]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSClusterFinderSDD.cxx
Checking in the seeds of new cluster fitting code.
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
48058160 15/*
16 $Id$
17 $Log$
f8d9a5b8 18 Revision 1.28 2002/10/22 14:45:29 alibrary
19 Introducing Riostream.h
20
4ae5bbc4 21 Revision 1.27 2002/10/14 14:57:00 hristov
22 Merging the VirtualMC branch to the main development branch (HEAD)
23
b9d0a01d 24 Revision 1.23.4.2 2002/10/14 13:14:07 hristov
25 Updating VirtualMC to v3-09-02
26
27 Revision 1.26 2002/09/09 17:23:28 nilsen
28 Minor changes in support of changes to AliITSdigitS?D class'.
29
ee86d557 30 Revision 1.25 2002/05/10 22:29:40 nilsen
31 Change my Massimo Masera in the default constructor to bring things into
32 compliance.
33
355ccb70 34 Revision 1.24 2002/04/24 22:02:31 nilsen
35 New SDigits and Digits routines, and related changes, (including new
36 noise values).
37
48058160 38 */
39
4ae5bbc4 40#include <Riostream.h>
78a228db 41#include <TFile.h>
a1f090e0 42#include <TMath.h>
43#include <math.h>
b0f5e3fc 44
45#include "AliITSClusterFinderSDD.h"
e8189707 46#include "AliITSMapA1.h"
47#include "AliITS.h"
78a228db 48#include "AliITSdigit.h"
49#include "AliITSRawCluster.h"
50#include "AliITSRecPoint.h"
51#include "AliITSsegmentation.h"
5dd4cc39 52#include "AliITSresponseSDD.h"
b0f5e3fc 53#include "AliRun.h"
54
b0f5e3fc 55ClassImp(AliITSClusterFinderSDD)
56
42da2935 57//______________________________________________________________________
58AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
50d05d7b 59 AliITSresponse *response,
60 TClonesArray *digits,
61 TClonesArray *recp){
42da2935 62 // standard constructor
78a228db 63
b48af428 64 fSegmentation = seg;
65 fResponse = response;
66 fDigits = digits;
67 fClusters = recp;
68 fNclusters = fClusters->GetEntriesFast();
b0f5e3fc 69 SetCutAmplitude();
70 SetDAnode();
71 SetDTime();
355ccb70 72 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
73 // SetMinPeak();
78a228db 74 SetMinNCells();
75 SetMaxNCells();
76 SetTimeCorr();
a1f090e0 77 SetMinCharge();
b48af428 78 fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
b0f5e3fc 79}
42da2935 80//______________________________________________________________________
81AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
82 // default constructor
b0f5e3fc 83
b48af428 84 fSegmentation = 0;
85 fResponse = 0;
86 fDigits = 0;
87 fClusters = 0;
88 fNclusters = 0;
89 fMap = 0;
90 fCutAmplitude = 0;
355ccb70 91 fDAnode = 0;
92 fDTime = 0;
93 fMinPeak = 0;
94 fMinNCells = 0;
95 fMaxNCells = 0;
96 fTimeCorr = 0;
97 fMinCharge = 0;
98 /*
b0f5e3fc 99 SetDAnode();
100 SetDTime();
48058160 101 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
78a228db 102 SetMinNCells();
103 SetMaxNCells();
104 SetTimeCorr();
a1f090e0 105 SetMinCharge();
355ccb70 106 */
b0f5e3fc 107}
42da2935 108//____________________________________________________________________________
109AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
e8189707 110 // destructor
111
112 if(fMap) delete fMap;
e8189707 113}
42da2935 114//______________________________________________________________________
115void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
116 // set the signal threshold for cluster finder
117 Float_t baseline,noise,noise_after_el;
118
119 fResponse->GetNoiseParam(noise,baseline);
120 noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
b48af428 121 fCutAmplitude = (Int_t)((baseline + nsigma*noise_after_el));
5dd4cc39 122}
42da2935 123//______________________________________________________________________
124void AliITSClusterFinderSDD::Find1DClusters(){
125 // find 1D clusters
b48af428 126 static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
a1f090e0 127
42da2935 128 // retrieve the parameters
b48af428 129 Int_t fNofMaps = fSegmentation->Npz();
42da2935 130 Int_t fMaxNofSamples = fSegmentation->Npx();
b48af428 131 Int_t fNofAnodes = fNofMaps/2;
132 Int_t dummy = 0;
133 Float_t fTimeStep = fSegmentation->Dpx(dummy);
134 Float_t fSddLength = fSegmentation->Dx();
135 Float_t fDriftSpeed = fResponse->DriftSpeed();
136 Float_t anodePitch = fSegmentation->Dpz(dummy);
42da2935 137
138 // map the signal
50d05d7b 139 fMap->ClearMap();
42da2935 140 fMap->SetThreshold(fCutAmplitude);
141 fMap->FillMap();
a1f090e0 142
42da2935 143 Float_t noise;
144 Float_t baseline;
145 fResponse->GetNoiseParam(noise,baseline);
a1f090e0 146
42da2935 147 Int_t nofFoundClusters = 0;
148 Int_t i;
149 Float_t **dfadc = new Float_t*[fNofAnodes];
150 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
b48af428 151 Float_t fadc = 0.;
42da2935 152 Float_t fadc1 = 0.;
153 Float_t fadc2 = 0.;
154 Int_t j,k,idx,l,m;
155 for(j=0;j<2;j++) {
50d05d7b 156 for(k=0;k<fNofAnodes;k++) {
157 idx = j*fNofAnodes+k;
158 // signal (fadc) & derivative (dfadc)
159 dfadc[k][255]=0.;
160 for(l=0; l<fMaxNofSamples; l++) {
161 fadc2=(Float_t)fMap->GetSignal(idx,l);
162 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
163 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
164 } // samples
165 } // anodes
42da2935 166
