2*i+1;
2b1e4f0e 2127 fSegmentation[cath]->SetHit(fInput->DetElemId(),par[indx],par[indx+1],fZpad);
0df3ca52 2128 if (fNpar == 2) coef = 1;
2129 else coef = i==fNpar/3 ? par[indx+2] : 1-coef;
2b1e4f0e 2130 coef = TMath::Max (coef, 0.);
0df3ca52 2131 if (fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2b1e4f0e 2132 coef = TMath::Max (coef, 0.);
2133 charge += fResponse->IntXY(fInput->DetElemId(),fSegmentation[cath])*coef;
0df3ca52 2134 }
2135 charge *= fQtot;
2136 fXyq[2][j] -= charge;
2137 } // if (fNpar != 0)
2138 if (fXyq[2][j] > fResponse->ZeroSuppression()) fPadIJ[1][j] = 0; // return pad for further using
2139 } // for (Int_t j=0;
2140}
2141
2142//_____________________________________________________________________________
30178c30 2143Bool_t AliMUONClusterFinderAZ::TestTrack(Int_t /*t*/) const {
0df3ca52 2144// Test if track was user selected
2145 return kTRUE;
2146 /*
2147 if (fTrack[0]==-1 || fTrack[1]==-1) {
2148 return kTRUE;
2149 } else if (t==fTrack[0] || t==fTrack[1]) {
2150 return kTRUE;
2151 } else {
2152 return kFALSE;
2153 }
2154 */
2155}
2156
2157//_____________________________________________________________________________
2b1e4f0e 2158void AliMUONClusterFinderAZ::AddRawCluster(Double_t x, Double_t y, Double_t qTot, Double_t fmin, Int_t nfit, Int_t *tracks, Double_t /*sigx*/, Double_t /*sigy*/, Double_t /*dist*/)
0df3ca52 2159{
2160 //
2161 // Add a raw cluster copy to the list
2162 //
2b1e4f0e 2163 if (qTot <= 0.501) return;
0df3ca52 2164 AliMUONRawCluster cnew;
2165 AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON");
2b1e4f0e 2166 pMUON=0; //AZ
0df3ca52 2167 //pMUON->AddRawCluster(fInput->Chamber(),c);
2168
2b1e4f0e 2169 Int_t cath, npads[2] = {0}, nover[2] = {0};
2170 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2171 cath = fPadIJ[0][j];
2172 // There was an overflow
2173 if (fPadIJ[1][j] == -9) nover[cath]++;
2174 if (fPadIJ[1][j] != 1 && fPadIJ[1][j] != -9) continue;
2175 cnew.SetMultiplicity(cath,cnew.GetMultiplicity(cath)+1);
2176 if (fXyq[2][j] > cnew.GetPeakSignal(cath)) cnew.SetPeakSignal(cath,TMath::Nint (fXyq[2][j]));
2177 //cnew.SetCharge(cath,cnew.GetCharge(cath) + TMath::Nint (fXyq[2][j]));
2178 cnew.SetContrib(npads[cath],cath,fXyq[2][j]);
5a051e34 2179 cnew.SetIndex(npads[cath],cath,TMath::Nint (fXyq[5][j]));
2180 cnew.SetDetElemId(fInput->DetElemId());
2b1e4f0e 2181 npads[cath]++;
2182 }
2183
2184 cnew.SetClusterType(nover[0] + nover[1] * 100);
2185 for (Int_t j=0; j<3; j++) cnew.SetTrack(j,tracks[j]);
2186
0df3ca52 2187 for (cath=0; cath<2; cath++) {
ba12c242 2188 cnew.SetX(cath, x);
2189 cnew.SetY(cath, y);
2190 cnew.SetZ(cath, fZpad);
2b1e4f0e 2191 cnew.SetCharge(cath, TMath::Nint(qTot));
2192 //cnew.SetPeakSignal(cath,20);
2193 //cnew.SetMultiplicity(cath, 5);
2194 cnew.SetNcluster(cath, nfit);
2195 cnew.SetChi2(cath, fmin); //0.;1
0df3ca52 2196 }
2b1e4f0e 2197 // Evaluate measurement errors
2198 //AZ Errors(&cnew);
2199
2200 cnew.SetGhost(nfit); //cnew.SetX(1,sigx); cnew.SetY(1,sigy); cnew.SetZ(1,dist);
0df3ca52 2201 //cnew.fClusterType=cnew.PhysicsContribution();
2b1e4f0e 2202 //AZ pMUON->GetMUONData()->AddRawCluster(AliMUONClusterInput::Instance()->Chamber(),cnew);
2203 new((*fRawClusters)[fNRawClusters++]) AliMUONRawCluster(cnew); //AZ
2204 if (fDebug) cout << fNRawClusters << " " << AliMUONClusterInput::Instance()->Chamber() << endl;
0df3ca52 2205 //fNPeaks++;
2206}
2207
2208//_____________________________________________________________________________
2209Int_t AliMUONClusterFinderAZ::FindLocalMaxima(Int_t *localMax, Double_t *maxVal)
2210{
2211 // Find local maxima in pixel space for large preclusters in order to
2212 // try to split them into smaller pieces (to speed up the MLEM procedure)
2213
2214 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2215 if (hist) hist->Delete();
2216
cd747ddb 2217 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 2218 Int_t nPix = fPixArray->GetEntriesFast();
2219 AliMUONPixel *pixPtr = 0;
2220 for (Int_t ipix=0; ipix<nPix; ipix++) {
2221 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2222 for (Int_t i=0; i<4; i++)
2223 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
2224 }
