]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSv11GeometrySPD.cxx
cleanup
[u/mrichter/AliRoot.git] / ITS / AliITSv11GeometrySPD.cxx
CommitLineData
db486a6e 1/**************************************************************************
59da35b6 2 * Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
db486a6e 3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
592651e2 15//
db486a6e 16// This class Defines the Geometry for the ITS services and support cones
d0048cec 17// outside of the central volume (except for the Central support
54c9a3d9 18// cylinders). Other classes define the rest of the ITS, specifically the
19// SSD support cone, the SSD Support central cylinder, the SDD support cone,
20// the SDD support central cylinder, the SPD Thermal Shield, The supports
db486a6e 21// and cable trays on both the RB26 (muon dump) and RB24 sides, and all of
592651e2 22// the cabling from the ladders/stave ends out past the TPC.
23//
54c9a3d9 24// Here is the calling sequence associated with this file
25// SPDSector(TGeoVolume *moth,TGeoManager *mgr)
26// -----CarbonFiberSector(TGeoVolume *moth,Double_t &xAAtubeCenter0,
27// Double_t &yAAtubeCenter0,TGeoManager *mgr)
28// -----2* SPDsectorShape(Int_t n,const Double_t *xc,const Double_t *yc,
29// | const Double_t *r,const Double_t *ths,
30// | const Double_t *the,Int_t npr,Int_t &m,
31// | Double_t **xp,Double_t **yp)
32// -----StavesInSector(TGeoVolume *moth,TGeoManager *mgr)
33// -----3* CreaeStave(Int_t layer,TArrayD &sizes,Bool_t addClips,
34// | TGeoManager *mgr)
35// | -----2* CreateHalfStave(Boot_t isRight,Int_t layer,
36// | Int_t idxCentral,Int_t idxSide,
37// | TArrayD &sizes,Bool_t addClips,
38// | TGeoManager *mgr)
39// | -----CreateGrondingFoil(Bool_t isRight,TArrayD &sizes,
40// | | TGeoManager *mgr)
41// | | -----4* CreateGroundingFoilSingle(Int_t type,
42// | | TArrayD &sizes,
43// | | TGeoManger *mgr)
44// | |----CreateLadder(Int_t layer, TArrayD &sizes,
45// | | TGeoManager *mgr)
46// | |----CreateMCM(Bool_t isRight,TArrayD &sizes,
47// | | TGeoManger *mgr)
48// | |----CreatePixelBus(Bool_t isRight,TArrayD &sizes,
49// | | TGeoManager *mgr)
50// | -----CreateClip(TArrayD &sizes,TGeoManager *mgr)
51// |----GetSectorMountingPoints(Int_t index,Double_t &x0,
52// | Double_t &y0,Double_t &x1,
53// | Double_t y1)
54// -----3* ParallelPosition(Double_t dist1,Double_t dist2,
55// Double_t phi,Double_t &x,Double_t &y)
56//
57// Obsoleate or presently unused routines are: setAddStave(Bool_t *mask),
58// CreatePixelBusAndExtensions(...) which calles CreateExtender(...).
db486a6e 59
543b7370 60/* $Id$ */
592651e2 61
4098f5dd 62
db486a6e 63// General Root includes
64#include <Riostream.h>
65#include <TMath.h>
66#include <TLatex.h>
67#include <TCanvas.h>
68#include <TPolyLine.h>
297369a1 69#include <TPolyMarker.h>
bc3498f4 70
db486a6e 71// Root Geometry includes
f7a1cc68 72#include <TGeoCompositeShape.h>
db486a6e 73#include <TGeoEltu.h>
f7a1cc68 74#include <TGeoGlobalMagField.h>
a53658c6 75#include <TGeoMaterial.h>
f7a1cc68 76#include <TGeoMatrix.h>
a53658c6 77#include <TGeoMedium.h>
f7a1cc68 78#include <TGeoTube.h> // contains TGeoTubeSeg
79#include <TGeoVolume.h>
80#include <TGeoXtru.h>
c890eba4 81#include <TGeoPcon.h>
bc3498f4 82
592651e2 83// AliRoot includes
bc3498f4 84#include "AliLog.h"
a53658c6 85#include "AliMagF.h"
86#include "AliRun.h"
bc3498f4 87
592651e2 88// Declaration file
db486a6e 89#include "AliITSv11GeometrySPD.h"
90
54c9a3d9 91// Constant definistions
d0048cec 92const Double_t AliITSv11GeometrySPD::fgkGapLadder =
54c9a3d9 93 AliITSv11Geometry::fgkmicron*75.; // 75 microns
d0048cec 94const Double_t AliITSv11GeometrySPD::fgkGapHalfStave =
54c9a3d9 95 AliITSv11Geometry::fgkmicron*120.; // 120 microns
7855ea93 96
fe7d86eb 97using std::endl;
98using std::cout;
99using std::ios;
db486a6e 100ClassImp(AliITSv11GeometrySPD)
54c9a3d9 101//______________________________________________________________________
102AliITSv11GeometrySPD::AliITSv11GeometrySPD(/*Double_t gap*/):
103AliITSv11Geometry(),// Default constructor of base class
104fAddStave(), // [DEBUG] must be TRUE for all staves which will be
105 // mounted in the sector (used to check overlaps)
106fSPDsectorX0(0), // X of first edge of sector plane for stave
107fSPDsectorY0(0), // Y of first edge of sector plane for stave
108fSPDsectorX1(0), // X of second edge of sector plane for stave
109fSPDsectorY1(0), // Y of second edge of sector plane for stave
d0048cec 110fTubeEndSector() // coordinate of cooling tube ends
54c9a3d9 111{
112 //
113 // Default constructor.
d0048cec 114 // This does not initialize anything and is provided just for
54c9a3d9 115 // completeness. It is recommended to use the other one.
116 // The alignment gap is specified as argument (default = 0.0075 cm).
117 // Inputs:
118 // none.
119 // Outputs:
120 // none.
121 // Return:
122 // A default constructed AliITSv11GeometrySPD class.
123 //
124 Int_t i = 0,j=0,k=0;
db486a6e 125
54c9a3d9 126 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
127 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
128 this->fTubeEndSector[k][0][i][j] = 0.0;
129 this->fTubeEndSector[k][1][i][j] = 0.0;
130 } // end for i,j
131}
132//______________________________________________________________________
133AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug/*, Double_t gap*/):
134AliITSv11Geometry(debug),// Default constructor of base class
135fAddStave(), // [DEBUG] must be TRUE for all staves which will be
136 // mounted in the sector (used to check overlaps)
137fSPDsectorX0(0), // X of first edge of sector plane for stave
138fSPDsectorY0(0), // Y of first edge of sector plane for stave
139fSPDsectorX1(0), // X of second edge of sector plane for stave
140fSPDsectorY1(0), // Y of second edge of sector plane for stave
d0048cec 141fTubeEndSector() // coordinate of cooling tube ends
54c9a3d9 142{
143 //
144 // Constructor with debug setting argument
145 // This is the constructor which is recommended to be used.
146 // It sets a debug level, and initializes the name of the object.
147 // The alignment gap is specified as argument (default = 0.0075 cm).
148 // Inputs:
149 // Int_t debug Debug level, 0= no debug output.
150 // Outputs:
151 // none.
152 // Return:
153 // A default constructed AliITSv11GeometrySPD class.
154 //
155 Int_t i = 0,j=0,k=0;
db486a6e 156
54c9a3d9 157 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
158 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
159 this->fTubeEndSector[k][0][i][j] = 0.0;
160 this->fTubeEndSector[k][1][i][j] = 0.0;
161 } // end for i,j
162}
163//______________________________________________________________________
164AliITSv11GeometrySPD::AliITSv11GeometrySPD(const AliITSv11GeometrySPD &s):
165AliITSv11Geometry(s),// Base Class Copy constructor
166fAddStave(), // [DEBUG] must be TRUE for all staves which will be
167 // mounted in the sector (used to check overlaps)
168fSPDsectorX0(s.fSPDsectorX0), // X of first edge of sector plane for stave
169fSPDsectorY0(s.fSPDsectorY0), // Y of first edge of sector plane for stave
170fSPDsectorX1(s.fSPDsectorX1), // X of second edge of sector plane for stave
171fSPDsectorY1(s.fSPDsectorY1) // Y of second edge of sector plane for stave
bc3498f4 172{
54c9a3d9 173 //
174 // Copy Constructor
175 // Inputs:
176 // AliITSv11GeometrySPD &s source class
177 // Outputs:
178 // none.
179 // Return:
180 // A copy of a AliITSv11GeometrySPD class.
181 //
182 Int_t i=0,j=0,k=0;
183
184 for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
185 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
186 this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
187 this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
188 } // end for i,j
bc3498f4 189}
54c9a3d9 190//______________________________________________________________________
d0048cec 191AliITSv11GeometrySPD& AliITSv11GeometrySPD::operator=(const
54c9a3d9 192 AliITSv11GeometrySPD &s)
bc3498f4 193{
54c9a3d9 194 //
195 // = operator
196 // Inputs:
197 // AliITSv11GeometrySPD &s source class
198 // Outputs:
199 // none.
200 // Return:
201 // A copy of a AliITSv11GeometrySPD class.
202 //
203 Int_t i=0,j=0,k=0;
204
205 if(this==&s) return *this;
206 for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
207 this->fSPDsectorX0=s.fSPDsectorX0;
208 this->fSPDsectorY0=s.fSPDsectorY0;
209 this->fSPDsectorX1=s.fSPDsectorX1;
210 this->fSPDsectorY1=s.fSPDsectorY1;
211 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
212 this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
213 this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
214 } // end for i,j
215 return *this;
bc3498f4 216}
54c9a3d9 217//______________________________________________________________________
218TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName,
43aefea7 219 const TGeoManager *mgr) const
bc3498f4 220{
54c9a3d9 221 //
d0048cec 222 // This function is used to recovery any medium
223 // used to build the geometry volumes.
224 // If the required medium does not exists,
54c9a3d9 225 // a NULL pointer is returned, and an error message is written.
226 //
227 Char_t itsMediumName[30];
228
6932f314 229 snprintf(itsMediumName, 30, "ITS_%s", mediumName);
54c9a3d9 230 TGeoMedium* medium = mgr->GetMedium(itsMediumName);
231 if (!medium) AliError(Form("Medium <%s> not found", mediumName));
232
233 return medium;
bc3498f4 234}
54c9a3d9 235
54c9a3d9 236//______________________________________________________________________
bc3498f4 237void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr)
238{
54c9a3d9 239 //
d0048cec 240 // Creates a single SPD carbon fiber sector and places it
54c9a3d9 241 // in a container volume passed as first argument ('moth').
242 // Second argument points to the TGeoManager which coordinates
243 // the overall volume creation.
d0048cec 244 // The position of the sector is based on distance of
245 // closest point of SPD stave to beam pipe
54c9a3d9 246 // (figures all-sections-modules.ps) of 7.22mm at section A-A.
247 //
248
249 // Begin_Html
250 /*
251 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
252 title="SPD Sector drawing with all cross sections defined">
d0048cec 253 <p>The SPD Sector definition. In
54c9a3d9 254 <a href="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.hpgl">HPGL</a> format.
255 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly-10-modules.ps"
256 titile="SPD All Sectors end view with thermal sheald">
257 <p>The SPD all sector end view with thermal sheald.
258 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
259 title="SPD side view cross section">
260 <p>SPD side view cross section with condes and thermal shealds.
261 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-A_A.jpg"
262 title="Cross section A-A"><p>Cross section A-A.
263 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-B_B.jpg"
264 title="Cross updated section A-A"><p>Cross updated section A-A.
265 <img src="http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf"
266 title="Cross section B-B"><p>Cross section B-B.
267 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-C_C.jpg"
268 title-"Cross section C-C"><p>Cross section C-C.
269 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-D_D.jpg"
270 title="Cross section D-D"><p>Cross section D-D.
271 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-E_E.jpg"
272 title="Cross section E-E"><p>Cross section E-E.
273 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-F_F.jpg"
274 title="Cross section F-F"><p>Cross section F-F.
275 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-G_G.jpg"
276 title="Cross section G-G"><p>Cross section G-G.
277 */
278 // End_Html
279
280 // Inputs:
281 // TGeoVolume *moth Pointer to mother volume where this object
282 // is to be placed in
283 // TGeoManager *mgr Pointer to the TGeoManager used, defaule is
284 // gGeoManager.
285 // Outputs:
286 // none.
287 // Return:
288 // none.
289 // Updated values for kSPDclossesStaveAA, kBeamPipeRadius, and
d0048cec 290 // staveThicknessAA are taken from
54c9a3d9 291 // http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf
292 //
3ffa185f 293 const Double_t kSPDclossesStaveAA = 7.25* fgkmm;
54c9a3d9 294 const Double_t kSectorStartingAngle = -72.0 * fgkDegree;
3ffa185f 295 const Int_t kNSectorsTotal = 10;
296 const Double_t kSectorRelativeAngle = 36.0 * fgkDegree; // = 360.0 / 10
297 const Double_t kBeamPipeRadius = 0.5 * 59.6 * fgkmm; // diam. = 59.6 mm
298 //const Double_t staveThicknessAA = 0.9 *fgkmm; // nominal thickness
299 const Double_t staveThicknessAA = 1.02 * fgkmm; // get from stave geometry.
d0048cec 300
3ffa185f 301 Int_t i, j, k;
54c9a3d9 302 Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0;
3ffa185f 303 TGeoCombiTrans *secRot = new TGeoCombiTrans(), *comrot;
30611568 304 TGeoVolume *vCarbonFiberSector[10];
54c9a3d9 305 TGeoMedium *medSPDcf;
306
d0048cec 307 // Define an assembly and fill it with the support of
54c9a3d9 308 // a single carbon fiber sector and staves in it
309 medSPDcf = GetMedium("SPD C (M55J)$", mgr);
30611568 310 for(Int_t is=0; is<10; is++)
311 {
312 vCarbonFiberSector[is] = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV");
313 vCarbonFiberSector[is]->SetMedium(medSPDcf);
314 CarbonFiberSector(vCarbonFiberSector[is], is, xAAtubeCenter0, yAAtubeCenter0, mgr);
315 }
54c9a3d9 316
317 // Compute the radial shift out of the sectors
3ffa185f 318 radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA;
319 radiusSector = GetSPDSectorTranslation(fSPDsectorX0.At(1), fSPDsectorY0.At(1),
320 fSPDsectorX1.At(1), fSPDsectorY1.At(1), radiusSector);
321 //radiusSector *= radiusSector; // squaring;
322 //radiusSector -= xAAtubeCenter0 * xAAtubeCenter0;
323 //radiusSector = -yAAtubeCenter0 + TMath::Sqrt(radiusSector);
d0048cec 324
3ffa185f 325 AliDebug(1, Form("SPDSector : radiusSector=%f\n",radiusSector));
326 i = 1;
327 AliDebug(1, Form("i= %d x0=%f y0=%f x1=%f y1=%f\n", i,
328 fSPDsectorX0.At(i), fSPDsectorY0.At(i),
329 fSPDsectorX1.At(i),fSPDsectorY1.At(i)));
d0048cec 330
54c9a3d9 331 // add 10 single sectors, by replicating the virtual sector defined above
332 // and placing at different angles
333 Double_t shiftX, shiftY, tub[2][6][3];
3ffa185f 334 for(i=0;i<2;i++)for(j=0;j<6;j++)for(k=0;k<3;k++) tub[i][j][k] = fTubeEndSector[0][i][j][k];
54c9a3d9 335 angle = kSectorStartingAngle;
336 secRot->RotateZ(angle);
337 TGeoVolumeAssembly *vcenteral = new TGeoVolumeAssembly("ITSSPD");
3ffa185f 338 moth->AddNode(vcenteral, 1, 0);
339 for(i = 0; i < kNSectorsTotal; i++) {
54c9a3d9 340 shiftX = -radiusSector * TMath::Sin(angle/fgkRadian);
341 shiftY = radiusSector * TMath::Cos(angle/fgkRadian);
d0048cec 342 //cout << "ANGLE = " << angle << endl;
3ffa185f 343 shiftX += 0.1094 * TMath::Cos((angle + 196.)/fgkRadian);
344 shiftY += 0.1094 * TMath::Sin((angle + 196.)/fgkRadian);
345 //shiftX -= 0.105;
346 //shiftY -= 0.031;
347 //shiftX -= 0.11 * TMath::Cos(angle/fgkRadian); // add by Alberto
348 //shiftY -= 0.11 * TMath::Sin(angle/fgkRadian); // don't ask me where that 0.11 comes from!
54c9a3d9 349 secRot->SetDx(shiftX);
350 secRot->SetDy(shiftY);
351 comrot = new TGeoCombiTrans(*secRot);
30611568 352 vcenteral->AddNode(vCarbonFiberSector[i],i+1,comrot);
54c9a3d9 353 for(j=0;j<2;j++)for(k=0;k<6;k++) // Transform Tube ends for each sector
354 comrot->LocalToMaster(tub[j][k],fTubeEndSector[i][j][k]);
355 if(GetDebug(5)) {
356 AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g "
357 "x=%g y=%g \n",i, angle, angle/fgkRadian,
358 radiusSector, shiftX, shiftY));
359 } // end if GetDebug(5)
360 angle += kSectorRelativeAngle;
361 secRot->RotateZ(kSectorRelativeAngle);
362 } // end for i
363 if(GetDebug(3)) moth->PrintNodes();
364 delete secRot;
d0048cec 365
7f69c251 366 CreateCones(moth);
a53658c6 367}
54c9a3d9 368//______________________________________________________________________
30611568 369void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth, Int_t sect,
54c9a3d9 370 Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr)
bc3498f4 371{
30611568 372 // The method has been modified in order to build a support sector
373 // whose shape is dependent on the sector number; the aim is to get
374 // as close as possible to the shape inferred from alignment
375 // and avoid as much as possible overlaps generated by alignment.
54c9a3d9 376 //
377 // Define the detail SPD Carbon fiber support Sector geometry.
378 // Based on the drawings:
379 /*
380 http:///QA-construzione-profilo-modulo.ps
381 */
382 // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004)
383 // - ALICE-SUPPORTO "Costruzione Profilo Modulo"
384 // ---
385 // Define outside radii as negative, where "outside" means that the
386 // center of the arc is outside of the object (feb 16 2004).
387 // ---
388 // Arguments [the one passed by ref contain output values]:
389 // Inputs:
390 // TGeoVolume *moth the voulme which will contain this object
391 // TGeoManager *mgr TGeo builder defauls is gGeoManager
392 // Outputs:
393 // Double_t &xAAtubeCenter0 (by ref) x location of the outer surface
394 // of the cooling tube center for tube 0.
395 // Double_t &yAAtubeCenter0 (by ref) y location of the outer surface
396 // of the cooling tube center for tube 0.
397 // Return:
398 // none.
399 // ---
400 // Int the two variables passed by reference values will be stored
401 // which will then be used to correctly locate this sector.
402 // The information used for this is the distance between the
403 // center of the #0 detector and the beam pipe.
404 // Measurements are taken at cross section A-A.
405 //
d0048cec 406
54c9a3d9 407 //TGeoMedium *medSPDfs = 0;//SPD support cone inserto stesalite 4411w
408 //TGeoMedium *medSPDfo = 0;//SPD support cone foam, Rohacell 50A.
409 //TGeoMedium *medSPDal = 0;//SPD support cone SDD mounting bracket Al
410 TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr);
411 TGeoMedium *medSPDss = GetMedium("INOX$", mgr);
412 TGeoMedium *medSPDair = GetMedium("AIR$", mgr);
413 TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid
414 //
415 const Double_t ksecDz = 0.5 * 500.0 * fgkmm;
416 //const Double_t ksecLen = 30.0 * fgkmm;
417 const Double_t ksecCthick = 0.2 * fgkmm;
418 const Double_t ksecDipLength = 3.2 * fgkmm;
419 const Double_t ksecDipRadii = 0.4 * fgkmm;
420 //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm;
421 //
422 // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#')
423 // are the centers and radii of curvature of all the rounded corners
424 // between the straight borders of the SPD sector shape.
425 // To draw this SPD sector, the following steps are followed:
426 // 1) the (ksecX, ksecY) points are plotted
427 // and circles of the specified radii are drawn around them.
428 // 2) each pair of consecutive circles is connected by a line
d0048cec 429 // tangent to them, in accordance with the radii being "internal"
430 // or "external" with respect to the closed shape which describes
54c9a3d9 431 // the sector itself.
d0048cec 432 // The resulting connected shape is the section
54c9a3d9 433 // of the SPD sector surface in the transverse plane (XY).