50d05d7b 167 for(k=0;k<fNofAnodes;k++) {
168 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
169 idx = j*fNofAnodes+k;
170 Int_t imax = 0;
171 Int_t imaxd = 0;
172 Int_t it = 0;
173 while(it <= fMaxNofSamples-3) {
174 imax = it;
175 imaxd = it;
176 // maximum of signal
177 Float_t fadcmax = 0.;
178 Float_t dfadcmax = 0.;
179 Int_t lthrmina = 1;
180 Int_t lthrmint = 3;
181 Int_t lthra = 1;
182 Int_t lthrt = 0;
183 for(m=0;m<20;m++) {
184 Int_t id = it+m;
185 if(id>=fMaxNofSamples) break;
186 fadc=(float)fMap->GetSignal(idx,id);
187 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
188 if(fadc > (float)fCutAmplitude) {
189 lthrt++;
190 } // end if
191 if(dfadc[k][id] > dfadcmax) {
192 dfadcmax = dfadc[k][id];
193 imaxd = id;
194 } // end if
195 } // end for m
196 it = imaxd;
197 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
198 // cluster charge
199 Int_t tstart = it-2;
200 if(tstart < 0) tstart = 0;
201 Bool_t ilcl = 0;
202 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
203 if(ilcl) {
204 nofFoundClusters++;
205 Int_t tstop = tstart;
206 Float_t dfadcmin = 10000.;
207 Int_t ij;
208 for(ij=0; ij<20; ij++) {
209 if(tstart+ij > 255) { tstop = 255; break; }
210 fadc=(float)fMap->GetSignal(idx,tstart+ij);
211 if((dfadc[k][tstart+ij] < dfadcmin) &&
212 (fadc > fCutAmplitude)) {
213 tstop = tstart+ij+5;
214 if(tstop > 255) tstop = 255;
215 dfadcmin = dfadc[k][it+ij];
216 } // end if
217 } // end for ij
42da2935 218
50d05d7b 219 Float_t clusterCharge = 0.;
220 Float_t clusterAnode = k+0.5;
221 Float_t clusterTime = 0.;
222 Int_t clusterMult = 0;
223 Float_t clusterPeakAmplitude = 0.;
224 Int_t its,peakpos = -1;
225 Float_t n, baseline;
226 fResponse->GetNoiseParam(n,baseline);
227 for(its=tstart; its<=tstop; its++) {
228 fadc=(float)fMap->GetSignal(idx,its);
229 if(fadc>baseline) fadc -= baseline;
230 else fadc = 0.;
231 clusterCharge += fadc;
232 // as a matter of fact we should take the peak
233 // pos before FFT
234 // to get the list of tracks !!!
235 if(fadc > clusterPeakAmplitude) {
236 clusterPeakAmplitude = fadc;
237 //peakpos=fMap->GetHitIndex(idx,its);
238 Int_t shift = (int)(fTimeCorr/fTimeStep);
239 if(its>shift && its<(fMaxNofSamples-shift))
240 peakpos = fMap->GetHitIndex(idx,its+shift);
241 else peakpos = fMap->GetHitIndex(idx,its);
242 if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
243 } // end if
244 clusterTime += fadc*its;
245 if(fadc > 0) clusterMult++;
246 if(its == tstop) {
247 clusterTime /= (clusterCharge/fTimeStep); // ns
248 if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
249 //ns
250 } // end if
251 } // end for its
42da2935 252
50d05d7b 253 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
254 anodePitch;
255 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
256 clusterDriftPath = fSddLength-clusterDriftPath;
257 if(clusterCharge <= 0.) break;
258 AliITSRawClusterSDD clust(j+1,//i
259 clusterAnode,clusterTime,//ff
260 clusterCharge, //f
261 clusterPeakAmplitude, //f
262 peakpos, //i
263 0.,0.,clusterDriftPath,//fff
264 clusteranodePath, //f
265 clusterMult, //i
266 0,0,0,0,0,0,0);//7*i
267 iTS->AddCluster(1,&clust);
268 it = tstop;
269 } // ilcl
270 it++;
271 } // while (samples)
272 } // anodes
42da2935 273 } // detectors (2)
42da2935 274
275 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
276 delete [] dfadc;
a1f090e0 277
42da2935 278 return;
a1f090e0 279}
50d05d7b 280
281
282
42da2935 283//______________________________________________________________________
284void AliITSClusterFinderSDD::Find1DClustersE(){
24a1c341 285 // find 1D clusters
42da2935 286 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
287 // retrieve the parameters
288 Int_t fNofMaps = fSegmentation->Npz();
289 Int_t fMaxNofSamples = fSegmentation->Npx();
290 Int_t fNofAnodes = fNofMaps/2;
291 Int_t dummy=0;
292 Float_t fTimeStep = fSegmentation->Dpx( dummy );
293 Float_t fSddLength = fSegmentation->Dx();
294 Float_t fDriftSpeed = fResponse->DriftSpeed();
295 Float_t anodePitch = fSegmentation->Dpz( dummy );
296 Float_t n, baseline;
297 fResponse->GetNoiseParam( n, baseline );
298 // map the signal
50d05d7b 299 fMap->ClearMap();
42da2935 300 fMap->SetThreshold( fCutAmplitude );
301 fMap->FillMap();
50d05d7b 302
42da2935 303 Int_t nClu = 0;
50d05d7b 304 // cout << "Search cluster... "<< endl;
42da2935 305 for( Int_t j=0; j<2; j++ ){
50d05d7b 306 for( Int_t k=0; k<fNofAnodes; k++ ){
307 Int_t idx = j*fNofAnodes+k;
308 Bool_t on = kFALSE;
309 Int_t start = 0;
310 Int_t nTsteps = 0;
311 Float_t fmax = 0.;
312 Int_t lmax = 0;
313 Float_t charge = 0.;
314 Float_t time = 0.;
315 Float_t anode = k+0.5;
316 Int_t peakpos = -1;
317 for( Int_t l=0; l<fMaxNofSamples; l++ ){
318 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
319 if( fadc > 0.0 ){
320 if( on == kFALSE && l<fMaxNofSamples-4){
321 // star RawCluster (reset var.)
322 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
323 if( fadc1 < fadc ) continue;
324 start = l;
325 fmax = 0.;
326 lmax = 0;
327 time = 0.;
328 charge = 0.;
329 on = kTRUE;
330 nTsteps = 0;
331 } // end if on...