2225 for (Int_t i=0; i<4; i++) xylim[i] -= pixPtr->Size(i/2);
2226
2227 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
2228 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
2229 hist = new TH2D("anode","anode",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
2230 for (Int_t ipix=0; ipix<nPix; ipix++) {
2231 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2232 hist->Fill(pixPtr->Coord(0), pixPtr->Coord(1), pixPtr->Charge());
2233 }
1af223d7 2234 if (fDraw) fDraw->DrawHist("c2", hist);
0df3ca52 2235
2236 Int_t nMax = 0, indx;
2237 Int_t *isLocalMax = new Int_t[ny*nx];
2238 for (Int_t i=0; i<ny*nx; i++) isLocalMax[i] = 0;
2239
2240 for (Int_t i=1; i<=ny; i++) {
2241 indx = (i-1) * nx;
2242 for (Int_t j=1; j<=nx; j++) {
2243 if (hist->GetCellContent(j,i) < 0.5) continue;
2244 //if (isLocalMax[indx+j-1] < 0) continue;
2245 if (isLocalMax[indx+j-1] != 0) continue;
2246 FlagLocalMax(hist, i, j, isLocalMax);
2247 }
2248 }
2249
2250 for (Int_t i=1; i<=ny; i++) {
2251 indx = (i-1) * nx;
2252 for (Int_t j=1; j<=nx; j++) {
2253 if (isLocalMax[indx+j-1] > 0) {
2254 localMax[nMax] = indx + j - 1;
2255 maxVal[nMax++] = hist->GetCellContent(j,i);
2b1e4f0e 2256 if (nMax > 99) AliFatal(" Too many local maxima !!!");
0df3ca52 2257 }
0df3ca52 2258 }
2259 }
2b1e4f0e 2260 if (fDebug) cout << " Local max: " << nMax << endl;
0df3ca52 2261 delete [] isLocalMax; isLocalMax = 0;
2262 return nMax;
2263}
2264
2265//_____________________________________________________________________________
2266void AliMUONClusterFinderAZ::FlagLocalMax(TH2D *hist, Int_t i, Int_t j, Int_t *isLocalMax)
2267{
2268 // Flag pixels (whether or not local maxima)
2269
2270 Int_t nx = hist->GetNbinsX();
2271 Int_t ny = hist->GetNbinsY();
2272 Int_t cont = TMath::Nint (hist->GetCellContent(j,i));
2273 Int_t cont1 = 0;
2274
2275 for (Int_t i1=i-1; i1<i+2; i1++) {
2276 if (i1 < 1 || i1 > ny) continue;
2277 for (Int_t j1=j-1; j1<j+2; j1++) {
2278 if (j1 < 1 || j1 > nx) continue;
2279 if (i == i1 && j == j1) continue;
2280 cont1 = TMath::Nint (hist->GetCellContent(j1,i1));
2281 if (cont < cont1) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2282 else if (cont > cont1) isLocalMax[(i1-1)*nx+j1-1] = -1;
2283 else { // the same charge
2284 isLocalMax[(i-1)*nx+j-1] = 1;
2285 if (isLocalMax[(i1-1)*nx+j1-1] == 0) {
2286 FlagLocalMax(hist, i1, j1, isLocalMax);
2287 if (isLocalMax[(i1-1)*nx+j1-1] < 0) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2288 else isLocalMax[(i1-1)*nx+j1-1] = -1;
2289 }
2290 }
2291 }
2292 }
2293 isLocalMax[(i-1)*nx+j-1] = 1; // local maximum
2294}
2295
2296//_____________________________________________________________________________
2297void AliMUONClusterFinderAZ::FindCluster(Int_t *localMax, Int_t iMax)
2298{
2299 // Find pixel cluster around local maximum #iMax and pick up pads
2300 // overlapping with it
2301
2302 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2303 Int_t nx = hist->GetNbinsX();
2304 Int_t ny = hist->GetNbinsY();
2305 Int_t ic = localMax[iMax] / nx + 1;
2306 Int_t jc = localMax[iMax] % nx + 1;
2307 Bool_t *used = new Bool_t[ny*nx];
2308 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
2309
2310 // Drop all pixels from the array - pick up only the ones from the cluster
2311 fPixArray->Delete();
2312
2313 Double_t wx = hist->GetXaxis()->GetBinWidth(1)/2;
2314 Double_t wy = hist->GetYaxis()->GetBinWidth(1)/2;
2315 Double_t yc = hist->GetYaxis()->GetBinCenter(ic);
2316 Double_t xc = hist->GetXaxis()->GetBinCenter(jc);
2317 Double_t cont = hist->GetCellContent(jc,ic);
2318 AliMUONPixel *pixPtr = new AliMUONPixel (xc, yc, wx, wy, cont);
2319 fPixArray->Add((TObject*)pixPtr);
2320 used[(ic-1)*nx+jc-1] = kTRUE;
2321 AddBin(hist, ic, jc, 1, used, (TObjArray*)0); // recursive call
2322
2323 Int_t nPix = fPixArray->GetEntriesFast(), npad = fnPads[0] + fnPads[1];
2324 for (Int_t i=0; i<nPix; i++) {
2325 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(0,wx);
2326 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(1,wy);
2327 }
2b1e4f0e 2328 if (fDebug) cout << iMax << " " << nPix << endl;
0df3ca52 2329
2330 Float_t xy[4], xy12[4];
2331 // Pick up pads which overlap with found pixels