434 //
435 const Double_t ksecX0 = -10.725 * fgkmm;
436 const Double_t ksecY0 = -14.853 * fgkmm;
437 const Double_t ksecR0 = -0.8 * fgkmm; // external
3ffa185f 438
30611568 439 const Double_t ksecR1 = +0.6 * fgkmm;
440 const Double_t ksecR2 = +0.6 * fgkmm;
441 const Double_t ksecR3 = -0.6 * fgkmm;
442 const Double_t ksecR4 = +0.8 * fgkmm;
443 const Double_t ksecR5 = +0.8 * fgkmm;
444 const Double_t ksecR6 = +0.6 * fgkmm;
445 const Double_t ksecR7 = -0.6 * fgkmm;
446 const Double_t ksecR8 = +0.6 * fgkmm;
447 const Double_t ksecR9 = -0.6 * fgkmm;
448 const Double_t ksecR10 = +0.6 * fgkmm;
449 const Double_t ksecR11 = -0.6 * fgkmm;
450 const Double_t ksecR12 = +0.85 * fgkmm;
451
452// // IDEAL GEOMETRY
453// const Double_t ksecX1[10] ={-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187};
454// const Double_t ksecY1[10] ={-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964};
455// const Double_t ksecX2[10] ={-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833};
456// const Double_t ksecY2[10] ={-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805};
457// const Double_t ksecX3[10] ={-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123};
458// const Double_t ksecY3[10] ={-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618};
459// const Double_t ksecX4[10] ={+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280};
460// const Double_t ksecY4[10] ={-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473};
461// const Double_t ksecX5[10] ={+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544};
462// const Double_t ksecY5[10] ={+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961};
463// const Double_t ksecX6[10] ={+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830};
464// const Double_t ksecY6[10] ={+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868};
465// const Double_t ksecX7[10] ={+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581};
466// const Double_t ksecY7[10] ={+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317};
467// const Double_t ksecX8[10] ={-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733};
468// const Double_t ksecY8[10] ={+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486};
469// const Double_t ksecX9[10] ={+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562};
470// const Double_t ksecY9[10] ={+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107};
471// const Double_t ksecX10[10]={-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252};
472// const Double_t ksecY10[10]={+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298};
473// const Double_t ksecX11[10]={-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445};
474// const Double_t ksecY11[10]={+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162};
475// const Double_t ksecX12[10]={-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276};
476// const Double_t ksecY12[10]={+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948};
477
478
479// MODIFIED GEOMETRY according with partial alignment of Staves relative to Sectors
480// last numbers: 2010/06/11 (ML)
481
482 const Double_t ksecX1[10]={-1.305917, -1.322242, -1.300649, -1.298700, -1.290830, -1.274307, -1.276433, -1.286468, -1.274381, -1.314864};
483 const Double_t ksecY1[10]={-1.997857, -2.018611, -2.005854, -2.004897, -1.995517, -2.002552, -1.995860, -2.021062, -2.012931, -2.043967};
484 const Double_t ksecX2[10]={-0.366115, -0.385562, -0.372689, -0.365682, -0.348432, -0.348442, -0.342468, -0.354071, -0.346900, -0.381275};
485 const Double_t ksecY2[10]={-1.801679, -1.808306, -1.759315, -1.778851, -1.811655, -1.747888, -1.773811, -1.792427, -1.764514, -1.820324};
486// const Double_t ksecX1[10]={-1.305917, -1.322242, -1.300649, -1.298700, -1.290830, -1.274307, -1.276433, -1.286468, -1.274381, -1.325864};
487// const Double_t ksecY1[10]={-1.997857, -2.018611, -2.005854, -2.004897, -1.995517, -2.002552, -1.995860, -2.021062, -2.012931, -2.032967};
488// const Double_t ksecX2[10]={-0.366115, -0.385562, -0.372689, -0.365682, -0.348432, -0.348442, -0.342468, -0.354071, -0.346900, -0.392275};
489// const Double_t ksecY2[10]={-1.801679, -1.808306, -1.759315, -1.778851, -1.811655, -1.747888, -1.773811, -1.792427, -1.764514, -1.809324};
490 const Double_t ksecX3[10]={-0.314030, -0.315531, -0.347521, -0.337675, -0.300420, -0.378487, -0.330729, -0.330850, -0.362360, -0.321097};
491 const Double_t ksecY3[10]={-1.452488, -1.460418, -1.447060, -1.443146, -1.472410, -1.430019, -1.469073, -1.472048, -1.462010, -1.444355};
492 const Double_t ksecX4[10]={1.124299, 1.124162, 1.089523, 1.095520, 1.136171, 1.058616, 1.105626, 1.106433, 1.077455, 1.117946};
493 const Double_t ksecY4[10]={-1.458714, -1.452649, -1.465297, -1.492717, -1.494665, -1.447732, -1.493369, -1.488126, -1.452925, -1.443447};
494 const Double_t ksecX5[10]={1.951621, 1.939284, 1.931830, 1.935235, 1.952206, 1.939082, 1.924822, 1.940114, 1.918160, 1.960017};
495 const Double_t ksecY5[10]={1.092731, 1.118870, 1.129765, 1.129422, 1.081511, 1.127387, 1.103960, 1.101784, 1.121428, 1.150110};
496 const Double_t ksecX6[10]={1.070070, 1.048297, 1.035920, 1.049049, 1.083621, 1.045882, 1.050399, 1.067823, 1.037967, 1.070850};
497 const Double_t ksecY6[10]={1.667590, 1.678571, 1.681383, 1.696892, 1.676520, 1.683470, 1.689988, 1.691111, 1.698432, 1.712770};
498 const Double_t ksecX7[10]={1.139398, 1.150471, 1.150074, 1.132807, 1.150192, 1.124064, 1.124335, 1.137723, 1.143056, 1.130568};
499 const Double_t ksecY7[10]={1.345588, 1.356062, 1.342468, 1.320467, 1.335807, 1.334477, 1.328622, 1.347184, 1.319861, 1.308420};
500 const Double_t ksecX8[10]={-0.096963, -0.098603, -0.095286, -0.099990, -0.075132, -0.121593, -0.108673, -0.104237, -0.092082, -0.104044};
501 const Double_t ksecY8[10]={1.751207, 1.731467, 1.726908, 1.734219, 1.766159, 1.718203, 1.741891, 1.739743, 1.728288, 1.718046};
502 const Double_t ksecX9[10]={0.047615, 0.087875, 0.034917, 0.071603, 0.026468, 0.091619, 0.051994, 0.059947, 0.079785, 0.043443};
503 const Double_t ksecY9[10]={1.414699, 1.403187, 1.399061, 1.403430, 1.435056, 1.384557, 1.397692, 1.420269, 1.391372, 1.398954};
504 const Double_t ksecX10[10]={-1.233255, -1.186874, -1.246702, -1.213368, -1.259425, -1.190067, -1.225655, -1.224171, -1.197833, -1.237182};
505 const Double_t ksecY10[10]={1.635767, 1.646249, 1.617336, 1.608928, 1.636944, 1.602583, 1.630504, 1.629065, 1.624295, 1.620934};
506 const Double_t ksecX11[10]={-1.018270, -1.031317, -0.960524, -1.001155, -1.045437, -0.986867, -1.002685, -1.017369, -1.005614, -0.985385};
507 const Double_t ksecY11[10]={1.318108, 1.330683, 1.301572, 1.314410, 1.326680, 1.295226, 1.306372, 1.309414, 1.306542, 1.307086};
508 const Double_t ksecX12[10]={-2.199004, -2.214964, -2.139247, -2.180547, -2.224505, -2.165324, -2.175883, -2.193485, -2.183227, -2.161570};
509 const Double_t ksecY12[10]={1.317677, 1.303982, 1.317057, 1.324766, 1.339537, 1.312715, 1.359642, 1.343638, 1.330234, 1.340836};
510
511
54c9a3d9 512 const Double_t ksecR13 = -0.8 * fgkmm; // external
513 const Double_t ksecAngleSide13 = 36.0 * fgkDegree;
514 //
515 const Int_t ksecNRadii = 20;
516 const Int_t ksecNPointsPerRadii = 4;
517 const Int_t ksecNCoolingTubeDips = 6;
518 //
519 // Since the rounded parts are approximated by a regular polygon
520 // and a cooling tube of the propper diameter must fit, a scaling factor
521 // increases the size of the polygon for the tube to fit.
522 //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/
523 // (Double_t)ksecNPointsPerRadii);
524 const Double_t ksecZEndLen = 30.000 * fgkmm;
525 //const Double_t ksecZFlangLen = 45.000 * fgkmm;
526 const Double_t ksecTl = 0.860 * fgkmm;
527 const Double_t ksecCthick2 = 0.600 * fgkmm;
528 //const Double_t ksecCthick3 = 1.80 * fgkmm;
529 //const Double_t ksecSidelen = 22.0 * fgkmm;
530 //const Double_t ksecSideD5 = 3.679 * fgkmm;
531 //const Double_t ksecSideD12 = 7.066 * fgkmm;
532 const Double_t ksecRCoolOut = 2.400 * fgkmm;
533 const Double_t ksecRCoolIn = 2.000 * fgkmm;
534 const Double_t ksecDl1 = 5.900 * fgkmm;
535 const Double_t ksecDl2 = 8.035 * fgkmm;
536 const Double_t ksecDl3 = 4.553 * fgkmm;
537 const Double_t ksecDl4 = 6.978 * fgkmm;
538 const Double_t ksecDl5 = 6.978 * fgkmm;
539 const Double_t ksecDl6 = 6.978 * fgkmm;
540 const Double_t ksecCoolTubeThick = 0.04 * fgkmm;
541 const Double_t ksecCoolTubeROuter = 2.6 * fgkmm;
542 const Double_t ksecCoolTubeFlatX = 3.696 * fgkmm;
543 const Double_t ksecCoolTubeFlatY = 0.68 * fgkmm;
544 //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess
545 //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess
546 //
547 // redefine some of the points already defined above
548 // in the format of arrays (???)
549 const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8;
550 Double_t secX[ksecNRadii] = {
30611568 551 ksecX0, ksecX1[sect], -1000.0,
552 ksecX2[sect], ksecX3[sect], -1000.0,
553 ksecX4[sect], ksecX5[sect], -1000.0,
554 ksecX6[sect], ksecX7[sect], -1000.0,
555 ksecX8[sect], ksecX9[sect], -1000.0,
556 ksecX10[sect], ksecX11[sect], -1000.0,
557 ksecX12[sect], -1000.0
54c9a3d9 558 };
559 Double_t secY[ksecNRadii] = {
30611568 560 ksecY0, ksecY1[sect], -1000.0,
561 ksecY2[sect], ksecY3[sect], -1000.0,
562 ksecY4[sect], ksecY5[sect], -1000.0,
563 ksecY6[sect], ksecY7[sect], -1000.0,
564 ksecY8[sect], ksecY9[sect], -1000.0,
565 ksecY10[sect], ksecY11[sect], -1000.0,
566 ksecY12[sect], -1000.0
54c9a3d9 567 };
d0048cec 568 Double_t secR[ksecNRadii] = {
54c9a3d9 569 ksecR0, ksecR1, -.5 * ksecDipLength - ksecDipRadii,
570 ksecR2, ksecR3, -.5 * ksecDipLength - ksecDipRadii,
571 ksecR4, ksecR5, -.5 * ksecDipLength - ksecDipRadii,
572 ksecR6, ksecR7, -.5 * ksecDipLength - ksecDipRadii,
573 ksecR8, ksecR9, -.5 * ksecDipLength - ksecDipRadii,
574 ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii,
575 ksecR12, ksecR13
576 };
c890eba4 577
54c9a3d9 578 Double_t secX2[ksecNRadii];
579 Double_t secY2[ksecNRadii];
580 Double_t secR2[ksecNRadii] = {
581 ksecR0, ksecR1, ksecRCoolOut,
582 ksecR2, ksecR3, ksecRCoolOut,
583 ksecR4, ksecR5, ksecRCoolOut,
584 ksecR6, ksecR7, ksecRCoolOut,
585 ksecR8, ksecR9, ksecRCoolOut,
586 ksecR10, ksecR11, ksecRCoolOut,
587 ksecR12, ksecR13
588 };
d0048cec 589 Double_t secDip2[ksecNCoolingTubeDips] = {
590 ksecDl1, ksecDl2, ksecDl3,
591 ksecDl4, ksecDl5, ksecDl6
54c9a3d9 592 };
593 Double_t secX3[ksecNRadii];
594 Double_t secY3[ksecNRadii];
595 const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17};
596 Double_t secAngleStart[ksecNRadii];
597 Double_t secAngleEnd[ksecNRadii];
3b81eea3 598 for(Int_t i = 0; i < ksecNRadii; i++)secAngleEnd[i] = 0.;
54c9a3d9 599 Double_t secAngleStart2[ksecNRadii];
600 Double_t secAngleEnd2[ksecNRadii];
601 Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0};
602 //Double_t secAngleStart3[ksecNRadii];
603 //Double_t secAngleEnd3[ksecNRadii];
604 Double_t xpp[ksecNPoints], ypp[ksecNPoints];
605 Double_t xpp2[ksecNPoints], ypp2[ksecNPoints];
606 Double_t *xp[ksecNRadii], *xp2[ksecNRadii];
607 Double_t *yp[ksecNRadii], *yp2[ksecNRadii];
608 TGeoXtru *sA0, *sA1, *sB0, *sB1,*sB2;
609 TGeoBBox *sB3;
610 TGeoEltu *sTA0, *sTA1;
611 TGeoTube *sTB0, *sTB1; //,*sM0;
612 TGeoRotation *rot;
613 TGeoTranslation *trans;
614 TGeoCombiTrans *rotrans;
615 Double_t t, t0, t1, a, b, x0, y0,z0, x1, y1;
616 Int_t i, j, k, m;
617 Bool_t tst;
618
619 if(!moth) {
620 AliError("Container volume (argument) is NULL");
621 return;
622 } // end if(!moth)
623 for(i = 0; i < ksecNRadii; i++) {
624 xp[i] = &(xpp[i*(ksecNPointsPerRadii+1)]);
625 yp[i] = &(ypp[i*(ksecNPointsPerRadii+1)]);
626 xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]);
627 yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]);
628 secX2[i] = secX[i];
629 secY2[i] = secY[i];
630 secX3[i] = secX[i];
631 secY3[i] = secY[i];
632 } // end for i
633 //
634 // find starting and ending angles for all but cooling tube sections
635 secAngleStart[0] = 0.5 * ksecAngleSide13;
636 for(i = 0; i < ksecNRadii - 2; i++) {
637 tst = kFALSE;
638 for(j=0;j<ksecNCoolingTubeDips;j++) tst = (tst||i==ksecDipIndex[j]);
639 if (tst) continue;
640 tst = kFALSE;
641 for(j=0;j<ksecNCoolingTubeDips;j++) tst =(tst||(i+1)==ksecDipIndex[j]);
642 if (tst) j = i+2; else j = i+1;
643 AnglesForRoundedCorners(secX[i],secY[i],secR[i],secX[j],secY[j],
644 secR[j],t0,t1);
645 secAngleEnd[i] = t0;
646 secAngleStart[j] = t1;
647 if(secR[i] > 0.0 && secR[j] > 0.0) {
648 if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0;
649 } // end if(secR[i]>0.0 && secR[j]>0.0)
650 secAngleStart2[i] = secAngleStart[i];
651 secAngleEnd2[i] = secAngleEnd[i];
652 } // end for i
653 secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] +
654 (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]);
655 if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0;
656 secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0;
657 secAngleEnd[ksecNRadii-1] = secAngleStart[0];
658 secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2];
659 secAngleEnd2[ksecNRadii-2] = secAngleEnd[ksecNRadii-2];
660 secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1];
661 secAngleEnd2[ksecNRadii-1] = secAngleEnd[ksecNRadii-1];
662 //
663 // find location of circle last rounded corner.
664 i = 0;
665 j = ksecNRadii - 2;
666 t0 = TanD(secAngleStart[i]-90.);
667 t1 = TanD(secAngleEnd[j]-90.);
668 t = secY[i] - secY[j];
669 // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0
670 t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]);
671 t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]);
672 t += t1 * secX[j] - t0*secX[i];
673 t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]);
674 t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]);
675 secX[ksecNRadii-1] = t / (t1-t0);
676 secY[ksecNRadii-1] = TanD(90.0+0.5*ksecAngleSide13)*
677 (secX[ksecNRadii-1]-secX[0])+secY[0];
678 secX2[ksecNRadii-1] = secX[ksecNRadii-1];
679 secY2[ksecNRadii-1] = secY[ksecNRadii-1];
680 secX3[ksecNRadii-1] = secX[ksecNRadii-1];
681 secY3[ksecNRadii-1] = secY[ksecNRadii-1];
d0048cec 682
54c9a3d9 683 // find location of cooling tube centers
684 for(i = 0; i < ksecNCoolingTubeDips; i++) {
685 j = ksecDipIndex[i];
686 x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]);
687 y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]);
688 x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]);
689 y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]);
690 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
691 t = secDip2[i] / t0;
692 a = x0+(x1-x0) * t;
693 b = y0+(y1-y0) * t;
d0048cec 694 if(i == 0) {
54c9a3d9 695 // get location of tube center->Surface for locating
696 // this sector around the beam pipe.
697 // This needs to be double checked, but I need my notes for that.
698 // (Bjorn Nilsen)
699 xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5;
700 yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5;
701 }// end if i==0
702 if(a + b*(a - x0) / (b - y0) > 0.0) {
703 secX[j] = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0;
704 secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0;
705 secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0;
706 secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0;
d0048cec 707 secX3[j] = a + TMath::Abs(y1-y0) *
54c9a3d9 708 (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0;
709 secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
710 y1-y0)*(x1-x0)/t0;
711 } else {
712 secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0;
713 secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0;
714 secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0;
715 secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0;
716 secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5*
717 ksecCoolTubeFlatY)/t0;
718 secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
719 y1-y0)*(x1-x0)/t0;
720 } // end if(a+b*(a-x0)/(b-y0)>0.0)
d0048cec 721
54c9a3d9 722 // Set up Start and End angles to correspond to start/end of dips.
723 t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0;
724 secAngleStart[j] =TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
725 x0+(x1-x0)*t1-secX[j]);
726 if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0;
727 secAngleStart2[j] = secAngleStart[j];
728 t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0;
729 secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
730 x0+(x1-x0)*t1-secX[j]);
731 if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0;
732 secAngleEnd2[j] = secAngleEnd[j];
733 if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0;
734 secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii);
735 } // end for i
d0048cec 736
54c9a3d9 737 // Special cases
738 secAngleStart2[8] -= 360.;
739 secAngleStart2[11] -= 360.;
740
741 SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd,
742 ksecNPointsPerRadii, m, xp, yp);
743
744 // Fix up dips to be square.
745 for(i = 0; i < ksecNCoolingTubeDips; i++) {
746 j = ksecDipIndex[i];
747 t = 0.5*ksecDipLength+ksecDipRadii;
748 t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t);
749 t1 = secAngleEnd[j] + t0;
750 t0 = secAngleStart[j] - t0;
751 x0 = xp[j][1] = secX[j] + t*CosD(t0);
752 y0 = yp[j][1] = secY[j] + t*SinD(t0);
753 x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1);
754 y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1);
755 t0 = 1./((Double_t)(ksecNPointsPerRadii-2));
756 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
757 // extra points spread them out.
758 t = ((Double_t)(k-1)) * t0;
759 xp[j][k] = x0+(x1-x0) * t;
760 yp[j][k] = y0+(y1-y0) * t;
761 } // end for k
762 secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0);
d0048cec 763 if(GetDebug(3)) {
54c9a3d9 764 AliInfo(
765 Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)",
766 i, secAngleTurbo[i], x0, y0, x1, y1));
767 } // end if GetDebug(3)
768 } // end for i
769 sA0 = new TGeoXtru(2);
770 sA0->SetName("ITS SPD Carbon fiber support Sector A0");
771 sA0->DefinePolygon(m, xpp, ypp);
772 sA0->DefineSection(0, -ksecDz);
773 sA0->DefineSection(1, ksecDz);
d0048cec 774
54c9a3d9 775 // store the edges of each XY segment which defines
776 // one of the plane zones where staves will have to be placed
777 fSPDsectorX0.Set(ksecNCoolingTubeDips);
778 fSPDsectorY0.Set(ksecNCoolingTubeDips);
779 fSPDsectorX1.Set(ksecNCoolingTubeDips);
780 fSPDsectorY1.Set(ksecNCoolingTubeDips);
781 Int_t ixy0, ixy1;
782 for(i = 0; i < ksecNCoolingTubeDips; i++) {
783 // Find index in xpp[] and ypp[] corresponding to where the
784 // SPD ladders are to be attached. Order them according to
785 // the ALICE numbering schema. Using array of indexes (+-1 for
d0048cec 786 // cooling tubes. For any "bend/dip/edge, there are
54c9a3d9 787 // ksecNPointsPerRadii+1 points involved.
788 if(i == 0) j = 1;
789 else if (i == 1) j = 0;
790 else j = i;
791 ixy0 = (ksecDipIndex[j]-1)*(ksecNPointsPerRadii+1)+
792 (ksecNPointsPerRadii);
793 ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1);
794 fSPDsectorX0[i] = sA0->GetX(ixy0);
795 fSPDsectorY0[i] = sA0->GetY(ixy0);
796 fSPDsectorX1[i] = sA0->GetX(ixy1);
797 fSPDsectorY1[i] = sA0->GetY(ixy1);
798 } // end for i
d0048cec 799
54c9a3d9 800 //printf("SectorA#%d ",0);
801 InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],ksecCthick,
802 xpp2[0],ypp2[0]);
803 for(i = 1; i < m - 1; i++) {
804 j = i / (ksecNPointsPerRadii+1);
805 //printf("SectorA#%d ",i);
806 InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],
807 ksecCthick,xpp2[i],ypp2[i]);
808 } // end for i
809 //printf("SectorA#%d ",m);
810 InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
811 ksecCthick,xpp2[m-1],ypp2[m-1]);
812 // Fix center value of cooling tube dip and
813 // find location of cooling tube centers
814 for(i = 0; i < ksecNCoolingTubeDips; i++) {
815 j = ksecDipIndex[i];
816 x0 = xp2[j][1];
817 y0 = yp2[j][1];
818 x1 = xp2[j][ksecNPointsPerRadii-1];
819 y1 = yp2[j][ksecNPointsPerRadii-1];
820 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
821 t = secDip2[i]/t0;
822 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
823 // extra points spread them out.
824 t = ((Double_t)(k-1)) * t0;
825 xp2[j][k] = x0+(x1-x0) * t;
826 yp2[j][k] = y0+(y1-y0) * t;
827 } // end for k
828 } // end for i
829 sA1 = new TGeoXtru(2);
830 sA1->SetName("ITS SPD Carbon fiber support Sector Air A1");
831 sA1->DefinePolygon(m, xpp2, ypp2);
832 sA1->DefineSection(0, -ksecDz);
833 sA1->DefineSection(1, ksecDz);
834 //
835 // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?).
836 sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY,
837 0.5 * ksecCoolTubeFlatX, ksecDz);
d0048cec 838 sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1",
54c9a3d9 839 sTA0->GetA() - ksecCoolTubeThick,
840 sTA0->GetB()-ksecCoolTubeThick,ksecDz);
841 SPDsectorShape(ksecNRadii,secX2,secY2,secR2,secAngleStart2,secAngleEnd2,
842 ksecNPointsPerRadii, m, xp, yp);
843 sB0 = new TGeoXtru(2);
844 sB0->SetName("ITS SPD Carbon fiber support Sector End B0");
845 sB0->DefinePolygon(m, xpp, ypp);
846 sB0->DefineSection(0, ksecDz);
847 sB0->DefineSection(1, ksecDz + ksecZEndLen);
848
849 //printf("SectorB#%d ",0);
53506676 850 // Points around the most sharpened tips have to be avoided - M.S. 24 feb 09
851 const Int_t nSpecialPoints = 5;
852 const Int_t kSpecialPoints[nSpecialPoints] = {7, 17, 47, 62, 77};
853 Int_t i2 = 0;
54c9a3d9 854 InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],
53506676 855 ksecCthick2,xpp2[i2],ypp2[i2]);
54c9a3d9 856 for(i = 1; i < m - 1; i++) {
857 t = ksecCthick2;
858 for(k = 0; k < ksecNCoolingTubeDips; k++)
859 if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k])
860 if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i ||
861 ksecDipIndex[k]*(ksecNPointsPerRadii+1) +
862 ksecNPointsPerRadii == i))
863 t = ksecRCoolOut-ksecRCoolIn;
864 //printf("SectorB#%d ",i);
53506676 865 Bool_t useThisPoint = kTRUE;
866 for(Int_t ii = 0; ii < nSpecialPoints; ii++)
867 if ( (i == kSpecialPoints[ii] - 1) ||
868 (i == kSpecialPoints[ii] + 1) ) useThisPoint = kFALSE;
869 if (useThisPoint) {
870 i2++;
871 InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],t,
872 xpp2[i2],ypp2[i2]);
873 }
54c9a3d9 874 }// end for i
875 //printf("SectorB#%d ",m);
53506676 876 i2++;
54c9a3d9 877 InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
53506676 878 ksecCthick2,xpp2[i2],ypp2[i2]);
54c9a3d9 879 sB1 = new TGeoXtru(2);
880 sB1->SetName("ITS SPD Carbon fiber support Sector Air End B1");
53506676 881 sB1->DefinePolygon(i2+1, xpp2, ypp2);
54c9a3d9 882 sB1->DefineSection(0,sB0->GetZ(0));
883 sB1->DefineSection(1,sB0->GetZ(1)-ksecCthick2);
884 const Double_t kspdEndHoleRadius1=5.698*fgkmm;
885 const Double_t kspdEndHoleRadius2=2.336*fgkmm;
886 const Double_t kspdEndHoleDisplacement=6.29*fgkmm;
887 k = (m-1)/4;
888 for(i=0;i<=k;i++){
889 t= ((Double_t)i)/((Double_t)(k));
890 if(!CFHolePoints(t,kspdEndHoleRadius1,kspdEndHoleRadius2,
891 kspdEndHoleDisplacement,xpp2[i],ypp2[i])){
892 Warning("CarbonFiberSector","CFHolePoints failed "
893 "i=%d m=%d k=%d t=%e",i,m,k,t);
894 } // end if
895 // simitry in each quadrant.