332 nTsteps++ ;
333 if( fadc > baseline ) fadc -= baseline;
334 else fadc=0.;
335 charge += fadc;
336 time += fadc*l;
337 if( fadc > fmax ){
338 fmax = fadc;
339 lmax = l;
340 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
341 if( l > shift && l < (fMaxNofSamples-shift) )
342 peakpos = fMap->GetHitIndex( idx, l+shift );
343 else
344 peakpos = fMap->GetHitIndex( idx, l );
345 if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
346 } // end if fadc
347 }else{ // end fadc>0
348 if( on == kTRUE ){
349 if( nTsteps > 2 ){
350 // min # of timesteps for a RawCluster
351 // Found a RawCluster...
352 Int_t stop = l-1;
353 time /= (charge/fTimeStep); // ns
354 // time = lmax*fTimeStep; // ns
355 if( time > fTimeCorr ) time -= fTimeCorr; // ns
356 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
357 Float_t driftPath = time*fDriftSpeed;
358 driftPath = fSddLength-driftPath;
359 AliITSRawClusterSDD clust(j+1,anode,time,charge,
360 fmax, peakpos,0.,0.,
361 driftPath,anodePath,
362 nTsteps,start,stop,
363 start, stop, 1, k, k );
364 iTS->AddCluster( 1, &clust );
365 // clust.PrintInfo();
366 nClu++;
367 } // end if nTsteps
368 on = kFALSE;
369 } // end if on==kTRUE
370 } // end if fadc>0
371 } // samples
372 } // anodes
42da2935 373 } // wings
50d05d7b 374 // cout << "# Rawclusters " << nClu << endl;
42da2935 375 return;
a1f090e0 376}
42da2935 377//_______________________________________________________________________
378Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
50d05d7b 379 Int_t *peakX, Int_t *peakZ,
380 Float_t *peakAmp, Float_t minpeak ){
42da2935 381 // search peaks on a 2D cluster
382 Int_t npeak = 0; // # peaks
56fff130 383 Int_t i,j;
42da2935 384 // search peaks
385 for( Int_t z=1; z<zdim-1; z++ ){
48058160 386 for( Int_t x=1; x<xdim-2; x++ ){
50d05d7b 387 Float_t sxz = spect[x*zdim+z];
388 Float_t sxz1 = spect[(x+1)*zdim+z];
389 Float_t sxz2 = spect[(x-1)*zdim+z];
390 // search a local max. in s[x,z]
391 if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
392 if( sxz >= spect[(x+1)*zdim+z ] && sxz >= spect[(x-1)*zdim+z ] &&
393 sxz >= spect[x*zdim +z+1] && sxz >= spect[x*zdim +z-1] &&
394 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
395 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
396 // peak found
397 peakX[npeak] = x;
398 peakZ[npeak] = z;
399 peakAmp[npeak] = sxz;
400 npeak++;
401 } // end if ....
402 } // end for x
42da2935 403 } // end for z
404 // search groups of peaks with same amplitude.
405 Int_t *flag = new Int_t[npeak];
406 for( i=0; i<npeak; i++ ) flag[i] = 0;
407 for( i=0; i<npeak; i++ ){
50d05d7b 408 for( j=0; j<npeak; j++ ){
409 if( i==j) continue;
410 if( flag[j] > 0 ) continue;
411 if( peakAmp[i] == peakAmp[j] &&
412 TMath::Abs(peakX[i]-peakX[j])<=1 &&
413 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
414 if( flag[i] == 0) flag[i] = i+1;
415 flag[j] = flag[i];
416 } // end if ...
417 } // end for j
42da2935 418 } // end for i
50d05d7b 419 // make average of peak groups
42da2935 420 for( i=0; i<npeak; i++ ){
50d05d7b 421 Int_t nFlag = 1;
422 if( flag[i] <= 0 ) continue;
423 for( j=0; j<npeak; j++ ){
424 if( i==j ) continue;
425 if( flag[j] != flag[i] ) continue;
426 peakX[i] += peakX[j];
427 peakZ[i] += peakZ[j];
428 nFlag++;
429 npeak--;
430 for( Int_t k=j; k<npeak; k++ ){
431 peakX[k] = peakX[k+1];
432 peakZ[k] = peakZ[k+1];
433 peakAmp[k] = peakAmp[k+1];
434 flag[k] = flag[k+1];
435 } // end for k
436 j--;
437 } // end for j
438 if( nFlag > 1 ){
439 peakX[i] /= nFlag;
440 peakZ[i] /= nFlag;
441 } // end fi nFlag
42da2935 442 } // end for i
443 delete [] flag;
444 return( npeak );
a1f090e0 445}
42da2935 446//______________________________________________________________________
447void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
50d05d7b 448 Float_t *spe, Float_t *integral){
24a1c341 449 // function used to fit the clusters
50d05d7b 450 // par -> parameters..
24a1c341 451 // par[0] number of peaks.
452 // for each peak i=1, ..., par[0]
50d05d7b 453 // par[i] = Ampl.
454 // par[i+1] = xpos
455 // par[i+2] = zpos
456 // par[i+3] = tau
457 // par[i+4] = sigma.
