]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PYTHIA6/AliPythia.cxx
Adding protected copy constructor and assignment operator
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
CommitLineData
8d2cd130 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
7cdba479 16/* $Id$ */
8d2cd130 17
18#include "AliPythia.h"
7cdba479 19#include "AliPythiaRndm.h"
0f482ae4 20#include "../FASTSIM/AliFastGlauber.h"
21#include "../FASTSIM/AliQuenchingWeights.h"
22#include "TVector3.h"
8d2cd130 23
24ClassImp(AliPythia)
25
26#ifndef WIN32
27# define pyclus pyclus_
28# define pycell pycell_
452af8c7 29# define pyshow pyshow_
30# define pyrobo pyrobo_
992f2843 31# define pyquen pyquen_
16a82508 32# define pyevnw pyevnw_
8d2cd130 33# define type_of_call
34#else
35# define pyclus PYCLUS
36# define pycell PYCELL
452af8c7 37# define pyrobo PYROBO
992f2843 38# define pyquen PYQUEN
16a82508 39# define pyevnw PYEVNW
8d2cd130 40# define type_of_call _stdcall
41#endif
42
43extern "C" void type_of_call pyclus(Int_t & );
44extern "C" void type_of_call pycell(Int_t & );
452af8c7 45extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
46extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
992f2843 47extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
0a2cfc0a 48extern "C" void type_of_call pyevnw(){;}
8d2cd130 49
50//_____________________________________________________________________________
51
52AliPythia* AliPythia::fgAliPythia=NULL;
53
54AliPythia::AliPythia()
55{
56// Default Constructor
57//
58// Set random number
7cdba479 59 if (!AliPythiaRndm::GetPythiaRandom())
60 AliPythiaRndm::SetPythiaRandom(GetRandom());
0f482ae4 61 fGlauber = 0;
62 fQuenchingWeights = 0;
8d2cd130 63}
64
65void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
66{
67// Initialise the process to generate
7cdba479 68 if (!AliPythiaRndm::GetPythiaRandom())
69 AliPythiaRndm::SetPythiaRandom(GetRandom());
8d2cd130 70
71 fProcess = process;
72 fEcms = energy;
73 fStrucFunc = strucfunc;
1d5b1b20 74//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
75 SetMDCY(Pycomp(111) ,1,0);
76 SetMDCY(Pycomp(310) ,1,0);
77 SetMDCY(Pycomp(3122),1,0);
78 SetMDCY(Pycomp(3112),1,0);
79 SetMDCY(Pycomp(3212),1,0);
80 SetMDCY(Pycomp(3222),1,0);
81 SetMDCY(Pycomp(3312),1,0);
82 SetMDCY(Pycomp(3322),1,0);
83 SetMDCY(Pycomp(3334),1,0);
84 // select structure function
8d2cd130 85 SetMSTP(52,2);
86 SetMSTP(51,strucfunc);
87//
88// Pythia initialisation for selected processes//
89//
90// Make MSEL clean
91//
92 for (Int_t i=1; i<= 200; i++) {
93 SetMSUB(i,0);
94 }
95// select charm production
96 switch (process)
97 {
65f2626c 98 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
99// Multiple interactions on.
100 SetMSTP(81,1);
101// Double Gaussian matter distribution.
102 SetMSTP(82,4);
103 SetPARP(83,0.5);
104 SetPARP(84,0.4);
105// pT0.
106 SetPARP(82,2.0);
107// Reference energy for pT0 and energy rescaling pace.
108 SetPARP(89,1800);
109 SetPARP(90,0.25);
110// String drawing almost completely minimizes string length.
111 SetPARP(85,0.9);
112 SetPARP(86,0.95);
113// ISR and FSR activity.
114 SetPARP(67,4);
115 SetPARP(71,4);
116// Lambda_FSR scale.
117 SetPARJ(81,0.29);
118 break;
119 case kPyOldUEQ2ordered2:
120// Old underlying events with Q2 ordered QCD processes
121// Multiple interactions on.
122 SetMSTP(81,1);
123// Double Gaussian matter distribution.
124 SetMSTP(82,4);
125 SetPARP(83,0.5);
126 SetPARP(84,0.4);
127// pT0.
128 SetPARP(82,2.0);
129// Reference energy for pT0 and energy rescaling pace.
130 SetPARP(89,1800);
131 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
132// String drawing almost completely minimizes string length.
133 SetPARP(85,0.9);
134 SetPARP(86,0.95);
135// ISR and FSR activity.
136 SetPARP(67,4);
137 SetPARP(71,4);
138// Lambda_FSR scale.