896 xpp2[2*k-i] = -xpp2[i];
897 ypp2[2*k-i] = ypp2[i];
898 xpp2[2*k+i] = -xpp2[i];
899 ypp2[2*k+i] = -ypp2[i];
900 xpp2[4*k-i] = xpp2[i];
901 ypp2[4*k-i] = -ypp2[i];
902 }// end for i
903 //xpp2[m-1] = xpp2[0]; // begining point in
904 //ypp2[m-1] = ypp2[0]; // comment with end point
905 sB2 = new TGeoXtru(2);
906 sB2->SetName("ITS SPD Hole in Carbon fiber support End plate");
907 sB2->DefinePolygon(4*k, xpp2, ypp2);
908 sB2->DefineSection(0,sB1->GetZ(1));
909 sB2->DefineSection(1,sB0->GetZ(1));
910 // SPD sector mount blocks
911 const Double_t kMountBlock[3] = {0.5*(1.8-0.2)*fgkmm,0.5*22.0*fgkmm,
912 0.5*45.0*fgkmm};
913 sB3 = new TGeoBBox((Double_t*)kMountBlock);
914 // SPD sector cooling tubes
915 sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0,
7708d5f3 916 0.5*ksecCoolTubeROuter,0.5*(sB1->GetZ(1)-sB1->GetZ(0)));
54c9a3d9 917 sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0,
918 sTB0->GetRmax() - ksecCoolTubeThick,sTB0->GetDz());
919 //
920 if(GetDebug(3)) {
921 if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0");
922 if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0");
923 if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0");
924 if(medSPDcoolfl) medSPDcoolfl->Dump();else AliInfo("medSPDcoolfl = 0");
925 sA0->InspectShape();
926 sA1->InspectShape();
927 sB0->InspectShape();
928 sB1->InspectShape();
929 sB2->InspectShape();
930 } // end if(GetDebug(3))
d0048cec 931
54c9a3d9 932 // create the assembly of the support and place staves on it
933 TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly(
934 "ITSSPDSensitiveVirtualvolumeM0");
935 StavesInSector(vM0);
936 // create other volumes with some graphical settings
937 TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0",
938 sA0, medSPDcf);
939 vA0->SetVisibility(kTRUE);
940 vA0->SetLineColor(4); // Blue
941 vA0->SetLineWidth(1);
942 vA0->SetFillColor(vA0->GetLineColor());
943 vA0->SetFillStyle(4010); // 10% transparent
944 TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1",
945 sA1, medSPDair);
946 vA1->SetVisibility(kTRUE);
947 vA1->SetLineColor(7); // light Blue
948 vA1->SetLineWidth(1);
949 vA1->SetFillColor(vA1->GetLineColor());
950 vA1->SetFillStyle(4090); // 90% transparent
951 TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss);
952 vTA0->SetVisibility(kTRUE);
953 vTA0->SetLineColor(15); // gray
954 vTA0->SetLineWidth(1);
955 vTA0->SetFillColor(vTA0->GetLineColor());
956 vTA0->SetFillStyle(4000); // 0% transparent
957 TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1",
958 sTA1, medSPDcoolfl);
959 vTA1->SetVisibility(kTRUE);
960 vTA1->SetLineColor(6); // Purple
961 vTA1->SetLineWidth(1);
962 vTA1->SetFillColor(vTA1->GetLineColor());
963 vTA1->SetFillStyle(4000); // 0% transparent
964 TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0",
965 sB0, medSPDcf);
966 vB0->SetVisibility(kTRUE);
967 vB0->SetLineColor(1); // Black
968 vB0->SetLineWidth(1);
969 vB0->SetFillColor(vB0->GetLineColor());
970 vB0->SetFillStyle(4000); // 0% transparent
971 TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1",
972 sB1, medSPDair);
973 vB1->SetVisibility(kTRUE);
974 vB1->SetLineColor(0); // white
975 vB1->SetLineWidth(1);
976 vB1->SetFillColor(vB1->GetLineColor());
977 vB1->SetFillStyle(4100); // 100% transparent
978 TGeoVolume *vB2 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB2",
979 sB2, medSPDair);
980 vB2->SetVisibility(kTRUE);
981 vB2->SetLineColor(0); // white
982 vB2->SetLineWidth(1);
983 vB2->SetFillColor(vB2->GetLineColor());
984 vB2->SetFillStyle(4100); // 100% transparent
985 TGeoVolume *vB3 = new TGeoVolume(
986 "ITSSPDCarbonFiberSupportSectorMountBlockB3",sB3, medSPDcf);
987 vB3->SetVisibility(kTRUE);
988 vB3->SetLineColor(1); // Black
989 vB3->SetLineWidth(1);
990 vB3->SetFillColor(vB3->GetLineColor());
991 vB3->SetFillStyle(4000); // 0% transparent
992 TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss);
993 vTB0->SetVisibility(kTRUE);
994 vTB0->SetLineColor(15); // gray
995 vTB0->SetLineWidth(1);
996 vTB0->SetFillColor(vTB0->GetLineColor());
997 vTB0->SetFillStyle(4000); // 0% transparent
998 TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1,
999 medSPDcoolfl);
1000 vTB1->SetVisibility(kTRUE);
1001 vTB1->SetLineColor(7); // light blue
1002 vTB1->SetLineWidth(1);
1003 vTB1->SetFillColor(vTB1->GetLineColor());
1004 vTB1->SetFillStyle(4050); // 0% transparent
d0048cec 1005
54c9a3d9 1006 // add volumes to mother container passed as argument of this method
1007 moth->AddNode(vM0,1,0); // Add virtual volume to mother
1008 vA0->AddNode(vA1,1,0); // Put air inside carbon fiber.
1009 vB0->AddNode(vB1,1,0); // Put air inside carbon fiber ends.
1010 vB0->AddNode(vB2,1,0); // Put air wholes inside carbon fiber ends
1011 vTA0->AddNode(vTA1,1,0); // Put cooling liquid indide tube middel.
1012 vTB0->AddNode(vTB1,1,0); // Put cooling liquid inside tube end.
1013 Double_t tubeEndLocal[3]={0.0,0.0,sTA0->GetDz()};
1014 for(i = 0; i < ksecNCoolingTubeDips; i++) {
1015 x0 = secX3[ksecDipIndex[i]];
1016 y0 = secY3[ksecDipIndex[i]];
1017 t = 90.0 - secAngleTurbo[i];
1018 trans = new TGeoTranslation("",x0,y0,0.5*(sB1->GetZ(0)+sB1->GetZ(1)));
1019 vB1->AddNode(vTB0, i+1, trans);
1020 // Find location of tube ends for later use.
1021 trans->LocalToMaster(tubeEndLocal,fTubeEndSector[0][0][i]);
1022 rot = new TGeoRotation("", 0.0, 0.0, t);
1023 rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot);
1024 vM0->AddNode(vTA0, i+1, rotrans);
1025 } // end for i
1026 vM0->AddNode(vA0, 1, 0);
1027 vM0->AddNode(vB0, 1, 0);
1028 // Reflection.
1029 rot = new TGeoRotation("", 90., 0., 90., 90., 180., 0.);
1030 vM0->AddNode(vB0,2,rot);
1031 // Find location of tube ends for later use.
1032 for(i=0;i<ksecNCoolingTubeDips;i++) rot->LocalToMaster(
1033 fTubeEndSector[0][0][i],fTubeEndSector[0][1][i]);
1034 // left side
1035 t = -TMath::RadToDeg()*TMath::ATan2(
1036 sB0->GetX(0)-sB0->GetX(sB0->GetNvert()-1),
1037 sB0->GetY(0)-sB0->GetY(sB0->GetNvert()-1));
1038 rot = new TGeoRotation("",t,0.0,0.0);// z axis rotation
1039 x0 = 0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))+
1040 sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
1041 y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))+
1042 sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
1043 z0 = sB0->GetZ(0)+sB3->GetDZ();
1044 rotrans = new TGeoCombiTrans("",x0,y0,z0,rot);
1045 vM0->AddNode(vB3,1,rotrans); // Put Mounting bracket on sector
1046 rotrans = new TGeoCombiTrans("",x0,y0,-z0,rot);
1047 vM0->AddNode(vB3,2,rotrans); // Put Mounting bracket on sector
54c9a3d9 1048 t *= -1.0;
1049 rot = new TGeoRotation("",t,0.0,0.0); // z axis rotation
c890eba4 1050
54c9a3d9 1051 x0 = -0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))-3.5*
1052 sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
1053 y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))-3.5*
1054 sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
22726349 1055 rotrans = new TGeoCombiTrans("",1.01*x0,y0,z0,rot);
54c9a3d9 1056 vM0->AddNode(vB3,3,rotrans); // Put Mounting bracket on sector
22726349 1057 rotrans = new TGeoCombiTrans("",1.01*x0,y0,-z0,rot);
54c9a3d9 1058 vM0->AddNode(vB3,4,rotrans); // Put Mounting bracket on sector
1059 if(GetDebug(3)){
1060 vM0->PrintNodes();
1061 vA0->PrintNodes();
1062 vA1->PrintNodes();
1063 vB0->PrintNodes();
1064 vB1->PrintNodes();
1065 vB2->PrintNodes();
1066 vB3->PrintNodes();
1067 vTA0->PrintNodes();
1068 vTA1->PrintNodes();
1069 vTB0->PrintNodes();
1070 vTB1->PrintNodes();
1071 } // end if(GetDebug(3))
bc3498f4 1072}
54c9a3d9 1073//______________________________________________________________________
1074Bool_t AliITSv11GeometrySPD::CFHolePoints(Double_t s,Double_t r1,
1075 Double_t r2,Double_t l,Double_t &x,Double_t &y) const
bc3498f4 1076{
54c9a3d9 1077 //
1078 // Step along arck a distancs ds and compute boundry of
1079 // two holes (radius r1 and r2) a distance l apart (along
1080 // x-axis).
1081 // Inputs:
1082 // Double_t s fractional Distance along arcs [0-1]
1083 // where 0-> alpha=beta=0, 1-> alpha=90 degrees.
1084 // Double_t r1 radius at center circle
1085 // Double_t r2 radius of displaced circle
1086 // Double_t l Distance displaced circle is displaces (x-axis)
1087 // Output:
1088 // Double_t x x coordinate along double circle.
1089 // Double_t y y coordinate along double circle.
1090 // Return:
1091 // logical, kFALSE if an error
1092 //
1093 Double_t alpha,beta;
1094 Double_t ac,bc,scb,sca,t,alphac,betac; // at intersection of two circles
1095
1096 x=y=0.0;
1097 ac = r1*r1-l*l-r2*r2;
1098 bc = 2.*l*r2;
1099 if(bc==0.0) {printf("bc=0 l=%e r2=%e\n",l,r2);return kFALSE;}
1100 betac = TMath::ACos(ac/bc);
60e55aee 1101 alphac = TMath::Sqrt((bc-ac)*(bc+ac))/(2.*l*r1);
54c9a3d9 1102 scb = r2*betac;
1103 sca = r1*alphac;
1104 t = r1*0.5*TMath::Pi() - sca + scb;
1105 if(s<= scb/t){
1106 beta = s*t/r2;
1107 x = r2*TMath::Cos(beta) + l;
1108 y = r2*TMath::Sin(beta);
1109 //printf("betac=%e scb=%e t=%e s=%e beta=%e x=%e y=%e\n",
1110 // betac,scb,t,s,beta,x,y);
1111 return kTRUE;
1112 }else{
1113 beta = (s*t-scb+sca)/(r1*0.5*TMath::Pi());
1114 alpha = beta*0.5*TMath::Pi();
1115 x = r1*TMath::Cos(alpha);
1116 y = r1*TMath::Sin(alpha);
1117 //printf("alphac=%e sca=%e t=%e s=%e beta=%e alpha=%e x=%e y=%e\n",
1118 // alphac,sca,t,s,beta,alpha,x,y);
1119 return kTRUE;
1120 } // end if
1121 return kFALSE;
bc3498f4 1122}
54c9a3d9 1123//______________________________________________________________________
1124Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints(Int_t index,Double_t &x0,
1125 Double_t &y0, Double_t &x1, Double_t &y1) const
bc3498f4 1126{
54c9a3d9 1127 //
1128 // Returns the edges of the straight borders in the SPD sector shape,
1129 // which are used to mount staves on them.
1130 // Coordinate system is that of the carbon fiber sector volume.
1131 // ---
1132 // Index numbering is as follows:
1133 // /5
1134 // /\/4
1135 // 1\ \/3
1136 // 0|___\/2
1137 // ---
1138 // Arguments [the ones passed by reference contain output values]:
1139 // Int_t index --> location index according to above scheme [0-5]
1140 // Double_t &x0 --> (by ref) x0 location or the ladder sector [cm]
1141 // Double_t &y0 --> (by ref) y0 location of the ladder sector [cm]
1142 // Double_t &x1 --> (by ref) x1 location or the ladder sector [cm]
1143 // Double_t &y1 --> (by ref) y1 location of the ladder sector [cm]
1144 // TGeoManager *mgr --> The TGeo builder
1145 // ---
1146 // The location is described by a line going from (x0, y0) to (x1, y1)
1147 // ---
1148 // Returns kTRUE if no problems encountered.
1149 // Returns kFALSE if a problem was encountered (e.g.: shape not found).
d0048cec 1150 //
54c9a3d9 1151 Int_t isize = fSPDsectorX0.GetSize();
1152
1153 x0 = x1 = y0 = y1 = 0.0;
1154 if(index < 0 || index > isize) {
c890eba4 1155 AliError(Form("index = %d: allowed 0 --> %d", index, isize));
1156 return kFALSE;
54c9a3d9 1157 } // end if(index<0||index>isize)
1158 x0 = fSPDsectorX0[index];
1159 x1 = fSPDsectorX1[index];
1160 y0 = fSPDsectorY0[index];
1161 y1 = fSPDsectorY1[index];
1162 return kTRUE;
bc3498f4 1163}
54c9a3d9 1164//______________________________________________________________________
d0048cec 1165void AliITSv11GeometrySPD::SPDsectorShape(Int_t n,const Double_t *xc,
54c9a3d9 1166 const Double_t *yc, const Double_t *r,
d0048cec 1167 const Double_t *ths, const Double_t *the,
54c9a3d9 1168 Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const
bc3498f4 1169{
54c9a3d9 1170 //
1171 // Code to compute the points that make up the shape of the SPD
1172 // Carbon fiber support sections
1173 // Inputs:
1174 // Int_t n size of arrays xc,yc, and r.
1175 // Double_t *xc array of x values for radii centers.
1176 // Double_t *yc array of y values for radii centers.
1177 // Double_t *r array of signed radii values.
1178 // Double_t *ths array of starting angles [degrees].
1179 // Double_t *the array of ending angles [degrees].
1180 // Int_t npr the number of lines segments to aproximate the arc.
1181 // Outputs (arguments passed by reference):
d0048cec 1182 // Int_t m the number of enetries in the arrays *xp[npr+1]
54c9a3d9 1183 // and *yp[npr+1].
1184 // Double_t **xp array of x coordinate values of the line segments
1185 // which make up the SPD support sector shape.
1186 // Double_t **yp array of y coordinate values of the line segments
1187 // which make up the SPD support sector shape.
1188 //
1189 Int_t i, k;
1190 Double_t t, t0, t1;
1191
1192 m = n*(npr + 1);
1193 if(GetDebug(2)) {
1194 cout <<" X \t Y \t R \t S \t E" << m << endl;
1195 for(i = 0; i < n; i++) {
1196 cout << "{" << xc[i] << ", ";
1197 cout << yc[i] << ", ";
1198 cout << r[i] << ", ";
1199 cout << ths[i] << ", ";
1200 cout << the[i] << "}, " << endl;
1201 } // end for i
1202 } // end if(GetDebug(2))
1203 if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"][";
1204 if (GetDebug(4)) cout << "3] {";
1205 else if(GetDebug(3)) cout <<"2] {";
1206 t0 = (Double_t)npr;
1207 for(i = 0; i < n; i++) {
1208 t1 = (the[i] - ths[i]) / t0;
1209 if(GetDebug(5)) cout << "t1 = " << t1 << endl;
1210 for(k = 0; k <= npr; k++) {
1211 t = ths[i] + ((Double_t)k) * t1;
1212 xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i];
1213 yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i];
1214 if(GetDebug(3)) {
1215 cout << "{" << xp[i][k] << "," << yp[i][k];
1216 if (GetDebug(4)) cout << "," << t;
1217 cout << "},";
1218 } // end if GetDebug
1219 } // end for k
1220 if(GetDebug(3)) cout << endl;
1221 } // end of i
1222 if(GetDebug(3)) cout << "{" << xp[0][0] << ", " << yp[0][0];
1223 if(GetDebug(4)) cout << "," << ths[0];
1224 if(GetDebug(3)) cout << "}}" << endl;
592651e2 1225}
22726349 1226
54c9a3d9 1227//______________________________________________________________________
1228TGeoVolume* AliITSv11GeometrySPD::CreateLadder(Int_t layer,TArrayD &sizes,
1229 TGeoManager *mgr) const
bc3498f4 1230{
54c9a3d9 1231 //
1232 // Creates the "ladder" = silicon sensor + 5 chips.
1233 // Returns a TGeoVolume containing the following components:
1234 // - the sensor (TGeoBBox), whose name depends on the layer
1235 // - 5 identical chips (TGeoBBox)
1236 // - a guard ring around the sensor (subtraction of TGeoBBoxes),
1237 // which is separated from the rest of sensor because it is not
1238 // a sensitive part
1239 // - bump bondings (TGeoBBox stripes for the whole width of the
1240 // sensor, one per column).
1241 // ---
1242 // Arguments:
1243 // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised)
1244 // 2 - a TArrayD passed by reference, which will contain relevant
1245 // dimensions related to this object:
1246 // size[0] = 'thickness' (the smallest dimension)
1247 // size[1] = 'length' (the direction along the ALICE Z axis)
d0048cec 1248 // size[2] = 'width' (extension in the direction perp. to the
54c9a3d9 1249 // above ones)
1250 // 3 - the used TGeoManager
1251
d0048cec 1252 // ** CRITICAL CHECK **
54c9a3d9 1253 // layer number can be ONLY 1 or 2
1254 if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
1255
1256 // ** MEDIA **
1257 TGeoMedium *medAir = GetMedium("AIR$",mgr);
1258 TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP
1259 TGeoMedium *medSi = GetMedium("SI$",mgr);
1260 TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond
d0048cec 1261
1262 // ** SIZES **
54c9a3d9 1263 Double_t chipThickness = fgkmm * 0.150;
1264 Double_t chipWidth = fgkmm * 15.950;
1265 Double_t chipLength = fgkmm * 13.600;
1266 Double_t chipSpacing = fgkmm * 0.400; // separation of chips along Z
1267 Double_t sensThickness = fgkmm * 0.200;
1268 Double_t sensLength = fgkmm * 69.600;
1269 Double_t sensWidth = fgkmm * 12.800;
d0048cec 1270 Double_t guardRingWidth = fgkmm * 0.560; // a border of this thickness
54c9a3d9 1271 // all around the sensor
1272 Double_t bbLength = fgkmm * 0.042;
1273 Double_t bbWidth = sensWidth;
1274 Double_t bbThickness = fgkmm * 0.012;
1275 Double_t bbPos = 0.080; // Z position w.r. to left pixel edge
1276 // compute the size of the container volume which
1277 // will also be returned in the referenced TArrayD;
1278 // for readability, they are linked by reference to a more meaningful name
1279 sizes.Set(3);
1280 Double_t &thickness = sizes[0];
1281 Double_t &length = sizes[1];
1282 Double_t &width = sizes[2];
1283 // the container is a box which exactly enclose all the stuff;
1284 width = chipWidth;
1285 length = sensLength + 2.0*guardRingWidth;
1286 thickness = sensThickness + chipThickness + bbThickness;
1287
1288 // ** VOLUMES **
1289 // While creating this volume, since it is a sensitive volume,
1290 // we must respect some standard criteria for its local reference frame.
1291 // Local X must correspond to x coordinate of the sensitive volume:
d0048cec 1292 // this means that we are going to create the container with a local
54c9a3d9 1293 // reference system that is **not** in the middle of the box.
d0048cec 1294 // This is accomplished by calling the shape constructor with an
54c9a3d9 1295 // additional option ('originShift'):
1296 Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
1297 Double_t originShift[3] = {-xSens, 0., 0.};
1298 TGeoBBox *shapeContainer = new TGeoBBox(0.5*width,0.5*thickness,
1299 0.5*length,originShift);
1300 // then the volume is made of air, and using this shape
1301 TGeoVolume *container = new TGeoVolume(Form("ITSSPDlay%d-Ladder",layer),
1302 shapeContainer, medAir);
1303 // the chip is a common box
1304 TGeoVolume *volChip = mgr->MakeBox("ITSSPDchip",medSPDSiChip,
1305 0.5*chipWidth,0.5*chipThickness,0.5*chipLength);
1306 // the sensor as well
1307 TGeoVolume *volSens = mgr->MakeBox(GetSenstiveVolumeName(layer),medSi,
1308 0.5*sensWidth,0.5*sensThickness,0.5*sensLength);
d0048cec 1309 // the guard ring shape is the subtraction of two boxes with the
54c9a3d9 1310 // same center.
1311 TGeoBBox *shIn = new TGeoBBox(0.5*sensWidth,sensThickness,0.5*sensLength);
1312 TGeoBBox *shOut = new TGeoBBox(0.5*sensWidth+guardRingWidth,
1313 0.5*sensThickness,0.5*sensLength+guardRingWidth);
1314 shIn->SetName("ITSSPDinnerBox");
1315 shOut->SetName("ITSSPDouterBox");
1316 TGeoCompositeShape *shBorder = new TGeoCompositeShape(
1317 "ITSSPDgaurdRingBorder",Form("%s-%s",shOut->GetName(),shIn->GetName()));
1318 TGeoVolume *volBorder = new TGeoVolume("ITSSPDgaurdRing",shBorder,medSi);
1319 // bump bonds for one whole column
1320 TGeoVolume *volBB = mgr->MakeBox("ITSSPDbb",medBumpBond,0.5*bbWidth,
1321 0.5*bbThickness,0.5*bbLength);
1322 // set colors of all objects for visualization
1323 volSens->SetLineColor(kYellow + 1);
1324 volChip->SetLineColor(kGreen);
1325 volBorder->SetLineColor(kYellow + 3);
1326 volBB->SetLineColor(kGray);
1327
1328 // ** MOVEMENTS **
1329 // sensor is translated along thickness (X) and width (Y)
1330 Double_t ySens = 0.5 * (thickness - sensThickness);
1331 Double_t zSens = 0.0;
d0048cec 1332 // we want that the x of the ladder is the same as the one of
54c9a3d9 1333 // its sensitive volume
1334 TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens);
1335 // bump bonds are translated along all axes:
1336 // keep same Y used for sensors, but change the Z
1337 TGeoTranslation *trBB[160];
1338 Double_t x = 0.0;
1339 Double_t y = 0.5 * (thickness - bbThickness) - sensThickness;
1340 Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
1341 Int_t i;
1342 for (i = 0; i < 160; i++) {
1343 trBB[i] = new TGeoTranslation(x, y, z);
1344 switch(i) {
1345 case 31:case 63:case 95:case 127:
1346 z += fgkmm * 0.625 + fgkmm * 0.2;
1347 break;
1348 default:
1349 z += fgkmm * 0.425;
1350 } // end switch
1351 } // end for i
1352 // the chips are translated along the length (Z) and thickness (X)
1353 TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
1354 x = -xSens;
1355 y = 0.5 * (chipThickness - thickness);
1356 z = 0.0;
1357 for (i = 0; i < 5; i++) {
d0048cec 1358 z = -0.5*length + guardRingWidth
54c9a3d9 1359 + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
1360 trChip[i] = new TGeoTranslation(x, y, z);
1361 } // end ofr i
d0048cec 1362
54c9a3d9 1363 // add nodes to container
1364 container->AddNode(volSens, 1, trSens);
1365 container->AddNode(volBorder, 1, trSens);
1366 for (i = 0; i < 160; i++) container->AddNode(volBB,i+1,trBB[i]);
1367 for (i = 0; i < 5; i++) container->AddNode(volChip,i+3,trChip[i]);
1368 // return the container
1369 return container;
592651e2 1370}
22726349 1371
7855ea93 1372//______________________________________________________________________
54c9a3d9 1373TGeoVolume* AliITSv11GeometrySPD::CreateClip(TArrayD &sizes,Bool_t isDummy,
1374 TGeoManager *mgr) const
1375{
1376 //
1377 // Creates the carbon fiber clips which are added to the central ladders.