24a1c341 458 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
459 const Int_t knParam = 5;
460 Int_t npeak = (Int_t)par[0];
42da2935 461
24a1c341 462 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
42da2935 463
24a1c341 464 Int_t k = 1;
42da2935 465 for( Int_t i=0; i<npeak; i++ ){
24a1c341 466 if( integral != 0 ) integral[i] = 0.;
467 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
468 Float_t T2 = par[k+3]; // PASCAL
469 if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
42da2935 470 for( Int_t z=0; z<zdim; z++ ){
471 for( Int_t x=0; x<xdim; x++ ){
24a1c341 472 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
473 Float_t x2 = 0.;
474 Float_t signal = 0.;
42da2935 475 if( electronics == 1 ){ // PASCAL
24a1c341 476 x2 = (x-par[k+1]+T2)/T2;
42da2935 477 signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
478 // signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
479 }else if( electronics == 2 ) { // OLA
50d05d7b 480 x2 = (x-par[k+1])*(x-par[k+1])/T2;
481 signal = par[k] * exp( -x2 - z2 );
482 } else {
483 cout << "Wrong SDD Electronics =" << electronics << endl;
484 // exit( 1 );
485 } // end if electronicx
24a1c341 486 spe[x*zdim+z] += signal;
487 if( integral != 0 ) integral[i] += signal;
42da2935 488 } // end for x
489 } // end for z
24a1c341 490 k += knParam;
42da2935 491 } // end for i
24a1c341 492 return;
a1f090e0 493}
42da2935 494//__________________________________________________________________________
495Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
50d05d7b 496 Float_t *speFit ){
42da2935 497 // EVALUATES UNNORMALIZED CHI-SQUARED
498 Float_t chi2 = 0.;
499 for( Int_t z=0; z<zdim; z++ ){
50d05d7b 500 for( Int_t x=1; x<xdim-1; x++ ){
501 Int_t index = x*zdim+z;
502 Float_t tmp = spe[index] - speFit[index];
503 chi2 += tmp*tmp;
504 } // end for x
42da2935 505 } // end for z
506 return( chi2 );
a1f090e0 507}
42da2935 508//_______________________________________________________________________
509void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
50d05d7b 510 Float_t *prm0,Float_t *steprm,
511 Float_t *chisqr,Float_t *spe,
512 Float_t *speFit ){
42da2935 513 //
514 Int_t k, nnn, mmm, i;
515 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
516 const Int_t knParam = 5;
517 Int_t npeak = (Int_t)param[0];
518 for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
519 for( k=1; k<(npeak*knParam+1); k++ ){
50d05d7b 520 p1 = param[k];
521 delta = steprm[k];
522 d1 = delta;
523 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
524 if( fabs( p1 ) > 1.0E-6 )
525 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
526 else delta = (Float_t)1.0E-4;
527 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
528 PeakFunc( xdim, zdim, param, speFit );
529 chisq1 = ChiSqr( xdim, zdim, spe, speFit );
530 p2 = p1+delta;
531 param[k] = p2;
532 PeakFunc( xdim, zdim, param, speFit );
533 chisq2 = ChiSqr( xdim, zdim, spe, speFit );
534 if( chisq1 < chisq2 ){
535 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
536 delta = -delta;
537 t = p1;
538 p1 = p2;
539 p2 = t;
540 t = chisq1;
541 chisq1 = chisq2;
542 chisq2 = t;
543 } // end if
544 i = 1; nnn = 0;
545 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
546 nnn++;
547 p3 = p2 + delta;
548 mmm = nnn - (nnn/5)*5; // multiplo de 5
549 if( mmm == 0 ){
550 d1 = delta;
551 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
552 delta *= 5;
553 } // end if
554 param[k] = p3;
555 // Constrain paramiters
556 Int_t kpos = (k-1) % knParam;
557 switch( kpos ){
558 case 0 :
559 if( param[k] <= 20 ) param[k] = fMinPeak;
560 break;
561 case 1 :
562 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
563 break;
564 case 2 :
565 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
566 break;
567 case 3 :
568 if( param[k] < .5 ) param[k] = .5;
569 break;
570 case 4 :
571 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
572 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
573 break;
574 }; // end switch
575 PeakFunc( xdim, zdim, param, speFit );
576 chisq3 = ChiSqr( xdim, zdim, spe, speFit );
577 if( chisq3 < chisq2 && nnn < 50 ){
578 p1 = p2;
579 p2 = p3;
580 chisq1 = chisq2;
581 chisq2 = chisq3;
582 }else i=0;
583 } while( i );
584 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
585 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
586 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
587 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
588 else p0 = 10000;
589 //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
590 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
591 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
592 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
593 //if( fabs( p2-p0 ) > dp ) p0 = p2;
594 param[k] = p0;
595 // Constrain paramiters
596 Int_t kpos = (k-1) % knParam;
597 switch( kpos ){
598 case 0 :
599 if( param[k] <= 20 ) param[k] = fMinPeak;
600 break;
601 case 1 :
602 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
603 break;
604 case 2 :
605 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
606 break;
607 case 3 :
608 if( param[k] < .5 ) param[k] = .5;
609 break;
610 case 4 :
611 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
612 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
613 break;
614 }; // end switch
615 PeakFunc( xdim, zdim, param, speFit );
616 chisqt = ChiSqr( xdim, zdim, spe, speFit );
617 // DO NOT ALLOW ERRONEOUS INTERPOLATION
618 if( chisqt <= *chisqr ) *chisqr = chisqt;
619 else param[k] = prm0[k];
620 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
621 steprm[k] = (param[k]-prm0[k])/5;
622 if( steprm[k] >= d1 ) steprm[k] = d1/5;
42da2935 623 } // end for k
624 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
625 PeakFunc( xdim, zdim, param, speFit );
626 *chisqr = ChiSqr( xdim, zdim, spe, speFit );
627 return;
a1f090e0 628}
42da2935 629//_________________________________________________________________________
630Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim,
50d05d7b 631 Float_t *param, Float_t *spe,
632 Int_t *niter, Float_t *chir ){
42da2935 633 // fit method from Comput. Phys. Commun 46(1987) 149
50d05d7b 634 const Float_t kchilmt = 0.01; // relative accuracy
635 const Int_t knel = 3; // for parabolic minimization
