]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSClusterFinderSDD.cxx
New Fastpoint merger added.
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
48058160 15/*
16 $Id$
17 $Log$
355ccb70 18 Revision 1.24 2002/04/24 22:02:31 nilsen
19 New SDigits and Digits routines, and related changes, (including new
20 noise values).
21
48058160 22 */
23
a1f090e0 24#include <iostream.h>
78a228db 25#include <TFile.h>
a1f090e0 26#include <TMath.h>
27#include <math.h>
b0f5e3fc 28
29#include "AliITSClusterFinderSDD.h"
e8189707 30#include "AliITSMapA1.h"
31#include "AliITS.h"
78a228db 32#include "AliITSdigit.h"
33#include "AliITSRawCluster.h"
34#include "AliITSRecPoint.h"
35#include "AliITSsegmentation.h"
5dd4cc39 36#include "AliITSresponseSDD.h"
b0f5e3fc 37#include "AliRun.h"
38
b0f5e3fc 39ClassImp(AliITSClusterFinderSDD)
40
42da2935 41//______________________________________________________________________
42AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
50d05d7b 43 AliITSresponse *response,
44 TClonesArray *digits,
45 TClonesArray *recp){
42da2935 46 // standard constructor
78a228db 47
b48af428 48 fSegmentation = seg;
49 fResponse = response;
50 fDigits = digits;
51 fClusters = recp;
52 fNclusters = fClusters->GetEntriesFast();
b0f5e3fc 53 SetCutAmplitude();
54 SetDAnode();
55 SetDTime();
355ccb70 56 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
57 // SetMinPeak();
78a228db 58 SetMinNCells();
59 SetMaxNCells();
60 SetTimeCorr();
a1f090e0 61 SetMinCharge();
b48af428 62 fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
b0f5e3fc 63}
42da2935 64//______________________________________________________________________
65AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
66 // default constructor
b0f5e3fc 67
b48af428 68 fSegmentation = 0;
69 fResponse = 0;
70 fDigits = 0;
71 fClusters = 0;
72 fNclusters = 0;
73 fMap = 0;
74 fCutAmplitude = 0;
355ccb70 75 fDAnode = 0;
76 fDTime = 0;
77 fMinPeak = 0;
78 fMinNCells = 0;
79 fMaxNCells = 0;
80 fTimeCorr = 0;
81 fMinCharge = 0;
82 /*
b0f5e3fc 83 SetDAnode();
84 SetDTime();
48058160 85 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
78a228db 86 SetMinNCells();
87 SetMaxNCells();
88 SetTimeCorr();
a1f090e0 89 SetMinCharge();
355ccb70 90 */
b0f5e3fc 91}
42da2935 92//____________________________________________________________________________
93AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
e8189707 94 // destructor
95
96 if(fMap) delete fMap;
e8189707 97}
42da2935 98//______________________________________________________________________
99void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
100 // set the signal threshold for cluster finder
101 Float_t baseline,noise,noise_after_el;
102
103 fResponse->GetNoiseParam(noise,baseline);
104 noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
b48af428 105 fCutAmplitude = (Int_t)((baseline + nsigma*noise_after_el));
5dd4cc39 106}
42da2935 107//______________________________________________________________________
108void AliITSClusterFinderSDD::Find1DClusters(){
109 // find 1D clusters
b48af428 110 static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
a1f090e0 111
42da2935 112 // retrieve the parameters
b48af428 113 Int_t fNofMaps = fSegmentation->Npz();
42da2935 114 Int_t fMaxNofSamples = fSegmentation->Npx();
b48af428 115 Int_t fNofAnodes = fNofMaps/2;
116 Int_t dummy = 0;
117 Float_t fTimeStep = fSegmentation->Dpx(dummy);
118 Float_t fSddLength = fSegmentation->Dx();
119 Float_t fDriftSpeed = fResponse->DriftSpeed();
120 Float_t anodePitch = fSegmentation->Dpz(dummy);
42da2935 121
122 // map the signal
50d05d7b 123 fMap->ClearMap();
42da2935 124 fMap->SetThreshold(fCutAmplitude);
125 fMap->FillMap();
a1f090e0 126
42da2935 127 Float_t noise;
128 Float_t baseline;
129 fResponse->GetNoiseParam(noise,baseline);
a1f090e0 130
42da2935 131 Int_t nofFoundClusters = 0;
132 Int_t i;
133 Float_t **dfadc = new Float_t*[fNofAnodes];
134 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
b48af428 135 Float_t fadc = 0.;
42da2935 136 Float_t fadc1 = 0.;
137 Float_t fadc2 = 0.;
138 Int_t j,k,idx,l,m;
139 for(j=0;j<2;j++) {
50d05d7b 140 for(k=0;k<fNofAnodes;k++) {
141 idx = j*fNofAnodes+k;
142 // signal (fadc) & derivative (dfadc)
143 dfadc[k][255]=0.;
144 for(l=0; l<fMaxNofSamples; l++) {
145 fadc2=(Float_t)fMap->GetSignal(idx,l);
146 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
147 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
148 } // samples
149 } // anodes
42da2935 150
50d05d7b 151 for(k=0;k<fNofAnodes;k++) {
152 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
153 idx = j*fNofAnodes+k;
154 Int_t imax = 0;
155 Int_t imaxd = 0;
156 Int_t it = 0;
157 while(it <= fMaxNofSamples-3) {
158 imax = it;
159 imaxd = it;
160 // maximum of signal
161 Float_t fadcmax = 0.;
162 Float_t dfadcmax = 0.;
163 Int_t lthrmina = 1;
164 Int_t lthrmint = 3;
165 Int_t lthra = 1;
166 Int_t lthrt = 0;
167 for(m=0;m<20;m++) {
168 Int_t id = it+m;
169 if(id>=fMaxNofSamples) break;
170 fadc=(float)fMap->GetSignal(idx,id);
171 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
172 if(fadc > (float)fCutAmplitude) {
173 lthrt++;
174 } // end if
175 if(dfadc[k][id] > dfadcmax) {
176 dfadcmax = dfadc[k][id];
177 imaxd = id;
178 } // end if
179 } // end for m
180 it = imaxd;
181 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
182 // cluster charge
183 Int_t tstart = it-2;
184 if(tstart < 0) tstart = 0;
185 Bool_t ilcl = 0;
186 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
187 if(ilcl) {
188 nofFoundClusters++;
189 Int_t tstop = tstart;
190 Float_t dfadcmin = 10000.;
191 Int_t ij;
192 for(ij=0; ij<20; ij++) {
193 if(tstart+ij > 255) { tstop = 255; break; }
194 fadc=(float)fMap->GetSignal(idx,tstart+ij);
195 if((dfadc[k][tstart+ij] < dfadcmin) &&
196 (fadc > fCutAmplitude)) {
197 tstop = tstart+ij+5;
198 if(tstop > 255) tstop = 255;
199 dfadcmin = dfadc[k][it+ij];
200 } // end if
201 } // end for ij
42da2935 202
50d05d7b 203 Float_t clusterCharge = 0.;
204 Float_t clusterAnode = k+0.5;
205 Float_t clusterTime = 0.;
206 Int_t clusterMult = 0;
207 Float_t clusterPeakAmplitude = 0.;
208 Int_t its,peakpos = -1;
209 Float_t n, baseline;
210 fResponse->GetNoiseParam(n,baseline);
211 for(its=tstart; its<=tstop; its++) {
212 fadc=(float)fMap->GetSignal(idx,its);
213 if(fadc>baseline) fadc -= baseline;
214 else fadc = 0.;
215 clusterCharge += fadc;
216 // as a matter of fact we should take the peak
217 // pos before FFT
218 // to get the list of tracks !!!