1378 // They have a complicated shape which is approximated by a TGeoXtru
1379 // Implementation of a single clip over an half-stave.
1380 // It has a complicated shape which is approximated to a section like this:
d0048cec 1381 //
54c9a3d9 1382 // 6
1383 // /\ .
1384 // 7 //\\ 5
1385 // / 1\\___________________4
1386 // 0 \___________________
1387 // 2 3
d0048cec 1388 // with a finite thickness for all the shape
54c9a3d9 1389 // Its local reference frame is such that point A corresponds to origin.
d0048cec 1390 //
30611568 1391
1392 // MODIFIED geometry
1393 Double_t sposty = fgkmm * -0.5; // lower internal side to avoid overlaps with modified geometry
1394
54c9a3d9 1395 Double_t fullLength = fgkmm * 12.6; // = x4 - x0
1396 Double_t flatLength = fgkmm * 5.4; // = x4 - x3
1397 Double_t inclLongLength = fgkmm * 5.0; // = 5-6
1398 Double_t inclShortLength = fgkmm * 2.0; // = 6-7
1399 Double_t fullHeight = fgkmm * 2.8; // = y6 - y3
3ffa185f 1400 Double_t thickness = fgkmm * 0.18; // thickness
54c9a3d9 1401 Double_t totalLength = fgkmm * 52.0; // total length in Z
d0048cec 1402 Double_t holeSize = fgkmm * 5.0; // dimension of cubic
54c9a3d9 1403 // hole inserted for pt1000
1404 Double_t angle1 = 27.0; // supplementary of angle DCB
1405 Double_t angle2; // angle DCB
1406 Double_t angle3; // angle of GH with vertical
d0048cec 1407
54c9a3d9 1408 angle2 = 0.5 * (180.0 - angle1);
d0048cec 1409 angle3 = 90.0 - TMath::ACos(fullLength - flatLength -
1410 inclLongLength*TMath::Cos(angle1)) *
54c9a3d9 1411 TMath::RadToDeg();
1412 angle1 *= TMath::DegToRad();
1413 angle2 *= TMath::DegToRad();
1414 angle3 *= TMath::DegToRad();
1415
1416 Double_t x[8], y[8];
d0048cec 1417
54c9a3d9 1418 x[0] = 0.0;
1419 x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1);
1420 x[2] = x[0] + fullLength - flatLength;
1421 x[3] = x[0] + fullLength;
1422 x[4] = x[3];
1423 x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2);
1424 x[6] = x[1];
1425 x[7] = x[0];
d0048cec 1426
54c9a3d9 1427 y[0] = 0.0;
1428 y[1] = y[0] + inclShortLength * TMath::Cos(angle3);
1429 y[2] = y[1] - inclLongLength * TMath::Sin(angle1);
1430 y[3] = y[2];
1431 y[4] = y[3] + thickness;
1432 y[5] = y[4];
1433 y[6] = y[1] + thickness;
1434 y[7] = y[0] + thickness;
d0048cec 1435
30611568 1436 y[0] += sposty;
1437 y[7] += sposty;
1438
54c9a3d9 1439 sizes.Set(7);
1440 sizes[0] = totalLength;
1441 sizes[1] = fullHeight;
1442 sizes[2] = y[2];
1443 sizes[3] = y[6];
1444 sizes[4] = x[0];
1445 sizes[5] = x[3];
1446 sizes[6] = x[2];
1447
1448 if(isDummy){// use this argument when on ewant just the
1449 // positions without create any volume
1450 return NULL;
1451 } // end if isDummy
1452
1453 TGeoXtru *shClip = new TGeoXtru(2);
1454 shClip->SetName("ITSSPDshclip");
1455 shClip->DefinePolygon(8, x, y);
1456 shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0);
1457 shClip->DefineSection(1, 0.5*totalLength, 0., 0., 1.0);
d0048cec 1458
54c9a3d9 1459 TGeoBBox *shHole = new TGeoBBox("ITSSPDSHClipHole",0.5*holeSize,
1460 0.5*holeSize,0.5*holeSize);
1461 TGeoTranslation *tr1 = new TGeoTranslation("ITSSPDTRClipHole1",x[2],0.0,
1462 fgkmm*14.);
1463 TGeoTranslation *tr2 = new TGeoTranslation("ITSSPDTRClipHole2",x[2],0.0,
1464 0.0);
1465 TGeoTranslation *tr3 = new TGeoTranslation("ITSSPDTRClipHole3",x[2],0.0,
1466 -fgkmm*14.);
1467 tr1->RegisterYourself();
1468 tr2->RegisterYourself();
1469 tr3->RegisterYourself();
1470
1471 //TString strExpr("ITSSPDshclip-(");
1472 TString strExpr(shClip->GetName());
1473 strExpr.Append("-(");
1474 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName()));
1475 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName()));
1476 strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName()));
1477 TGeoCompositeShape *shClipHole = new TGeoCompositeShape(
1478 "ITSSPDSHClipHoles",strExpr.Data());
1479
1480 TGeoMedium *mat = GetMedium("SPD C (M55J)$", mgr);
1481 TGeoVolume *vClip = new TGeoVolume("ITSSPDclip", shClipHole, mat);
1482 vClip->SetLineColor(kGray + 2);
1483 return vClip;
45c52bb2 1484}
1485
1486//______________________________________________________________________
1487TGeoVolume* AliITSv11GeometrySPD::CreatePatchPanel(TArrayD &sizes,
1488 TGeoManager *mgr) const
1489{
1490 //
1491 // Creates the patch panel approximated with a "L"-shaped TGeoXtru
1492 // with a finite thickness for all the shape
1493 // Its local reference frame is such that point A corresponds to origin.
1494 //
1495 Double_t hLength = fgkmm * 50.0; // horizontal length
1496 Double_t vLength = fgkmm * 50.0; // vertical length
c890eba4 1497 Double_t angle = 88.3; // angle between hor and vert
45c52bb2 1498 Double_t thickness = fgkmm * 4.0; // thickness
1499 Double_t width = fgkmm * 100.0; // width looking from cone
1500
1501 Double_t x[7], y[7];
1502
1503 y[0] = 0.0;
1504 y[1] = y[0] + hLength;
1505 y[2] = y[1];
1506 y[3] = y[0] + thickness;
1507 y[4] = y[3] + vLength * TMath::Cos(angle*TMath::DegToRad());
1508 y[5] = y[4] - thickness / TMath::Sin(angle*TMath::DegToRad());
1509 y[6] = y[0];
1510
1511 x[0] = 0.0;
1512 x[1] = x[0];
1513 x[2] = x[1] + thickness;
1514 x[3] = x[2];
1515 x[4] = x[3] + vLength * TMath::Sin(angle*TMath::DegToRad());
1516 x[5] = x[4];
1517 x[6] = x[0] + thickness;
1518
1519 sizes.Set(3);
1520 sizes[0] = hLength;
1521 sizes[1] = vLength;
1522 sizes[2] = thickness;
1523
1524 TGeoXtru *shPatch = new TGeoXtru(2);
1525 shPatch->SetName("ITSSPDpatchShape1");
1526 shPatch->DefinePolygon(7, x, y);
1527 shPatch->DefineSection(0, -0.5*width, 0., 0., 1.0);
1528 shPatch->DefineSection(1, 0.5*width, 0., 0., 1.0);
1529
1530 /*
1531 Double_t subThickness = 10.0 * fgkmm;
1532 Double_t subWidth = 55.0 * fgkmm;
1533 new TGeoBBox("ITSSPDpatchShape2", 0.5*subThickness, 60.0 * fgkmm, 0.5*subWidth);
1534 TGeoRotation *rotSub = new TGeoRotation(*gGeoIdentity);
1535 rotSub->SetName("shPatchSubRot");
1536 rotSub->RotateZ(50.0);
1537 rotSub->RegisterYourself();
1538 TGeoCombiTrans *trSub = new TGeoCombiTrans(0.26*hLength, 0.26*vLength, 0.0, rotSub);
1539 trSub->SetName("shPatchSubTr");
1540 trSub->RegisterYourself();
1541
1542 TGeoCompositeShape *shPatchFinal = new TGeoCompositeShape("ITSSPDpatchShape1-(ITSSPDpatchShape2:shPatchSubTr)");
1543 */
1544
1545 TGeoMedium *mat = GetMedium("AL$", mgr);
1546 //TGeoVolume *vPatch = new TGeoVolume("ITSSPDpatchPanel", shPatchFinal, mat);
1547 TGeoVolume *vPatch = new TGeoVolume("ITSSPDpatchPanel", shPatch, mat);
1548 vPatch->SetLineColor(kAzure);
1549
1550 return vPatch;
1551}
1552
c890eba4 1553//___________________________________________________________________
7855ea93 1554TGeoCompositeShape* AliITSv11GeometrySPD::CreateGroundingFoilShape
54c9a3d9 1555 (Int_t itype,Double_t &length,Double_t &width,
1556 Double_t thickness,TArrayD &sizes)
bc3498f4 1557{
54c9a3d9 1558 //
d0048cec 1559 // Creates the typical composite shape of the grounding foil:
1560 //
54c9a3d9 1561 // +---------------------------------------------------------+
1562 // | 5 6 9 |
1563 // | +-----------+ +------------+ 10
1564 // | O | | |
1565 // | 3 /-----+ 4 +------+
1566 // | 1 / 7 8
1567 // | /----------/
1568 // +-----/ 2 +
1569 // 0
1570 // Z + 11
1571 //
d0048cec 1572 // This shape is used 4 times: two layers of glue, one in kapton
1573 // and one in aluminum, taking into account that the aliminum
54c9a3d9 1574 // layer has small differences in the size of some parts.
1575 // ---
d0048cec 1576 // In order to overcome problems apparently due to a large number
1577 // of points, the shape creation is done according the following
54c9a3d9 1578 // steps:
d0048cec 1579 // 1) a TGeoBBox is created with a size right enough to contain
54c9a3d9 1580 // the whole shape (0-1-X-13)
d0048cec 1581 // 2) holes are defined as other TGeoBBox which are subtracted
54c9a3d9 1582 // from the main shape
d0048cec 1583 // 3) a TGeoXtru is defined connecting the points (0-->11-->0)
54c9a3d9 1584 // and is also subtracted from the main shape
1585 // ---
d0048cec 1586 // The argument ("type") is used to choose between all these
54c9a3d9 1587 // possibilities:
1588 // - type = 0 --> kapton layer
1589 // - type = 1 --> aluminum layer
1590 // - type = 2 --> glue layer between support and GF
1591 // - type = 3 --> glue layer between GF and ladders
d0048cec 1592 // Returns: a TGeoCompositeShape which will then be used to shape
1593 // several volumes. Since TGeoXtru is used, the local reference
54c9a3d9 1594 // frame of this object has X horizontal and Y vertical w.r to
1595 // the shape drawn above, and Z axis going perpendicularly to the screen.
d0048cec 1596 // This is not the correct reference for the half stave, for which
1597 // the "long" dimension is Z and the "short" is X, while Y goes in
1598 // the direction of thickness. This will imply some rotations when
54c9a3d9 1599 // using the volumes created with this shape.
d0048cec 1600
54c9a3d9 1601 // suffix to differentiate names
1602 Char_t type[10];
d0048cec 1603
54c9a3d9 1604 // size of the virtual box containing exactly this volume
1605 length = fgkmm * 243.18;
1606 width = fgkmm * 15.95;
1607 if (itype == 1) {
1608 length -= fgkmm * 0.4;
1609 width -= fgkmm * 0.4;
1610 } // end if itype==1
1611 switch (itype) {
1612 case 0:
6932f314 1613 snprintf(type,10,"Kap");
54c9a3d9 1614 break;
1615 case 1:
6932f314 1616 snprintf(type,10, "Alu");
54c9a3d9 1617 break;
1618 case 2:
6932f314 1619 snprintf(type,10,"Glue1");
54c9a3d9 1620 break;
1621 case 3:
6932f314 1622 snprintf(type,10,"Glue2");
54c9a3d9 1623 break;
1624 }
d0048cec 1625 // we divide the shape in several slices along the horizontal
1626 // direction (local X) here we define define the length of all
54c9a3d9 1627 // sectors (from leftmost to rightmost)
1628 Int_t i;
1629 Double_t sliceLength[] = { 140.71, 2.48, 26.78, 4.00,
1630 10.00, 24.40, 10.00, 24.81 };
1631 for (i = 0; i < 8; i++) sliceLength[i] *= fgkmm;
1632 if (itype == 1) {
1633 sliceLength[0] -= fgkmm * 0.2;
1634 sliceLength[4] -= fgkmm * 0.2;
1635 sliceLength[5] += fgkmm * 0.4;
1636 sliceLength[6] -= fgkmm * 0.4;
1637 } // end if itype ==1
d0048cec 1638
1639 // as shown in the drawing, we have four different widths
54c9a3d9 1640 // (along local Y) in this shape:
1641 Double_t widthMax = fgkmm * 15.95;
1642 Double_t widthMed1 = fgkmm * 15.00;
1643 Double_t widthMed2 = fgkmm * 11.00;
1644 Double_t widthMin = fgkmm * 4.40;
1645 if (itype == 1) {
1646 widthMax -= fgkmm * 0.4;
1647 widthMed1 -= fgkmm * 0.4;
1648 widthMed2 -= fgkmm * 0.4;
1649 widthMin -= fgkmm * 0.4;
1650 } // end if itype==1
d0048cec 1651
54c9a3d9 1652 // create the main shape
1653 TGeoBBox *shGroundFull = 0;
1654 shGroundFull = new TGeoBBox(Form("ITSSPDSHgFoil%sFull", type),
1655 0.5*length,0.5*width, 0.5*thickness);
d0048cec 1656
6932f314 1657 if(GetDebug(5)) shGroundFull->Print(); // Avoid Coverity warning
1658
d0048cec 1659 // create the polygonal shape to be subtracted to give the correct
1660 // shape to the borders its vertices are defined in sugh a way that
1661 // this polygonal will be placed in the correct place considered
1662 // that the origin of the local reference frame is in the center
1663 // of the main box: we fix the starting point at the lower-left
1664 // edge of the shape (point 12), and add all points in order,
54c9a3d9 1665 // following a clockwise rotation
d0048cec 1666
54c9a3d9 1667 Double_t x[13], y[13];
1668 x[ 0] = -0.5 * length + sliceLength[0];
1669 y[ 0] = -0.5 * widthMax;
1670
1671 x[ 1] = x[0] + sliceLength[1];
1672 y[ 1] = y[0] + (widthMax - widthMed1);
1673
1674 x[ 2] = x[1] + sliceLength[2];
1675 y[ 2] = y[1];
1676
1677 x[ 3] = x[2] + sliceLength[3];
1678 y[ 3] = y[2] + (widthMed1 - widthMed2);
1679
1680 x[ 4] = x[3] + sliceLength[4];
1681 y[ 4] = y[3];
1682
1683 x[ 5] = x[4];
1684 y[ 5] = y[4] + (widthMed2 - widthMin);
1685
1686 x[ 6] = x[5] + sliceLength[5];
1687 y[ 6] = y[5];
1688
1689 x[ 7] = x[6];
1690 y[ 7] = y[4];
1691
1692 x[ 8] = x[7] + sliceLength[6];
1693 y[ 8] = y[7];
1694
1695 x[ 9] = x[8];
1696 y[ 9] = y[6];
1697
1698 x[10] = x[9] + sliceLength[7] + 0.5;
1699 y[10] = y[9];
1700
1701 x[11] = x[10];
1702 y[11] = y[0] - 0.5;
1703
1704 x[12] = x[0];
1705 y[12] = y[11];
1706
1707 // create the shape
1708 TGeoXtru *shGroundXtru = new TGeoXtru(2);
1709 shGroundXtru->SetName(Form("ITSSPDSHgFoil%sXtru", type));
1710 shGroundXtru->DefinePolygon(13, x, y);
1711 shGroundXtru->DefineSection(0, -thickness, 0., 0., 1.0);
1712 shGroundXtru->DefineSection(1, thickness, 0., 0., 1.0);
d0048cec 1713
54c9a3d9 1714 // define a string which will express the algebric operations among volumes
1715 // and add the subtraction of this shape from the main one
1716 TString strComposite(Form("ITSSPDSHgFoil%sFull-(%s+", type,
1717 shGroundXtru->GetName()));
d0048cec 1718
54c9a3d9 1719 // define the holes according to size information coming from drawings:
1720 Double_t holeLength = fgkmm * 10.00;
1721 Double_t holeWidth = fgkmm * 7.50;
d0048cec 1722 Double_t holeSepX0 = fgkmm * 7.05; // separation between center
54c9a3d9 1723 // of first hole and left border
d0048cec 1724 Double_t holeSepXC = fgkmm * 14.00; // separation between the centers
54c9a3d9 1725 // of two consecutive holes
d0048cec 1726 Double_t holeSepX1 = fgkmm * 15.42; // separation between centers of
54c9a3d9 1727 // 5th and 6th hole
d0048cec 1728 Double_t holeSepX2 = fgkmm * 22.00; // separation between centers of
54c9a3d9 1729 // 10th and 11th hole
1730 if (itype == 1) {
1731 holeSepX0 -= fgkmm * 0.2;
1732 holeLength += fgkmm * 0.4;
1733 holeWidth += fgkmm * 0.4;
1734 } // end if itype==1
1735 sizes.Set(7);
1736 sizes[0] = holeLength;
1737 sizes[1] = holeWidth;
1738 sizes[2] = holeSepX0;
1739 sizes[3] = holeSepXC;
1740 sizes[4] = holeSepX1;
1741 sizes[5] = holeSepX2;
1742 sizes[6] = fgkmm * 4.40;
d0048cec 1743
54c9a3d9 1744 // X position of hole center (will change for each hole)
1745 Double_t holeX = -0.5*length;
1746 // Y position of center of all holes (= 4.4 mm from upper border)
1747 Double_t holeY = 0.5*(width - holeWidth) - widthMin;
d0048cec 1748
54c9a3d9 1749 // create a shape for the holes (common)
c0fc8108 1750 new TGeoBBox(Form("ITSSPD%sGfoilHole", type),0.5*holeLength,
1751 0.5*holeWidth, thickness);
d0048cec 1752
54c9a3d9 1753 // insert the holes in the XTRU shape:
d0048cec 1754 // starting from the first value of X, they are simply
54c9a3d9 1755 // shifted along this axis
1756 char name[200];
1757 TGeoTranslation *transHole[11];
4adcf390 1758 for (i = 0; i < 11; i++) {
54c9a3d9 1759 // set the position of the hole, depending on index
1760 if (i == 0) {
1761 holeX += holeSepX0;
1762 }else if (i < 5) {
1763 holeX += holeSepXC;
1764 }else if (i == 5) {
1765 holeX += holeSepX1;
1766 }else if (i < 10) {
1767 holeX += holeSepXC;
1768 }else {
1769 holeX += holeSepX2;
1770 } // end if else if's
1771 //cout << i << " --> X = " << holeX << endl;
6932f314 1772 snprintf(name,200,"ITSSPDTRgFoil%sHole%d", type, i);
54c9a3d9 1773 transHole[i] = new TGeoTranslation(name, holeX, holeY, 0.0);
1774 transHole[i]->RegisterYourself();
1775 strComposite.Append(Form("ITSSPD%sGfoilHole:%s", type, name));
1776 if (i < 10) strComposite.Append("+"); else strComposite.Append(")");
1777 } // end for i
d0048cec 1778
54c9a3d9 1779 // create composite shape
1780 TGeoCompositeShape *shGround = new TGeoCompositeShape(
1781 Form("ITSSPDSHgFoil%s", type), strComposite.Data());
1782
1783 return shGround;
592651e2 1784}
54c9a3d9 1785//______________________________________________________________________
d0048cec 1786TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateGroundingFoil(Bool_t isRight,
54c9a3d9 1787 TArrayD &sizes, TGeoManager *mgr)
bc3498f4 1788{
54c9a3d9 1789 //
d0048cec 1790 // Create a volume containing all parts of the grounding foil a
1791 // for a half-stave.
54c9a3d9 1792 // It consists of 4 layers with the same shape but different thickness:
1793 // 1) a layer of glue
1794 // 2) the aluminum layer
1795 // 3) the kapton layer
1796 // 4) another layer of glue
1797 // ---
1798 // Arguments:
d0048cec 1799 // 1: a boolean value to know if it is the grounding foir for
54c9a3d9 1800 // the right or left side
1801 // 2: a TArrayD which will contain the dimension of the container box:
1802 // - size[0] = length along Z (the beam line direction)
d0048cec 1803 // - size[1] = the 'width' of the stave, which defines, together
54c9a3d9 1804 // with Z, the plane of the carbon fiber support
d0048cec 1805 // - size[2] = 'thickness' (= the direction along which all
54c9a3d9 1806 // stave components are superimposed)
1807 // 3: the TGeoManager
1808 // ---
d0048cec 1809 // The return value is a TGeoBBox volume containing all grounding
54c9a3d9 1810 // foil components.