636 const Int_t knstop = 50; // Max. iteration number
42da2935 637 const Int_t knParam = 5;
638 Int_t npeak = (Int_t)param[0];
639 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
640 if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
641 Float_t degFree = (xdim*zdim - npeak*knParam)-1;
642 Int_t n, k, iterNum = 0;
643 Float_t *prm0 = new Float_t[npeak*knParam+1];
644 Float_t *step = new Float_t[npeak*knParam+1];
645 Float_t *schi = new Float_t[npeak*knParam+1];
646 Float_t *sprm[3];
647 sprm[0] = new Float_t[npeak*knParam+1];
648 sprm[1] = new Float_t[npeak*knParam+1];
649 sprm[2] = new Float_t[npeak*knParam+1];
650 Float_t chi0, chi1, reldif, a, b, prmin, dp;
651 Float_t *speFit = new Float_t[ xdim*zdim ];
652 PeakFunc( xdim, zdim, param, speFit );
653 chi0 = ChiSqr( xdim, zdim, spe, speFit );
654 chi1 = chi0;
655 for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
50d05d7b 656 for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
657 step[k] = param[k] / 20.0 ;
658 step[k+1] = param[k+1] / 50.0;
659 step[k+2] = param[k+2] / 50.0;
660 step[k+3] = param[k+3] / 20.0;
661 step[k+4] = param[k+4] / 20.0;
662 } // end for k
42da2935 663 Int_t out = 0;
664 do{
50d05d7b 665 iterNum++;
666 chi0 = chi1;
667 Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
668 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
669 // EXIT conditions
670 if( reldif < (float) kchilmt ){
671 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
672 *niter = iterNum;
673 out = 0;
674 break;
675 } // end if
676 if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
677 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
678 *niter = iterNum;
679 out = 0;
680 break;
681 } // end if
682 if( iterNum > 5*knstop ){
683 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
684 *niter = iterNum;
685 out = 1;
686 break;
687 } // end if
688 if( iterNum <= knel ) continue;
689 n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
690 if( n > 3 || n == 0 ) continue;
691 schi[n-1] = chi1;
692 for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
693 if( n != 3 ) continue;
694 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
695 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
696 for( k=1; k<(npeak*knParam+1); k++ ){
697 Float_t tmp0 = sprm[0][k];
698 Float_t tmp1 = sprm[1][k];
699 Float_t tmp2 = sprm[2][k];
700 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
701 a += (schi[2]*(tmp0-tmp1));
702 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
703 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
704 (tmp0*tmp0-tmp1*tmp1)));
705 if ((double)a < 1.0E-6) prmin = 0;
706 else prmin = (float) (0.5*b/a);
707 dp = 5*(tmp2-tmp0);
708 if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
709 param[k] = prmin;
710 step[k] = dp/10; // OPTIMIZE SEARCH STEP
711 } // end for k
42da2935 712 } while( kTRUE );
713 delete [] prm0;
714 delete [] step;
715 delete [] schi;
716 delete [] sprm[0];
717 delete [] sprm[1];
718 delete [] sprm[2];
719 delete [] speFit;
720 return( out );
a1f090e0 721}
50d05d7b 722
42da2935 723//______________________________________________________________________
724void AliITSClusterFinderSDD::ResolveClustersE(){
725 // The function to resolve clusters if the clusters overlapping exists
24a1c341 726 Int_t i;
42da2935 727 static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
728 // get number of clusters for this module
729 Int_t nofClusters = fClusters->GetEntriesFast();
730 nofClusters -= fNclusters;
731 Int_t fNofMaps = fSegmentation->Npz();
732 Int_t fNofAnodes = fNofMaps/2;
733 Int_t fMaxNofSamples = fSegmentation->Npx();
734 Int_t dummy=0;
735 Double_t fTimeStep = fSegmentation->Dpx( dummy );
736 Double_t fSddLength = fSegmentation->Dx();
737 Double_t fDriftSpeed = fResponse->DriftSpeed();
738 Double_t anodePitch = fSegmentation->Dpz( dummy );
739 Float_t n, baseline;
740 fResponse->GetNoiseParam( n, baseline );
741 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
50d05d7b 742
42da2935 743 for( Int_t j=0; j<nofClusters; j++ ){
50d05d7b 744 // get cluster information
745 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
746 Int_t astart = clusterJ->Astart();
747 Int_t astop = clusterJ->Astop();
748 Int_t tstart = clusterJ->Tstartf();
749 Int_t tstop = clusterJ->Tstopf();
750 Int_t wing = (Int_t)clusterJ->W();
751 if( wing == 2 ){
752 astart += fNofAnodes;
753 astop += fNofAnodes;
754 } // end if
755 Int_t xdim = tstop-tstart+3;
756 Int_t zdim = astop-astart+3;
2bd89e94 757 if(xdim > 50 || zdim > 30) { cout << "Warning: xdim: " << xdim << ", zdim: " << zdim << endl; continue; }
50d05d7b 758 Float_t *sp = new Float_t[ xdim*zdim+1 ];
759 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
760
761 // make a local map from cluster region
762 for( Int_t ianode=astart; ianode<=astop; ianode++ ){
763 for( Int_t itime=tstart; itime<=tstop; itime++ ){
764 Float_t fadc = fMap->GetSignal( ianode, itime );
765 if( fadc > baseline ) fadc -= (Double_t)baseline;
766 else fadc = 0.;
767 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
768 sp[index] = fadc;
769 } // time loop
770 } // anode loop
771
772 // search peaks on cluster
773 const Int_t kNp = 150;
774 Int_t peakX1[kNp];
775 Int_t peakZ1[kNp];
776 Float_t peakAmp1[kNp];
777 Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
778
779 // if multiple peaks, split cluster
780 if( npeak >= 1 )
781 {
782 // cout << "npeak " << npeak << endl;
783 // clusterJ->PrintInfo();
784 Float_t *par = new Float_t[npeak*5+1];
785 par[0] = (Float_t)npeak;
48058160 786 // Initial parameters in cell dimentions
50d05d7b 787 Int_t k1 = 1;
788 for( i=0; i<npeak; i++ ){
789 par[k1] = peakAmp1[i];
790 par[k1+1] = peakX1[i]; // local time pos. [timebin]
791 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
792 if( electronics == 1 )
793 par[k1+3] = 2.; // PASCAL
794 else if( electronics == 2 )
795 par[k1+3] = 0.7; // tau [timebin] OLA
796 par[k1+4] = .4; // sigma [anodepich]
797 k1+=5;
798 } // end for i
799 Int_t niter;
800 Float_t chir;
801 NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
802 Float_t peakX[kNp];
803 Float_t peakZ[kNp];
804 Float_t sigma[kNp];
805 Float_t tau[kNp];
806 Float_t peakAmp[kNp];
807 Float_t integral[kNp];
808 //get integrals => charge for each peak