2332 for (Int_t i=0; i<npad; i++) fPadIJ[1][i] = -1;
2333 for (Int_t i=0; i<nPix; i++) {
2334 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
2335 for (Int_t j=0; j<4; j++)
2336 xy[j] = pixPtr->Coord(j/2) + (j%2 ? 1 : -1)*pixPtr->Size(j/2);
2337 for (Int_t j=0; j<npad; j++)
2338 if (Overlap(xy, j, xy12, 0)) fPadIJ[1][j] = 0; // flag for use
2339 }
2340
2341 delete [] used; used = 0;
2342}
30178c30 2343
2344//_____________________________________________________________________________
2345AliMUONClusterFinderAZ&
2346AliMUONClusterFinderAZ::operator=(const AliMUONClusterFinderAZ& rhs)
2347{
2348// Protected assignement operator
2349
2350 if (this == &rhs) return *this;
2351
8c343c7c 2352 AliFatal("Not implemented.");
30178c30 2353
2354 return *this;
2355}
2356
2b1e4f0e 2357//_____________________________________________________________________________
2358void AliMUONClusterFinderAZ::AddVirtualPad()
2359{
2360 // Add virtual pad (with small charge) to improve fit for some
2361 // clusters (when pad with max charge is at the extreme of the cluster)
2362
2363 // Get number of pads in X and Y-directions
2364 Int_t nInX = -1, nInY;
2365 PadsInXandY(nInX, nInY);
2366 //return;
2367
2368 //nInY = npady[0];
2369 //nInX = npadx[1] ? npadx[1] : npadx[0];
2370 // Add virtual pads only if number of pads per direction == 2
2371 //if (!npadx[1] && npady[0] != 2 && npadx[0] != 2) return 0; // one-sided
2372 //if (npadx[1] && npady[0] != 2 && npadx[1] != 2) return 0;
2373 if (nInX != 2 && nInY != 2) return;
2374
2375 // Find pads with max charge
2376 Int_t maxpad[2][2] = {{-1, -1}, {-1, -1}}, cath;
2377 Double_t sigmax[2] = {0}, aamax[2] = {0};
2378 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2379 if (fPadIJ[1][j] != 0) continue;
2380 cath = fPadIJ[0][j];
2381 if (fXyq[2][j] > sigmax[cath]) {
2382 maxpad[cath][1] = maxpad[cath][0];
2383 aamax[cath] = sigmax[cath];
2384 sigmax[cath] = fXyq[2][j];
2385 maxpad[cath][0] = j;
2386 }
2387 }
2388 if (maxpad[0][0] >= 0 && maxpad[0][1] < 0 || maxpad[1][0] >= 0 && maxpad[1][1] < 0) {
2389 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2390 if (fPadIJ[1][j] != 0) continue;
2391 cath = fPadIJ[0][j];
2392 if (j == maxpad[cath][0] || j == maxpad[cath][1]) continue;
2393 if (fXyq[2][j] > aamax[cath]) {
2394 aamax[cath] = fXyq[2][j];
2395 maxpad[cath][1] = j;
2396 }
2397 }
2398 }
2399 // Check for mirrors (side X on cathode 0)
2400 Bool_t mirror = kFALSE;
2401 if (maxpad[0][0] >= 0 && maxpad[1][0] >= 0)
2402 mirror = fXyq[3][maxpad[0][0]] < fXyq[4][maxpad[0][0]];
2403
2404 // Find neughbours of pads with max charges
2405 Int_t nn, xList[10], yList[10], ix0, iy0, ix, iy, neighb;
2406 for (cath=0; cath<2; cath++) {
2407 if (!cath && maxpad[0][0] < 0) continue; // one-sided cluster - cathode 1
2408 if (cath && maxpad[1][0] < 0) break; // one-sided cluster - cathode 0
2409 if (maxpad[1][0] >= 0) {
2410 if (!mirror) {
2411 if (!cath && nInY != 2) continue;
2412 //AZ if (cath && nInX != 2) continue;
2413 if (cath && nInX != 2 && (maxpad[0][0] >= 0 || nInY != 2)) continue;
2414 } else {
2415 if (!cath && nInX != 2) continue;
2416 if (cath && nInY != 2 && (maxpad[0][0] >= 0 || nInX != 2)) continue;
2417 }
2418 }
2419
1af223d7 2420 Int_t iAddX = 0, iAddY = 0, ix1 = 0, iy1 = 0, iPad = 0;
2b1e4f0e 2421 if (maxpad[0][0] < 0) iPad = 1;
2422
1af223d7 2423 /*
2b1e4f0e 2424 // This part of code to take care of edge effect (problems in MC)
f29ba3e1 2425 Float_t sprX = fResponse->SigmaIntegration()*fResponse->ChargeSpreadX();
2426 Float_t sprY = fResponse->SigmaIntegration()*fResponse->ChargeSpreadY();
2b1e4f0e 2427 Double_t rmin = 9999, rad2;
1af223d7 2428 Int_t border = 0, iYlow = 0, iMuon = 0;
2b1e4f0e 2429
1af223d7 2430 if (fDraw) {
2b1e4f0e 2431 for (Int_t i=0; i<2; i++) {
2432 rad2 = (fXyq[0][maxpad[iPad][0]]-fxyMu[i][0]) * (fXyq[0][maxpad[iPad][0]]-fxyMu[i][0]);
2433 rad2 += (fXyq[1][maxpad[iPad][0]]-fxyMu[i][1]) * (fXyq[1][maxpad[iPad][0]]-fxyMu[i][1]);
2434 if (rad2 < rmin) { iMuon = i; rmin = rad2; }
2435 }
f29ba3e1 2436 fSegmentation[cath]->FirstPad(fInput->DetElemId(),(Float_t)fxyMu[iMuon][0], (Float_t)fxyMu[iMuon][1], fZpad, sprX, sprY);