139 SetPARJ(81,0.29);
140 break;
141 case kPyOldPopcorn:
142// Old production mechanism: Old Popcorn
143 SetMSEL(1);
144 SetMSTJ(12,3);
145// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
146 SetMSTP(88,2);
147// (D=1)see can be used to form baryons (BARYON JUNCTION)
148 SetMSTJ(1,1);
149 SetMSTP(51,kCTEQ5L);// CTEQ 5L ! CTEQ5L pdf
150 SetMSTP(81,1); // Multiple Interactions ON
151 SetMSTP(82,4); // Double Gaussian Model
152 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
153 SetPARP(89,1000.); // [GeV] Ref. energy
154 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
155 SetPARP(83,0.5); // Core density in proton matter dist. (def.value)
156 SetPARP(84,0.5); // Core radius
157 SetPARP(85,0.33); // Regulates gluon prod. mechanism
158 SetPARP(86,0.66); // Regulates gluon prod. mechanism
159 SetPARP(67,1); // Regulate gluon prod. mechanism
160 break;
8d2cd130 161 case kPyCharm:
162 SetMSEL(4);
8d2cd130 163// heavy quark masses
164
165 SetPMAS(4,1,1.2);
166 SetMSTU(16,2);
167//
168// primordial pT
169 SetMSTP(91,1);
170 SetPARP(91,1.);
171 SetPARP(93,5.);
172//
173 break;
174 case kPyBeauty:
175 SetMSEL(5);
176 SetPMAS(5,1,4.75);
177 SetMSTU(16,2);
178 break;
179 case kPyJpsi:
180 SetMSEL(0);
181// gg->J/Psi g
182 SetMSUB(86,1);
183 break;
184 case kPyJpsiChi:
185 SetMSEL(0);
186// gg->J/Psi g
187 SetMSUB(86,1);
188// gg-> chi_0c g
189 SetMSUB(87,1);
190// gg-> chi_1c g
191 SetMSUB(88,1);
192// gg-> chi_2c g
193 SetMSUB(89,1);
194 break;
195 case kPyCharmUnforced:
196 SetMSEL(0);
197// gq->qg
198 SetMSUB(28,1);
199// gg->qq
200 SetMSUB(53,1);
201// gg->gg
202 SetMSUB(68,1);
203 break;
204 case kPyBeautyUnforced:
205 SetMSEL(0);
206// gq->qg
207 SetMSUB(28,1);
208// gg->qq
209 SetMSUB(53,1);
210// gg->gg
211 SetMSUB(68,1);
212 break;
213 case kPyMb:
214// Minimum Bias pp-Collisions
215//
216//
217// select Pythia min. bias model
218 SetMSEL(0);
511db649 219 SetMSUB(92,1); // single diffraction AB-->XB
220 SetMSUB(93,1); // single diffraction AB-->AX
221 SetMSUB(94,1); // double diffraction
222 SetMSUB(95,1); // low pt production
223
224//
225// ATLAS Tuning
226//
c01c4118 227
228 SetMSTP(51, kCTEQ5L); // CTEQ5L pdf
511db649 229 SetMSTP(81,1); // Multiple Interactions ON
230 SetMSTP(82,4); // Double Gaussian Model
231
232 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
233 SetPARP(89,1000.); // [GeV] Ref. energy
234 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
235 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
236 SetPARP(84,0.5); // Core radius
237 SetPARP(85,0.33); // Regulates gluon prod. mechanism
238 SetPARP(86,0.66); // Regulates gluon prod. mechanism
239 SetPARP(67,1); // Regulates Initial State Radiation
240 break;
8d2cd130 241 case kPyMbNonDiffr:
242// Minimum Bias pp-Collisions
243//
244//
245// select Pythia min. bias model
246 SetMSEL(0);
511db649 247 SetMSUB(95,1); // low pt production
0f482ae4 248
249//
250// ATLAS Tuning
251//
511db649 252
d682afd1 253 SetMSTP(51,kCTEQ5L); // CTEQ5L pdf
511db649 254 SetMSTP(81,1); // Multiple Interactions ON
255 SetMSTP(82,4); // Double Gaussian Model
256
257 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
258 SetPARP(89,1000.); // [GeV] Ref. energy
259 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
260 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
261 SetPARP(84,0.5); // Core radius
262 SetPARP(85,0.33); // Regulates gluon prod. mechanism
263 SetPARP(86,0.66); // Regulates gluon prod. mechanism
264 SetPARP(67,1); // Regulates Initial State Radiation
8d2cd130 265 break;
266 case kPyJets:
267//
268// QCD Jets
269//
270 SetMSEL(1);
65f2626c 271 // Pythia Tune A (CDF)
272 //
273 SetPARP(67,4.); // Regulates Initial State Radiation
274 SetMSTP(82,4); // Double Gaussian Model
275 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
276 SetPARP(84,0.4); // Core radius
277 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
278 SetPARP(86,0.95); // Regulates gluon prod. mechanism
279 SetPARP(89,1800.); // [GeV] Ref. energy
280 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
281 break;
8d2cd130 282 case kPyDirectGamma:
283 SetMSEL(10);
284 break;
adf4d898 285 case kPyCharmPbPbMNR:
286 case kPyD0PbPbMNR:
8d2cd130 287 // Tuning of Pythia parameters aimed to get a resonable agreement
288 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
289 // c-cbar single inclusive and double differential distributions.
290 // This parameter settings are meant to work with Pb-Pb collisions
adf4d898 291 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
8d2cd130 292 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
293 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
294
295 // All QCD processes
296 SetMSEL(1);
297
298 // No multiple interactions
299 SetMSTP(81,0);
300 SetPARP(81,0.0);
301 SetPARP(82,0.0);
302
303 // Initial/final parton shower on (Pythia default)
304 SetMSTP(61,1);
305 SetMSTP(71,1);
306
307 // 2nd order alpha_s
308 SetMSTP(2,2);
309
310 // QCD scales
311 SetMSTP(32,2);
312 SetPARP(34,1.0);
313
adf4d898 314 // Intrinsic <kT>
8d2cd130 315 SetMSTP(91,1);
316 SetPARP(91,1.304);
317 SetPARP(93,6.52);
318
319 // Set c-quark mass
320 SetPMAS(4,1,1.2);
321
90d7b703 322 break;
323 case kPyDPlusPbPbMNR:
324 // Tuning of Pythia parameters aimed to get a resonable agreement
325 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
326 // c-cbar single inclusive and double differential distributions.