809 PeakFunc( xdim, zdim, par, sp, integral );
810 k1 = 1;
811 for( i=0; i<npeak; i++ ){
812 peakAmp[i] = par[k1];
813 peakX[i] = par[k1+1];
814 peakZ[i] = par[k1+2];
815 tau[i] = par[k1+3];
816 sigma[i] = par[k1+4];
817 k1+=5;
818 } // end for i
819 // calculate parameter for new clusters
820 for( i=0; i<npeak; i++ ){
821 AliITSRawClusterSDD clusterI( *clusterJ );
822 Int_t newAnode = peakZ1[i]-1 + astart;
823 Int_t newiTime = peakX1[i]-1 + tstart;
824 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
825 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) )
826 shift = 0;
827 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
828 clusterI.SetPeakPos( peakpos );
829 clusterI.SetPeakAmpl( peakAmp1[i] );
830 Float_t newAnodef = peakZ[i] - 0.5 + astart;
831 Float_t newiTimef = peakX[i] - 1 + tstart;
832 if( wing == 2 ) newAnodef -= fNofAnodes;
833 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
834 newiTimef *= fTimeStep;
835 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
836 if( electronics == 1 ){
48058160 837 // newiTimef *= 0.999438; // PASCAL
838 // newiTimef += (6./fDriftSpeed - newiTimef/3000.);
50d05d7b 839 }else if( electronics == 2 )
840 newiTimef *= 0.99714; // OLA
841 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
842 Float_t sign = ( wing == 1 ) ? -1. : 1.;
843 clusterI.SetX( driftPath*sign * 0.0001 );
844 clusterI.SetZ( anodePath * 0.0001 );
845 clusterI.SetAnode( newAnodef );
846 clusterI.SetTime( newiTimef );
847 clusterI.SetAsigma( sigma[i]*anodePitch );
848 clusterI.SetTsigma( tau[i]*fTimeStep );
849 clusterI.SetQ( integral[i] );
48058160 850 // clusterI.PrintInfo();
50d05d7b 851 iTS->AddCluster( 1, &clusterI );
852 } // end for i
853 fClusters->RemoveAt( j );
854 delete [] par;
48058160 855 } else { // something odd
856 cout << " --- Peak not found!!!! minpeak=" << fMinPeak<<
857 " cluster peak=" << clusterJ->PeakAmpl() <<
858 " module=" << fModule << endl;
50d05d7b 859 clusterJ->PrintInfo();
48058160 860 cout << " xdim=" << xdim-2 << " zdim=" << zdim-2 << endl << endl;
50d05d7b 861 }
862 delete [] sp;
42da2935 863 } // cluster loop
864 fClusters->Compress();
50d05d7b 865// fMap->ClearMap();
a1f090e0 866}
50d05d7b 867
868
42da2935 869//________________________________________________________________________
870void AliITSClusterFinderSDD::GroupClusters(){
871 // group clusters
872 Int_t dummy=0;
873 Float_t fTimeStep = fSegmentation->Dpx(dummy);
874 // get number of clusters for this module
875 Int_t nofClusters = fClusters->GetEntriesFast();
876 nofClusters -= fNclusters;
877 AliITSRawClusterSDD *clusterI;
878 AliITSRawClusterSDD *clusterJ;
879 Int_t *label = new Int_t [nofClusters];
880 Int_t i,j;
881 for(i=0; i<nofClusters; i++) label[i] = 0;
882 for(i=0; i<nofClusters; i++) {
50d05d7b 883 if(label[i] != 0) continue;
884 for(j=i+1; j<nofClusters; j++) {
885 if(label[j] != 0) continue;
886 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
887 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
888 // 1.3 good
889 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
890 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
891 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
892 if(!pair) continue;
893 // clusterI->PrintInfo();
894 // clusterJ->PrintInfo();
895 clusterI->Add(clusterJ);
896 label[j] = 1;
897 fClusters->RemoveAt(j);
898 j=i; // <- Ernesto
899 } // J clusters
900 label[i] = 1;
42da2935 901 } // I clusters
902 fClusters->Compress();
903
904 delete [] label;
905 return;
b0f5e3fc 906}
42da2935 907//________________________________________________________________________
908void AliITSClusterFinderSDD::SelectClusters(){
909 // get number of clusters for this module
910 Int_t nofClusters = fClusters->GetEntriesFast();
b0f5e3fc 911
42da2935 912 nofClusters -= fNclusters;
913 Int_t i;
914 for(i=0; i<nofClusters; i++) {
50d05d7b 915 AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
916 Int_t rmflg = 0;
917 Float_t wy = 0.;
918 if(clusterI->Anodes() != 0.) {
919 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
920 } // end if
921 Int_t amp = (Int_t) clusterI->PeakAmpl();
922 Int_t cha = (Int_t) clusterI->Q();
923 if(amp < fMinPeak) rmflg = 1;
924 if(cha < fMinCharge) rmflg = 1;
925 if(wy < fMinNCells) rmflg = 1;
926 //if(wy > fMaxNCells) rmflg = 1;
927 if(rmflg) fClusters->RemoveAt(i);
42da2935 928 } // I clusters
929 fClusters->Compress();
930 return;
b0f5e3fc 931}
42da2935 932//__________________________________________________________________________
933void AliITSClusterFinderSDD::ResolveClusters(){
934 // The function to resolve clusters if the clusters overlapping exists
935/* AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
936 // get number of clusters for this module
937 Int_t nofClusters = fClusters->GetEntriesFast();
938 nofClusters -= fNclusters;
939 //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
940 // <<fNclusters<<endl;
941 Int_t fNofMaps = fSegmentation->Npz();
942 Int_t fNofAnodes = fNofMaps/2;
943 Int_t dummy=0;
944 Double_t fTimeStep = fSegmentation->Dpx(dummy);
945 Double_t fSddLength = fSegmentation->Dx();
946 Double_t fDriftSpeed = fResponse->DriftSpeed();
947 Double_t anodePitch = fSegmentation->Dpz(dummy);
948 Float_t n, baseline;
949 fResponse->GetNoiseParam(n,baseline);
950 Float_t dzz_1A = anodePitch * anodePitch / 12;
951 // fill Map of signals
a1f090e0 952 fMap->FillMap();
42da2935 953 Int_t j,i,ii,ianode,anode,itime;
954 Int_t wing,astart,astop,tstart,tstop,nanode;
955 Double_t fadc,ClusterTime;
956 Double_t q[400],x[400],z[400]; // digit charges and coordinates
957 for(j=0; j<nofClusters; j++) {
50d05d7b 958 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
959 Int_t ndigits = 0;
960 astart=clusterJ->Astart();
961 astop=clusterJ->Astop();
962 tstart=clusterJ->Tstartf();
963 tstop=clusterJ->Tstopf();
964 nanode=clusterJ->Anodes(); // <- Ernesto
965 wing=(Int_t)clusterJ->W();
966 if(wing == 2) {
967 astart += fNofAnodes;
968 astop += fNofAnodes;
969 } // end if
970 // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
971 // <<tstart<<","<<tstop<<endl;
972 // clear the digit arrays
973 for(ii=0; ii<400; ii++) {
974 q[ii] = 0.;
975 x[ii] = 0.;
976 z[ii] = 0.;
977 } // end for ii
42da2935 978
50d05d7b 979 for(ianode=astart; ianode<=astop; ianode++) {