2b1e4f0e 2437 if (fSegmentation[cath]->Sector(fInput->DetElemId(),fSegmentation[cath]->Ix(),fSegmentation[cath]->Iy()) <= 0) {
2438 fSegmentation[cath]->NextPad(fInput->DetElemId());
2439 border = 1;
2440 iYlow = fSegmentation[cath]->Iy();
2441 }
2442 }
1af223d7 2443 */
2b1e4f0e 2444
2445 for (iPad=0; iPad<2; iPad++) {
2446 if (iPad && !iAddX && !iAddY) break;
2447 if (iPad && fXyq[2][maxpad[cath][1]] / sigmax[cath] < 0.5) break;
2448
2449 Int_t neighbx = 0, neighby = 0;
2450 fSegmentation[cath]->GetPadI(fInput->DetElemId(),fXyq[0][maxpad[cath][iPad]],fXyq[1][maxpad[cath][iPad]],fZpad,ix0,iy0);
2451 fSegmentation[cath]->Neighbours(fInput->DetElemId(),ix0,iy0,&nn,xList,yList);
2452 Float_t zpad; //, xpad, ypad;
2453 for (Int_t j=0; j<nn; j++) {
2454 /*
2455 if (border && yList[j] < iYlow) { xList[j] = yList[j] = 0; continue; }
2456 fSegmentation[cath]->GetPadC(fInput->DetElemId(),xList[j],yList[j],xpad,ypad,zpad);
2457 if (TMath::Abs(xpad) < 1 && TMath::Abs(ypad) < 1)
2458 { xList[j] = yList[j] = 0; continue; } // strange case (something with pad mapping)
2459 */
2460 if (TMath::Abs(xList[j]-ix0) == 1 || TMath::Abs(xList[j]*ix0) == 1) neighbx++;
2461 if (TMath::Abs(yList[j]-iy0) == 1 || TMath::Abs(yList[j]*iy0) == 1) neighby++;
2462 }
2463 if (!mirror) {
2464 if (cath) neighb = neighbx;
2465 else neighb = neighby;
2466 if (maxpad[0][0] < 0) neighb += neighby;
2467 else if (maxpad[1][0] < 0) neighb += neighbx;
2468 } else {
2469 if (!cath) neighb = neighbx;
2470 else neighb = neighby;
2471 if (maxpad[0][0] < 0) neighb += neighbx;
2472 else if (maxpad[1][0] < 0) neighb += neighby;
2473 }
2474
2475 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2476 if (fPadIJ[0][j] != cath) continue;
2477 fSegmentation[cath]->GetPadI(fInput->DetElemId(),fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
2478 if (iy == iy0 && ix == ix0) continue;
2479 for (Int_t k=0; k<nn; k++) {
2480 if (xList[k] != ix || yList[k] != iy) continue;
2481 if (!mirror) {
2482 if ((!cath || maxpad[0][0] < 0) &&
1af223d7 2483 //(TMath::Abs(iy-iy0) == 1 || TMath::Abs(iy*iy0) == 1)) {
2484 (TMath::Abs(iy-iy0) == 1 || iy*iy0 == -1)) {
2b1e4f0e 2485 xList[k] = yList[k] = 0;
2486 neighb--;
2487 break;
2488 }
2489 if ((cath || maxpad[1][0] < 0) &&
1af223d7 2490 //(TMath::Abs(ix-ix0) == 1 || TMath::Abs(ix*ix0) == 1)) {
2491 (TMath::Abs(ix-ix0) == 1 || ix*ix0 == -1)) {
2b1e4f0e 2492 xList[k] = yList[k] = 0;
2493 neighb--;
2494 }
2495 } else {
2496 if ((!cath || maxpad[0][0] < 0) &&
1af223d7 2497 //(TMath::Abs(ix-ix0) == 1 || TMath::Abs(ix*ix0) == 1)) {
2498 (TMath::Abs(ix-ix0) == 1 || ix*ix0 == -1)) {
2b1e4f0e 2499 xList[k] = yList[k] = 0;
2500 neighb--;
2501 break;
2502 }
2503 if ((cath || maxpad[1][0] < 0) &&
1af223d7 2504 //(TMath::Abs(iy-iy0) == 1 || TMath::Abs(iy*iy0) == 1)) {
2505 (TMath::Abs(iy-iy0) == 1 || iy*iy0 == -1)) {
2b1e4f0e 2506 xList[k] = yList[k] = 0;
2507 neighb--;
2508 }
2509 }
2510 break;
2511 } // for (Int_t k=0; k<nn;
2512 if (!neighb) break;
2513 } // for (Int_t j=0; j<fnPads[0]+fnPads[1];
2514 if (!neighb) continue;
2515
2516 // Add virtual pad
2517 Int_t npads, isec;
2518 isec = 0;
2519 for (Int_t j=0; j<nn; j++) {
2520 if (xList[j] == 0 && yList[j] == 0) continue;
2521 npads = fnPads[0] + fnPads[1];
2522 fPadIJ[0][npads] = cath;
2523 fPadIJ[1][npads] = 0;
2524 ix = xList[j];
2525 iy = yList[j];
1af223d7 2526 //if (TMath::Abs(ix-ix0) == 1 || TMath::Abs(ix*ix0) == 1) {
2527 if (TMath::Abs(ix-ix0) == 1 || ix*ix0 == -1) {
2b1e4f0e 2528 if (iy != iy0) continue; // new segmentation - check
2529 if (nInX != 2) continue; // new
2530 if (!mirror) {
2531 if (!cath && maxpad[1][0] >= 0) continue;
2532 //if (maxpad[1][0] < 0 && nInX != 2) continue;
2533 } else {
2534 if (cath && maxpad[0][0] >= 0) continue;
2535 //if (maxpad[0][0] < 0 && nInX != 2) continue;
2536 }
2537 if (iPad && !iAddX) continue;
2538 fSegmentation[cath]->GetPadC(fInput->DetElemId(),ix,iy,fXyq[0][npads],fXyq[1][npads],zpad);
1af223d7 2539 if (fXyq[0][npads] > 1.e+5) continue; // temporary fix
2b1e4f0e 2540 if (ix1 == ix0) continue;
2541 //if (iPad && ix1 == ix0) continue;
2542 //if (iPad && TMath::Abs(fXyq[0][npads]-fXyq[0][iAddX]) < fXyq[3][iAddX]) continue;