327 // This parameter settings are meant to work with Pb-Pb collisions
328 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
329 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
330 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
331
332 // All QCD processes
333 SetMSEL(1);
334
335 // No multiple interactions
336 SetMSTP(81,0);
337 SetPARP(81,0.0);
338 SetPARP(82,0.0);
339
340 // Initial/final parton shower on (Pythia default)
341 SetMSTP(61,1);
342 SetMSTP(71,1);
343
344 // 2nd order alpha_s
345 SetMSTP(2,2);
346
347 // QCD scales
348 SetMSTP(32,2);
349 SetPARP(34,1.0);
350
351 // Intrinsic <kT>
352 SetMSTP(91,1);
353 SetPARP(91,1.304);
354 SetPARP(93,6.52);
355
356 // Set c-quark mass
357 SetPMAS(4,1,1.2);
358
8d2cd130 359 break;
adf4d898 360 case kPyCharmpPbMNR:
361 case kPyD0pPbMNR:
362 // Tuning of Pythia parameters aimed to get a resonable agreement
363 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
364 // c-cbar single inclusive and double differential distributions.
365 // This parameter settings are meant to work with p-Pb collisions
366 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
367 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
368 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
369
370 // All QCD processes
371 SetMSEL(1);
372
373 // No multiple interactions
374 SetMSTP(81,0);
375 SetPARP(81,0.0);
376 SetPARP(82,0.0);
377
378 // Initial/final parton shower on (Pythia default)
379 SetMSTP(61,1);
380 SetMSTP(71,1);
381
382 // 2nd order alpha_s
383 SetMSTP(2,2);
384
385 // QCD scales
386 SetMSTP(32,2);
387 SetPARP(34,1.0);
388
389 // Intrinsic <kT>
390 SetMSTP(91,1);
391 SetPARP(91,1.16);
392 SetPARP(93,5.8);
393
394 // Set c-quark mass
395 SetPMAS(4,1,1.2);
396
90d7b703 397 break;
398 case kPyDPluspPbMNR:
399 // Tuning of Pythia parameters aimed to get a resonable agreement
400 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
401 // c-cbar single inclusive and double differential distributions.
402 // This parameter settings are meant to work with p-Pb collisions
403 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
404 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
405 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
406
407 // All QCD processes
408 SetMSEL(1);
409
410 // No multiple interactions
411 SetMSTP(81,0);
412 SetPARP(81,0.0);
413 SetPARP(82,0.0);
414
415 // Initial/final parton shower on (Pythia default)
416 SetMSTP(61,1);
417 SetMSTP(71,1);
418
419 // 2nd order alpha_s
420 SetMSTP(2,2);
421
422 // QCD scales
423 SetMSTP(32,2);
424 SetPARP(34,1.0);
425
426 // Intrinsic <kT>
427 SetMSTP(91,1);
428 SetPARP(91,1.16);
429 SetPARP(93,5.8);
430
431 // Set c-quark mass
432 SetPMAS(4,1,1.2);
433
adf4d898 434 break;
435 case kPyCharmppMNR:
436 case kPyD0ppMNR:
437 // Tuning of Pythia parameters aimed to get a resonable agreement
438 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
439 // c-cbar single inclusive and double differential distributions.
440 // This parameter settings are meant to work with pp collisions
441 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
442 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
443 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
444
445 // All QCD processes
446 SetMSEL(1);
447
448 // No multiple interactions
449 SetMSTP(81,0);
450 SetPARP(81,0.0);
451 SetPARP(82,0.0);
452
453 // Initial/final parton shower on (Pythia default)
454 SetMSTP(61,1);
455 SetMSTP(71,1);
456
457 // 2nd order alpha_s
458 SetMSTP(2,2);
459
460 // QCD scales
461 SetMSTP(32,2);
462 SetPARP(34,1.0);
463
464 // Intrinsic <kT^2>
465 SetMSTP(91,1);
466 SetPARP(91,1.);
467 SetPARP(93,5.);
468
469 // Set c-quark mass
470 SetPMAS(4,1,1.2);
471
90d7b703 472 break;
473 case kPyDPlusppMNR:
474 // Tuning of Pythia parameters aimed to get a resonable agreement
475 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
476 // c-cbar single inclusive and double differential distributions.
477 // This parameter settings are meant to work with pp collisions
478 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
479 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
480 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
481
482 // All QCD processes
483 SetMSEL(1);
484
485 // No multiple interactions
486 SetMSTP(81,0);
487 SetPARP(81,0.0);
488 SetPARP(82,0.0);
489
490 // Initial/final parton shower on (Pythia default)
491 SetMSTP(61,1);
492 SetMSTP(71,1);
493
494 // 2nd order alpha_s
495 SetMSTP(2,2);
496
497 // QCD scales
498 SetMSTP(32,2);
499 SetPARP(34,1.0);
500
501 // Intrinsic <kT^2>
502 SetMSTP(91,1);
503 SetPARP(91,1.);
504 SetPARP(93,5.);
505
506 // Set c-quark mass
507 SetPMAS(4,1,1.2);
508
adf4d898 509 break;
510 case kPyBeautyPbPbMNR:
8d2cd130 511 // Tuning of Pythia parameters aimed to get a resonable agreement
512 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
513 // b-bbar single inclusive and double differential distributions.