980 for(itime=tstart; itime<=tstop; itime++) {
981 fadc=fMap->GetSignal(ianode,itime);
982 if(fadc>baseline) {
983 fadc-=(Double_t)baseline;
984 q[ndigits] = fadc*(fTimeStep/160); // KeV
985 anode = ianode;
986 if(wing == 2) anode -= fNofAnodes;
987 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
988 ClusterTime = itime*fTimeStep;
989 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
990 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
991 if(wing == 1) x[ndigits] *= (-1);
992 // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
993 // <<fadc<<endl;
994 // cout<<"wing,anode,ndigits,charge ="<<wing<<","
995 // <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
996 ndigits++;
997 continue;
998 } // end if
999 fadc=0;
1000 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
1001 } // time loop
1002 } // anode loop
1003 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
1004 // Fit cluster to resolve for two separate ones --------------------
1005 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1006 Double_t dxx=0., dzz=0., dxz=0.;
1007 Double_t scl = 0., tmp, tga, elps = -1.;
1008 Double_t xfit[2], zfit[2], qfit[2];
1009 Double_t pitchz = anodePitch*1.e-4; // cm
1010 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
1011 Double_t sigma2;
1012 Int_t nfhits;
1013 Int_t nbins = ndigits;
1014 Int_t separate = 0;
1015 // now, all lengths are in microns
1016 for (ii=0; ii<nbins; ii++) {
1017 qq += q[ii];
1018 xm += x[ii]*q[ii];
1019 zm += z[ii]*q[ii];
1020 xx += x[ii]*x[ii]*q[ii];
1021 zz += z[ii]*z[ii]*q[ii];
1022 xz += x[ii]*z[ii]*q[ii];
1023 } // end for ii
1024 xm /= qq;
1025 zm /= qq;
1026 xx /= qq;
1027 zz /= qq;
1028 xz /= qq;
1029 dxx = xx - xm*xm;
1030 dzz = zz - zm*zm;
1031 dxz = xz - xm*zm;
42da2935 1032
50d05d7b 1033 // shrink the cluster in the time direction proportionaly to the
1034 // dxx/dzz, which lineary depends from the drift path
1035 // new Ernesto........
1036 if( nanode == 1 ){
1037 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1038 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1039 } // end if
1040 if( nanode == 2 ){
1041 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1042 } // end if
1043 if( nanode == 3 ){
1044 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1045 } // end if
1046 if( nanode > 3 ){
1047 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1048 } // end if
1049 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1050 // <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1051 // old Boris.........
1052 // tmp=29730. - 585.*fabs(xm/1000.);
1053 // scl=TMath::Sqrt(tmp/130000.);
a1f090e0 1054
50d05d7b 1055 xm *= scl;
1056 xx *= scl*scl;
1057 xz *= scl;
42da2935 1058
50d05d7b 1059 dxx = xx - xm*xm;
1060 // dzz = zz - zm*zm;
1061 dxz = xz - xm*zm;
1062 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1063 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1064 // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
a1f090e0 1065
50d05d7b 1066 if (dxx < 0.) dxx=0.;
1067 // the data if no cluster overlapping (the coordunates are in cm)
1068 nfhits = 1;
1069 xfit[0] = xm*1.e-4;
1070 zfit[0] = zm*1.e-4;
1071 qfit[0] = qq;
1072 // if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
a1f090e0 1073
50d05d7b 1074 if (nbins >= 7) {
1075 if (dxz==0.) tga=0.;
1076 else {
1077 tmp=0.5*(dzz-dxx)/dxz;
1078 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) :
1079 tmp+TMath::Sqrt(tmp*tmp+1);
1080 } // end if dxz
1081 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1082 // change from microns to cm
1083 xm *= 1.e-4;
1084 zm *= 1.e-4;
1085 zz *= 1.e-8;
1086 xx *= 1.e-8;
1087 xz *= 1.e-8;
1088 dxz *= 1.e-8;
1089 dxx *= 1.e-8;
1090 dzz *= 1.e-8;
1091 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1092 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1093 for (i=0; i<nbins; i++) {
1094 x[i] = x[i] *= scl;
1095 x[i] = x[i] *= 1.e-4;
1096 z[i] = z[i] *= 1.e-4;
1097 } // end for i
1098 // cout<<"!!! elps ="<<elps<<endl;
1099 if (elps < 0.3) { // try to separate hits
1100 separate = 1;
1101 tmp=atan(tga);
1102 Double_t cosa=cos(tmp),sina=sin(tmp);
1103 Double_t a1=0., x1=0., xxx=0.;
1104 for (i=0; i<nbins; i++) {
1105 tmp=x[i]*cosa + z[i]*sina;
1106 if (q[i] > a1) {
1107 a1=q[i];
1108 x1=tmp;
1109 } // end if
1110 xxx += tmp*tmp*tmp*q[i];
1111 } // end for i
1112 xxx /= qq;
1113 Double_t z12=-sina*xm + cosa*zm;
1114 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1115 xm=cosa*xm + sina*zm;
1116 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1117 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1118 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1119 for (i=0; i<33; i++) { // solve a system of equations
1120 Double_t x1_old=x1, x2_old=x2, r_old=r;
1121 Double_t c11=x1-x2;
1122 Double_t c12=r;
1123 Double_t c13=1-r;
1124 Double_t c21=x1*x1 - x2*x2;
1125 Double_t c22=2*r*x1;
1126 Double_t c23=2*(1-r)*x2;
1127 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1128 Double_t c32=3*r*(sigma2 + x1*x1);
1129 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1130 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1131 Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1132 Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1133 (3*sigma2+x2*x2)-xxx);
1134 Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1135 c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1136 if (d==0.) {
1137 cout<<"*********** d=0 ***********\n";
1138 break;
1139 } // end if
1140 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1141 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1142 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1143 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1144 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1145 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1146 r += dr/d;
1147 x1 += d1/d;
1148 x2 += d2/d;
1149 if (fabs(x1-x1_old) > 0.0001) continue;
1150 if (fabs(x2-x2_old) > 0.0001) continue;
1151 if (fabs(r-r_old)/5 > 0.001) continue;
1152 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1153 Double_t a2=a1*(1-r)/r;
1154 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina +
1155 z12*cosa;
1156 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina +
1157 z12*cosa;
1158 nfhits=2;
1159 break; // Ok !