2543 //if (TMath::Abs(fXyq[0][npads]) < 1 && TMath::Abs(fXyq[1][npads]) < 1) continue; // strange case (something with pad mapping)
2544 if (maxpad[1][0] < 0 || mirror && maxpad[0][0] >= 0) {
2545 if (!iPad) fXyq[2][npads] = TMath::Min (sigmax[0]/100, 5.);
2546 else fXyq[2][npads] = TMath::Min (aamax[0]/100, 5.);
2547 }
2548 else {
2549 if (!iPad) fXyq[2][npads] = TMath::Min (sigmax[1]/100, 5.);
2550 else fXyq[2][npads] = TMath::Min (aamax[1]/100, 5.);
2551 }
2552 fXyq[2][npads] = TMath::Max (fXyq[2][npads], (float)1);
2553 //fXyq[2][npads] = 1;
2554 //isec = fSegmentation[cath]->Sector(fInput->DetElemId(),ix, iy);
2555 //fXyq[3][npads] = fSegmentation[cath]->Dpx(fInput->DetElemId(),isec)/2;
2556 fXyq[3][npads] = -2; // flag
2557 fnPads[1]++;
2558 iAddX = npads;
2559 if (fDebug) cout << " ***** Add virtual pad in X ***** " << fXyq[2][npads]
2560 << " " << fXyq[0][npads] << " " << fXyq[1][npads] << endl;
2561 ix1 = ix0;
2562 continue;
2563 }
2564 if (nInY != 2) continue;
2565 if (!mirror && cath && maxpad[0][0] >= 0) continue;
2566 if (mirror && !cath && maxpad[1][0] >= 0) continue;
2567 if (TMath::Abs(iy-iy0) == 1 || TMath::Abs(iy*iy0) == 1) {
2568 if (ix != ix0) continue; // new segmentation - check
2569 if (iPad && !iAddY) continue;
2570 fSegmentation[cath]->GetPadC(fInput->DetElemId(),ix,iy,fXyq[0][npads],fXyq[1][npads],zpad);
2571 if (iy1 == iy0) continue;
2572 //if (iPad && iy1 == iy0) continue;
2573 //if (iPad && TMath::Abs(fXyq[1][npads]-fXyq[1][iAddY]) < fXyq[4][iAddY]) continue;
2574 //if (TMath::Abs(fXyq[0][npads]) < 1 && TMath::Abs(fXyq[1][npads]) < 1) continue; // strange case (something with pad mapping)
2575 if (maxpad[0][0] < 0 || mirror && maxpad[1][0] >= 0) {
2576 if (!iPad) fXyq[2][npads] = TMath::Min (sigmax[1]/20, 5.);
2577 else fXyq[2][npads] = TMath::Min (aamax[1]/20, 5.);
2578 }
2579 else {
2580 if (!iPad) fXyq[2][npads] = TMath::Min (sigmax[0]/20, 5.);
2581 else fXyq[2][npads] = TMath::Min (aamax[0]/20, 5.);
2582 }
2583 fXyq[2][npads] = TMath::Max (fXyq[2][npads], (float)1);
2584 //isec = fSegmentation[cath]->Sector(fInput->DetElemId(),ix, iy);
2585 //fXyq[4][npads] = fSegmentation[cath]->Dpy(isec)/2;
2586 fXyq[3][npads] = -2; // flag
2587 fnPads[1]++;
2588 iAddY = npads;
2589 if (fDebug) cout << " ***** Add virtual pad in Y ***** " << fXyq[2][npads]
2590 << " " << fXyq[0][npads] << " " << fXyq[1][npads] << endl;
2591 iy1 = iy0;
2592 }
2593 } // for (Int_t j=0; j<nn;
2594 } // for (Int_t iPad=0;
2595 } // for (cath=0; cath<2;
2596 return;
2597}
2598
2599//_____________________________________________________________________________
2600void AliMUONClusterFinderAZ::PadsInXandY(Int_t &nInX, Int_t &nInY)
2601{
2602 // Find number of pads in X and Y-directions (excluding virtual ones and
2603 // overflows)
2604
2605 static Int_t nXsaved = 0, nYsaved = 0;
2606 nXsaved = nYsaved = 0;
2607 //if (nInX >= 0) {nInX = nXsaved; nInY = nYsaved; return; }
5a051e34 2608 Float_t *xPad0 = NULL, *yPad0 = NULL, *xPad1 = NULL, *yPad1 = NULL;
1af223d7 2609 Float_t wMinX[2] = {99, 99}, wMinY[2] = {99, 99};
5a051e34 2610 Int_t *nPad0 = NULL, *nPad1 = NULL;
2611 Int_t nPads = fnPads[0] + fnPads[1];
2612 if (fnPads[0]) {
2613 xPad0 = new Float_t[nPads];
2614 yPad0 = new Float_t[nPads];
2615 nPad0 = new Int_t[nPads];
2616 }
2617 if (fnPads[1]) {
2618 xPad1 = new Float_t[nPads];
2619 yPad1 = new Float_t[nPads];
2620 nPad1 = new Int_t[nPads];
2621 }
2622 Int_t n0 = 0, n1 = 0, cath, npadx[2] = {1, 1}, npady[2] = {1, 1};
2623 for (Int_t j = 0; j < nPads; j++) {
2b1e4f0e 2624 //if (fPadIJ[1][j] != 0) continue;
2625 //if (fXyq[3][j] < 0) continue; // virtual pad
2626 if (nInX < 0 && fPadIJ[1][j] != 0) continue; // before fit
2627 else if (nInX == 0 && fPadIJ[1][j] != 1) continue; // fit - exclude overflows
2628 else if (nInX > 0 && fPadIJ[1][j] != 1 && fPadIJ[1][j] != -9) continue; // exclude non-marked
2b1e4f0e 2629 if (nInX <= 0 && fXyq[2][j] > fResponse->Saturation()-1) continue; // skip overflows
2630 cath = fPadIJ[0][j];
1af223d7 2631 if (fXyq[3][j] > 0) { // exclude virtual pads
2632 wMinX[cath] = TMath::Min (wMinX[cath], fXyq[3][j]);
2633 wMinY[cath] = TMath::Min (wMinY[cath], fXyq[4][j]);
2634 }