514 // This parameter settings are meant to work with Pb-Pb collisions
515 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
516 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
517 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
518
519 // All QCD processes
520 SetMSEL(1);
521
522 // No multiple interactions
523 SetMSTP(81,0);
524 SetPARP(81,0.0);
525 SetPARP(82,0.0);
526
527 // Initial/final parton shower on (Pythia default)
528 SetMSTP(61,1);
529 SetMSTP(71,1);
530
531 // 2nd order alpha_s
532 SetMSTP(2,2);
533
534 // QCD scales
535 SetMSTP(32,2);
536 SetPARP(34,1.0);
537 SetPARP(67,1.0);
538 SetPARP(71,1.0);
539
adf4d898 540 // Intrinsic <kT>
8d2cd130 541 SetMSTP(91,1);
542 SetPARP(91,2.035);
543 SetPARP(93,10.17);
544
545 // Set b-quark mass
546 SetPMAS(5,1,4.75);
547
adf4d898 548 break;
549 case kPyBeautypPbMNR:
550 // Tuning of Pythia parameters aimed to get a resonable agreement
551 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
552 // b-bbar single inclusive and double differential distributions.
553 // This parameter settings are meant to work with p-Pb collisions
554 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
555 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
556 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
557
558 // All QCD processes
559 SetMSEL(1);
560
561 // No multiple interactions
562 SetMSTP(81,0);
563 SetPARP(81,0.0);
564 SetPARP(82,0.0);
565
566 // Initial/final parton shower on (Pythia default)
567 SetMSTP(61,1);
568 SetMSTP(71,1);
569
570 // 2nd order alpha_s
571 SetMSTP(2,2);
572
573 // QCD scales
574 SetMSTP(32,2);
575 SetPARP(34,1.0);
576 SetPARP(67,1.0);
577 SetPARP(71,1.0);
578
579 // Intrinsic <kT>
580 SetMSTP(91,1);
581 SetPARP(91,1.60);
582 SetPARP(93,8.00);
583
584 // Set b-quark mass
585 SetPMAS(5,1,4.75);
586
587 break;
588 case kPyBeautyppMNR:
589 // Tuning of Pythia parameters aimed to get a resonable agreement
590 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
591 // b-bbar single inclusive and double differential distributions.
592 // This parameter settings are meant to work with pp collisions
593 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
594 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
595 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
596
597 // All QCD processes
598 SetMSEL(1);
599
600 // No multiple interactions
601 SetMSTP(81,0);
602 SetPARP(81,0.0);
603 SetPARP(82,0.0);
604
605 // Initial/final parton shower on (Pythia default)
606 SetMSTP(61,1);
607 SetMSTP(71,1);
608
609 // 2nd order alpha_s
610 SetMSTP(2,2);
611
612 // QCD scales
613 SetMSTP(32,2);
614 SetPARP(34,1.0);
615 SetPARP(67,1.0);
616 SetPARP(71,1.0);
617
618 // Intrinsic <kT>
619 SetMSTP(91,1);
620 SetPARP(91,1.);
621 SetPARP(93,5.);
622
623 // Set b-quark mass
624 SetPMAS(5,1,4.75);
625
8d2cd130 626 break;
589380c6 627
628 case kPyW:
629
630 //Inclusive production of W+/-
631 SetMSEL(0);
632 //f fbar -> W+
633 SetMSUB(2,1);
634 // //f fbar -> g W+
635 // SetMSUB(16,1);
636 // //f fbar -> gamma W+
637 // SetMSUB(20,1);
638 // //f g -> f W+
639 // SetMSUB(31,1);
640 // //f gamma -> f W+
641 // SetMSUB(36,1);
642
643 // Initial/final parton shower on (Pythia default)
644 // With parton showers on we are generating "W inclusive process"
645 SetMSTP(61,1); //Initial QCD & QED showers on
646 SetMSTP(71,1); //Final QCD & QED showers on
647
648 break;
0f6ee828 649
650 case kPyZ:
651
652 //Inclusive production of Z
653 SetMSEL(0);
654 //f fbar -> Z/gamma
655 SetMSUB(1,1);
656
657 // // f fbar -> g Z/gamma
658 // SetMSUB(15,1);
659 // // f fbar -> gamma Z/gamma
660 // SetMSUB(19,1);
661 // // f g -> f Z/gamma
662 // SetMSUB(30,1);
663 // // f gamma -> f Z/gamma
664 // SetMSUB(35,1);
665
666 //only Z included, not gamma
667 SetMSTP(43,2);
668
669 // Initial/final parton shower on (Pythia default)
670 // With parton showers on we are generating "Z inclusive process"
671 SetMSTP(61,1); //Initial QCD & QED showers on
672 SetMSTP(71,1); //Final QCD & QED showers on
673
674 break;
675
8d2cd130 676 }
677//
678// Initialize PYTHIA
679 SetMSTP(41,1); // all resonance decays switched on
680
681 Initialize("CMS","p","p",fEcms);
682
683}
684
685Int_t AliPythia::CheckedLuComp(Int_t kf)
686{
687// Check Lund particle code (for debugging)
688 Int_t kc=Pycomp(kf);
689 printf("\n Lucomp kf,kc %d %d",kf,kc);
690 return kc;
691}
692
693void AliPythia::SetNuclei(Int_t a1, Int_t a2)
694{
695// Treat protons as inside nuclei with mass numbers a1 and a2
696// The MSTP array in the PYPARS common block is used to enable and
697// select the nuclear structure functions.
698// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
699// =1: internal PYTHIA acording to MSTP(51)
700// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
701// If the following mass number both not equal zero, nuclear corrections of the stf are used.