1811 // to avoid strange behaviour of the geometry manager,
1812 // create a suffix to be used in the names of all shapes
1813 //
1814 char suf[5];
6932f314 1815 if (isRight) strncpy(suf, "R", 5); else strncpy(suf, "L", 5);
d0048cec 1816 // this volume will be created in order to ease its placement in
1817 // the half-stave; then, it is added here the small distance of
1818 // the "central" edge of each volume from the Z=0 plane in the stave
54c9a3d9 1819 // reference (which coincides with ALICE one)
1820 Double_t dist = fgkmm * 0.71;
d0048cec 1821
54c9a3d9 1822 // define materials
1823 TGeoMedium *medKap = GetMedium("SPD KAPTON(POLYCH2)$", mgr);
1824 TGeoMedium *medAlu = GetMedium("AL$", mgr);
1825 TGeoMedium *medGlue = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT
d0048cec 1826
54c9a3d9 1827 // compute the volume shapes (thicknesses change from one to the other)
1828 Double_t kpLength, kpWidth, alLength, alWidth;
1829 TArrayD kpSize, alSize, glSize;
ed0e944d 1830 Double_t kpThickness = fgkmm * 0.04;
1831 Double_t alThickness = fgkmm * 0.01;
1832//cout << "AL THICKNESS" << alThickness << endl;
1833 //Double_t g0Thickness = fgkmm * 0.1175 - fgkGapHalfStave;
1834 //Double_t g1Thickness = fgkmm * 0.1175 - fgkGapLadder;
1835 Double_t g0Thickness = fgkmm * 0.1275 - fgkGapHalfStave;
1836 Double_t g1Thickness = fgkmm * 0.1275 - fgkGapLadder;
54c9a3d9 1837 TGeoCompositeShape *kpShape = CreateGroundingFoilShape(0,kpLength,kpWidth,
1838 kpThickness, kpSize);
1839 TGeoCompositeShape *alShape = CreateGroundingFoilShape(1,alLength,alWidth,
1840 alThickness, alSize);
3ffa185f 1841 TGeoCompositeShape *g0Shape = CreateGroundingFoilShape(2,kpLength,kpWidth,
1842 g0Thickness, glSize);
1843 TGeoCompositeShape *g1Shape = CreateGroundingFoilShape(3,kpLength,kpWidth,
1844 g1Thickness, glSize);
d0048cec 1845 // create the component volumes and register their sizes in the
1846 // passed arrays for readability reasons, some reference variables
54c9a3d9 1847 // explicit the meaning of the array slots
1848 TGeoVolume *kpVol = new TGeoVolume(Form("ITSSPDgFoilKap%s",suf),
1849 kpShape, medKap);
1850 TGeoVolume *alVol = new TGeoVolume(Form("ITSSPDgFoilAlu%s",suf),
1851 alShape, medAlu);
3ffa185f 1852 TGeoVolume *g0Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf),
1853 g0Shape, medGlue);
1854 TGeoVolume *g1Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf),
1855 g1Shape, medGlue);
54c9a3d9 1856 // set colors for the volumes
1857 kpVol->SetLineColor(kRed);
1858 alVol->SetLineColor(kGray);
3ffa185f 1859 g0Vol->SetLineColor(kYellow);
1860 g1Vol->SetLineColor(kYellow);
54c9a3d9 1861 // create references for the final size object
1862 if (sizes.GetSize() != 3) sizes.Set(3);
1863 Double_t &fullThickness = sizes[0];
1864 Double_t &fullLength = sizes[1];
1865 Double_t &fullWidth = sizes[2];
d0048cec 1866 // kapton leads the larger dimensions of the foil
54c9a3d9 1867 // (including the cited small distance from Z=0 stave reference plane)
1868 // the thickness is the sum of the ones of all components
1869 fullLength = kpLength + dist;
1870 fullWidth = kpWidth;
3ffa185f 1871 fullThickness = kpThickness + alThickness + g0Thickness + g1Thickness;
54c9a3d9 1872 // create the container
d0048cec 1873// TGeoMedium *air = GetMedium("AIR$", mgr);
1874 TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("ITSSPDgFOIL-%s",suf));
1875// TGeoVolume *container = mgr->MakeBox(Form("ITSSPDgFOIL-%s",suf),
1876// air, 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength);
1877 // create the common correction rotation (which depends of what side
54c9a3d9 1878 // we are building)
1879 TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity);
1880 if (isRight) rotCorr->RotateY(90.0);
d0048cec 1881 else rotCorr->RotateY(-90.0);
1882 // compute the translations, which are in the length and
54c9a3d9 1883 // thickness directions
1884 Double_t x, y, z, shift = 0.0;
1885 if (isRight) shift = dist;
1886 // glue (bottom)
3ffa185f 1887 x = -0.5*(fullThickness - g0Thickness);
54c9a3d9 1888 z = 0.5*(fullLength - kpLength) - shift;
1889 TGeoCombiTrans *glTrans0 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
1890 // kapton
3ffa185f 1891 x += 0.5*(g0Thickness + kpThickness);
54c9a3d9 1892 TGeoCombiTrans *kpTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
1893 // aluminum
1894 x += 0.5*(kpThickness + alThickness);
1895 z = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength);
1896 TGeoCombiTrans *alTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
1897 // glue (top)
3ffa185f 1898 x += 0.5*(alThickness + g1Thickness);
54c9a3d9 1899 z = 0.5*(fullLength - kpLength) - shift;
1900 TGeoCombiTrans *glTrans1 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
d0048cec 1901
ed0e944d 1902 //cout << fgkGapHalfStave << endl;
1903 //cout << g0Thickness << endl;
1904 //cout << kpThickness << endl;
1905 //cout << alThickness << endl;
1906 //cout << g1Thickness << endl;
54c9a3d9 1907
1908 // add to container
22726349 1909 container->SetLineColor(kMagenta-10);
54c9a3d9 1910 container->AddNode(kpVol, 1, kpTrans);
1911 container->AddNode(alVol, 1, alTrans);
3ffa185f 1912 container->AddNode(g0Vol, 1, glTrans0);
d0048cec 1913 container->AddNode(g1Vol, 2, glTrans1);
1914 // to add the grease we remember the sizes of the holes, stored as
54c9a3d9 1915 // additional parameters in the kapton layer size:
1916 // - sizes[3] = hole length
1917 // - sizes[4] = hole width
1918 // - sizes[5] = position of first hole center
1919 // - sizes[6] = standard separation between holes
1920 // - sizes[7] = separation between 5th and 6th hole
1921 // - sizes[8] = separation between 10th and 11th hole
d0048cec 1922 // - sizes[9] = separation between the upper hole border and
54c9a3d9 1923 // the foil border
1924 Double_t holeLength = kpSize[0];
1925 Double_t holeWidth = kpSize[1];
1926 Double_t holeFirstZ = kpSize[2];
1927 Double_t holeSepZ = kpSize[3];
1928 Double_t holeSep5th6th = kpSize[4];
1929 Double_t holeSep10th11th = kpSize[5];
1930 Double_t holeSepY = kpSize[6];
1931 // volume (common)
1932 // Grease has not been defined to date. Need much more information
1933 // no this material!
1934 TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE
1935 TGeoVolume *hVol = mgr->MakeBox("ITSSPDGrease", grease,
1936 0.5*fullThickness, 0.5*holeWidth, 0.5*holeLength);
1937 hVol->SetLineColor(kBlue);
1938 // displacement of volumes in the container
1939 Int_t idx = 1; // copy numbers start from 1.
1940 x = 0.0;
1941 y = 0.5*(fullWidth - holeWidth) - holeSepY;
1942 if (isRight) z = holeFirstZ - 0.5*fullLength + dist;
1943 else z = 0.5*fullLength - holeFirstZ - dist;
1944 for (Int_t i = 0; i < 11; i++) {
1945 TGeoTranslation *t = 0;
1946 t = new TGeoTranslation(x, y, -z);
1947 container->AddNode(hVol, idx++, t);
1948 if (i < 4) shift = holeSepZ;
1949 else if (i == 4) shift = holeSep5th6th;
1950 else if (i < 9) shift = holeSepZ;
1951 else shift = holeSep10th11th;
1952 if (isRight) z += shift;
1953 else z -= shift;
1954 } // end for i
1955 return container;
592651e2 1956}
54c9a3d9 1957//___________________________________________________________________
1958TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM(Bool_t isRight,
1959 TArrayD &sizes, TGeoManager *mgr) const
bc3498f4 1960{
54c9a3d9 1961 //
1962 // Create a TGeoAssembly containing all the components of the MCM.
1963 // The TGeoVolume container is rejected due to the possibility of overlaps
1964 // when placing this object on the carbon fiber sector.
1965 // The assembly contains:
1966 // - the thin part of the MCM (integrated circuit)
1967 // - the MCM chips (specifications from EDMS)
1968 // - the cap which covers the zone where chips are bound to MCM
1969 // ---
d0048cec 1970 // The local reference frame of this assembly is defined in such a way
1971 // that all volumes are contained in a virtual box whose center
1972 // is placed exactly in the middle of the occupied space w.r to all
1973 // directions. This will ease the positioning of this object in the
1974 // half-stave. The sizes of this virtual box are stored in
54c9a3d9 1975 // the array passed by reference.
1976 // ---
1977 // Arguments:
d0048cec 1978 // - a boolean flag to know if this is the "left" or "right" MCM, when
1979 // looking at the stave from above (i.e. the direction from which
1980 // one sees bus over ladders over grounding foil) and keeping the
1981 // continuous border in the upper part, one sees the thicker part
54c9a3d9 1982 // on the left or right.
d0048cec 1983 // - an array passed by reference which will contain the size of
54c9a3d9 1984 // the virtual container.
1985 // - a pointer to the used TGeoManager.
1986 //
1987
1988 // to distinguish the "left" and "right" objects, a suffix is created
1989 char suf[5];
6932f314 1990 if (isRight) strncpy(suf, "R", 5); else strncpy(suf, "L", 5);
54c9a3d9 1991
1992 // ** MEDIA **
1993 TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE
1994 TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr);
1995 TGeoMedium *medCap = GetMedium("AL$",mgr);
1996
d0048cec 1997 // The shape of the MCM is divided into 3 sectors with different
54c9a3d9 1998 // widths (Y) and lengths (X), like in this sketch:
1999 //
d0048cec 2000 // 0 1 2
54c9a3d9 2001 // +---------------------+-----------------------------------+
2002 // | 4 sect 2 |
2003 // | 6 sect 1 /-------------------+
2004 // | sect 0 /--------------/ 3
2005 // +--------------------/ 5
2006 // 8 7
2007 //
2008 // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees.
2009 // From drawings we can parametrize the dimensions of all these sectors,
2010 // then the shape of this part of the MCM is implemented as a
d0048cec 2011 // TGeoXtru centerd in the virtual XY space.
54c9a3d9 2012 // The first step is definig the relevant sizes of this shape:
2013 Int_t i, j;
2014 Double_t mcmThickness = fgkmm * 0.35;
2015 Double_t sizeXtot = fgkmm * 105.6; // total distance (0-2)
2016 // resp. 7-8, 5-6 and 3-4
2017 Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8};
2018 // resp. 0-8, 1-6 and 2-3
2019 Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm * 8.0};
2020 Double_t sizeSep01 = fgkmm * 4.0; // x(6)-x(7)
2021 Double_t sizeSep12 = fgkmm * 3.0; // x(4)-x(5)
2022
2023 // define sizes of chips (last is the thickest)
2024 Double_t chipLength[5] = { 4.00, 6.15, 3.85, 5.60, 18.00 };
2025 Double_t chipWidth[5] = { 3.00, 4.10, 3.85, 5.60, 5.45 };
2026 Double_t chipThickness[5] = { 0.60, 0.30, 0.30, 1.00, 1.20 };
2027 TString name[5];
2028 name[0] = "ITSSPDanalog";
2029 name[1] = "ITSSPDpilot";
2030 name[2] = "ITSSPDgol";
2031 name[3] = "ITSSPDrx40";
2032 name[4] = "ITSSPDoptical";
2033 Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange };
2034
2035 // define the sizes of the cover
2036 Double_t capThickness = fgkmm * 0.3;
2037 Double_t capHeight = fgkmm * 1.7;
2038
2039 // compute the total size of the virtual container box
2040 sizes.Set(3);
2041 Double_t &thickness = sizes[0];
2042 Double_t &length = sizes[1];
2043 Double_t &width = sizes[2];
2044 length = sizeXtot;
2045 width = sizeYsector[0];
2046 thickness = mcmThickness + capHeight;
2047
d0048cec 2048 // define all the relevant vertices of the polygon
54c9a3d9 2049 // which defines the transverse shape of the MCM.
d0048cec 2050 // These values are used to several purposes, and
54c9a3d9 2051 // for each one, some points must be excluded
2052 Double_t xRef[9], yRef[9];
2053 xRef[0] = -0.5*sizeXtot;
2054 yRef[0] = 0.5*sizeYsector[0];
2055 xRef[1] = xRef[0] + sizeXsector[0] + sizeSep01;
2056 yRef[1] = yRef[0];
2057 xRef[2] = -xRef[0];
2058 yRef[2] = yRef[0];
2059 xRef[3] = xRef[2];
2060 yRef[3] = yRef[2] - sizeYsector[2];
2061 xRef[4] = xRef[3] - sizeXsector[2];
2062 yRef[4] = yRef[3];
2063 xRef[5] = xRef[4] - sizeSep12;
2064 yRef[5] = yRef[4] - sizeSep12;
2065 xRef[6] = xRef[5] - sizeXsector[1];
2066 yRef[6] = yRef[5];
2067 xRef[7] = xRef[6] - sizeSep01;
2068 yRef[7] = yRef[6] - sizeSep01;
2069 xRef[8] = xRef[0];
2070 yRef[8] = -yRef[0];
2071
d0048cec 2072 // the above points are defined for the "right" MCM (if ve view the
2073 // stave from above) in order to change to the "left" one, we must
54c9a3d9 2074 // change the sign to all X values:
2075 if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i];
d0048cec 2076
2077 // the shape of the MCM and glue layer are done excluding point 1,
54c9a3d9 2078 // which is not necessary and cause the geometry builder to get confused
2079 j = 0;
2080 Double_t xBase[8], yBase[8];
2081 for (i = 0; i < 9; i++) {
2082 if (i == 1) continue;
2083 xBase[j] = xRef[i];
2084 yBase[j] = yRef[i];
2085 j++;
2086 } // end for i
2087
2088 // the MCM cover is superimposed over the zones 1 and 2 only
2089 Double_t xCap[6], yCap[6];
2090 j = 0;
2091 for (i = 1; i <= 6; i++) {
2092 xCap[j] = xRef[i];
2093 yCap[j] = yRef[i];
2094 j++;
2095 } // end for i
2096
d0048cec 2097 // define positions of chips,
54c9a3d9 2098 // which must be added to the bottom-left corner of MCM
2099 // and divided by 1E4;
2100 Double_t chipX[5], chipY[5];
2101 if (isRight) {
2102 chipX[0] = 666320.;
2103 chipX[1] = 508320.;
2104 chipX[2] = 381320.;
2105 chipX[3] = 295320.;
2106 chipX[4] = 150320.;
2107 chipY[0] = 23750.;
2108 chipY[1] = 27750.;
2109 chipY[2] = 20750.;
2110 chipY[3] = 42750.;
2111 chipY[4] = 39750.;
2112 } else {
2113 chipX[0] = 389730.;
2114 chipX[1] = 548630.;
2115 chipX[2] = 674930.;
2116 chipX[3] = 761430.;
2117 chipX[4] = 905430.;
2118 chipY[0] = 96250.;
2119 chipY[1] = 91950.;
2120 chipY[2] = 99250.;
2121 chipY[3] = 107250.;
2122 chipY[4] = 109750.;
2123 } // end if isRight
2124 for (i = 0; i < 5; i++) {
2125 chipX[i] *= 0.00001;
2126 chipY[i] *= 0.00001;
2127 if (isRight) {
2128 chipX[i] += xRef[3];
2129 chipY[i] += yRef[3];
2130 } else {
2131 chipX[i] += xRef[8];
2132 chipY[i] += yRef[8];
2133 } // end for isRight
2134 chipLength[i] *= fgkmm;
2135 chipWidth[i] *= fgkmm;
2136 chipThickness[i] *= fgkmm;
2137 } // end for i
2138
d0048cec 2139 // create shapes for MCM
54c9a3d9 2140 Double_t z1, z2;
2141 TGeoXtru *shBase = new TGeoXtru(2);
2142 z1 = -0.5*thickness;
2143 z2 = z1 + mcmThickness;
2144 shBase->DefinePolygon(8, xBase, yBase);
2145 shBase->DefineSection(0, z1, 0., 0., 1.0);
2146 shBase->DefineSection(1, z2, 0., 0., 1.0);
2147
2148 // create volumes of MCM
2149 TGeoVolume *volBase = new TGeoVolume("ITSSPDbase", shBase, medBase);
2150 volBase->SetLineColor(kRed);
2151
d0048cec 2152 // to create the border of the MCM cover, it is required the
2153 // subtraction of two shapes the outer is created using the
54c9a3d9 2154 // reference points defined here
2155 TGeoXtru *shCapOut = new TGeoXtru(2);
2156 shCapOut->SetName(Form("ITSSPDshCAPOUT%s", suf));
2157 z1 = z2;
2158 z2 = z1 + capHeight - capThickness;
2159 shCapOut->DefinePolygon(6, xCap, yCap);
2160 shCapOut->DefineSection(0, z1, 0., 0., 1.0);
2161 shCapOut->DefineSection(1, z2, 0., 0., 1.0);
2162 // the inner is built similarly but subtracting the thickness
2163 Double_t angle, cs;
2164 Double_t xin[6], yin[6];
2165 if (!isRight) {
2166 angle = 45.0;
2167 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
2168 xin[0] = xCap[0] + capThickness;
2169 yin[0] = yCap[0] - capThickness;
2170 xin[1] = xCap[1] - capThickness;
2171 yin[1] = yin[0];
2172 xin[2] = xin[1];
2173 yin[2] = yCap[2] + capThickness;
2174 xin[3] = xCap[3] - capThickness*cs;
2175 yin[3] = yin[2];
2176 xin[4] = xin[3] - sizeSep12;
2177 yin[4] = yCap[4] + capThickness;
2178 xin[5] = xin[0];
2179 yin[5] = yin[4];
2180 } else {
2181 angle = 45.0;
2182 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
2183 xin[0] = xCap[0] - capThickness;
2184 yin[0] = yCap[0] - capThickness;
2185 xin[1] = xCap[1] + capThickness;
2186 yin[1] = yin[0];
2187 xin[2] = xin[1];
2188 yin[2] = yCap[2] + capThickness;
2189 xin[3] = xCap[3] - capThickness*cs;
2190 yin[3] = yin[2];
2191 xin[4] = xin[3] + sizeSep12;
2192 yin[4] = yCap[4] + capThickness;
2193 xin[5] = xin[0];
2194 yin[5] = yin[4];
2195 } // end if !isRight
2196 TGeoXtru *shCapIn = new TGeoXtru(2);
2197 shCapIn->SetName(Form("ITSSPDshCAPIN%s", suf));
2198 shCapIn->DefinePolygon(6, xin, yin);
2199 shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0);
2200 shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0);
2201 // compose shapes
2202 TGeoCompositeShape *shCapBorder = new TGeoCompositeShape(
d0048cec 2203 Form("ITSSPDshBORDER%s", suf),
54c9a3d9 2204 Form("%s-%s", shCapOut->GetName(),
2205 shCapIn->GetName()));
2206 // create volume
2207 TGeoVolume *volCapBorder = new TGeoVolume("ITSSPDcapBoarder",
2208 shCapBorder,medCap);
2209 volCapBorder->SetLineColor(kGreen);
d0048cec 2210 // finally, we create the top of the cover, which has the same
2211 // shape of outer border and a thickness equal of the one othe
54c9a3d9 2212 // cover border one
2213 TGeoXtru *shCapTop = new TGeoXtru(2);
2214 z1 = z2;
2215 z2 = z1 + capThickness;
2216 shCapTop->DefinePolygon(6, xCap, yCap);
2217 shCapTop->DefineSection(0, z1, 0., 0., 1.0);
2218 shCapTop->DefineSection(1, z2, 0., 0., 1.0);
2219 TGeoVolume *volCapTop = new TGeoVolume("ITSSPDcapTop", shCapTop, medCap);
2220 volCapTop->SetLineColor(kBlue);
2221
2222 // create container assembly with right suffix
2223 TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly(
2224 Form("ITSSPDmcm%s", suf));
2225
2226 // add mcm layer
2227 mcmAssembly->AddNode(volBase, 1, gGeoIdentity);
2228 // add chips
2229 for (i = 0; i < 5; i++) {
2230 TGeoVolume *box = gGeoManager->MakeBox(name[i],medChip,
2231 0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]);
2232 TGeoTranslation *tr = new TGeoTranslation(chipX[i],chipY[i],
2233 0.5*(-thickness + chipThickness[i]) + mcmThickness);
2234 box->SetLineColor(color[i]);
2235 mcmAssembly->AddNode(box, 1, tr);
2236 } // end for i
2237 // add cap border
2238 mcmAssembly->AddNode(volCapBorder, 1, gGeoIdentity);
2239 // add cap top
d0048cec 2240 mcmAssembly->AddNode(volCapTop, 1, gGeoIdentity);
54c9a3d9 2241
2242 return mcmAssembly;
592651e2 2243}
7f69c251 2244
54c9a3d9 2245//______________________________________________________________________
bc3498f4 2246TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
22726349 2247(Bool_t isRight, Int_t ilayer, TArrayD &sizes, TGeoManager *mgr) const
bc3498f4 2248{
54c9a3d9 2249 //
d0048cec 2250 // The pixel bus is implemented as a TGeoBBox with some objects on it,
54c9a3d9 2251 // which could affect the particle energy loss.