5a051e34 2635 if (cath) { xPad1[n1] = fXyq[0][j]; yPad1[n1++] = fXyq[1][j]; }
2636 else { xPad0[n0] = fXyq[0][j]; yPad0[n0++] = fXyq[1][j]; }
2b1e4f0e 2637 }
5a051e34 2638
2639 // Sort
2640 if (n0) {
2641 TMath::Sort (n0, xPad0, nPad0); // in X
2642 for (Int_t i = 1; i < n0; i++)
2643 if (xPad0[nPad0[i]] - xPad0[nPad0[i-1]] < -0.01) npadx[0]++;
2644 TMath::Sort (n0, yPad0, nPad0); // in Y
2645 for (Int_t i = 1; i < n0; i++)
2646 if (yPad0[nPad0[i]] - yPad0[nPad0[i-1]] < -0.01) npady[0]++;
2647 }
2648
2649 if (n1) {
2650 TMath::Sort (n1, xPad1, nPad1); // in X
2651 for (Int_t i = 1; i < n1; i++)
2652 if (xPad1[nPad1[i]] - xPad1[nPad1[i-1]] < -0.01) npadx[1]++;
2653 TMath::Sort (n1, yPad1, nPad1); // in Y
2654 for (Int_t i = 1; i < n1; i++)
2655 if (yPad1[nPad1[i]] - yPad1[nPad1[i-1]] < -0.01) npady[1]++;
2656 }
2657 if (fnPads[0]) { delete [] xPad0; delete [] yPad0; delete [] nPad0; }
2658 if (fnPads[1]) { delete [] xPad1; delete [] yPad1; delete [] nPad1; }
1af223d7 2659 //nInY = TMath::Max (npady[0], npady[1]);
2660 //nInX = TMath::Max (npadx[0], npadx[1]);
2661 nInY = wMinY[0] < wMinY[1] ? npady[0] : npady[1];
2662 nInX = wMinX[0] < wMinX[1] ? npadx[0] : npadx[1];
2b1e4f0e 2663}
2664
2665//_____________________________________________________________________________
2666void AliMUONClusterFinderAZ::Simple()
2667{
2668 // Process simple cluster (small number of pads) without EM-procedure
2669
2670 Int_t nForFit = 1, clustFit[1] = {1}, nfit;
2671 Double_t parOk[3] = {0.};
2672 TObjArray *clusters[1];
2673 clusters[1] = fPixArray;
5a051e34 2674 for (Int_t i = 0; i < fnPads[0]+fnPads[1]; i++) {
2675 if (fXyq[2][i] > fResponse->Saturation()-1) fPadIJ[1][i] = -9;
2676 else fPadIJ[1][i] = 1;
2677 }
2b1e4f0e 2678 nfit = Fit(nForFit, clustFit, clusters, parOk);
2679}
2680
2681//_____________________________________________________________________________
2682void AliMUONClusterFinderAZ::Errors(AliMUONRawCluster *clus)
2683{
2684 // Correct reconstructed coordinates for some clusters and evaluate errors
2685
2686 Double_t qTot = clus->GetCharge(0), fmin = clus->GetChi2(0);
2687 Double_t xreco = clus->GetX(0), yreco = clus->GetY(0), zreco = clus->GetZ(0);
2688 Double_t sigmax[2] = {0};
2689
2690 Int_t nInX = 1, nInY, maxdig[2] ={-1, -1}, digit, cath1, isec;
2691 PadsInXandY(nInX, nInY);
2692
2693 // Find pad with maximum signal
2694 for (Int_t cath = 0; cath < 2; cath++) {
2695 for (Int_t j = 0; j < clus->GetMultiplicity(cath); j++) {
2696 cath1 = cath;
2697 digit = clus->GetIndex(j, cath);
2698 if (digit < 0) { cath1 = TMath::Even(cath); digit = -digit - 1; } // from the other cathode
2699
2700 if (clus->GetContrib(j,cath) > sigmax[cath1]) {
2701 sigmax[cath1] = clus->GetContrib(j,cath);
2702 maxdig[cath1] = digit;
2703 }
2704 }
2705 }
2706
2707 // Size of pad with maximum signal and reco coordinate distance from the pad center
2708 AliMUONDigit *mdig = 0;
2709 Double_t wx[2], wy[2], dxc[2], dyc[2];
2710 Float_t xpad, ypad, zpad;
2711 Int_t ix, iy;
2712 for (Int_t cath = 0; cath < 2; cath++) {
2713 if (maxdig[cath] < 0) continue;
2714 mdig = fInput->Digit(cath,maxdig[cath]);
2715 isec = fSegmentation[cath]->Sector(fInput->DetElemId(),mdig->PadX(), mdig->PadY());
2716 wx[cath] = fSegmentation[cath]->Dpx(fInput->DetElemId(),isec);
2717 wy[cath] = fSegmentation[cath]->Dpy(fInput->DetElemId(),isec);
2718 fSegmentation[cath]->GetPadI(fInput->DetElemId(),xreco, yreco, zreco, ix, iy);
2719 isec = fSegmentation[cath]->Sector(fInput->DetElemId(),ix,iy);
2720 if (isec > 0) {
2721 fSegmentation[cath]->GetPadC(fInput->DetElemId(), ix, iy, xpad, ypad, zpad);
2722 dxc[cath] = xreco - xpad;
2723 dyc[cath] = yreco - ypad;
2724 }
2725 }
2726
2727 // Check if pad with max charge at the edge (number of neughbours)
2728 Int_t nn, xList[10], yList[10], neighbx[2][2] = {{0,0}, {0,0}}, neighby[2][2]= {{0,0}, {0,0}};
2729 for (Int_t cath = 0; cath < 2; cath++) {
2730 if (maxdig[cath] < 0) continue;
2731 mdig = fInput->Digit(cath,maxdig[cath]);
2732 fSegmentation[cath]->Neighbours(fInput->DetElemId(),mdig->PadX(),mdig->PadY(),&nn,xList,yList);
2733 isec = fSegmentation[cath]->Sector(fInput->DetElemId(),mdig->PadX(), mdig->PadY());
2734 //*??