702// MSTP(192) : Mass number of nucleus side 1
703// MSTP(193) : Mass number of nucleus side 2
704 SetMSTP(52,2);
705 SetMSTP(192, a1);
706 SetMSTP(193, a2);
707}
708
709
710AliPythia* AliPythia::Instance()
711{
712// Set random number generator
713 if (fgAliPythia) {
714 return fgAliPythia;
715 } else {
716 fgAliPythia = new AliPythia();
717 return fgAliPythia;
718 }
719}
720
721void AliPythia::PrintParticles()
722{
723// Print list of particl properties
724 Int_t np = 0;
c31f1d37 725 char* name = new char[16];
8d2cd130 726 for (Int_t kf=0; kf<1000000; kf++) {
727 for (Int_t c = 1; c > -2; c-=2) {
8d2cd130 728 Int_t kc = Pycomp(c*kf);
729 if (kc) {
730 Float_t mass = GetPMAS(kc,1);
731 Float_t width = GetPMAS(kc,2);
732 Float_t tau = GetPMAS(kc,4);
c31f1d37 733
8d2cd130 734 Pyname(kf,name);
735
736 np++;
737
738 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
739 c*kf, name, mass, width, tau);
740 }
741 }
742 }
743 printf("\n Number of particles %d \n \n", np);
744}
745
746void AliPythia::ResetDecayTable()
747{
748// Set default values for pythia decay switches
749 Int_t i;
750 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
751 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
752}
753
754void AliPythia::SetDecayTable()
755{
756// Set default values for pythia decay switches
757//
758 Int_t i;
759 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
760 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
761}
762
763void AliPythia::Pyclus(Int_t& njet)
764{
765// Call Pythia clustering algorithm
766//
767 pyclus(njet);
768}
769
770void AliPythia::Pycell(Int_t& njet)
771{
772// Call Pythia jet reconstruction algorithm
773//
774 pycell(njet);
775}
776
452af8c7 777void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
778{
779// Call Pythia jet reconstruction algorithm
780//
452af8c7 781 pyshow(ip1, ip2, qmax);
782}
783
784void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
785{
786 pyrobo(imi, ima, the, phi, bex, bey, bez);
787}
788
789
790
86b6ad68 791void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod)
0f482ae4 792{
793// Initializes
794// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
795// (2) The nuclear geometry using the Glauber Model
796//
797
798
799 fGlauber = new AliFastGlauber();
800 fGlauber->Init(2);
801 fGlauber->SetCentralityClass(cMin, cMax);
802
803 fQuenchingWeights = new AliQuenchingWeights();
804 fQuenchingWeights->InitMult();
86b6ad68 805 fQuenchingWeights->SetK(k);
0f482ae4 806 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
0f482ae4 807}
808
809
452af8c7 810void AliPythia::Quench()
811{
812//
813//
814// Simple Jet Quenching routine:
815// =============================
816// The jet formed by all final state partons radiated by the parton created
0f482ae4 817// in the hard collisions is quenched by a factor (1-z) using light cone variables in
818// the initial parton reference frame:
452af8c7 819// (E + p_z)new = (1-z) (E + p_z)old
820//
0f482ae4 821//
822//
823//
452af8c7 824// The lost momentum is first balanced by one gluon with virtuality > 0.
825// Subsequently the gluon splits to yield two gluons with E = p.
826//
0f482ae4 827//
828//
4e383037 829 static Float_t eMean = 0.;
830 static Int_t icall = 0;
0f482ae4 831
c2c598a3 832 Double_t p0[4][5];
833 Double_t p1[4][5];
834 Double_t p2[4][5];
835 Int_t klast[4] = {-1, -1, -1, -1};
452af8c7 836
837 Int_t numpart = fPyjets->N;
86b6ad68 838 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
c2c598a3 839 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
840 Bool_t quenched[4];
b280c4cc 841 Double_t wjtKick[4];
c2c598a3 842 Int_t nGluon[4];
86b6ad68 843 Int_t qPdg[4];
0f482ae4 844 Int_t imo, kst, pdg;
b280c4cc 845
511db649 846//
c2c598a3 847// Sore information about Primary partons
848//
849// j =
850// 0, 1 partons from hard scattering
851// 2, 3 partons from initial state radiation
852//
853 for (Int_t i = 2; i <= 7; i++) {
854 Int_t j = 0;
855 // Skip gluons that participate in hard scattering
856 if (i == 4 || i == 5) continue;
857 // Gluons from hard Scattering
858 if (i == 6 || i == 7) {
859 j = i - 6;
860 pxq[j] = fPyjets->P[0][i];
861 pyq[j] = fPyjets->P[1][i];
862 pzq[j] = fPyjets->P[2][i];
863 eq[j] = fPyjets->P[3][i];
864 mq[j] = fPyjets->P[4][i];
865 } else {
866 // Gluons from initial state radiation
867 //
868 // Obtain 4-momentum vector from difference between original parton and parton after gluon
869 // radiation. Energy is calculated independently because initial state radition does not
870 // conserve strictly momentum and energy for each partonic system independently.
871 //
872 // Not very clean. Should be improved !
873 //
874 //
875 j = i;
876 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
877 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
878 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
879 mq[j] = fPyjets->P[4][i];
880 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
881 }
882//
883// Calculate some kinematic variables
511db649 884//
4e383037 885 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
0f482ae4 886 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
887 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
888 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
889 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
86b6ad68 890 qPdg[j] = fPyjets->K[1][i];
891 }
892
893 Double_t int0[4];
894 Double_t int1[4];
86b6ad68 895
b280c4cc 896 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
897
86b6ad68 898 for (Int_t j = 0; j < 4; j++) {
c2c598a3 899 //
900 // Quench only central jets and with E > 10.