2252 // ---
d0048cec 2253 // In order to avoid confusion, the bus is directly displaced
54c9a3d9 2254 // according to the axis orientations which are used in the final stave:
2255 // X --> thickness direction
2256 // Y --> width direction
2257 // Z --> length direction
2258 //
d0048cec 2259
22726349 2260 // ** CRITICAL CHECK ******************************************************
2261 // layer number can be ONLY 1 or 2
2262 if (ilayer != 1 && ilayer != 2) AliFatal("Layer number MUST be 1 or 2");
54c9a3d9 2263
2264 // ** MEDIA **
2265 //PIXEL BUS
2266 TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
2267 TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000
2268 // Capacity
2269 TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr);
2270 // ??? Resistance
d0048cec 2271 //TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr);
7f69c251 2272 TGeoMedium *medRes = GetMedium("ALUMINUM$",mgr);
45c52bb2 2273 //TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
2274 TGeoMedium *medExt = GetMedium("SPD-MIX CU KAPTON$", mgr);
54c9a3d9 2275 // ** SIZES & POSITIONS **
2276 Double_t busLength = 170.501 * fgkmm; // length of plane part
2277 Double_t busWidth = 13.800 * fgkmm; // width
2278 Double_t busThickness = 0.280 * fgkmm; // thickness
2279 Double_t pt1000Length = fgkmm * 1.50;
2280 Double_t pt1000Width = fgkmm * 3.10;
2281 Double_t pt1000Thickness = fgkmm * 0.60;
2282 Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
2283 Double_t capLength = fgkmm * 2.55;
2284 Double_t capWidth = fgkmm * 1.50;
2285 Double_t capThickness = fgkmm * 1.35;
2286 Double_t capY[2], capZ[2];
d0048cec 2287
54c9a3d9 2288 Double_t resLength = fgkmm * 2.20;
2289 Double_t resWidth = fgkmm * 0.80;
2290 Double_t resThickness = fgkmm * 0.35;
2291 Double_t resY[2], resZ[2];
d0048cec 2292
7f69c251 2293 Double_t extThickness = fgkmm * 0.25;
3ffa185f 2294 Double_t ext1Length = fgkmm * (26.7 - 10.0);
ddf00e3c 2295 Double_t ext2Length = fgkmm * 284.0 - ext1Length + extThickness;
3ffa185f 2296 Double_t extWidth = fgkmm * 11.0;
2297 Double_t extHeight = fgkmm * 2.5;
d0048cec 2298
2299 // position of pt1000, resistors and capacitors depends on the
54c9a3d9 2300 // bus if it's left or right one
2301 if (!isRight) {
2302 pt1000Y = 64400.;
2303 pt1000Z[0] = 66160.;
2304 pt1000Z[1] = 206200.;
2305 pt1000Z[2] = 346200.;
2306 pt1000Z[3] = 486200.;
2307 pt1000Z[4] = 626200.;
2308 pt1000Z[5] = 776200.;
2309 pt1000Z[6] = 916200.;
2310 pt1000Z[7] = 1056200.;
2311 pt1000Z[8] = 1196200.;
d0048cec 2312 pt1000Z[9] = 1336200.;
54c9a3d9 2313 resZ[0] = 1397500.;
2314 resY[0] = 26900.;
2315 resZ[1] = 682500.;
2316 resY[1] = 27800.;
2317 capZ[0] = 1395700.;
2318 capY[0] = 45700.;
2319 capZ[1] = 692600.;
2320 capY[1] = 45400.;
2321 } else {
2322 pt1000Y = 66100.;
2323 pt1000Z[0] = 319700.;
2324 pt1000Z[1] = 459700.;
2325 pt1000Z[2] = 599700.;
2326 pt1000Z[3] = 739700.;
2327 pt1000Z[4] = 879700.;
2328 pt1000Z[5] = 1029700.;
2329 pt1000Z[6] = 1169700.;
2330 pt1000Z[7] = 1309700.;
2331 pt1000Z[8] = 1449700.;
d0048cec 2332 pt1000Z[9] = 1589700.;
54c9a3d9 2333 capY[0] = 44500.;
2334 capZ[0] = 266700.;
2335 capY[1] = 44300.;
2336 capZ[1] = 974700.;
2337 resZ[0] = 266500.;
2338 resY[0] = 29200.;
2339 resZ[1] = 974600.;
2340 resY[1] = 29900.;
2341 } // end if isRight
2342 Int_t i;
2343 pt1000Y *= 1E-4 * fgkmm;
2344 for (i = 0; i < 10; i++) {
2345 pt1000Z[i] *= 1E-4 * fgkmm;
2346 if (i < 2) {
2347 capZ[i] *= 1E-4 * fgkmm;
2348 capY[i] *= 1E-4 * fgkmm;
2349 resZ[i] *= 1E-4 * fgkmm;
2350 resY[i] *= 1E-4 * fgkmm;
2351 } // end if iM2
2352 } // end for i
d0048cec 2353
54c9a3d9 2354 Double_t &fullLength = sizes[1];
2355 Double_t &fullWidth = sizes[2];
2356 Double_t &fullThickness = sizes[0];
2357 fullLength = busLength;
2358 fullWidth = busWidth;
2359 // add the thickness of the thickest component on bus (capacity)
d0048cec 2360 fullThickness = busThickness + capThickness;
54c9a3d9 2361
2362 // ** VOLUMES **
2363 TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDpixelBus");
d0048cec 2364 TGeoVolume *bus = mgr->MakeBox("ITSSPDbus", medBus, 0.5*busThickness,
54c9a3d9 2365 0.5*busWidth, 0.5*busLength);
2366 TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",medPt1000,
2367 0.5*pt1000Thickness,0.5*pt1000Width, 0.5*pt1000Length);
2368 TGeoVolume *res = mgr->MakeBox("ITSSPDresistor", medRes, 0.5*resThickness,
2369 0.5*resWidth, 0.5*resLength);
2370 TGeoVolume *cap = mgr->MakeBox("ITSSPDcapacitor", medCap, 0.5*capThickness,
2371 0.5*capWidth, 0.5*capLength);
d0048cec 2372
954323d3 2373 char extname[12];
6932f314 2374 snprintf(extname,12,"Extender1l%d",ilayer);
954323d3 2375 TGeoVolume *ext1 = mgr->MakeBox(extname, medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length);
6932f314 2376 snprintf(extname,12,"Extender2l%d",ilayer);
954323d3 2377 TGeoVolume *ext2 = mgr->MakeBox(extname, medExt, 0.5*extHeight - 2.*extThickness, 0.5*extWidth, 0.5*extThickness);
2378 TGeoVolume *ext3=0;
6932f314 2379 snprintf(extname,12,"Extender3l%d",ilayer);
954323d3 2380 if (ilayer==1) {
2381 Double_t halflen=(0.5*ext2Length + extThickness);
2382 Double_t xprof[6],yprof[6];
2383 Double_t alpha=24;
2384 xprof[0] = -halflen;
2385 yprof[0] = -0.5*extThickness;
2386 xprof[1] = halflen/2;
2387 yprof[1] = yprof[0];
2388 xprof[2] = xprof[1] + 0.5*halflen*CosD(alpha);
2389 yprof[2] = yprof[1] + 0.5*halflen*SinD(alpha);
2390 xprof[3] = xprof[2] - extThickness*SinD(alpha);
2391 yprof[3] = yprof[2] + extThickness*CosD(alpha);
2392 InsidePoint(xprof[0], yprof[0], xprof[1], yprof[1], xprof[2], yprof[2],
2393 extThickness, xprof[4], yprof[4]);
2394 xprof[5] = xprof[0];
2395 yprof[5] = 0.5*extThickness;
2396 TGeoXtru *ext3sh = new TGeoXtru(2);
2397 ext3sh->DefinePolygon(6, xprof, yprof);
2398 ext3sh->DefineSection(0, -0.5*(extWidth-0.8*fgkmm));
2399 ext3sh->DefineSection(1, 0.5*(extWidth-0.8*fgkmm));
2400 ext3 = new TGeoVolume(extname, ext3sh, medExt);
2401 } else
2402 ext3 = mgr->MakeBox(extname, medExt, 0.5*extThickness, 0.5*(extWidth-0.8*fgkmm), 0.5*ext2Length + extThickness); // Hardcode fix of a small overlap
54c9a3d9 2403 bus->SetLineColor(kYellow + 2);
2404 pt1000->SetLineColor(kGreen + 3);
2405 res->SetLineColor(kRed + 1);
2406 cap->SetLineColor(kBlue - 7);
7f69c251 2407 ext1->SetLineColor(kGray);
3ffa185f 2408 ext2->SetLineColor(kGray);
2409 ext3->SetLineColor(kGray);
54c9a3d9 2410
2411 // ** MOVEMENTS AND POSITIONEMENT **
2412 // bus
d0048cec 2413 TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness -
54c9a3d9 2414 fullThickness), 0.0, 0.0);
2415 container->AddNode(bus, 1, trBus);
2416 Double_t zRef, yRef, x, y, z;
2417 if (isRight) {
2418 zRef = -0.5*fullLength;
2419 yRef = -0.5*fullWidth;
2420 } else {
2421 zRef = -0.5*fullLength;
2422 yRef = -0.5*fullWidth;
2423 } // end if isRight
2424 // pt1000
2425 x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
2426 for (i = 0; i < 10; i++) {
2427 y = yRef + pt1000Y;
2428 z = zRef + pt1000Z[i];
2429 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2430 container->AddNode(pt1000, i+1, tr);
2431 } // end for i
2432 // capacitors
2433 x = 0.5*(capThickness - fullThickness) + busThickness;
2434 for (i = 0; i < 2; i++) {
2435 y = yRef + capY[i];
2436 z = zRef + capZ[i];
2437 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2438 container->AddNode(cap, i+1, tr);
2439 } // end for i
2440 // resistors
2441 x = 0.5*(resThickness - fullThickness) + busThickness;
2442 for (i = 0; i < 2; i++) {
2443 y = yRef + resY[i];
2444 z = zRef + resZ[i];
2445 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2446 container->AddNode(res, i+1, tr);
2447 } // end for i
d0048cec 2448
7f69c251 2449 // extender
22726349 2450 if (ilayer == 2) {
3ffa185f 2451 if (isRight) {
2452 y = 0.5 * (fullWidth - extWidth) - 0.1;
2453 z = 0.5 * (-fullLength + fgkmm * 10.0);
2454 }
2455 else {
2456 y = 0.5 * (fullWidth - extWidth) - 0.1;
2457 z = 0.5 * ( fullLength - fgkmm * 10.0);
2458 }
22726349 2459 }
2460 else {
2461 if (isRight) {
2462 y = -0.5 * (fullWidth - extWidth);
2463 z = 0.5 * (-fullLength + fgkmm * 10.0);
2464 }
2465 else {
2466 y = -0.5 * (fullWidth - extWidth);
2467 z = 0.5 * ( fullLength - fgkmm * 10.0);
2468 }
2469 }
3ffa185f 2470 x = 0.5 * (extThickness - fullThickness) + busThickness;
2471 //y = 0.5 * (fullWidth - extWidth);
2472 TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z);
2473 if (isRight) {
2474 z -= 0.5 * (ext1Length - extThickness);
2475 }
2476 else {
2477 z += 0.5 * (ext1Length - extThickness);
2478 }
2479 x += 0.5*(extHeight - 3.*extThickness);
2480 TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z);
2481 if (isRight) {
2482 z -= 0.5 * (ext2Length - extThickness) + 2.5*extThickness;
2483 }
2484 else {
2485 z += 0.5 * (ext2Length - extThickness) + 2.5*extThickness;
2486 }
2487 x += 0.5*(extHeight - extThickness) - 2.*extThickness;
954323d3 2488 TGeoCombiTrans *trExt3=0;
2489 if (ilayer==1) {
2490 if (isRight)
2491 trExt3 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",0.,-90.,90.));
2492 else
2493 trExt3 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",0., 90.,90.));
2494 } else
2495 trExt3 = new TGeoCombiTrans(x, y, z, 0);
3ffa185f 2496 container->AddNode(ext1, 0, trExt1);
2497 container->AddNode(ext2, 0, trExt2);
2498 container->AddNode(ext3, 0, trExt3);
d0048cec 2499
54c9a3d9 2500 sizes[3] = yRef + pt1000Y;
2501 sizes[4] = zRef + pt1000Z[2];
2502 sizes[5] = zRef + pt1000Z[7];
d0048cec 2503
54c9a3d9 2504 return container;
592651e2 2505}
7f69c251 2506
2507//______________________________________________________________________
44d18d38 2508TList* AliITSv11GeometrySPD::CreateConeModule(Bool_t sideC, const Double_t angrot,
96eb8210 2509 TGeoManager *mgr) const
7f69c251 2510{
96eb8210 2511 //
2512 // Creates all services modules and places them in a TList
2513 // angrot is the rotation angle (passed as an argument to avoid
2514 // defining the same quantity in two different places)
2515 //
45c52bb2 2516 // Created: ?? ??? 2008 A. Pulvirenti
2517 // Updated: 03 May 2010 M. Sitta
2518 // Updated: 20 Jun 2010 A. Pulvirenti Optical patch panels
2519 // Updated: 22 Jun 2010 M. Sitta Fiber cables
c890eba4 2520 // Updated: 04 Jul 2010 M. Sitta Water cooling
44d18d38 2521 // Updated: 08 Jul 2010 A. Pulvirenti Air cooling on Side C
96eb8210 2522 //
2523
7f69c251 2524 TGeoMedium *medInox = GetMedium("INOX$",mgr);
45c52bb2 2525 //TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
2526 TGeoMedium *medExtB = GetMedium("SPD-BUS CU KAPTON$", mgr);
2527 TGeoMedium *medExtM = GetMedium("SPD-MCM CU KAPTON$", mgr);
3ffa185f 2528 TGeoMedium *medPlate = GetMedium("SPD C (M55J)$", mgr);
96eb8210 2529 TGeoMedium *medFreon = GetMedium("Freon$", mgr);
2530 TGeoMedium *medGas = GetMedium("GASEOUS FREON$", mgr);
45c52bb2 2531 TGeoMedium *medFibs = GetMedium("SDD OPTICFIB$",mgr);
c890eba4 2532 TGeoMedium *medCopper= GetMedium("COPPER$",mgr);
44d18d38 2533 TGeoMedium *medPVC = GetMedium("PVC$",mgr);
d0048cec 2534
3ffa185f 2535 Double_t extThickness = fgkmm * 0.25;
2536 Double_t ext1Length = fgkmm * (26.7 - 10.0);
96eb8210 2537// Double_t ext2Length = fgkmm * (285.0 - ext1Length + extThickness);
2538 Double_t ext2Length = fgkmm * 285.0 - ext1Length + extThickness;
d0048cec 2539
96eb8210 2540 const Double_t kCableThickness = 1.5 *fgkmm;
954323d3 2541 Double_t cableL0 = 10.0 * fgkmm;
96eb8210 2542 Double_t cableL1 = 340.0 * fgkmm - extThickness - ext1Length - ext2Length;
2543 Double_t cableL2 = 300.0 * fgkmm;
7f69c251 2544 //Double_t cableL3 = 570.0 * fgkmm;
2545 Double_t cableL3 = 57.0 * fgkmm;
2546 Double_t cableW1 = 11.0 * fgkmm;
2547 Double_t cableW2 = 30.0 * fgkmm;
2548 Double_t cableW3 = 50.0 * fgkmm;
d0048cec 2549
954323d3 2550 const Double_t kMCMLength = cableL0 + cableL1 + cableL2 + cableL3;
96eb8210 2551 const Double_t kMCMWidth = cableW1;
2552 const Double_t kMCMThickness = 1.2 *fgkmm;
d0048cec 2553
96eb8210 2554 const Double_t kPlateLength = 200.0 *fgkmm;
2555 const Double_t kPlateWidth = 50.0 *fgkmm;
2556 const Double_t kPlateThickness = 5.0 *fgkmm;
2557
45c52bb2 2558 const Double_t kConeTubeRmin = 2.0 *fgkmm;
2559 const Double_t kConeTubeRmax = 3.0 *fgkmm;
96eb8210 2560
45c52bb2 2561 const Double_t kHorizTubeLen = 150.0 *fgkmm;
4c8afd2e 2562 const Double_t kYtoHalfStave = 9.5 *fgkmm;
c890eba4 2563
2564 const Double_t kWaterCoolRMax = 2.6 *fgkmm;
2565 const Double_t kWaterCoolThick = 0.04 *fgkmm;
2566 const Double_t kWaterCoolLen = 250.0 *fgkmm;
2567 const Double_t kWCPlateThick = 0.5 *fgkmm;
2568 const Double_t kWCPlateWide = 33.0 *fgkmm;
2569 const Double_t kWCPlateLen = 230.0 *fgkmm;
2570 const Double_t kWCFittingRext1 = 2.4 *fgkmm;
2571 const Double_t kWCFittingRext2 = 3.7 *fgkmm;
2572 const Double_t kWCFittingRint1 = 1.9 *fgkmm;
2573 const Double_t kWCFittingRint2 = kWaterCoolRMax;
2574 const Double_t kWCFittingLen1 = 7.0 *fgkmm;
2575 const Double_t kWCFittingLen2 = 8.0 *fgkmm;
44d18d38 2576
2577 const Double_t kCollWidth = 40.0 *fgkmm;
2578 const Double_t kCollLength = 60.0 *fgkmm;
2579 const Double_t kCollThickness = 10.0 *fgkmm;
2580 const Double_t kCollTubeThick = 1.0 *fgkmm;
2581 const Double_t kCollTubeRadius = 7.0 *fgkmm;
8bb39321 2582 const Double_t kCollTubeLength = 205.0 *fgkmm;
45c52bb2 2583
2584 const Double_t kOptFibDiamet = 4.5 *fgkmm;
d0048cec 2585
7f69c251 2586 Double_t x[12], y[12];
96eb8210 2587 Double_t xloc, yloc, zloc;
2588
2589 Int_t kPurple = 6; // Purple (Root does not define it)
2590
c890eba4 2591 TGeoVolumeAssembly* container[5];
8bb39321 2592 if (sideC)
2593 container[0] = new TGeoVolumeAssembly("ITSSPDConeModuleC");
2594 else
2595 container[0] = new TGeoVolumeAssembly("ITSSPDConeModuleA");
96eb8210 2596 container[1] = new TGeoVolumeAssembly("ITSSPDCoolingModuleSideA");
2597 container[2] = new TGeoVolumeAssembly("ITSSPDCoolingModuleSideC");
45c52bb2 2598 container[3] = new TGeoVolumeAssembly("ITSSPDPatchPanelModule");
c890eba4 2599 container[4] = new TGeoVolumeAssembly("ITSSPDWaterCooling");
d0048cec 2600
96eb8210 2601 // The extender on the cone as a Xtru
954323d3 2602 x[0] = -cableL0;
7f69c251 2603 y[0] = 0.0 + 0.5 * cableW1;
d0048cec 2604
954323d3 2605 x[1] = x[0] + cableL0 + cableL1 - 0.5*(cableW2 - cableW1);
7f69c251 2606 y[1] = y[0];
d0048cec 2607
954323d3 2608 x[2] = x[0] + cableL0 + cableL1;
7f69c251 2609 y[2] = y[1] + 0.5*(cableW2 - cableW1);
d0048cec 2610
7f69c251 2611 x[3] = x[2] + cableL2;
2612 y[3] = y[2];
d0048cec 2613
7f69c251 2614 x[4] = x[3] + 0.5*(cableW3 - cableW2);
2615 y[4] = y[3] + 0.5*(cableW3 - cableW2);
d0048cec 2616
7f69c251 2617 x[5] = x[4] + cableL3 - 0.5*(cableW3 - cableW2);
2618 y[5] = y[4];
d0048cec 2619
7f69c251 2620 for (Int_t i = 6; i < 12; i++) {
2621 x[i] = x[11 - i];
2622 y[i] = -y[11 - i];
2623 }
d0048cec 2624
7f69c251 2625 TGeoXtru *shCable = new TGeoXtru(2);
2626 shCable->DefinePolygon(12, x, y);
96eb8210 2627 shCable->DefineSection(0, 0.0);
2628 shCable->DefineSection(1, kCableThickness);
d0048cec 2629
45c52bb2 2630 TGeoVolume *volCable = new TGeoVolume("ITSSPDExtender", shCable, medExtB);
7f69c251 2631 volCable->SetLineColor(kGreen);
d0048cec 2632
96eb8210 2633 // The MCM extender on the cone as a Xtru
2634 TGeoBBox *shMCMExt = new TGeoBBox(0.5*kMCMLength,
2635 0.5*kMCMWidth,
2636 0.5*kMCMThickness);
d0048cec 2637
96eb8210 2638 TGeoVolume *volMCMExt = new TGeoVolume("ITSSPDExtenderMCM",
45c52bb2 2639 shMCMExt, medExtM);
7f69c251 2640 volMCMExt->SetLineColor(kGreen+3);
d0048cec 2641
96eb8210 2642 // The support plate on the cone as a composite shape
2643 Double_t thickness = kCableThickness + kMCMThickness;
2644 TGeoBBox *shOut = new TGeoBBox("ITSSPD_shape_plateout",
2645 0.5*kPlateLength,
2646 0.5*kPlateWidth,
2647 0.5*kPlateThickness);
2648 TGeoBBox *shIn = new TGeoBBox("ITSSPD_shape_platein" ,
2649 0.5*kPlateLength,
2650 0.5*cableW2,
2651 0.5*thickness);
2652 Char_t string[255];
6932f314 2653 snprintf(string, 255, "%s-%s", shOut->GetName(), shIn->GetName());
96eb8210 2654 TGeoCompositeShape *shPlate = new TGeoCompositeShape("ITSSPDPlate_shape",
2655 string);
d0048cec 2656
96eb8210 2657 TGeoVolume *volPlate = new TGeoVolume("ITSSPDPlate",
2658 shPlate, medPlate);
2659 volPlate->SetLineColor(kRed);
44d18d38 2660
2661 // The air cooling tubes
2662 TGeoBBox *shCollBox = new TGeoBBox("ITSSPD_shape_collector_box", 0.5*kCollLength, 0.5*kCollWidth, 0.5*kCollThickness);
2663 TGeoTube *shCollTube = new TGeoTube("ITSSPD_shape_collector_tube",kCollTubeRadius - kCollTubeThick, kCollTubeRadius, 0.5*kCollTubeLength);
2664 TGeoVolume *volCollBox = new TGeoVolume("ITSSPDCollectorBox", shCollBox, medPVC);
2665 TGeoVolume *volCollTube = new TGeoVolume("ITSSPDCollectorTube", shCollTube, medPVC);
2666 volCollBox->SetLineColor(kAzure);
2667 volCollTube->SetLineColor(kAzure);
d0048cec 2668
96eb8210 2669 // The cooling tube on the cone as a Ctub
8bb39321 2670 Double_t tubeLength = shCable->GetX(5) - shCable->GetX(0) + kYtoHalfStave -0.85;
96eb8210 2671 TGeoCtub *shTube = new TGeoCtub(0, kConeTubeRmax, 0.5*tubeLength, 0, 360,
2672 0, SinD(angrot/2), -CosD(angrot/2),
2673 0, 0, 1);
2674
2675 TGeoVolume *volTubeA = new TGeoVolume("ITSSPDCoolingTubeOnConeA",
2676 shTube, medInox);
2677 volTubeA->SetLineColor(kGray);
2678
2679 TGeoVolume *volTubeC = new TGeoVolume("ITSSPDCoolingTubeOnConeC",
2680 shTube, medInox);
2681 volTubeC->SetLineColor(kGray);
2682
2683 // The freon in the cooling tubes on the cone as a Ctub
2684 TGeoCtub *shFreon = new TGeoCtub(0, kConeTubeRmin, 0.5*tubeLength, 0, 360,
2685 0, SinD(angrot/2), -CosD(angrot/2),
2686 0, 0, 1);
2687
2688 TGeoVolume *volFreon = new TGeoVolume("ITSSPDCoolingFreonOnCone",
2689 shFreon, medFreon);
2690 volFreon->SetLineColor(kPurple);
2691
2692 TGeoVolume *volGasFr = new TGeoVolume("ITSSPDCoolingFreonGasOnCone",
2693 shFreon, medGas);
2694 volGasFr->SetLineColor(kPurple);
2695
2696 // The cooling tube inside the cylinder as a Ctub
2697 TGeoCtub *shCylTub = new TGeoCtub(0, kConeTubeRmax,
2698 0.5*kHorizTubeLen, 0, 360,
2699 0, 0, -1,
2700 0, SinD(angrot/2), CosD(angrot/2));
2701
2702 TGeoVolume *volCylTubA = new TGeoVolume("ITSSPDCoolingTubeOnCylA",
2703 shCylTub, medInox);
2704 volCylTubA->SetLineColor(kGray);
2705
2706 TGeoVolume *volCylTubC = new TGeoVolume("ITSSPDCoolingTubeOnCylC",
2707 shCylTub, medInox);
2708 volCylTubC->SetLineColor(kGray);
2709
2710 // The freon in the cooling tubes in the cylinder as a Ctub
2711 TGeoCtub *shCylFr = new TGeoCtub(0, kConeTubeRmin,
2712 0.5*kHorizTubeLen, 0, 360,
2713 0, 0, -1,
2714 0, SinD(angrot/2), CosD(angrot/2));
2715
2716 TGeoVolume *volCylFr = new TGeoVolume("ITSSPDCoolingFreonOnCyl",
2717 shCylFr, medFreon);
2718 volCylFr->SetLineColor(kPurple);
2719
2720 TGeoVolume *volCylGasFr = new TGeoVolume("ITSSPDCoolingFreonGasOnCyl",
2721 shCylFr, medGas);
2722 volCylGasFr->SetLineColor(kPurple);
2723
45c52bb2 2724 // The optical fibers bundle on the cone as a Tube
5d9d4033 2725 Double_t optLength = shCable->GetX(5) - shCable->GetX(0) + kYtoHalfStave -0.85;
45c52bb2 2726 TGeoTube *shOptFibs = new TGeoTube(0., 0.5*kOptFibDiamet, 0.5*optLength);
2727
2728 TGeoVolume *volOptFibs = new TGeoVolume("ITSSPDOpticalFibersOnCone",
2729 shOptFibs, medFibs);
2730 volOptFibs->SetLineColor(kOrange);
2731
2732 // The optical patch panels
2733 TArrayD psizes;
2734 TGeoVolume *volPatch = CreatePatchPanel(psizes, mgr);
2735
c890eba4 2736 // The water cooling tube as a Tube
2737 TGeoTube *shWatCool = new TGeoTube(kWaterCoolRMax-kWaterCoolThick,
2738 kWaterCoolRMax, kWaterCoolLen/2);
2739