219 if(fadc > clusterPeakAmplitude) {
220 clusterPeakAmplitude = fadc;
221 //peakpos=fMap->GetHitIndex(idx,its);
222 Int_t shift = (int)(fTimeCorr/fTimeStep);
223 if(its>shift && its<(fMaxNofSamples-shift))
224 peakpos = fMap->GetHitIndex(idx,its+shift);
225 else peakpos = fMap->GetHitIndex(idx,its);
226 if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
227 } // end if
228 clusterTime += fadc*its;
229 if(fadc > 0) clusterMult++;
230 if(its == tstop) {
231 clusterTime /= (clusterCharge/fTimeStep); // ns
232 if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
233 //ns
234 } // end if
235 } // end for its
42da2935 236
50d05d7b 237 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
238 anodePitch;
239 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
240 clusterDriftPath = fSddLength-clusterDriftPath;
241 if(clusterCharge <= 0.) break;
242 AliITSRawClusterSDD clust(j+1,//i
243 clusterAnode,clusterTime,//ff
244 clusterCharge, //f
245 clusterPeakAmplitude, //f
246 peakpos, //i
247 0.,0.,clusterDriftPath,//fff
248 clusteranodePath, //f
249 clusterMult, //i
250 0,0,0,0,0,0,0);//7*i
251 iTS->AddCluster(1,&clust);
252 it = tstop;
253 } // ilcl
254 it++;
255 } // while (samples)
256 } // anodes
42da2935 257 } // detectors (2)
42da2935 258
259 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
260 delete [] dfadc;
a1f090e0 261
42da2935 262 return;
a1f090e0 263}
50d05d7b 264
265
266
42da2935 267//______________________________________________________________________
268void AliITSClusterFinderSDD::Find1DClustersE(){
24a1c341 269 // find 1D clusters
42da2935 270 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
271 // retrieve the parameters
272 Int_t fNofMaps = fSegmentation->Npz();
273 Int_t fMaxNofSamples = fSegmentation->Npx();
274 Int_t fNofAnodes = fNofMaps/2;
275 Int_t dummy=0;
276 Float_t fTimeStep = fSegmentation->Dpx( dummy );
277 Float_t fSddLength = fSegmentation->Dx();
278 Float_t fDriftSpeed = fResponse->DriftSpeed();
279 Float_t anodePitch = fSegmentation->Dpz( dummy );
280 Float_t n, baseline;
281 fResponse->GetNoiseParam( n, baseline );
282 // map the signal
50d05d7b 283 fMap->ClearMap();
42da2935 284 fMap->SetThreshold( fCutAmplitude );
285 fMap->FillMap();
50d05d7b 286
42da2935 287 Int_t nClu = 0;
50d05d7b 288 // cout << "Search cluster... "<< endl;
42da2935 289 for( Int_t j=0; j<2; j++ ){
50d05d7b 290 for( Int_t k=0; k<fNofAnodes; k++ ){
291 Int_t idx = j*fNofAnodes+k;
292 Bool_t on = kFALSE;
293 Int_t start = 0;
294 Int_t nTsteps = 0;
295 Float_t fmax = 0.;
296 Int_t lmax = 0;
297 Float_t charge = 0.;
298 Float_t time = 0.;
299 Float_t anode = k+0.5;
300 Int_t peakpos = -1;
301 for( Int_t l=0; l<fMaxNofSamples; l++ ){
302 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
303 if( fadc > 0.0 ){
304 if( on == kFALSE && l<fMaxNofSamples-4){
305 // star RawCluster (reset var.)
306 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
307 if( fadc1 < fadc ) continue;
308 start = l;
309 fmax = 0.;
310 lmax = 0;
311 time = 0.;
312 charge = 0.;
313 on = kTRUE;
314 nTsteps = 0;
315 } // end if on...
316 nTsteps++ ;
317 if( fadc > baseline ) fadc -= baseline;
318 else fadc=0.;
319 charge += fadc;
320 time += fadc*l;
321 if( fadc > fmax ){
322 fmax = fadc;
323 lmax = l;
324 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
325 if( l > shift && l < (fMaxNofSamples-shift) )
326 peakpos = fMap->GetHitIndex( idx, l+shift );
327 else
328 peakpos = fMap->GetHitIndex( idx, l );
329 if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
330 } // end if fadc
331 }else{ // end fadc>0
332 if( on == kTRUE ){
333 if( nTsteps > 2 ){
334 // min # of timesteps for a RawCluster
335 // Found a RawCluster...