f29ba3e1 2735 Float_t sprX = fResponse->SigmaIntegration() * fResponse->ChargeSpreadX();
2736 Float_t sprY = fResponse->SigmaIntegration() * fResponse->ChargeSpreadY();
2737 //fSegmentation[cath]->FirstPad(fInput->DetElemId(),muons[ihit][1], muons[ihit][2], muons[ihit][3], sprX, sprY);
2738 fSegmentation[cath]->FirstPad(fInput->DetElemId(),xreco, yreco, zreco, sprX, sprY);
2b1e4f0e 2739 Int_t border = 0;
2740 if (fSegmentation[cath]->Sector(fInput->DetElemId(),fSegmentation[cath]->Ix(),fSegmentation[cath]->Iy()) <= 0) {
2741 fSegmentation[cath]->NextPad(fInput->DetElemId());
2742 border = 1;
2743 }
2744 //*/
2745 for (Int_t j=0; j<nn; j++) {
2746 if (border && yList[j] < fSegmentation[cath]->Iy()) continue;
2747 fSegmentation[cath]->GetPadC (fInput->DetElemId(), xList[j], yList[j], xpad, ypad, zpad);
2748 //cout << ch << " " << xList[j] << " " << yList[j] << " " << border << " " << x << " " << y << " " << xpad << " " << ypad << endl;
2749 if (TMath::Abs(xpad) < 1 && TMath::Abs(ypad) < 1) continue;
2750 if (xList[j] == mdig->PadX()-1 || mdig->PadX() == 1 &&
2751 xList[j] == -1) neighbx[cath][0] = 1;
2752 else if (xList[j] == mdig->PadX()+1 || mdig->PadX() == -1 &&
2753 xList[j] == 1) neighbx[cath][1] = 1;
2754 if (yList[j] == mdig->PadY()-1 || mdig->PadY() == 1 &&
2755 yList[j] == -1) neighby[cath][0] = 1;
2756 else if (yList[j] == mdig->PadY()+1 || mdig->PadY() == -1 &&
2757 yList[j] == 1) neighby[cath][1] = 1;
2758 } // for (Int_t j=0; j<nn;
2759 if (neighbx[cath][0] && neighbx[cath][1]) neighbx[cath][0] = 0;
2760 else if (neighbx[cath][1]) neighbx[cath][0] = -1;
2761 else neighbx[cath][0] = 1;
2762 if (neighby[cath][0] && neighby[cath][1]) neighby[cath][0] = 0;
2763 else if (neighby[cath][1]) neighby[cath][0] = -1;
2764 else neighby[cath][0] = 1;
2765 }
2766
2767 Int_t iOver = clus->GetClusterType();
2768 // One-sided cluster
2769 if (!clus->GetMultiplicity(0)) {
2770 neighby[0][0] = neighby[1][0];
2771 wy[0] = wy[1];
2772 if (iOver < 99) iOver += 100 * iOver;
2773 dyc[0] = dyc[1];
2774 } else if (!clus->GetMultiplicity(1)) {
2775 neighbx[1][0] = neighbx[0][0];
2776 wx[1] = wx[0];
2777 if (iOver < 99) iOver += 100 * iOver;
2778 dxc[1] = dxc[0];
2779 }
2780
2781 // Apply corrections and evaluate errors
2782 Double_t errY, errX;
2783 Errors(nInY, nInX, neighby[0][0],neighbx[1][0], fmin, wy[0]*10, wx[1]*10, iOver,
2784 dyc[0], dxc[1], qTot, yreco, xreco, errY, errX);
2785 errY = TMath::Max (errY, 0.01);
2786 //errY = 0.01;
2787 //errX = TMath::Max (errX, 0.144);
2788 clus->SetX(0, xreco); clus->SetY(0, yreco);
1af223d7 2789 clus->SetErrX(errX); clus->SetErrY(errY);
2b1e4f0e 2790}
2791
2792//_____________________________________________________________________________
2793void AliMUONClusterFinderAZ::Errors(Int_t ny, Int_t nx, Int_t iby, Int_t ibx, Double_t fmin,
2794 Double_t wy, Double_t wx, Int_t iover,
2795 Double_t dyc, Double_t /*dxc*/, Double_t qtot,
2796 Double_t &yrec, Double_t &xrec, Double_t &erry, Double_t &errx)
2797{
2798 // Correct reconstructed coordinates for some clusters and evaluate errors
2799
2800 erry = 0.01;
2801 errx = 0.144;
2802 Int_t iovery = iover % 100;
2803 Double_t corr = 0;
2804
2805/* ---> Ny = 1 */
2806 if (ny == 1) {
2807 if (iby != 0) {
2808 // edge effect
2809 yrec += iby * (0.1823+0.2008)/2;
2810 erry = 0.04587;
2811 } else {
2812 // Find "effective pad width"
2813 Double_t width = 0.218 / (1.31e-4 * TMath::Exp (2.688 * TMath::Log(qtot)) + 1) * 2;
2814 width = TMath::Min (width, 0.4);
2815 erry = width / TMath::Sqrt(12.);
2816 erry = TMath::Max (erry, 0.01293);
2817 }
2818 goto x; //return;
2819 }
2820
2821/* ---> "Bad" fit */
2822 if (fmin > 0.4) {
2823 erry = 0.1556;
2824 if (ny == 5) erry = 0.06481;