2740 TGeoVolume *volWatCool = new TGeoVolume("ITSSPDWaterCoolingOnCone",
2741 shWatCool, medInox);
2742 volWatCool->SetLineColor(kGray);
2743
2744 // The support plate for the water tubes: a Tubs and a BBox
2745 TGeoTubeSeg *shWCPltT = new TGeoTubeSeg(kWaterCoolRMax,
2746 kWaterCoolRMax+kWCPlateThick,
2747 kWCPlateLen/2, 180., 360.);
2748
2749 Double_t plateBoxWide = (kWCPlateWide - 2*kWaterCoolRMax)/2;
2750 TGeoBBox *shWCPltB = new TGeoBBox(plateBoxWide/2,
2751 kWCPlateThick/2,
2752 kWCPlateLen/2);
2753
2754 TGeoVolume *volWCPltT = new TGeoVolume("ITSSPDWaterCoolingTubsPlate",
2755 shWCPltT, medPlate);
2756 volWCPltT->SetLineColor(kRed);
2757
2758 TGeoVolume *volWCPltB = new TGeoVolume("ITSSPDWaterCoolingBoxPlate",
2759 shWCPltB, medPlate);
2760 volWCPltB->SetLineColor(kRed);
2761
2762 // The fitting for the water cooling tube: a Pcon
2763 TGeoPcon *shFitt = new TGeoPcon(0., 360., 4);
2764 shFitt->Z(0) = -kWCFittingLen1;
2765 shFitt->Rmin(0) = kWCFittingRint1;
2766 shFitt->Rmax(0) = kWCFittingRext1;
2767
2768 shFitt->Z(1) = 0;
2769 shFitt->Rmin(1) = kWCFittingRint1;
2770 shFitt->Rmax(1) = kWCFittingRext1;
2771
2772 shFitt->Z(2) = 0;
2773 shFitt->Rmin(2) = kWCFittingRint2;
2774 shFitt->Rmax(2) = kWCFittingRext2;
2775
2776 shFitt->Z(3) = kWCFittingLen2;
2777 shFitt->Rmin(3) = kWCFittingRint2;
2778 shFitt->Rmax(3) = kWCFittingRext2;
2779
2780 TGeoVolume *volFitt = new TGeoVolume("ITSSPDWaterCoolingFitting",
2781 shFitt, medCopper);
2782 volFitt->SetLineColor(kOrange);
2783
96eb8210 2784 // Now place everything in the containers
2785 volTubeA->AddNode(volGasFr, 1, 0);
2786 volTubeC->AddNode(volFreon, 1, 0);
2787
2788 volCylTubA->AddNode(volCylGasFr, 1, 0);
2789 volCylTubC->AddNode(volCylFr , 1, 0);
2790
2791 container[0]->AddNode(volCable, 1, 0);
2792
954323d3 2793 xloc = shMCMExt->GetDX() - cableL0;
96eb8210 2794 zloc = shMCMExt->GetDZ();
2795 container[0]->AddNode(volMCMExt, 1,
2796 new TGeoTranslation( xloc, 0.,-zloc));
2797
2798 xloc = shMCMExt->GetDX();
2799 zloc = shCable->GetZ(1)/2 - shMCMExt->GetDZ();
2800 container[0]->AddNode(volPlate, 1,
2801 new TGeoTranslation( xloc, 0., zloc));
2802
45c52bb2 2803 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
2804 rot2->SetName("rotPatch");
2805 rot2->RotateX(90.0);
2806 rot2->RotateY(163.0);
2807 //rot2->RotateZ(132.5);
2808
44d18d38 2809 // add collectors only on side C
2810 if (sideC)
2811 {
2812 TGeoTranslation *trCollBox = new TGeoTranslation(xloc - 0.5*kPlateLength + 0.5*kCollLength, 0.0, +0.5*(kPlateThickness+1.1*kCollThickness));
2813 TGeoRotation *rotCollTube = new TGeoRotation(*gGeoIdentity);
2814 rotCollTube->RotateY(90.0);
2815 TGeoCombiTrans *trCollTube = new TGeoCombiTrans(xloc + 0.5*kCollTubeLength - (0.5*kPlateLength - kCollLength), 0.0, +0.5*(kPlateThickness+2.0*kCollTubeRadius+kCollTubeThick), rotCollTube);
2816 container[0]->AddNode(volCollBox, 1, trCollBox);
2817 container[0]->AddNode(volCollTube, 1, trCollTube);
2818 }
2819
5d9d4033 2820 Double_t dxPatch = 2.75;
45c52bb2 2821 Double_t dzPatch = 2.8;
2822 TGeoCombiTrans *tr2 = new TGeoCombiTrans(1.7*ext2Length - dxPatch, 0.0, dzPatch, rot2);
2823 container[3]->AddNode(volPatch, 0, tr2);
2824
96eb8210 2825 xloc = shTube->GetRmax();
2826 yloc = shTube->GetRmax();
2827 zloc = shTube->GetDz() - shTube->GetRmax() - kYtoHalfStave;
2828 container[1]->AddNode(volTubeA, 1,
2829 new TGeoTranslation(-xloc, -yloc, zloc));
2830 container[2]->AddNode(volTubeC, 1,
2831 new TGeoTranslation(-xloc, -yloc, zloc));
2832
2833 xloc = shTube->GetRmax();
2834 yloc = (shCylTub->GetDz())*SinD(angrot) - shTube->GetRmax();
2835 zloc = (shCylTub->GetDz())*CosD(angrot) + shTube->GetRmax() +kYtoHalfStave;
2836 container[1]->AddNode(volCylTubA, 1,
2837 new TGeoCombiTrans(-xloc, yloc,-zloc,
2838 new TGeoRotation("",0.,angrot,0.)));
2839 container[2]->AddNode(volCylTubC, 1,
2840 new TGeoCombiTrans(-xloc, yloc,-zloc,
2841 new TGeoRotation("",0.,angrot,0.)));
2842
45c52bb2 2843 xloc = shOptFibs->GetRmax() + 2*shTube->GetRmax();
c890eba4 2844 yloc = 1.6*shOptFibs->GetRmax();
45c52bb2 2845 zloc = shOptFibs->GetDZ() - shTube->GetRmax() - kYtoHalfStave;
2846 container[1]->AddNode(volOptFibs, 1,
2847 new TGeoTranslation(-xloc, -yloc, zloc));
2848 container[2]->AddNode(volOptFibs, 1,
2849 new TGeoTranslation(-xloc, -yloc, zloc));
2850
c890eba4 2851 yloc = shWatCool->GetRmax();
2852 zloc = (2*shTube->GetDz() - shTube->GetRmax() - kYtoHalfStave)/2;
2853 container[4]->AddNode(volWatCool, 1,
2854 new TGeoTranslation(0, -yloc, zloc));
2855
2856 container[4]->AddNode(volWCPltT, 1,
2857 new TGeoTranslation(0, -yloc, zloc));
2858
2859 yloc -= shWCPltB->GetDY();
2860 xloc = shWatCool->GetRmax() + shWCPltB->GetDX();
2861 container[4]->AddNode(volWCPltB, 1,
2862 new TGeoTranslation( xloc, -yloc, zloc));
2863 container[4]->AddNode(volWCPltB, 2,
2864 new TGeoTranslation(-xloc, -yloc, zloc));
2865
2866 yloc = shWatCool->GetRmax();
2867 zloc -= shWatCool->GetDz();
2868 container[4]->AddNode(volFitt, 1,
2869 new TGeoTranslation(0, -yloc, zloc));
2870
96eb8210 2871 // Finally create the list of assemblies and return it to the caller
0b9c8a10 2872 TList* conemodulelist = new TList();
0b9c8a10 2873 conemodulelist->Add(container[0]);
2874 conemodulelist->Add(container[1]);
96eb8210 2875 conemodulelist->Add(container[2]);
45c52bb2 2876 conemodulelist->Add(container[3]);
c890eba4 2877 conemodulelist->Add(container[4]);
d0048cec 2878
0b9c8a10 2879 return conemodulelist;
7f69c251 2880}
2881
2882//______________________________________________________________________
2883void AliITSv11GeometrySPD::CreateCones(TGeoVolume *moth) const
2884{
96eb8210 2885 //
2886 // Places all services modules in the mother reference system
2887 //
2888 // Created: ?? ??? 2008 Alberto Pulvirenti
2889 // Updated: 03 May 2010 Mario Sitta
c890eba4 2890 // Updated: 04 Jul 2010 Mario Sitta Water cooling
96eb8210 2891 //
d0048cec 2892
96eb8210 2893 const Int_t kNumberOfModules = 10;
2894
2895 const Double_t kInnerRadius = 80.775*fgkmm;
8bb39321 2896 const Double_t kZTrans = 451.800*fgkmm;
96eb8210 2897 const Double_t kAlphaRot = 46.500*fgkDegree;
c890eba4 2898 const Double_t kAlphaSpaceCool = 9.200*fgkDegree;
96eb8210 2899
44d18d38 2900 TList* modulelistA = CreateConeModule(kFALSE, 90-kAlphaRot);
2901 TList* modulelistC = CreateConeModule(kTRUE , 90-kAlphaRot);
2902 TList* &modulelist = modulelistC;
2903 TGeoVolumeAssembly* module, *moduleA, *moduleC;
d0048cec 2904
96eb8210 2905 Double_t xloc, yloc, zloc;
2906
7f69c251 2907 //Double_t angle[10] = {18., 54., 90., 126., 162., -18., -54., -90., -126., -162.};
45c52bb2 2908 // anglem for cone modules (cables and cooling tubes)
2909 // anglep for pathc panels
96eb8210 2910 Double_t anglem[10] = {18., 54., 90., 126., 162., 198., 234., 270., 306., 342.};
45c52bb2 2911 Double_t anglep[10] = {18., 62., 90., 115., 162., 198., 242., 270., 295., 342.};
96eb8210 2912// Double_t angle1m[10] = {23., 53., 90., 127., 157., 203.0, 233.0, 270.0, 307.0, 337.0};
2913// Double_t angle2m[10] = {18., 53., 90., 126., 162., 198.0, 233.0, 270.0, 309.0, 342.0};
2914// Double_t angle1c[10] = {23., 53., 90., 124., 157., 203.0, 233.0, 270.0, 304.0, 337.0};
2915// Double_t angle2c[10] = {18., 44., 90., 126., 162., 198.0, 223.0, 270.0, 309.0, 342.0};
0b9c8a10 2916
2917 // First add the cables
44d18d38 2918 moduleA = (TGeoVolumeAssembly*)modulelistA->At(0);
2919 moduleC = (TGeoVolumeAssembly*)modulelistC->At(0);
96eb8210 2920 for (Int_t i = 0; i < kNumberOfModules; i++) {
7f69c251 2921 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
96eb8210 2922 rot1->RotateY(-kAlphaRot);
2923 rot1->RotateZ(anglem[i]);
2924 xloc = kInnerRadius*CosD(anglem[i]);
2925 yloc = kInnerRadius*SinD(anglem[i]);
2926 zloc = kZTrans;
44d18d38 2927 moth->AddNode(moduleA, 2*i+2,
96eb8210 2928 new TGeoCombiTrans( xloc, yloc, zloc, rot1));
2929
7f69c251 2930 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
96eb8210 2931 rot2->RotateY(180.-kAlphaRot);
2932 rot2->RotateZ(anglem[i]);
2933 xloc = kInnerRadius*CosD(anglem[i]);
2934 yloc = kInnerRadius*SinD(anglem[i]);
2935 zloc = kZTrans;
44d18d38 2936 moth->AddNode(moduleC, 2*i+1,
96eb8210 2937 new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2));
0b9c8a10 2938 }
2939
96eb8210 2940 // Then the cooling tubes on Side A
0b9c8a10 2941 module = (TGeoVolumeAssembly*)modulelist->At(1);
96eb8210 2942 Double_t anglec;
2943 for (Int_t i = 0; i < kNumberOfModules; i++) {
2944 anglec = anglem[i] + kAlphaSpaceCool;
0b9c8a10 2945 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
c890eba4 2946 rot1->RotateX(-90.0+kAlphaRot-0.04); // 0.04 fixes small overlap
2947 rot1->RotateZ(-90.0+anglec);
96eb8210 2948 xloc = kInnerRadius*CosD(anglec);
2949 yloc = kInnerRadius*SinD(anglec);
c890eba4 2950 zloc = kZTrans+0.162; // 0.162 fixes small overlap
2951 moth->AddNode(module, 2*i+2,
96eb8210 2952 new TGeoCombiTrans( xloc, yloc, zloc, rot1));
2953 }
2954
45c52bb2 2955 // And the cooling tubes on Side C
96eb8210 2956 module = (TGeoVolumeAssembly*)modulelist->At(2);
2957 for (Int_t i = 0; i < kNumberOfModules; i++) {
2958 anglec = anglem[i] - kAlphaSpaceCool;
0b9c8a10 2959 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
c890eba4 2960 rot2->RotateX(-90.0+kAlphaRot-0.04); // 0.04 fixes small overlap
96eb8210 2961 rot2->RotateY(180.);
c890eba4 2962 rot2->RotateZ(90.0+anglec);
96eb8210 2963 xloc = kInnerRadius*CosD(anglec);
2964 yloc = kInnerRadius*SinD(anglec);
c890eba4 2965 zloc = kZTrans+0.162; // 0.162 fixes small overlap
96eb8210 2966 moth->AddNode(module, 2*i+1,
2967 new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2));
7f69c251 2968 }
96eb8210 2969
c890eba4 2970 // Then the water cooling tubes
2971 module = (TGeoVolumeAssembly*)modulelist->At(4);
2972 for (Int_t i = 1; i < kNumberOfModules; i++) { // i = 1,2,...,9
2973 if (i != 5) { // There is no tube in this position
2974 anglec = (anglem[i-1]+anglem[i])/2;
2975 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
2976 rot1->RotateX(-90.0+kAlphaRot);
2977 rot1->RotateZ(-90.0+anglec);
2978 xloc = kInnerRadius*CosD(anglec);
2979 yloc = kInnerRadius*SinD(anglec);
2980 zloc = kZTrans;
2981 moth->AddNode(module, 2*i+2,
2982 new TGeoCombiTrans( xloc, yloc, zloc, rot1));
2983
2984 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
2985 rot2->RotateX(-90.0+kAlphaRot);
2986 rot2->RotateY(180.);
2987 rot2->RotateZ(90.0+anglec);
2988 xloc = kInnerRadius*CosD(anglec);
2989 yloc = kInnerRadius*SinD(anglec);
2990 zloc = kZTrans;
2991 moth->AddNode(module, 2*i+1,
2992 new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2));
2993 }
2994 }
2995
45c52bb2 2996 // Finally the optical patch panels
2997 module = (TGeoVolumeAssembly*)modulelist->At(3);
2998 for (Int_t i = 0; i < kNumberOfModules; i++) {
2999 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
3000 rot1->RotateY(-kAlphaRot);
3001 rot1->RotateZ(anglep[i]);
3002 xloc = kInnerRadius*CosD(anglep[i]);
3003 yloc = kInnerRadius*SinD(anglep[i]);
3004 zloc = kZTrans;
c890eba4 3005 moth->AddNode(module, 2*i+2,
45c52bb2 3006 new TGeoCombiTrans( xloc, yloc, zloc, rot1));
3007
3008 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
3009 rot2->RotateY(180.-kAlphaRot);
3010 rot2->RotateZ(anglep[i]);
3011 xloc = kInnerRadius*CosD(anglep[i]);
3012 yloc = kInnerRadius*SinD(anglep[i]);
3013 zloc = kZTrans;
3014 moth->AddNode(module, 2*i+1,
3015 new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2));
3016 }
3017
7f69c251 3018}
3019
c890eba4 3020
54c9a3d9 3021//______________________________________________________________________
3022TGeoVolume* AliITSv11GeometrySPD::CreateExtender(
3023 const Double_t *extenderParams, const TGeoMedium *extenderMedium,
3024 TArrayD& sizes) const
bc3498f4 3025{
54c9a3d9 3026 //
3027 // ------------------ CREATE AN EXTENDER ------------------------
3028 //
3029 // This function creates the following picture (in plane xOy)
3030 // Should be useful for the definition of the pixel bus and MCM extenders
d0048cec 3031 // The origin corresponds to point 0 on the picture, at half-width
3032 // in Z direction
54c9a3d9 3033 //
3034 // Y 7 6 5
3035 // ^ +---+---------------------+
3036 // | / |
3037 // | / |
3038 // 0------> X / +---------------------+
3039 // / / 3 4
3040 // / /
3041 // 9 8 / /
3042 // +-----------+ /
3043 // | /
3044 // | /
3045 // ---> +-----------+---+
3046 // | 0 1 2
3047 // |
3048 // origin (0,0,0)
3049 //
3050 //
3051 // Takes 6 parameters in the following order :
3052 // |--> par 0 : inner length [0-1] / [9-8]
3053 // |--> par 1 : thickness ( = [0-9] / [4-5])
3054 // |--> par 2 : angle of the slope
3055 // |--> par 3 : total height in local Y direction
3056 // |--> par 4 : outer length [3-4] / [6-5]
3057 // |--> par 5 : width in local Z direction
3058 //
d0048cec 3059 Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1]
3060 * TMath::Cos(extenderParams[2])) /
54c9a3d9 3061 TMath::Tan(extenderParams[2]);
3062 Double_t extenderXtruX[10] = {
3063 0 ,
3064 extenderParams[0] ,
d0048cec 3065 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2]) ,
54c9a3d9 3066 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3067 slopeDeltaX ,
3068 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
d0048cec 3069 slopeDeltaX + extenderParams[4],
54c9a3d9 3070 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
d0048cec 3071 slopeDeltaX + extenderParams[4],
54c9a3d9 3072 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
d0048cec 3073 slopeDeltaX ,
54c9a3d9 3074 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3075 slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) ,
3076 extenderParams[0] ,
3077 0
3078 };
3079 Double_t extenderXtruY[10] = {
3080 0 ,
3081 0 ,
3082 extenderParams[1] * (1-TMath::Cos(extenderParams[2])) ,
3083 extenderParams[3] - extenderParams[1] ,
3084 extenderParams[3] - extenderParams[1] ,
3085 extenderParams[3] ,
3086 extenderParams[3] ,
3087 extenderParams[3]-extenderParams[1]*(1-TMath::Cos(extenderParams[2])) ,
3088 extenderParams[1] ,
3089 extenderParams[1]
3090 };
592651e2 3091
54c9a3d9 3092 if (sizes.GetSize() != 3) sizes.Set(3);
3093 Double_t &thickness = sizes[0];
3094 Double_t &length = sizes[1];
3095 Double_t &width = sizes[2];
3096
3097 thickness = extenderParams[3];
3098 width = extenderParams[5];
3099 length = extenderParams[0]+extenderParams[1]*
3100 TMath::Sin(extenderParams[2])+slopeDeltaX+extenderParams[4];
3101
3102 // creation of the volume
3103 TGeoXtru *extenderXtru = new TGeoXtru(2);
3104 TGeoVolume *extenderXtruVol = new TGeoVolume("ITSSPDextender",extenderXtru,
3105 extenderMedium);
3106 extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY);
3107 extenderXtru->DefineSection(0,-0.5*extenderParams[4]);
3108 extenderXtru->DefineSection(1, 0.5*extenderParams[4]);
3109 return extenderXtruVol;
3110}
c890eba4 3111
54c9a3d9 3112//______________________________________________________________________
3113TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave(Bool_t isRight,
3114Int_t layer,Int_t idxCentral,Int_t idxSide,TArrayD &sizes,TGeoManager *mgr)
bc3498f4 3115{
54c9a3d9 3116 //
d0048cec 3117 // Implementation of an half-stave, which depends on the side where
3118 // we are on the stave. The convention for "left" and "right" is the
3119 // same as for the MCM. The return value is a TGeoAssembly which is
3120 // structured in such a way that the origin of its local reference
54c9a3d9 3121 // frame coincides with the origin of the whole stave.
3122 // The TArrayD passed by reference will contain details of the shape:
3123 // - sizes[0] = thickness
3124 // - sizes[1] = length
3125 // - sizes[2] = width
3126 // - sizes[3] = common 'x' position for eventual clips
3127 // - sizes[4] = common 'y' position for eventual clips
3128 // - sizes[5] = 'z' position of first clip
3129 // - sizes[6] = 'z' position of second clip
3130 //
3131
3132 // ** CHECK **
3133
3134 // idxCentral and idxSide must be different
3135 if (idxCentral == idxSide) {
3136 AliInfo("Ladders must be inserted in half-stave with "
3137 "different indexes.");
3138 idxSide = idxCentral + 1;
3139 AliInfo(Form("Central ladder will be inserted with index %d",
3140 idxCentral));
3141 AliInfo(Form("Side ladder will be inserted with index %d",idxSide));
3142 } // end if
3143
3144 // define the separations along Z direction between the objects
3145 Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders
d0048cec 3146 Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder
54c9a3d9 3147 // and the Z=0 plane in stave ref.
3148 Double_t sepLadderMCM = fgkmm * 0.3; // sep. btw the "external" ladder
3149 // and MCM
d0048cec 3150 Double_t sepBusCenter = fgkmm * 0.3; // sep. btw the bus central edge
54c9a3d9 3151 // and the Z=0 plane in stave ref.
3152
3153 // ** VOLUMES **
3154
3155 // grounding foil
3156 TArrayD grndSize(3);
3157 // This one line repalces the 3 bellow, BNS.
3158 TGeoVolume *grndVol = CreateGroundingFoil(isRight, grndSize, mgr);
3159 Double_t &grndThickness = grndSize[0];
3160 Double_t &grndLength = grndSize[1];
3161
3162 // ladder
3163 TArrayD ladderSize(3);
3164 TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr);
3165 Double_t ladderThickness = ladderSize[0];
3166 Double_t ladderLength = ladderSize[1];
3167 Double_t ladderWidth = ladderSize[2];
3168
3169 // MCM
3170 TArrayD mcmSize(3);
3171 TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr);
3172 Double_t mcmThickness = mcmSize[0];
3173 Double_t mcmLength = mcmSize[1];
3174 Double_t mcmWidth = mcmSize[2];
d0048cec 3175
54c9a3d9 3176 // bus
3177 TArrayD busSize(6);
22726349 3178 TGeoVolumeAssembly *bus = CreatePixelBus(isRight, layer, busSize, mgr);
54c9a3d9 3179 Double_t busThickness = busSize[0];
3180 Double_t busLength = busSize[1];
3181 Double_t busWidth = busSize[2];
3182
3183 // glue between ladders and pixel bus
3184 TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr);
3185 Double_t ladGlueThickness = fgkmm * 0.1175 - fgkGapLadder;
3186 TGeoVolume *ladderGlue = mgr->MakeBox("ITSSPDladderGlue",medLadGlue,
3187 0.5*ladGlueThickness, 0.5*busWidth, 0.5*busLength);
3188 ladderGlue->SetLineColor(kYellow + 5);
3189
3190 // create references for the whole object, as usual
3191 sizes.Set(7);
3192 Double_t &fullThickness = sizes[0];
3193 Double_t &fullLength = sizes[1];
3194 Double_t &fullWidth = sizes[2];
d0048cec 3195
54c9a3d9 3196 // compute the full size of the container
3197 fullLength = sepLadderCenter+2.0*ladderLength+sepLadderMCM+
3198 sepLadderLadder+mcmLength;
3199 fullWidth = ladderWidth;
3200 fullThickness = grndThickness + fgkGapLadder + mcmThickness + busThickness;
ed0e944d 3201 //cout << "HSTAVE FULL THICKNESS = " << fullThickness << endl;
54c9a3d9 3202
3203 // ** MOVEMENTS **
3204
3205 // grounding foil (shifted only along thickness)
3206 Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness;
3207 Double_t zGrnd = -0.5*grndLength;
3208 if (!isRight) zGrnd = -zGrnd;
3209 TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd);
3210
3211 // ladders (translations along thickness and length)
d0048cec 3212 // layers must be sorted going from the one at largest Z to the
54c9a3d9 3213 // one at smallest Z:
3214 // -|Zmax| ------> |Zmax|
3215 // 3 2 1 0
d0048cec 3216 // then, for layer 1 ladders they must be placed exactly this way,
3217 // and in layer 2 at the opposite. In order to remember the placements,
3218 // we define as "inner" and "outer" ladder respectively the one close
54c9a3d9 3219 // to barrel center, and the one closer to MCM, respectively.