336 Int_t stop = l-1;
337 time /= (charge/fTimeStep); // ns
338 // time = lmax*fTimeStep; // ns
339 if( time > fTimeCorr ) time -= fTimeCorr; // ns
340 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
341 Float_t driftPath = time*fDriftSpeed;
342 driftPath = fSddLength-driftPath;
343 AliITSRawClusterSDD clust(j+1,anode,time,charge,
344 fmax, peakpos,0.,0.,
345 driftPath,anodePath,
346 nTsteps,start,stop,
347 start, stop, 1, k, k );
348 iTS->AddCluster( 1, &clust );
349 // clust.PrintInfo();
350 nClu++;
351 } // end if nTsteps
352 on = kFALSE;
353 } // end if on==kTRUE
354 } // end if fadc>0
355 } // samples
356 } // anodes
42da2935 357 } // wings
50d05d7b 358 // cout << "# Rawclusters " << nClu << endl;
42da2935 359 return;
a1f090e0 360}
42da2935 361//_______________________________________________________________________
362Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
50d05d7b 363 Int_t *peakX, Int_t *peakZ,
364 Float_t *peakAmp, Float_t minpeak ){
42da2935 365 // search peaks on a 2D cluster
366 Int_t npeak = 0; // # peaks
56fff130 367 Int_t i,j;
42da2935 368 // search peaks
369 for( Int_t z=1; z<zdim-1; z++ ){
48058160 370 for( Int_t x=1; x<xdim-2; x++ ){
50d05d7b 371 Float_t sxz = spect[x*zdim+z];
372 Float_t sxz1 = spect[(x+1)*zdim+z];
373 Float_t sxz2 = spect[(x-1)*zdim+z];
374 // search a local max. in s[x,z]
375 if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
376 if( sxz >= spect[(x+1)*zdim+z ] && sxz >= spect[(x-1)*zdim+z ] &&
377 sxz >= spect[x*zdim +z+1] && sxz >= spect[x*zdim +z-1] &&
378 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
379 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
380 // peak found
381 peakX[npeak] = x;
382 peakZ[npeak] = z;
383 peakAmp[npeak] = sxz;
384 npeak++;
385 } // end if ....
386 } // end for x
42da2935 387 } // end for z
388 // search groups of peaks with same amplitude.
389 Int_t *flag = new Int_t[npeak];
390 for( i=0; i<npeak; i++ ) flag[i] = 0;
391 for( i=0; i<npeak; i++ ){
50d05d7b 392 for( j=0; j<npeak; j++ ){
393 if( i==j) continue;
394 if( flag[j] > 0 ) continue;
395 if( peakAmp[i] == peakAmp[j] &&
396 TMath::Abs(peakX[i]-peakX[j])<=1 &&
397 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
398 if( flag[i] == 0) flag[i] = i+1;
399 flag[j] = flag[i];
400 } // end if ...
401 } // end for j
42da2935 402 } // end for i
50d05d7b 403 // make average of peak groups
42da2935 404 for( i=0; i<npeak; i++ ){
50d05d7b 405 Int_t nFlag = 1;
406 if( flag[i] <= 0 ) continue;
407 for( j=0; j<npeak; j++ ){
408 if( i==j ) continue;
409 if( flag[j] != flag[i] ) continue;
410 peakX[i] += peakX[j];
411 peakZ[i] += peakZ[j];
412 nFlag++;
413 npeak--;
414 for( Int_t k=j; k<npeak; k++ ){
415 peakX[k] = peakX[k+1];
416 peakZ[k] = peakZ[k+1];
417 peakAmp[k] = peakAmp[k+1];
418 flag[k] = flag[k+1];
419 } // end for k
420 j--;
421 } // end for j
422 if( nFlag > 1 ){
423 peakX[i] /= nFlag;
424 peakZ[i] /= nFlag;
425 } // end fi nFlag
42da2935 426 } // end for i
427 delete [] flag;
428 return( npeak );
a1f090e0 429}
42da2935 430//______________________________________________________________________
431void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
50d05d7b 432 Float_t *spe, Float_t *integral){
24a1c341 433 // function used to fit the clusters
50d05d7b 434 // par -> parameters..
24a1c341 435 // par[0] number of peaks.
436 // for each peak i=1, ..., par[0]
50d05d7b 437 // par[i] = Ampl.
438 // par[i+1] = xpos
439 // par[i+2] = zpos
440 // par[i+3] = tau
441 // par[i+4] = sigma.