901 //
86b6ad68 902
903
904 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
905 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
906
c2c598a3 907 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
b280c4cc 908 fZQuench[j] = 0.;
0f482ae4 909 } else {
c2c598a3 910 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
4e383037 911 icall ++;
912 eMean += eloss;
913 }
0f482ae4 914 //
915 // Extra pt
86b6ad68 916 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
917 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
0f482ae4 918 //
919 // Fractional energy loss
b280c4cc 920 fZQuench[j] = eloss / eq[j];
0f482ae4 921 //
922 // Avoid complete loss
923 //
b280c4cc 924 if (fZQuench[j] == 1.) fZQuench[j] = 0.95;
0f482ae4 925 //
926 // Some debug printing
86b6ad68 927
928
bf9bb016 929// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
930// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
4e383037 931
b280c4cc 932// fZQuench[j] = 0.8;
933// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
0f482ae4 934 }
4e383037 935
b280c4cc 936 quenched[j] = (fZQuench[j] > 0.01);
4e383037 937 } // primary partons
c2c598a3 938
b280c4cc 939
940
6e90ad26 941 Double_t pNew[1000][4];
942 Int_t kNew[1000];
943 Int_t icount = 0;
b280c4cc 944 Double_t zquench[4];
945
6e90ad26 946//
4e383037 947// System Loop
c2c598a3 948 for (Int_t isys = 0; isys < 4; isys++) {
6e90ad26 949// Skip to next system if not quenched.
4e383037 950 if (!quenched[isys]) continue;
951
b280c4cc 952 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
4e383037 953 if (nGluon[isys] > 6) nGluon[isys] = 6;
b280c4cc 954 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
4e383037 955 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
0f482ae4 956
4e383037 957
958
959 Int_t igMin = -1;
960 Int_t igMax = -1;
961 Double_t pg[4] = {0., 0., 0., 0.};
962
963//
964// Loop on radiation events
965
966 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
6e90ad26 967 while (1) {
968 icount = 0;
969 for (Int_t k = 0; k < 4; k++)
970 {
971 p0[isys][k] = 0.;
972 p1[isys][k] = 0.;
973 p2[isys][k] = 0.;
974 }
975// Loop over partons
976 for (Int_t i = 0; i < numpart; i++)
977 {
978 imo = fPyjets->K[2][i];
979 kst = fPyjets->K[0][i];
980 pdg = fPyjets->K[1][i];
981
982
983
0f482ae4 984// Quarks and gluons only
6e90ad26 985 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
0f482ae4 986// Particles from hard scattering only
c2c598a3 987
6e90ad26 988 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
c2c598a3 989 Int_t imom = imo % 1000;
990 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
991 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
992
6e90ad26 993
0f482ae4 994// Skip comment lines
6e90ad26 995 if (kst != 1 && kst != 2) continue;
0f482ae4 996//
997// Parton kinematic
6e90ad26 998 px = fPyjets->P[0][i];
999 py = fPyjets->P[1][i];
1000 pz = fPyjets->P[2][i];
1001 e = fPyjets->P[3][i];
1002 m = fPyjets->P[4][i];
1003 pt = TMath::Sqrt(px * px + py * py);
1004 p = TMath::Sqrt(px * px + py * py + pz * pz);
1005 phi = TMath::Pi() + TMath::ATan2(-py, -px);
1006 theta = TMath::ATan2(pt, pz);
1007
0f482ae4 1008//
c2c598a3 1009// Save 4-momentum sum for balancing
1010 Int_t index = isys;
6e90ad26 1011
1012 p0[index][0] += px;
1013 p0[index][1] += py;
1014 p0[index][2] += pz;
1015 p0[index][3] += e;
6e90ad26 1016
1017 klast[index] = i;
1018
0f482ae4 1019//
1020// Fractional energy loss
b280c4cc 1021 Double_t z = zquench[index];
4e383037 1022
c2c598a3 1023
4e383037 1024// Don't fully quench radiated gluons
1025//
1026 if (imo > 1000) {
1027// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
1028//
1029
c2c598a3 1030 z = 0.02;
4e383037 1031 }
c2c598a3 1032// printf("z: %d %f\n", imo, z);
1033
4e383037 1034
1035//
6e90ad26 1036
1037 //
1038 //
1039 // Transform into frame in which initial parton is along z-axis
1040 //
1041 TVector3 v(px, py, pz);
1042 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
1043 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
1044
1045 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
1046 Double_t mt2 = jt * jt + m * m;
1047 Double_t zmax = 1.;
1048 //
1049 // Kinematic limit on z
1050 //
4e383037 1051 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
6e90ad26 1052 //
1053 // Change light-cone kinematics rel. to initial parton
1054 //
1055 Double_t eppzOld = e + pl;
1056 Double_t empzOld = e - pl;
1057
1058 Double_t eppzNew = (1. - z) * eppzOld;
1059 Double_t empzNew = empzOld - mt2 * z / eppzOld;
1060 Double_t eNew = 0.5 * (eppzNew + empzNew);
1061 Double_t plNew = 0.5 * (eppzNew - empzNew);
1062
1063 Double_t jtNew;
1064 //
1065 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
1066 Double_t mt2New = eppzNew * empzNew;
1067 if (mt2New < 1.e-8) mt2New = 0.;
4e383037 1068 if (z < zmax) {
1069 if (m * m > mt2New) {
1070 //
1071 // This should not happen
1072 //
1073 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
1074 jtNew = 0;
1075 } else {
1076 jtNew = TMath::Sqrt(mt2New - m * m);
1077 }
6e90ad26 1078 } else {
4e383037 1079 // If pT is to small (probably a leading massive particle) we scale only the energy
1080 // This can cause negative masses of the radiated gluon
1081 // Let's hope for the best ...