3220 Double_t xLad, zLadIn, zLadOut;
3221 xLad = xGrnd + 0.5*(grndThickness + ladderThickness) +
3222 0.01175 - fgkGapLadder;
3223 zLadIn = -sepLadderCenter - 0.5*ladderLength;
3224 zLadOut = zLadIn - sepLadderLadder - ladderLength;
3225 if (!isRight) {
3226 zLadIn = -zLadIn;
3227 zLadOut = -zLadOut;
3228 } // end if !isRight
3229 TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity);
3230 rotLad->RotateZ(90.0);
3231 rotLad->RotateY(180.0);
3232 Double_t sensWidth = fgkmm * 12.800;
3233 Double_t chipWidth = fgkmm * 15.950;
3234 Double_t guardRingWidth = fgkmm * 0.560;
3235 Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth);
3236 TGeoCombiTrans *trLadIn = new TGeoCombiTrans(xLad,ladderShift,zLadIn,
3237 rotLad);
3238 TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad,ladderShift,zLadOut,
3239 rotLad);
3240
d0048cec 3241 // MCM (length and thickness direction, placing at same level as the
3242 // ladder, which implies to recompute the position of center, because
3243 // ladder and MCM have NOT the same thickness) the two copies of the
54c9a3d9 3244 // MCM are placed at the same distance from the center, on both sides
d0048cec 3245 Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness +
54c9a3d9 3246 0.01175 - fgkGapLadder;
3247 Double_t yMCM = 0.5*(fullWidth - mcmWidth);
3248 Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM;
d0048cec 3249 if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength +
54c9a3d9 3250 sepLadderMCM;
3251
3252 // create the correction rotations
3253 TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity);
3254 rotMCM->RotateY(90.0);
3255 TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM);
3256
3257 // glue between ladders and pixel bus
d0048cec 3258 Double_t xLadGlue = xLad + 0.5*ladderThickness + 0.01175 -
54c9a3d9 3259 fgkGapLadder + 0.5*ladGlueThickness;
3260
3261 // bus (length and thickness direction)
3262 Double_t xBus = xLadGlue + 0.5*ladGlueThickness + 0.5*busThickness;
7708d5f3 3263 Double_t yBus = 0.5*(fullWidth - busWidth) + 0.075; // Hardcode fix of a small overlap
54c9a3d9 3264 Double_t zBus = -0.5*busLength - sepBusCenter;
3265 if (!isRight) zBus = -zBus;
3266 TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus);
3267
3268 TGeoTranslation *trLadGlue = new TGeoTranslation(xLadGlue, 0.0, zBus);
3269
3270 // create the container
3271 TGeoVolumeAssembly *container = 0;
3272 if (idxCentral+idxSide==5) {
3273 container = new TGeoVolumeAssembly("ITSSPDhalf-Stave1");
3274 } else {
3275 container = new TGeoVolumeAssembly("ITSSPDhalf-Stave0");
3276 } // end if
3277
3278 // add to container all objects
3279 container->AddNode(grndVol, 1, grndTrans);
3280 // ladders are inserted in different order to respect numbering scheme
3281 // which is inverted when going from outer to inner layer
3282 container->AddNode(ladder, idxCentral+1, trLadIn);
3283 container->AddNode(ladder, idxSide+1, trLadOut);
3284 container->AddNode(ladderGlue, 1, trLadGlue);
3285 container->AddNode(mcm, 1, trMCM);
3286 container->AddNode(bus, 1, trBus);
3287
3288 // since the clips are placed in correspondence of two pt1000s,
3289 // their position is computed here, but they are not added by default
3290 // it will be the StavesInSector method which will decide to add them
3291 // anyway, to recovery some size informations on the clip, it must be
3292 // created
3293 TArrayD clipSize;
3ffa185f 3294 // TGeoVolume *clipDummy = CreateClip(clipSize, kTRUE, mgr);
54c9a3d9 3295 CreateClip(clipSize, kTRUE, mgr);
3296 // define clip movements (width direction)
3297 sizes[3] = xBus + 0.5*busThickness;
4f7d5a2a 3298 sizes[4] = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.26;
54c9a3d9 3299 sizes[5] = zBus + busSize[4];
3300 sizes[6] = zBus + busSize[5];
3301
3302 return container;
592651e2 3303}
54c9a3d9 3304//______________________________________________________________________
3305TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave(Int_t layer,
3306 TArrayD &sizes, TGeoManager *mgr)
7855ea93 3307{
54c9a3d9 3308 //
3309 // This method uses all other ones which create pieces of the stave
3310 // and assemblies everything together, in order to return the whole
3311 // stave implementation, which is returned as a TGeoVolumeAssembly,
3312 // due to the presence of some parts which could generate fake overlaps
3313 // when put on the sector.
3314 // This assembly contains, going from bottom to top in the thickness
3315 // direction:
d0048cec 3316 // - the complete grounding foil, defined by the "CreateGroundingFoil"
3317 // method which already joins some glue and real groudning foil
54c9a3d9 3318 // layers for the whole stave (left + right);
d0048cec 3319 // - 4 ladders, which are sorted according to the ALICE numbering
54c9a3d9 3320 // scheme, which depends on the layer we are building this stave for;
3321 // - 2 MCMs (a left and a right one);
3322 // - 2 pixel buses (a left and a right one);
3323 // ---
3324 // Arguments:
d0048cec 3325 // - the layer number, which determines the displacement and naming
54c9a3d9 3326 // of sensitive volumes
d0048cec 3327 // - a TArrayD passed by reference which will contain the size
54c9a3d9 3328 // of virtual box containing the stave
3329 // - the TGeoManager
3330 //
3331
3332 // create the container
3333 TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form(
3334 "ITSSPDlay%d-Stave",layer));
3335 // define the indexes of the ladders in order to have the correct order
d0048cec 3336 // keeping in mind that the staves will be inserted as they are on layer
3337 // 2, while they are rotated around their local Y axis when inserted
3338 // on layer 1, so in this case they must be put in the "wrong" order
3339 // to turn out to be right at the end. The convention is:
54c9a3d9 3340 // -|Zmax| ------> |Zmax|
3341 // 3 2 1 0
d0048cec 3342 // with respect to the "native" stave reference frame, "left" is in
54c9a3d9 3343 // the positive Z this leads the definition of these indexes:
3344 Int_t idxCentralL, idxSideL, idxCentralR, idxSideR;
3345
3346 if (layer == 1) {
3347 idxSideL = 3;
3348 idxCentralL = 2;
3349 idxCentralR = 1;
3350 idxSideR = 0;
3351 } else {
3352 idxSideL = 0;
3353 idxCentralL = 1;
3354 idxCentralR = 2;
3355 idxSideR = 3;
3356 } // end if layer ==1
d0048cec 3357
54c9a3d9 3358 // create the two half-staves
3359 TArrayD sizeL, sizeR;
3360 TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL,
3361 idxSideL, sizeL,mgr);
3362 TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR,
3363 idxSideR, sizeR, mgr);
3364 // copy the size to the stave's one
3365 sizes.Set(9);
3366 sizes[0] = sizeL[0];
3367 sizes[1] = sizeR[1] + sizeL[1];
3368 sizes[2] = sizeL[2];
3369 sizes[3] = sizeL[3];
3370 sizes[4] = sizeL[4];
3371 sizes[5] = sizeL[5];
3372 sizes[6] = sizeL[6];
3373 sizes[7] = sizeR[5];
3374 sizes[8] = sizeR[6];
3375
3376 // add to container all objects
3377 container->AddNode(hstaveL, 1);
3378 container->AddNode(hstaveR, 1);
3379
3380 return container;
bc3498f4 3381}
54c9a3d9 3382//______________________________________________________________________
bc3498f4 3383void AliITSv11GeometrySPD::SetAddStave(Bool_t *mask)
3384{
54c9a3d9 3385 //
3386 // Define a mask which states qhich staves must be placed.
d0048cec 3387 // It is a string which must contain '0' or '1' depending if
54c9a3d9 3388 // a stave must be placed or not.
d0048cec 3389 // Each place is referred to one of the staves, so the first
54c9a3d9 3390 // six characters of the string will be checked.
3391 //
3392 Int_t i;
3393
3394 for (i = 0; i < 6; i++) fAddStave[i] = mask[i];
bc3498f4 3395}
54c9a3d9 3396//______________________________________________________________________
3397void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr)
3398{
3399 //
3400 // Unification of essentially two methods:
3401 // - the one which creates the sector structure
3402 // - the one which returns the complete stave
3403 // ---
3404 // For compatibility, this method requires the same arguments
3405 // asked by "CarbonFiberSector" method, which is recalled here.
3406 // Like this cited method, this one does not return any value,
3407 // but it inserts in the mother volume (argument 'moth') all the stuff
3408 // which composes the complete SPD sector.
3409 // ---
d0048cec 3410 // In the following, the stave numbering order used for arrays is the
54c9a3d9 3411 // same as defined in the GetSectorMountingPoints():
3412 // /5
3413 // /\/4
3414 // 1\ \/3
3415 // 0|___\/2
3416 // ---
3417 // Arguments: see description of "CarbonFiberSector" method.
3418 //
3419
d0048cec 3420 Double_t shift[6]; // shift from the innermost position in the
3421 // sector placement plane (where the stave
3422 // edge is in the point where the rounded
54c9a3d9 3423 // corner begins)
3424
3425 shift[0] = fgkmm * -0.691;
3426 shift[1] = fgkmm * 5.041;
3427 shift[2] = fgkmm * 1.816;
3428 shift[3] = fgkmm * -0.610;
3429 shift[4] = fgkmm * -0.610;
3430 shift[5] = fgkmm * -0.610;
d0048cec 3431
3ffa185f 3432 // corrections after interaction with Andrea and CAD
3433 Double_t corrX[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
3434 Double_t corrY[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
d0048cec 3435
3ffa185f 3436 corrX[0] = 0.0046;
3437 corrX[1] = -0.0041;
3438 corrX[2] = corrX[3] = corrX[4] = corrX[5] = -0.0016;
d0048cec 3439
3ffa185f 3440 corrY[0] = -0.0007;
3441 corrY[1] = -0.0009;
3442 corrY[2] = corrY[3] = corrY[4] = corrY[5] = -0.0003;
d0048cec 3443
3ffa185f 3444 corrX[0] += 0.00026;
3445 corrY[0] += -0.00080;
d0048cec 3446
3ffa185f 3447 corrX[1] += 0.00018;
3448 corrY[1] += -0.00086;
d0048cec 3449
3ffa185f 3450 corrX[2] += 0.00020;
3451 corrY[2] += -0.00062;
d0048cec 3452
3ffa185f 3453 corrX[3] += 0.00017;
3454 corrY[3] += -0.00076;
d0048cec 3455
3ffa185f 3456 corrX[4] += 0.00016;
3457 corrY[4] += -0.00096;
d0048cec 3458
3ffa185f 3459 corrX[5] += 0.00018;
3460 corrY[5] += -0.00107;
d0048cec 3461
54c9a3d9 3462 // create stave volumes (different for layer 1 and 2)
3463 TArrayD staveSizes1(9), staveSizes2(9), clipSize(5);
3464 Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0];
3465 TGeoVolume *stave1 = CreateStave(1, staveSizes1, mgr);
3466 TGeoVolume *stave2 = CreateStave(2, staveSizes2, mgr);
3467 TGeoVolume *clip = CreateClip(clipSize, kFALSE, mgr);
3468
3469 Double_t xL, yL; // leftmost edge of mounting point (XY projection)
3470 Double_t xR, yR; // rightmost edge of mounting point (XY projection)
3471 Double_t xM, yM; // middle point of the segment L-R
3472 Double_t dx, dy; // (xL - xR) and (yL - yR)
3473 Double_t widthLR; // width of the segment L-R
3474 Double_t angle; // stave rotation angle in degrees
d0048cec 3475 Double_t diffWidth; // difference between mounting plane width and
54c9a3d9 3476 // stave width (smaller)
3477 Double_t xPos, yPos; // final translation of the stave
3478 Double_t parMovement; // translation in the LR plane direction
d0048cec 3479
54c9a3d9 3480 staveThickness += fgkGapHalfStave;
d0048cec 3481
54c9a3d9 3482 // loop on staves
3483 Int_t i, iclip = 1;
3484 for (i = 0; i < 6; i++) {
3485 // in debug mode, if this stave is not required, it is skipped
3486 if (!fAddStave[i]) continue;
3487 // retrieve reference points
3488 GetSectorMountingPoints(i, xL, yL, xR, yR);
3489 xM = 0.5 * (xL + xR);
3490 yM = 0.5 * (yL + yR);
3491 dx = xL - xR;
3492 dy = yL - yR;
3493 angle = TMath::ATan2(dy, dx);
3494 widthLR = TMath::Sqrt(dx*dx + dy*dy);
3495 diffWidth = 0.5*(widthLR - staveHeight);
3496 // first, a movement along this plane must be done
3497 // by an amount equal to the width difference
3498 // and then the fixed shift must also be added
3499 parMovement = diffWidth + shift[i];
d0048cec 3500 // due to stave thickness, another movement must be done
54c9a3d9 3501 // in the direction normal to the mounting plane
d0048cec 3502 // which is computed using an internal method, in a reference
3503 // frame where the LR segment has its middle point in the origin
54c9a3d9 3504 // and axes parallel to the master reference frame
3505 if (i == 0) {
d0048cec 3506 ParallelPosition(-0.5*staveThickness, -parMovement, angle,
54c9a3d9 3507 xPos, yPos);
3508 } // end if i==0
3509 if (i == 1) {
d0048cec 3510 ParallelPosition( 0.5*staveThickness, -parMovement, angle,
54c9a3d9 3511 xPos, yPos);
3512 }else {
d0048cec 3513 ParallelPosition( 0.5*staveThickness, parMovement, angle,
54c9a3d9 3514 xPos, yPos);
3515 } // end if i==1
3516 // then we go into the true reference frame
3517 xPos += xM;
3518 yPos += yM;
3ffa185f 3519 xPos += corrX[i];
3520 yPos += corrY[i];
d0048cec 3521 // using the parameters found here, compute the
54c9a3d9 3522 // translation and rotation of this stave:
3523 TGeoRotation *rot = new TGeoRotation(*gGeoIdentity);
3524 if (i == 0 || i == 1) rot->RotateX(180.0);
3525 rot->RotateZ(90.0 + angle * TMath::RadToDeg());
3526 TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot);
3527 if (i == 0 || i == 1) {
3528 moth->AddNode(stave1, i+1, trans);
3529 }else {
3530 moth->AddNode(stave2, i - 1, trans);
3531 if (i != 2) {
3532 // except in the case of stave #2,
3533 // clips must be added, and this is done directly on the sector
3534 Int_t j;
4adcf390 3535 //TArrayD clipSize;
54c9a3d9 3536 TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity);
3537 rotClip->RotateZ(-90.0);
3538 rotClip->RotateX(180.0);
3539 Double_t x = staveSizes2[3] + fgkGapHalfStave;
3540 Double_t y = staveSizes2[4];
d0048cec 3541 Double_t z[4] = { staveSizes2[5], staveSizes2[6],
54c9a3d9 3542 staveSizes2[7], staveSizes2[8] };
3543 for (j = 0; j < 4; j++) {
3544 TGeoCombiTrans *trClip = new TGeoCombiTrans(x, y, z[j],
3545 rotClip);
3546 *trClip = *trans * *trClip;
3547 moth->AddNode(clip, iclip++, trClip);
3548 } // end for j
3549 } // end if i!=2
3550 } // end if i==0||i==1 else
3551 } // end for i
e0b38446 3552
3553
3554 // Add a box representing the collector for cooling tubes
3555 Double_t collWidth = fgkmm * 22.0;
3556 Double_t collLength = fgkmm * 50.0;
3557 Double_t collThickness = fgkmm * 7.0;
3558 Double_t collInSize = fgkmm * 10.5;
3559
3560 TGeoMedium *medColl = GetMedium("INOX$");
3561 TGeoMedium *medCollIn = GetMedium("COPPER$");
3562 TGeoVolume *vColl = mgr->MakeBox("ITSSPDSectorTubeColl" , medColl, 0.5*collWidth, 0.5*collThickness, 0.5*collLength);
3563 TGeoVolume *vCollIn = mgr->MakeBox("ITSSPDSectorTubeCollIn", medCollIn, 0.5*collInSize, 0.5*collInSize, 0.5*collInSize);
3564 vColl->SetLineColor(kGreen+2);
3565 vCollIn->SetLineColor(kYellow);
3566
3567 TGeoTranslation *tr1 = new TGeoTranslation( 0.1, 1.2, 35.0);
3568 TGeoTranslation *tr2 = new TGeoTranslation(-0.1, 1.2, -35.0);
3569 TGeoTranslation *tr3 = new TGeoTranslation( 0.1, 1.2 - 0.5*(collThickness+collInSize), 35.0 + 0.5*(collLength - collInSize));
3570 TGeoTranslation *tr4 = new TGeoTranslation(-0.1, 1.2 - 0.5*(collThickness+collInSize), -35.0 - 0.5*(collLength - collInSize));
3571
3572 moth->AddNode(vColl, 0, tr1);
3573 moth->AddNode(vColl, 1, tr2);
3574 moth->AddNode(vCollIn, 0, tr3);
3575 moth->AddNode(vCollIn, 1, tr4);
3576
592651e2 3577}
54c9a3d9 3578//______________________________________________________________________
bc3498f4 3579void AliITSv11GeometrySPD::ParallelPosition(Double_t dist1, Double_t dist2,
54c9a3d9 3580 Double_t phi, Double_t &x, Double_t &y) const
3581{
3582 //
3583 // Performs the following steps:
d0048cec 3584 // 1 - finds a straight line parallel to the one passing through
54c9a3d9 3585 // the origin and with angle 'phi' with X axis(phi in RADIANS);
d0048cec 3586 // 2 - finds another line parallel to the previous one, with a
54c9a3d9 3587 // distance 'dist1' from it
d0048cec 3588 // 3 - takes a reference point in the second line in the intersection
54c9a3d9 3589 // between the normal to both lines passing through the origin
d0048cec 3590 // 4 - finds a point whith has distance 'dist2' from this reference,
54c9a3d9 3591 // in the second line (point 2)
3592 // ----
d0048cec 3593 // According to the signs given to dist1 and dist2, the point is
54c9a3d9 3594 // found in different position w.r. to the origin
3595 // compute the point
3596 //
3597 Double_t cs = TMath::Cos(phi);
3598 Double_t sn = TMath::Sin(phi);
3599
3600 x = dist2*cs - dist1*sn;
3601 y = dist1*cs + dist2*sn;
592651e2 3602}
54c9a3d9 3603//______________________________________________________________________
3604Double_t AliITSv11GeometrySPD::GetSPDSectorTranslation(
3605 Double_t x0,Double_t y0,Double_t x1,Double_t y1,Double_t r) const
3606{
3607 //
3608 // Comutes the radial translation of a sector to give the
3609 // proper distance between SPD detectors and the beam pipe.
3610 // Units in are units out.
3611 //
3612
3613 //Begin_Html
3614 /*
3615 <A HREF="http://www.physics.ohio-state.edu/HIRG/SoftWareDoc/SPD_Sector_Position.png">
3616 Figure showing the geometry used in the computation below. </A>
3617 */
3618 //End_Html
3619
3620 // Inputs:
3621 // Double_t x0 Point x0 on Sector surface for the inner
3622 // most detector mounting
3623 // Double_t y0 Point y0 on Sector surface for the innor
3624 // most detector mounting
3625 // Double_t x1 Point x1 on Sector surface for the inner
3626 // most detector mounting
3627 // Double_t y1 Point y1 on Sector surface for the innor
3628 // most detector mounting
3629 // Double_t r The radial distance this mounting surface
3630 // should be from the center of the beam pipe.
3631 // Outputs:
3632 // none.
3633 // Return:
3634 // The distance the SPD sector should be displaced radialy.
3635 //
3636 Double_t a,b,c;
3637
3638 a = x0-x1;
3639 if(a==0.0) return 0.0;
3640 a = (y0-y1)/a;
3641 b = TMath::Sqrt(1.0+a*a);
3642 c = y0-a*x0-r*b;
3643 return -c;
3644}
c890eba4 3645
54c9a3d9 3646//______________________________________________________________________
3647void AliITSv11GeometrySPD::PrintAscii(ostream *os) const
3648{
3649 //
bc3498f4 3650 // Print out class data values in Ascii Form to output stream
3651 // Inputs:
3652 // ostream *os Output stream where Ascii data is to be writen
3653 // Outputs:
3654 // none.
3655 // Return:
3656 // none.
54c9a3d9 3657 //
3658 Int_t i,j,k;
bc3498f4 3659#if defined __GNUC__
3660#if __GNUC__ > 2
3661 ios::fmtflags fmt = cout.flags();
3662#else
3663 Int_t fmt;
3664#endif
3665#else
3666#if defined __ICC || defined __ECC || defined __xlC__
3667 ios::fmtflags fmt;
3668#else
3669 Int_t fmt;
3670#endif
3671#endif
54c9a3d9 3672
3673 *os<< fgkGapLadder <<" "<< fgkGapHalfStave<<" "<< 6 <<" ";
3674 for(i=0;i<6;i++) *os<< fAddStave[i] <<" "<<fSPDsectorX0.GetSize();
3675 for(i=0;i<fSPDsectorX0.GetSize();i++) *os<< fSPDsectorX0.GetAt(i) << " ";
3676 for(i=0;i<fSPDsectorX0.GetSize();i++) *os<< fSPDsectorY0.GetAt(i) << " ";
3677 for(i=0;i<fSPDsectorX1.GetSize();i++) *os<< fSPDsectorX1.GetAt(i) << " ";
3678 for(i=0;i<fSPDsectorX1.GetSize();i++) *os<< fSPDsectorY1.GetAt(i) << " ";
3679 *os<<10<<" "<< 2 <<" " << 6 << " "<< 3 <<" ";
d0048cec 3680 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
54c9a3d9 3681 *os<<fTubeEndSector[k][0][i][j]<<" ";
d0048cec 3682 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
54c9a3d9 3683 *os<<fTubeEndSector[k][1][i][j]<<" ";
bc3498f4 3684 os->flags(fmt); // reset back to old Formating.
3685 return;
3686}
3687//
54c9a3d9 3688//______________________________________________________________________
3689void AliITSv11GeometrySPD::ReadAscii(istream* is)
3690{
3691 //
bc3498f4 3692 // Read in class data values in Ascii Form to output stream
3693 // Inputs:
3694 // istream *is Input stream where Ascii data is to be read in from
3695 // Outputs:
3696 // none.
3697 // Return:
3698 // none.
54c9a3d9 3699 //
3700 Int_t i,j,k,n;
43aefea7 3701 Double_t gapLadder,gapHalfStave;
c0fc8108 3702 const Int_t kLimits = 100;
43aefea7 3703 *is>>gapLadder>>gapHalfStave>>n;
54c9a3d9 3704 if(n!=6){
c0fc8108 3705 AliError(Form("fAddStave Array !=6 n=%d",n));
54c9a3d9 3706 return;
3707 } // end if
3708 for(i=0;i<n;i++) *is>>fAddStave[i];
3709 *is>>n;
c0fc8108 3710 if(n<0 || n> kLimits){
3711 AliError("Anomalous value for parameter n");
3712 return;
3713 }
54c9a3d9 3714 fSPDsectorX0.Set(n);
3715 fSPDsectorY0.Set(n);
3716 fSPDsectorX1.Set(n);
3717 fSPDsectorY1.Set(n);
3718 for(i=0;i<n;i++) *is>>fSPDsectorX0[i];
3719 for(i=0;i<n;i++) *is>>fSPDsectorY0[i];
3720 for(i=0;i<n;i++) *is>>fSPDsectorX1[i];
3721 for(i=0;i<n;i++) *is>>fSPDsectorY1[i];
3722 *is>> i>>j>>n;
3723 if(i!=2||j!=6||n!=3){
3724 Warning("ReadAscii","fTubeEndSector array wrong size [2][6][3],"
3725 "found [%d][%d][%d]",i,j,n);
3726 return;
3727 } // end if
d0048cec 3728 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
54c9a3d9 3729 *is>>fTubeEndSector[k][0][i][j];
d0048cec 3730 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
54c9a3d9 3731 *is>>fTubeEndSector[k][1][i][j];
3732 return;
bc3498f4 3733}
3734//
54c9a3d9 3735//______________________________________________________________________
3736ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s)
3737{
3738 //
bc3498f4 3739 // Standard output streaming function
3740 // Inputs:
3741 // ostream &os output steam
3742 // AliITSvPPRasymmFMD &s class to be streamed.
3743 // Output:
3744 // none.
3745 // Return:
3746 // ostream &os The stream pointer
54c9a3d9 3747 //
bc3498f4 3748 s.PrintAscii(&os);
3749 return os;
3750}
3751//
54c9a3d9 3752//______________________________________________________________________
3753istream &operator>>(istream &is,AliITSv11GeometrySPD &s)
3754{
3755 //
bc3498f4 3756 // Standard inputput streaming function
3757 // Inputs:
3758 // istream &is input steam
3759 // AliITSvPPRasymmFMD &s class to be streamed.
3760 // Output:
3761 // none.
3762 // Return:
3763 // ostream &os The stream pointer
54c9a3d9 3764 //
bc3498f4 3765 s.ReadAscii(&is);
3766 return is;
3767}
c890eba4 3768