24a1c341 442 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
443 const Int_t knParam = 5;
444 Int_t npeak = (Int_t)par[0];
42da2935 445
24a1c341 446 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
42da2935 447
24a1c341 448 Int_t k = 1;
42da2935 449 for( Int_t i=0; i<npeak; i++ ){
24a1c341 450 if( integral != 0 ) integral[i] = 0.;
451 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
452 Float_t T2 = par[k+3]; // PASCAL
453 if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
42da2935 454 for( Int_t z=0; z<zdim; z++ ){
455 for( Int_t x=0; x<xdim; x++ ){
24a1c341 456 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
457 Float_t x2 = 0.;
458 Float_t signal = 0.;
42da2935 459 if( electronics == 1 ){ // PASCAL
24a1c341 460 x2 = (x-par[k+1]+T2)/T2;
42da2935 461 signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
462 // signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
463 }else if( electronics == 2 ) { // OLA
50d05d7b 464 x2 = (x-par[k+1])*(x-par[k+1])/T2;
465 signal = par[k] * exp( -x2 - z2 );
466 } else {
467 cout << "Wrong SDD Electronics =" << electronics << endl;
468 // exit( 1 );
469 } // end if electronicx
24a1c341 470 spe[x*zdim+z] += signal;
471 if( integral != 0 ) integral[i] += signal;
42da2935 472 } // end for x
473 } // end for z
24a1c341 474 k += knParam;
42da2935 475 } // end for i
24a1c341 476 return;
a1f090e0 477}
42da2935 478//__________________________________________________________________________
479Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
50d05d7b 480 Float_t *speFit ){
42da2935 481 // EVALUATES UNNORMALIZED CHI-SQUARED
482 Float_t chi2 = 0.;
483 for( Int_t z=0; z<zdim; z++ ){
50d05d7b 484 for( Int_t x=1; x<xdim-1; x++ ){
485 Int_t index = x*zdim+z;
486 Float_t tmp = spe[index] - speFit[index];
487 chi2 += tmp*tmp;
488 } // end for x
42da2935 489 } // end for z
490 return( chi2 );
a1f090e0 491}
42da2935 492//_______________________________________________________________________
493void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
50d05d7b 494 Float_t *prm0,Float_t *steprm,
495 Float_t *chisqr,Float_t *spe,
496 Float_t *speFit ){
42da2935 497 //
498 Int_t k, nnn, mmm, i;
499 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
500 const Int_t knParam = 5;
501 Int_t npeak = (Int_t)param[0];
502 for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
503 for( k=1; k<(npeak*knParam+1); k++ ){
50d05d7b 504 p1 = param[k];
505 delta = steprm[k];
506 d1 = delta;
507 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
508 if( fabs( p1 ) > 1.0E-6 )
509 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
510 else delta = (Float_t)1.0E-4;
511 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
512 PeakFunc( xdim, zdim, param, speFit );
513 chisq1 = ChiSqr( xdim, zdim, spe, speFit );
514 p2 = p1+delta;
515 param[k] = p2;
516 PeakFunc( xdim, zdim, param, speFit );
517 chisq2 = ChiSqr( xdim, zdim, spe, speFit );
518 if( chisq1 < chisq2 ){
519 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
520 delta = -delta;
521 t = p1;
522 p1 = p2;
523 p2 = t;
524 t = chisq1;
525 chisq1 = chisq2;
526 chisq2 = t;
527 } // end if
528 i = 1; nnn = 0;
529 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
530 nnn++;
531 p3 = p2 + delta;
532 mmm = nnn - (nnn/5)*5; // multiplo de 5
533 if( mmm == 0 ){
534 d1 = delta;
535 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
536 delta *= 5;
537 } // end if
538 param[k] = p3;
539 // Constrain paramiters
540 Int_t kpos = (k-1) % knParam;
541 switch( kpos ){
542 case 0 :
543 if( param[k] <= 20 ) param[k] = fMinPeak;
544 break;
545 case 1 :
546 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
547 break;
548 case 2 :
549 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
550 break;
551 case 3 :
552 if( param[k] < .5 ) param[k] = .5;
553 break;
554 case 4 :
555 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
556 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
557 break;
558 }; // end switch
559 PeakFunc( xdim, zdim, param, speFit );
560 chisq3 = ChiSqr( xdim, zdim, spe, speFit );
561 if( chisq3 < chisq2 && nnn < 50 ){
562 p1 = p2;
563 p2 = p3;
564 chisq1 = chisq2;
565 chisq2 = chisq3;
566 }else i=0;
567 } while( i );
568 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
569 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
570 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
571 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
572 else p0 = 10000;
573 //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
574 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
575 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
576 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
577 //if( fabs( p2-p0 ) > dp ) p0 = p2;
578 param[k] = p0;
579 // Constrain paramiters
580 Int_t kpos = (k-1) % knParam;
581 switch( kpos ){
582 case 0 :
583 if( param[k] <= 20 ) param[k] = fMinPeak;
584 break;
585 case 1 :
586 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
587 break;
588 case 2 :
589 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
590 break;
591 case 3 :
592 if( param[k] < .5 ) param[k] = .5;
593 break;
594 case 4 :
595 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
596 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
597 break;
598 }; // end switch
599 PeakFunc( xdim, zdim, param, speFit );
600 chisqt = ChiSqr( xdim, zdim, spe, speFit );
601 // DO NOT ALLOW ERRONEOUS INTERPOLATION
602 if( chisqt <= *chisqr ) *chisqr = chisqt;
603 else param[k] = prm0[k];
604 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
605 steprm[k] = (param[k]-prm0[k])/5;
606 if( steprm[k] >= d1 ) steprm[k] = d1/5;
42da2935 607 } // end for k
608 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
609 PeakFunc( xdim, zdim, param, speFit );
610 *chisqr = ChiSqr( xdim, zdim, spe, speFit );
611 return;
a1f090e0 612}
42da2935 613//_________________________________________________________________________
614Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim,
50d05d7b 615 Float_t *param, Float_t *spe,
616 Int_t *niter, Float_t *chir ){
42da2935 617 // fit method from Comput. Phys. Commun 46(1987) 149
50d05d7b 618 const Float_t kchilmt = 0.01; // relative accuracy
619 const Int_t knel = 3; // for parabolic minimization