2825 goto x; //return;
2826 }
2827
2828/* ---> By != 0 */
2829 if (iby != 0) {
2830 if (ny > 2) {
2831 erry = 0.00417; //0.01010
2832 } else {
2833 // ny = 2
2834 if (dyc * iby > -0.05) {
2835 Double_t dyc2 = dyc * dyc;
2836 if (iby < 0) {
2837 corr = 0.019 - 0.602 * dyc + 8.739 * dyc2 - 44.209 * dyc2 * dyc;
2838 corr = TMath::Min (corr, TMath::Abs(-0.25-dyc));
2839 yrec -= corr;
2840 //dyc -= corr;
2841 erry = 0.00814;
2842 } else {
2843 corr = 0.006 + 0.300 * dyc + 6.147 * dyc2 + 42.039 * dyc2 * dyc;
2844 corr = TMath::Min (corr, 0.25-dyc);
2845 yrec += corr;
2846 //dyc += corr;
2847 erry = 0.01582;
2848 }
2849 } else {
2850 erry = (0.00303 + 0.00296) / 2;
2851 }
2852 }
2853 goto x; //return;
2854 }
2855
2856/* ---> Overflows */
2857 if (iovery != 0) {
2858 if (qtot < 3000) {
2859 erry = 0.0671;
2860 } else {
2861 if (iovery > 1) {
2862 erry = 0.09214;
2863 } else if (TMath::Abs(wy - 5) < 0.1) {
2864 erry = 0.061; //0.06622
2865 } else {
2866 erry = 0.00812; // 0.01073
2867 }
2868 }
2869 goto x; //return;
2870 }
2871
2872/* ---> "Good" but very high signal */
2873 if (qtot > 4000) {
2874 if (TMath::Abs(wy - 4) < 0.1) {
2875 erry = 0.00117;
2876 } else if (fmin < 0.03 && qtot < 6000) {
2877 erry = 0.01003;
2878 } else {
2879 erry = 0.1931;
2880 }
2881 goto x; //return;
2882 }
2883
2884/* ---> "Good" clusters */
2885 if (ny > 3) {
2886 if (TMath::Abs(wy - 5) < 0.1) {
2887 erry = 0.0011; //0.00304
2888 } else if (qtot < 400.) {
2889 erry = 0.0165;
2890 } else {
2891 erry = 0.00135; // 0.00358
2892 }
2893 } else if (ny == 3) {
2894 if (TMath::Abs(wy - 4) < 0.1) {
2895 erry = 35.407 / (1 + TMath::Exp(5.511*TMath::Log(qtot/265.51))) + 11.564;
2896 //erry = 83.512 / (1 + TMath::Exp(3.344*TMath::Log(qtot/211.58))) + 12.260;
2897 } else {
2898 erry = 147.03 / (1 + TMath::Exp(1.713*TMath::Log(qtot/73.151))) + 9.575;
2899 //erry = 91.743 / (1 + TMath::Exp(2.332*TMath::Log(qtot/151.67))) + 11.453;
2900 }
2901 erry *= 1.e-4;
2902 } else {
2903 // ny = 2
2904 if (TMath::Abs(wy - 4) < 0.1) {
2905 erry = 60.800 / (1 + TMath::Exp(3.305*TMath::Log(qtot/104.53))) + 11.702;
2906 //erry = 73.128 / (1 + TMath::Exp(5.676*TMath::Log(qtot/120.93))) + 17.839;
2907 } else {
2908 erry = 117.98 / (1 + TMath::Exp(2.005*TMath::Log(qtot/37.649))) + 21.431;
2909 //erry = 99.066 / (1 + TMath::Exp(4.900*TMath::Log(qtot/107.57))) + 25.315;
2910 }
2911 erry *= 1.e-4;
2912 }
2913 //return;
2914
2915 x:
2916/* ---> X-coordinate */
2917/* ---> Y-side */
2918 if (wx > 11) {
2919 errx = 0.0036;
2920 xrec -= 0.1385;
2921 return;
2922 }
2923/* ---> Nx = 1 */
2924 if (nx == 1) {
2925 if (TMath::Abs(wx - 6) < 0.1) {
2926 if (qtot < 40) errx = 0.1693;
2927 else errx = 0.06241;
2928 } else if (TMath::Abs(wx - 7.5) < 0.1) {
2929 if (qtot < 40) errx = 0.2173;
2930 else errx = 0.07703;
2931 } else if (TMath::Abs(wx - 10) < 0.1) {
2932 if (ibx == 0) {
2933 if (qtot < 40) errx = 0.2316;
2934 else errx = 0.1426;
2935 } else {
2936 xrec += (0.2115 + 0.1942) / 2 * ibx;
2937 errx = 0.1921;
2938 }
2939 }
2940 return;
2941 }
2942/* ---> "Bad" fit */
2943 if (fmin > 0.5) {
2944 errx = 0.1591;
2945 return;
2946 }
2947/* ---> Bx != 0 */
2948 if (ibx != 0) {
2949 if (ibx > 0) { errx = 0.06761; xrec -= 0.03832; }
2950 else { errx = 0.06653; xrec += 0.02581; }
2951 return;
2952 }
2953/* ---> Overflows */
2954 if (iover != 0) {
2955 if (TMath::Abs(wx - 6) < 0.1) errx = 0.06979;
2956 else if (TMath::Abs(wx - 7.5) < 0.1) errx = 0.1089;
2957 else if (TMath::Abs(wx - 10) < 0.1) errx = 0.09847;
2958 return;
2959 }
2960/* ---> Good */
2961 if (TMath::Abs(wx - 6) < 0.1) errx = 0.06022;
2962 else if (TMath::Abs(wx - 7.5) < 0.1) errx = 0.07247;
2963 else if (TMath::Abs(wx - 10) < 0.1) errx = 0.07359;
2964}
2965