1082 jtNew = jt;
1083 eNew = TMath::Sqrt(plNew * plNew + mt2);
1084
6e90ad26 1085 }
6e90ad26 1086 //
1087 // Calculate new px, py
1088 //
1089 Double_t pxNew = jtNew / jt * pxs;
1090 Double_t pyNew = jtNew / jt * pys;
1091
1092// Double_t dpx = pxs - pxNew;
1093// Double_t dpy = pys - pyNew;
1094// Double_t dpz = pl - plNew;
1095// Double_t de = e - eNew;
1096// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1097// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1098// printf("New mass (2) %e %e \n", pxNew, pyNew);
1099 //
1100 // Rotate back
1101 //
1102 TVector3 w(pxNew, pyNew, plNew);
1103 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1104 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1105
1106 p1[index][0] += pxNew;
1107 p1[index][1] += pyNew;
1108 p1[index][2] += plNew;
1109 p1[index][3] += eNew;
1110 //
1111 // Updated 4-momentum vectors
1112 //
1113 pNew[icount][0] = pxNew;
1114 pNew[icount][1] = pyNew;
1115 pNew[icount][2] = plNew;
1116 pNew[icount][3] = eNew;
1117 kNew[icount] = i;
1118 icount++;
1119 } // parton loop
0f482ae4 1120 //
6e90ad26 1121 // Check if there was phase-space for quenching
0f482ae4 1122 //
0f482ae4 1123
6e90ad26 1124 if (icount == 0) quenched[isys] = kFALSE;
1125 if (!quenched[isys]) break;
1126
1127 for (Int_t j = 0; j < 4; j++)
1128 {
1129 p2[isys][j] = p0[isys][j] - p1[isys][j];
1130 }
1131 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
6e90ad26 1132 if (p2[isys][4] > 0.) {
1133 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1134 break;
1135 } else {
b280c4cc 1136 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
4e383037 1137 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
6e90ad26 1138 if (p2[isys][4] < -0.01) {
4e383037 1139 printf("Negative mass squared !\n");
1140 // Here we have to put the gluon back to mass shell
1141 // This will lead to a small energy imbalance
1142 p2[isys][4] = 0.;
1143 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1144 break;
6e90ad26 1145 } else {
1146 p2[isys][4] = 0.;
1147 break;
1148 }
1149 }
6e90ad26 1150 /*
6e90ad26 1151 zHeavy *= 0.98;
1152 printf("zHeavy lowered to %f\n", zHeavy);
1153 if (zHeavy < 0.01) {
1154 printf("No success ! \n");
1155 icount = 0;
1156 quenched[isys] = kFALSE;
1157 break;
1158 }
4e383037 1159 */
1160 } // iteration on z (while)
1161
6e90ad26 1162// Update event record
1163 for (Int_t k = 0; k < icount; k++) {
1164// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1165 fPyjets->P[0][kNew[k]] = pNew[k][0];
1166 fPyjets->P[1][kNew[k]] = pNew[k][1];
1167 fPyjets->P[2][kNew[k]] = pNew[k][2];
1168 fPyjets->P[3][kNew[k]] = pNew[k][3];
0f482ae4 1169 }
4e383037 1170 //
1171 // Add the gluons
1172 //
1173 Int_t ish = 0;
1837e95c 1174 Int_t iGlu;
4e383037 1175 if (!quenched[isys]) continue;
0f482ae4 1176//
1177// Last parton from shower i
4e383037 1178 Int_t in = klast[isys];
0f482ae4 1179//
1180// Continue if no parton in shower i selected
1181 if (in == -1) continue;
1182//
1183// If this is the second initial parton and it is behind the first move pointer by previous ish
4e383037 1184 if (isys == 1 && klast[1] > klast[0]) in += ish;
0f482ae4 1185//
1186// Starting index
452af8c7 1187
4e383037 1188// jmin = in - 1;
0f482ae4 1189// How many additional gluons will be generated
1190 ish = 1;
4e383037 1191 if (p2[isys][4] > 0.05) ish = 2;
0f482ae4 1192//
1193// Position of gluons
4e383037 1194 iGlu = numpart;
1195 if (iglu == 0) igMin = iGlu;
1196 igMax = iGlu;
0f482ae4 1197 numpart += ish;
1198 (fPyjets->N) += ish;
4e383037 1199
0f482ae4 1200 if (ish == 1) {
4e383037 1201 fPyjets->P[0][iGlu] = p2[isys][0];
1202 fPyjets->P[1][iGlu] = p2[isys][1];
1203 fPyjets->P[2][iGlu] = p2[isys][2];
1204 fPyjets->P[3][iGlu] = p2[isys][3];
1205 fPyjets->P[4][iGlu] = p2[isys][4];
0f482ae4 1206
4e383037 1207 fPyjets->K[0][iGlu] = 1;
1208 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
0f482ae4 1209 fPyjets->K[1][iGlu] = 21;
4e383037 1210 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1211 fPyjets->K[3][iGlu] = -1;
1212 fPyjets->K[4][iGlu] = -1;
4e383037 1213
1214 pg[0] += p2[isys][0];
1215 pg[1] += p2[isys][1];
1216 pg[2] += p2[isys][2];
1217 pg[3] += p2[isys][3];
0f482ae4 1218 } else {
1219 //
1220 // Split gluon in rest frame.