620 const Int_t knstop = 50; // Max. iteration number
42da2935 621 const Int_t knParam = 5;
622 Int_t npeak = (Int_t)param[0];
623 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
624 if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
625 Float_t degFree = (xdim*zdim - npeak*knParam)-1;
626 Int_t n, k, iterNum = 0;
627 Float_t *prm0 = new Float_t[npeak*knParam+1];
628 Float_t *step = new Float_t[npeak*knParam+1];
629 Float_t *schi = new Float_t[npeak*knParam+1];
630 Float_t *sprm[3];
631 sprm[0] = new Float_t[npeak*knParam+1];
632 sprm[1] = new Float_t[npeak*knParam+1];
633 sprm[2] = new Float_t[npeak*knParam+1];
634 Float_t chi0, chi1, reldif, a, b, prmin, dp;
635 Float_t *speFit = new Float_t[ xdim*zdim ];
636 PeakFunc( xdim, zdim, param, speFit );
637 chi0 = ChiSqr( xdim, zdim, spe, speFit );
638 chi1 = chi0;
639 for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
50d05d7b 640 for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
641 step[k] = param[k] / 20.0 ;
642 step[k+1] = param[k+1] / 50.0;
643 step[k+2] = param[k+2] / 50.0;
644 step[k+3] = param[k+3] / 20.0;
645 step[k+4] = param[k+4] / 20.0;
646 } // end for k
42da2935 647 Int_t out = 0;
648 do{
50d05d7b 649 iterNum++;
650 chi0 = chi1;
651 Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
652 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
653 // EXIT conditions
654 if( reldif < (float) kchilmt ){
655 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
656 *niter = iterNum;
657 out = 0;
658 break;
659 } // end if
660 if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
661 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
662 *niter = iterNum;
663 out = 0;
664 break;
665 } // end if
666 if( iterNum > 5*knstop ){
667 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
668 *niter = iterNum;
669 out = 1;
670 break;
671 } // end if
672 if( iterNum <= knel ) continue;
673 n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
674 if( n > 3 || n == 0 ) continue;
675 schi[n-1] = chi1;
676 for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
677 if( n != 3 ) continue;
678 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
679 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
680 for( k=1; k<(npeak*knParam+1); k++ ){
681 Float_t tmp0 = sprm[0][k];
682 Float_t tmp1 = sprm[1][k];
683 Float_t tmp2 = sprm[2][k];
684 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
685 a += (schi[2]*(tmp0-tmp1));
686 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
687 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
688 (tmp0*tmp0-tmp1*tmp1)));
689 if ((double)a < 1.0E-6) prmin = 0;
690 else prmin = (float) (0.5*b/a);
691 dp = 5*(tmp2-tmp0);
692 if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
693 param[k] = prmin;
694 step[k] = dp/10; // OPTIMIZE SEARCH STEP
695 } // end for k
42da2935 696 } while( kTRUE );
697 delete [] prm0;
698 delete [] step;
699 delete [] schi;
700 delete [] sprm[0];
701 delete [] sprm[1];
702 delete [] sprm[2];
703 delete [] speFit;
704 return( out );
a1f090e0 705}
50d05d7b 706
42da2935 707//______________________________________________________________________
708void AliITSClusterFinderSDD::ResolveClustersE(){
709 // The function to resolve clusters if the clusters overlapping exists
24a1c341 710 Int_t i;
42da2935 711 static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
712 // get number of clusters for this module
713 Int_t nofClusters = fClusters->GetEntriesFast();
714 nofClusters -= fNclusters;
715 Int_t fNofMaps = fSegmentation->Npz();
716 Int_t fNofAnodes = fNofMaps/2;
717 Int_t fMaxNofSamples = fSegmentation->Npx();
718 Int_t dummy=0;
719 Double_t fTimeStep = fSegmentation->Dpx( dummy );
720 Double_t fSddLength = fSegmentation->Dx();
721 Double_t fDriftSpeed = fResponse->DriftSpeed();
722 Double_t anodePitch = fSegmentation->Dpz( dummy );
723 Float_t n, baseline;
724 fResponse->GetNoiseParam( n, baseline );
725 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
50d05d7b 726
42da2935 727 for( Int_t j=0; j<nofClusters; j++ ){
50d05d7b 728 // get cluster information
729 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
730 Int_t astart = clusterJ->Astart();
731 Int_t astop = clusterJ->Astop();
732 Int_t tstart = clusterJ->Tstartf();
733 Int_t tstop = clusterJ->Tstopf();
734 Int_t wing = (Int_t)clusterJ->W();
735 if( wing == 2 ){
736 astart += fNofAnodes;
737 astop += fNofAnodes;
738 } // end if
739 Int_t xdim = tstop-tstart+3;
740 Int_t zdim = astop-astart+3;
2bd89e94 741 if(xdim > 50 || zdim > 30) { cout << "Warning: xdim: " << xdim << ", zdim: " << zdim << endl; continue; }
50d05d7b 742 Float_t *sp = new Float_t[ xdim*zdim+1 ];
743 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
744
745 // make a local map from cluster region
746 for( Int_t ianode=astart; ianode<=astop; ianode++ ){
747 for( Int_t itime=tstart; itime<=tstop; itime++ ){
748 Float_t fadc = fMap->GetSignal( ianode, itime );
749 if( fadc > baseline ) fadc -= (Double_t)baseline;
750 else fadc = 0.;
751 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
752 sp[index] = fadc;
753 } // time loop
754 } // anode loop
755
756 // search peaks on cluster
757 const Int_t kNp = 150;
758 Int_t peakX1[kNp];
759 Int_t peakZ1[kNp];
760 Float_t peakAmp1[kNp];
761 Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
762
763 // if multiple peaks, split cluster
764 if( npeak >= 1 )
765 {
766 // cout << "npeak " << npeak << endl;
767 // clusterJ->PrintInfo();
768 Float_t *par = new Float_t[npeak*5+1];
769 par[0] = (Float_t)npeak;
48058160 770 // Initial parameters in cell dimentions
50d05d7b 771 Int_t k1 = 1;
772 for( i=0; i<npeak; i++ ){
773 par[k1] = peakAmp1[i];
774 par[k1+1] = peakX1[i]; // local time pos. [timebin]
775 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
776 if( electronics == 1 )
777 par[k1+3] = 2.; // PASCAL
778 else if( electronics == 2 )
779 par[k1+3] = 0.7; // tau [timebin] OLA
780 par[k1+4] = .4; // sigma [anodepich]
781 k1+=5;
782 } // end for i
783 Int_t niter;
784 Float_t chir;
785 NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
786 Float_t peakX[kNp];
787 Float_t peakZ[kNp];
788 Float_t sigma[kNp];
789 Float_t tau[kNp];
790 Float_t peakAmp[kNp];
791 Float_t integral[kNp];
792 //get integrals => charge for each peak