1160 } // end for i
1161 if (i==33) cerr<<"No more iterations ! "<<endl;
1162 } // end of attempt to separate overlapped clusters
1163 } // end of nbins cut
1164 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1165 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1166 <<elps<<","<<nfhits<<endl;
1167 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1168 for (i=0; i<nfhits; i++) {
1169 xfit[i] *= (1.e+4/scl);
1170 if(wing == 1) xfit[i] *= (-1);
1171 zfit[i] *= 1.e+4;
1172 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","
1173 // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1174 } // end for i
1175 Int_t ncl = nfhits;
1176 if(nfhits == 1 && separate == 1) {
1177 cout<<"!!!!! no separate"<<endl;
1178 ncl = -2;
1179 } // end if
1180 if(nfhits == 2) {
1181 cout << "Split cluster: " << endl;
1182 clusterJ->PrintInfo();
1183 cout << " in: " << endl;
1184 for (i=0; i<nfhits; i++) {
1185 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
42da2935 1186 -1,-1,(Float_t)qfit[i],ncl,0,0,
1187 (Float_t)xfit[i],
1188 (Float_t)zfit[i],0,0,0,0,
1189 tstart,tstop,astart,astop);
50d05d7b 1190 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1191 // -1,(Float_t)qfit[i],0,0,0,
1192 // (Float_t)xfit[i],
1193 // (Float_t)zfit[i],0,0,0,0,
1194 // tstart,tstop,astart,astop,ncl);
1195 // ???????????
1196 // if(wing == 1) xfit[i] *= (-1);
1197 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1198 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1199 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1200 Float_t peakpos = clusterJ->PeakPos();
1201 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1202 Float_t clusterDriftPath = Time*fDriftSpeed;
1203 clusterDriftPath = fSddLength-clusterDriftPath;
1204 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1205 Time,qfit[i],
42da2935 1206 clusterPeakAmplitude,peakpos,
1207 0.,0.,clusterDriftPath,
1208 clusteranodePath,clusterJ->Samples()/2
50d05d7b 1209 ,tstart,tstop,0,0,0,astart,astop);
1210 clust->PrintInfo();
1211 iTS->AddCluster(1,clust);
1212 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1213 // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1214 // <<","<<ncl<<endl;
1215 delete clust;
1216 }// nfhits loop
1217 fClusters->RemoveAt(j);
42da2935 1218 } // if nfhits = 2
1219} // cluster loop
1220fClusters->Compress();
1221fMap->ClearMap();
1222*/
1223 return;
a1f090e0 1224}
42da2935 1225//______________________________________________________________________
1226void AliITSClusterFinderSDD::GetRecPoints(){
1227 // get rec points
1228 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1229 // get number of clusters for this module
1230 Int_t nofClusters = fClusters->GetEntriesFast();
1231 nofClusters -= fNclusters;
1232 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1233 const Float_t kconv = 1.0e-4;
1234 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1235 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
ee86d557 1236 Int_t i,j;
42da2935 1237 Int_t ix, iz, idx=-1;
1238 AliITSdigitSDD *dig=0;
1239 Int_t ndigits=fDigits->GetEntriesFast();
1240 for(i=0; i<nofClusters; i++) {
50d05d7b 1241 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1242 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1243 if(clusterI) idx=clusterI->PeakPos();
1244 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1245 // try peak neighbours - to be done
1246 if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1247 if(!dig) {
1248 // try cog
1249 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1250 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1251 // if null try neighbours
1252 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1253 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1254 if (!dig) printf("SDD: cannot assign the track number!\n");
1255 } // end if !dig
1256 AliITSRecPoint rnew;
1257 rnew.SetX(clusterI->X());
1258 rnew.SetZ(clusterI->Z());
1259 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
1260 rnew.SetdEdX(kconvGeV*clusterI->Q());
1261 rnew.SetSigmaX2(kRMSx*kRMSx);
1262 rnew.SetSigmaZ2(kRMSz*kRMSz);
ee86d557 1263 if(dig){
1264 rnew.fTracks[0] = dig->fTracks[0];
1265 rnew.fTracks[1] = -3;
1266 rnew.fTracks[2] = -3;
1267 j=1;
1268 while(rnew.fTracks[0]==dig->fTracks[j] &&
1269 j<dig->GetNTracks()) j++;
1270 if(j<dig->GetNTracks()){
1271 rnew.fTracks[1] = dig->fTracks[j];
f8d9a5b8 1272 while((rnew.fTracks[0]==dig->fTracks[j] ||
1273 rnew.fTracks[1]==dig->fTracks[j] )&&
ee86d557 1274 j<dig->GetNTracks()) j++;
1275 if(j<dig->GetNTracks()) rnew.fTracks[2] = dig->fTracks[j];
1276 } // end if
1277 } // end if
50d05d7b 1278 //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1279 // i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1280 // lusterI->X(),clusterI->Z());
1281 iTS->AddRecPoint(rnew);
42da2935 1282 } // I clusters
50d05d7b 1283// fMap->ClearMap();
b0f5e3fc 1284}
42da2935 1285//______________________________________________________________________
1286void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1287 // find raw clusters
50d05d7b 1288
1289 fModule = mod;
1290
a1f090e0 1291 Find1DClustersE();
b0f5e3fc 1292 GroupClusters();
1293 SelectClusters();
a1f090e0 1294 ResolveClustersE();
b0f5e3fc 1295 GetRecPoints();
1296}
42da2935 1297//_______________________________________________________________________
1298void AliITSClusterFinderSDD::Print(){
1299 // Print SDD cluster finder Parameters
1300
1301 cout << "**************************************************" << endl;
1302 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1303 cout << "**************************************************" << endl;
1304 cout << "Number of Clusters: " << fNclusters << endl;
1305 cout << "Anode Tolerance: " << fDAnode << endl;
1306 cout << "Time Tolerance: " << fDTime << endl;
1307 cout << "Time correction (electronics): " << fTimeCorr << endl;
1308 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1309 cout << "Minimum Amplitude: " << fMinPeak << endl;
1310 cout << "Minimum Charge: " << fMinCharge << endl;
1311 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1312 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1313 cout << "**************************************************" << endl;
a1f090e0 1314}