1221 //
4e383037 1222 Double_t bx = p2[isys][0] / p2[isys][3];
1223 Double_t by = p2[isys][1] / p2[isys][3];
1224 Double_t bz = p2[isys][2] / p2[isys][3];
1225 Double_t pst = p2[isys][4] / 2.;
0f482ae4 1226 //
1227 // Isotropic decay ????
1228 Double_t cost = 2. * gRandom->Rndm() - 1.;
1229 Double_t sint = TMath::Sqrt(1. - cost * cost);
1230 Double_t phi = 2. * TMath::Pi() * gRandom->Rndm();
1231
1232 Double_t pz1 = pst * cost;
1233 Double_t pz2 = -pst * cost;
1234 Double_t pt1 = pst * sint;
1235 Double_t pt2 = -pst * sint;
1236 Double_t px1 = pt1 * TMath::Cos(phi);
1237 Double_t py1 = pt1 * TMath::Sin(phi);
1238 Double_t px2 = pt2 * TMath::Cos(phi);
1239 Double_t py2 = pt2 * TMath::Sin(phi);
1240
1241 fPyjets->P[0][iGlu] = px1;
1242 fPyjets->P[1][iGlu] = py1;
1243 fPyjets->P[2][iGlu] = pz1;
1244 fPyjets->P[3][iGlu] = pst;
1245 fPyjets->P[4][iGlu] = 0.;
1246
4e383037 1247 fPyjets->K[0][iGlu] = 1 ;
0f482ae4 1248 fPyjets->K[1][iGlu] = 21;
4e383037 1249 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1250 fPyjets->K[3][iGlu] = -1;
1251 fPyjets->K[4][iGlu] = -1;
1252
1253 fPyjets->P[0][iGlu+1] = px2;
1254 fPyjets->P[1][iGlu+1] = py2;
1255 fPyjets->P[2][iGlu+1] = pz2;
1256 fPyjets->P[3][iGlu+1] = pst;
1257 fPyjets->P[4][iGlu+1] = 0.;
1258
4e383037 1259 fPyjets->K[0][iGlu+1] = 1;
1260 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
0f482ae4 1261 fPyjets->K[1][iGlu+1] = 21;
4e383037 1262 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
0f482ae4 1263 fPyjets->K[3][iGlu+1] = -1;
1264 fPyjets->K[4][iGlu+1] = -1;
1265 SetMSTU(1,0);
1266 SetMSTU(2,0);
1267 //
1268 // Boost back
1269 //
1270 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1271 }
4e383037 1272/*
1273 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1274 Double_t px, py, pz;
1275 px = fPyjets->P[0][ig];
1276 py = fPyjets->P[1][ig];
1277 pz = fPyjets->P[2][ig];
1278 TVector3 v(px, py, pz);
1279 v.RotateZ(-phiq[isys]);
1280 v.RotateY(-thetaq[isys]);
1281 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1282 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1283 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1284 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1285 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1286 pxs += jtKick * TMath::Cos(phiKick);
1287 pys += jtKick * TMath::Sin(phiKick);
1288 TVector3 w(pxs, pys, pzs);
1289 w.RotateY(thetaq[isys]);
1290 w.RotateZ(phiq[isys]);
1291 fPyjets->P[0][ig] = w.X();
1292 fPyjets->P[1][ig] = w.Y();
1293 fPyjets->P[2][ig] = w.Z();
1294 fPyjets->P[2][ig] = w.Mag();
1295 }
1296*/
1297 } // kGluon
1298
6e90ad26 1299
4e383037 1300 // Check energy conservation
0f482ae4 1301 Double_t pxs = 0.;
1302 Double_t pys = 0.;
1303 Double_t pzs = 0.;
1304 Double_t es = 14000.;
1305
1306 for (Int_t i = 0; i < numpart; i++)
1307 {
1308 kst = fPyjets->K[0][i];
1309 if (kst != 1 && kst != 2) continue;
1310 pxs += fPyjets->P[0][i];
1311 pys += fPyjets->P[1][i];
1312 pzs += fPyjets->P[2][i];
1313 es -= fPyjets->P[3][i];
1314 }
1315 if (TMath::Abs(pxs) > 1.e-2 ||
1316 TMath::Abs(pys) > 1.e-2 ||
1317 TMath::Abs(pzs) > 1.e-1) {
1318 printf("%e %e %e %e\n", pxs, pys, pzs, es);
4e383037 1319// Fatal("Quench()", "4-Momentum non-conservation");
452af8c7 1320 }
4e383037 1321
1322 } // end quenching loop (systems)
6e90ad26 1323// Clean-up
0f482ae4 1324 for (Int_t i = 0; i < numpart; i++)
1325 {
4e383037 1326 imo = fPyjets->K[2][i];
1327 if (imo > 1000) {
1328 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1329 }
0f482ae4 1330 }
4e383037 1331// this->Pylist(1);
0f482ae4 1332} // end quench
90d7b703 1333
992f2843 1334
1335void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b)
1336{
1337 // Igor Lokthine's quenching routine
1338 pyquen(a, ibf, b);
1339}
b280c4cc 1340
16a82508 1341void AliPythia::Pyevnw()
1342{
1343 // New multiple interaction scenario
1344 pyevnw();
1345}
1346
b280c4cc 1347void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1348{
1349 // Return event specific quenching parameters
1350 xp = fXJet;
1351 yp = fYJet;
1352 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1353
1354}
1355
65f2626c 1356