793 PeakFunc( xdim, zdim, par, sp, integral );
794 k1 = 1;
795 for( i=0; i<npeak; i++ ){
796 peakAmp[i] = par[k1];
797 peakX[i] = par[k1+1];
798 peakZ[i] = par[k1+2];
799 tau[i] = par[k1+3];
800 sigma[i] = par[k1+4];
801 k1+=5;
802 } // end for i
803 // calculate parameter for new clusters
804 for( i=0; i<npeak; i++ ){
805 AliITSRawClusterSDD clusterI( *clusterJ );
806 Int_t newAnode = peakZ1[i]-1 + astart;
807 Int_t newiTime = peakX1[i]-1 + tstart;
808 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
809 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) )
810 shift = 0;
811 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
812 clusterI.SetPeakPos( peakpos );
813 clusterI.SetPeakAmpl( peakAmp1[i] );
814 Float_t newAnodef = peakZ[i] - 0.5 + astart;
815 Float_t newiTimef = peakX[i] - 1 + tstart;
816 if( wing == 2 ) newAnodef -= fNofAnodes;
817 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
818 newiTimef *= fTimeStep;
819 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
820 if( electronics == 1 ){
48058160 821 // newiTimef *= 0.999438; // PASCAL
822 // newiTimef += (6./fDriftSpeed - newiTimef/3000.);
50d05d7b 823 }else if( electronics == 2 )
824 newiTimef *= 0.99714; // OLA
825 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
826 Float_t sign = ( wing == 1 ) ? -1. : 1.;
827 clusterI.SetX( driftPath*sign * 0.0001 );
828 clusterI.SetZ( anodePath * 0.0001 );
829 clusterI.SetAnode( newAnodef );
830 clusterI.SetTime( newiTimef );
831 clusterI.SetAsigma( sigma[i]*anodePitch );
832 clusterI.SetTsigma( tau[i]*fTimeStep );
833 clusterI.SetQ( integral[i] );
48058160 834 // clusterI.PrintInfo();
50d05d7b 835 iTS->AddCluster( 1, &clusterI );
836 } // end for i
837 fClusters->RemoveAt( j );
838 delete [] par;
48058160 839 } else { // something odd
840 cout << " --- Peak not found!!!! minpeak=" << fMinPeak<<
841 " cluster peak=" << clusterJ->PeakAmpl() <<
842 " module=" << fModule << endl;
50d05d7b 843 clusterJ->PrintInfo();
48058160 844 cout << " xdim=" << xdim-2 << " zdim=" << zdim-2 << endl << endl;
50d05d7b 845 }
846 delete [] sp;
42da2935 847 } // cluster loop
848 fClusters->Compress();
50d05d7b 849// fMap->ClearMap();
a1f090e0 850}
50d05d7b 851
852
42da2935 853//________________________________________________________________________
854void AliITSClusterFinderSDD::GroupClusters(){
855 // group clusters
856 Int_t dummy=0;
857 Float_t fTimeStep = fSegmentation->Dpx(dummy);
858 // get number of clusters for this module
859 Int_t nofClusters = fClusters->GetEntriesFast();
860 nofClusters -= fNclusters;
861 AliITSRawClusterSDD *clusterI;
862 AliITSRawClusterSDD *clusterJ;
863 Int_t *label = new Int_t [nofClusters];
864 Int_t i,j;
865 for(i=0; i<nofClusters; i++) label[i] = 0;
866 for(i=0; i<nofClusters; i++) {
50d05d7b 867 if(label[i] != 0) continue;
868 for(j=i+1; j<nofClusters; j++) {
869 if(label[j] != 0) continue;
870 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
871 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
872 // 1.3 good
873 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
874 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
875 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
876 if(!pair) continue;
877 // clusterI->PrintInfo();
878 // clusterJ->PrintInfo();
879 clusterI->Add(clusterJ);
880 label[j] = 1;
881 fClusters->RemoveAt(j);
882 j=i; // <- Ernesto
883 } // J clusters
884 label[i] = 1;
42da2935 885 } // I clusters
886 fClusters->Compress();
887
888 delete [] label;
889 return;
b0f5e3fc 890}
42da2935 891//________________________________________________________________________
892void AliITSClusterFinderSDD::SelectClusters(){
893 // get number of clusters for this module
894 Int_t nofClusters = fClusters->GetEntriesFast();
b0f5e3fc 895
42da2935 896 nofClusters -= fNclusters;
897 Int_t i;
898 for(i=0; i<nofClusters; i++) {
50d05d7b 899 AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
900 Int_t rmflg = 0;
901 Float_t wy = 0.;
902 if(clusterI->Anodes() != 0.) {
903 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
904 } // end if
905 Int_t amp = (Int_t) clusterI->PeakAmpl();
906 Int_t cha = (Int_t) clusterI->Q();
907 if(amp < fMinPeak) rmflg = 1;
908 if(cha < fMinCharge) rmflg = 1;
909 if(wy < fMinNCells) rmflg = 1;
910 //if(wy > fMaxNCells) rmflg = 1;
911 if(rmflg) fClusters->RemoveAt(i);
42da2935 912 } // I clusters
913 fClusters->Compress();
914 return;
b0f5e3fc 915}
42da2935 916//__________________________________________________________________________
917void AliITSClusterFinderSDD::ResolveClusters(){
918 // The function to resolve clusters if the clusters overlapping exists
919/* AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
920 // get number of clusters for this module
921 Int_t nofClusters = fClusters->GetEntriesFast();
922 nofClusters -= fNclusters;
923 //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
924 // <<fNclusters<<endl;
925 Int_t fNofMaps = fSegmentation->Npz();
926 Int_t fNofAnodes = fNofMaps/2;
927 Int_t dummy=0;
928 Double_t fTimeStep = fSegmentation->Dpx(dummy);
929 Double_t fSddLength = fSegmentation->Dx();
930 Double_t fDriftSpeed = fResponse->DriftSpeed();
931 Double_t anodePitch = fSegmentation->Dpz(dummy);
932 Float_t n, baseline;
933 fResponse->GetNoiseParam(n,baseline);
934 Float_t dzz_1A = anodePitch * anodePitch / 12;
935 // fill Map of signals
a1f090e0 936 fMap->FillMap();
42da2935 937 Int_t j,i,ii,ianode,anode,itime;
938 Int_t wing,astart,astop,tstart,tstop,nanode;
939 Double_t fadc,ClusterTime;
940 Double_t q[400],x[400],z[400]; // digit charges and coordinates
941 for(j=0; j<nofClusters; j++) {
50d05d7b 942 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
943 Int_t ndigits = 0;
944 astart=clusterJ->Astart();
945 astop=clusterJ->Astop();
946 tstart=clusterJ->Tstartf();
947 tstop=clusterJ->Tstopf();
948 nanode=clusterJ->Anodes(); // <- Ernesto
949 wing=(Int_t)clusterJ->W();
950 if(wing == 2) {
951 astart += fNofAnodes;
952 astop += fNofAnodes;
953 } // end if
954 // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
955 // <<tstart<<","<<tstop<<endl;
956 // clear the digit arrays
957 for(ii=0; ii<400; ii++) {
958 q[ii] = 0.;
959 x[ii] = 0.;
960 z[ii] = 0.;
961 } // end for ii
42da2935 962
50d05d7b 963 for(ianode=astart; ianode<=astop; ianode++) {
964 for(itime=tstart; itime<=tstop; itime++) {
965 fadc=fMap->GetSignal(ianode,itime);
966 if(fadc>baseline) {
967 fadc-=(Double_t)baseline;
968 q[ndigits] = fadc*(fTimeStep/160); // KeV
969 anode = ianode;
970 if(wing == 2) anode -= fNofAnodes;
971 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
972 ClusterTime = itime*fTimeStep;
973 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
974 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
975 if(wing == 1) x[ndigits] *= (-1);
976 // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
977 // <<fadc<<endl;
978 // cout<<"wing,anode,ndigits,charge ="<<wing<<","
979 // <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
980 ndigits++;
981 continue;
982 } // end if
983 fadc=0;
984 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
985 } // time loop
986 } // anode loop
987 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
988 // Fit cluster to resolve for two separate ones --------------------
989 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
990 Double_t dxx=0., dzz=0., dxz=0.;
991 Double_t scl = 0., tmp, tga, elps = -1.;
992 Double_t xfit[2], zfit[2], qfit[2];
993 Double_t pitchz = anodePitch*1.e-4; // cm
994 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
995 Double_t sigma2;
996 Int_t nfhits;
997 Int_t nbins = ndigits;
998 Int_t separate = 0;
999 // now, all lengths are in microns
1000 for (ii=0; ii<nbins; ii++) {
1001 qq += q[ii];
1002 xm += x[ii]*q[ii];
1003 zm += z[ii]*q[ii];
1004 xx += x[ii]*x[ii]*q[ii];
1005 zz += z[ii]*z[ii]*q[ii];
1006 xz += x[ii]*z[ii]*q[ii];
1007 } // end for ii
1008 xm /= qq;
1009 zm /= qq;
1010 xx /= qq;
1011 zz /= qq;
1012 xz /= qq;
1013 dxx = xx - xm*xm;
1014 dzz = zz - zm*zm;
1015 dxz = xz - xm*zm;
42da2935 1016
50d05d7b 1017 // shrink the cluster in the time direction proportionaly to the
1018 // dxx/dzz, which lineary depends from the drift path
1019 // new Ernesto........
1020 if( nanode == 1 ){
1021 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1022 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1023 } // end if
1024 if( nanode == 2 ){
1025 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1026 } // end if
1027 if( nanode == 3 ){
1028 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1029 } // end if
1030 if( nanode > 3 ){
1031 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1032 } // end if
1033 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1034 // <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1035 // old Boris.........
1036 // tmp=29730. - 585.*fabs(xm/1000.);
1037 // scl=TMath::Sqrt(tmp/130000.);
a1f090e0 1038
50d05d7b 1039 xm *= scl;
1040 xx *= scl*scl;
1041 xz *= scl;
42da2935 1042
50d05d7b 1043 dxx = xx - xm*xm;
1044 // dzz = zz - zm*zm;
1045 dxz = xz - xm*zm;
1046 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1047 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1048 // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
a1f090e0 1049
50d05d7b 1050 if (dxx < 0.) dxx=0.;
1051 // the data if no cluster overlapping (the coordunates are in cm)
1052 nfhits = 1;
1053 xfit[0] = xm*1.e-4;
1054 zfit[0] = zm*1.e-4;
1055 qfit[0] = qq;
1056 // if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
a1f090e0 1057
50d05d7b 1058 if (nbins >= 7) {
1059 if (dxz==0.) tga=0.;
1060 else {
1061 tmp=0.5*(dzz-dxx)/dxz;
1062 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) :
1063 tmp+TMath::Sqrt(tmp*tmp+1);
1064 } // end if dxz
1065 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1066 // change from microns to cm
1067 xm *= 1.e-4;
1068 zm *= 1.e-4;
1069 zz *= 1.e-8;
1070 xx *= 1.e-8;
1071 xz *= 1.e-8;
1072 dxz *= 1.e-8;
1073 dxx *= 1.e-8;
1074 dzz *= 1.e-8;
1075 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1076 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1077 for (i=0; i<nbins; i++) {
1078 x[i] = x[i] *= scl;
1079 x[i] = x[i] *= 1.e-4;
1080 z[i] = z[i] *= 1.e-4;
1081 } // end for i
1082 // cout<<"!!! elps ="<<elps<<endl;
1083 if (elps < 0.3) { // try to separate hits
1084 separate = 1;
1085 tmp=atan(tga);
1086 Double_t cosa=cos(tmp),sina=sin(tmp);
1087 Double_t a1=0., x1=0., xxx=0.;
1088 for (i=0; i<nbins; i++) {
1089 tmp=x[i]*cosa + z[i]*sina;
1090 if (q[i] > a1) {
1091 a1=q[i];
1092 x1=tmp;
1093 } // end if
1094 xxx += tmp*tmp*tmp*q[i];
1095 } // end for i
1096 xxx /= qq;
1097 Double_t z12=-sina*xm + cosa*zm;
1098 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1099 xm=cosa*xm + sina*zm;
1100 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1101 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1102 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1103 for (i=0; i<33; i++) { // solve a system of equations
1104 Double_t x1_old=x1, x2_old=x2, r_old=r;
1105 Double_t c11=x1-x2;
1106 Double_t c12=r;
1107 Double_t c13=1-r;
1108 Double_t c21=x1*x1 - x2*x2;
1109 Double_t c22=2*r*x1;
1110 Double_t c23=2*(1-r)*x2;
1111 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1112 Double_t c32=3*r*(sigma2 + x1*x1);
1113 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1114 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1115 Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1116 Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1117 (3*sigma2+x2*x2)-xxx);
1118 Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1119 c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1120 if (d==0.) {
1121 cout<<"*********** d=0 ***********\n";
1122 break;
1123 } // end if
1124 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1125 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1126 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1127 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1128 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1129 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1130 r += dr/d;
1131 x1 += d1/d;
1132 x2 += d2/d;
1133 if (fabs(x1-x1_old) > 0.0001) continue;
1134 if (fabs(x2-x2_old) > 0.0001) continue;
1135 if (fabs(r-r_old)/5 > 0.001) continue;
1136 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1137 Double_t a2=a1*(1-r)/r;
1138 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina +
1139 z12*cosa;
1140 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina +
1141 z12*cosa;
1142 nfhits=2;
1143 break; // Ok !
1144 } // end for i
1145 if (i==33) cerr<<"No more iterations ! "<<endl;
1146 } // end of attempt to separate overlapped clusters
1147 } // end of nbins cut
1148 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1149 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1150 <<elps<<","<<nfhits<<endl;
1151 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1152 for (i=0; i<nfhits; i++) {
1153 xfit[i] *= (1.e+4/scl);
1154 if(wing == 1) xfit[i] *= (-1);
1155 zfit[i] *= 1.e+4;
1156 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","
1157 // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1158 } // end for i
1159 Int_t ncl = nfhits;
1160 if(nfhits == 1 && separate == 1) {
1161 cout<<"!!!!! no separate"<<endl;
1162 ncl = -2;
1163 } // end if
1164 if(nfhits == 2) {
1165 cout << "Split cluster: " << endl;
1166 clusterJ->PrintInfo();
1167 cout << " in: " << endl;
1168 for (i=0; i<nfhits; i++) {
1169 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
42da2935 1170 -1,-1,(Float_t)qfit[i],ncl,0,0,
1171 (Float_t)xfit[i],
1172 (Float_t)zfit[i],0,0,0,0,
1173 tstart,tstop,astart,astop);
50d05d7b 1174 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1175 // -1,(Float_t)qfit[i],0,0,0,
1176 // (Float_t)xfit[i],
1177 // (Float_t)zfit[i],0,0,0,0,
1178 // tstart,tstop,astart,astop,ncl);
1179 // ???????????
1180 // if(wing == 1) xfit[i] *= (-1);
1181 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1182 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1183 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1184 Float_t peakpos = clusterJ->PeakPos();
1185 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1186 Float_t clusterDriftPath = Time*fDriftSpeed;
1187 clusterDriftPath = fSddLength-clusterDriftPath;
1188 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1189 Time,qfit[i],
42da2935 1190 clusterPeakAmplitude,peakpos,
1191 0.,0.,clusterDriftPath,
1192 clusteranodePath,clusterJ->Samples()/2
50d05d7b 1193 ,tstart,tstop,0,0,0,astart,astop);
1194 clust->PrintInfo();
1195 iTS->AddCluster(1,clust);
1196 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1197 // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1198 // <<","<<ncl<<endl;
1199 delete clust;
1200 }// nfhits loop
1201 fClusters->RemoveAt(j);
42da2935 1202 } // if nfhits = 2
1203} // cluster loop
1204fClusters->Compress();
1205fMap->ClearMap();
1206*/
1207 return;
a1f090e0 1208}
42da2935 1209//______________________________________________________________________
1210void AliITSClusterFinderSDD::GetRecPoints(){
1211 // get rec points
1212 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1213 // get number of clusters for this module
1214 Int_t nofClusters = fClusters->GetEntriesFast();
1215 nofClusters -= fNclusters;
1216 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1217 const Float_t kconv = 1.0e-4;
1218 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1219 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1220 Int_t i;
1221 Int_t ix, iz, idx=-1;
1222 AliITSdigitSDD *dig=0;
1223 Int_t ndigits=fDigits->GetEntriesFast();
1224 for(i=0; i<nofClusters; i++) {
50d05d7b 1225 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1226 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1227 if(clusterI) idx=clusterI->PeakPos();
1228 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1229 // try peak neighbours - to be done
1230 if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1231 if(!dig) {
1232 // try cog
1233 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1234 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1235 // if null try neighbours
1236 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1237 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1238 if (!dig) printf("SDD: cannot assign the track number!\n");
1239 } // end if !dig
1240 AliITSRecPoint rnew;
1241 rnew.SetX(clusterI->X());
1242 rnew.SetZ(clusterI->Z());
1243 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
1244 rnew.SetdEdX(kconvGeV*clusterI->Q());
1245 rnew.SetSigmaX2(kRMSx*kRMSx);
1246 rnew.SetSigmaZ2(kRMSz*kRMSz);
1247 if(dig) rnew.fTracks[0]=dig->fTracks[0];
1248 if(dig) rnew.fTracks[1]=dig->fTracks[1];
1249 if(dig) rnew.fTracks[2]=dig->fTracks[2];
1250 //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1251 // i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1252 // lusterI->X(),clusterI->Z());
1253 iTS->AddRecPoint(rnew);
42da2935 1254 } // I clusters
50d05d7b 1255// fMap->ClearMap();
b0f5e3fc 1256}
42da2935 1257//______________________________________________________________________
1258void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1259 // find raw clusters
50d05d7b 1260
1261 fModule = mod;
1262
a1f090e0 1263 Find1DClustersE();
b0f5e3fc 1264 GroupClusters();
1265 SelectClusters();
a1f090e0 1266 ResolveClustersE();
b0f5e3fc 1267 GetRecPoints();
1268}
42da2935 1269//_______________________________________________________________________
1270void AliITSClusterFinderSDD::Print(){
1271 // Print SDD cluster finder Parameters
1272
1273 cout << "**************************************************" << endl;
1274 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1275 cout << "**************************************************" << endl;
1276 cout << "Number of Clusters: " << fNclusters << endl;
1277 cout << "Anode Tolerance: " << fDAnode << endl;
1278 cout << "Time Tolerance: " << fDTime << endl;
1279 cout << "Time correction (electronics): " << fTimeCorr << endl;
1280 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1281 cout << "Minimum Amplitude: " << fMinPeak << endl;
1282 cout << "Minimum Charge: " << fMinCharge << endl;
1283 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1284 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1285 cout << "**************************************************" << endl;
a1f090e0 1286}