]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TFluka/TFluka.cxx
added DigitReader for the fast Altro Decoder (implementation to be done)
[u/mrichter/AliRoot.git] / TFluka / TFluka.cxx
CommitLineData
829fb838 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18//
19// Realisation of the TVirtualMC interface for the FLUKA code
20// (See official web side http://www.fluka.org/).
21//
22// This implementation makes use of the TGeo geometry modeller.
23// User configuration is via automatic generation of FLUKA input cards.
24//
25// Authors:
26// A. Fasso
27// E. Futo
28// A. Gheata
29// A. Morsch
30//
31
32#include <Riostream.h>
37b09b91 33#include <TList.h>
829fb838 34
829fb838 35#include "TFluka.h"
a9ea1616 36#include "TFlukaCodes.h"
829fb838 37#include "TCallf77.h" //For the fortran calls
38#include "Fdblprc.h" //(DBLPRC) fluka common
81f1d030 39#include "Fsourcm.h" //(SOURCM) fluka common
40#include "Fgenstk.h" //(GENSTK) fluka common
829fb838 41#include "Fiounit.h" //(IOUNIT) fluka common
42#include "Fpaprop.h" //(PAPROP) fluka common
43#include "Fpart.h" //(PART) fluka common
44#include "Ftrackr.h" //(TRACKR) fluka common
45#include "Fpaprop.h" //(PAPROP) fluka common
46#include "Ffheavy.h" //(FHEAVY) fluka common
3a625972 47#include "Fopphst.h" //(OPPHST) fluka common
81f1d030 48#include "Fflkstk.h" //(FLKSTK) fluka common
07f5b33e 49#include "Fstepsz.h" //(STEPSZ) fluka common
7b203b6e 50#include "Fopphst.h" //(OPPHST) fluka common
a9ea1616 51#include "Fltclcm.h" //(LTCLCM) fluka common
f2a98602 52#include "Falldlt.h" //(ALLDLT) fluka common
829fb838 53
54#include "TVirtualMC.h"
3a625972 55#include "TMCProcess.h"
829fb838 56#include "TGeoManager.h"
57#include "TGeoMaterial.h"
58#include "TGeoMedium.h"
59#include "TFlukaMCGeometry.h"
6f5667d1 60#include "TGeoMCGeometry.h"
829fb838 61#include "TFlukaCerenkov.h"
1df5fa54 62#include "TFlukaConfigOption.h"
b496f27c 63#include "TFlukaScoringOption.h"
829fb838 64#include "TLorentzVector.h"
b496f27c 65#include "TArrayI.h"
a9ea1616 66#include "TArrayD.h"
78df7be0 67#include "TDatabasePDG.h"
4aba9d66 68#include "TStopwatch.h"
69
829fb838 70
71// Fluka methods that may be needed.
72#ifndef WIN32
73# define flukam flukam_
74# define fluka_openinp fluka_openinp_
8e5bf079 75# define fluka_openout fluka_openout_
829fb838 76# define fluka_closeinp fluka_closeinp_
77# define mcihad mcihad_
78# define mpdgha mpdgha_
2047b055 79# define newplo newplo_
4aba9d66 80# define genout genout_
81# define flkend flkend_
829fb838 82#else
83# define flukam FLUKAM
84# define fluka_openinp FLUKA_OPENINP
8e5bf079 85# define fluka_openout FLUKA_OPENOUT
829fb838 86# define fluka_closeinp FLUKA_CLOSEINP
87# define mcihad MCIHAD
88# define mpdgha MPDGHA
eea53470 89# define newplo NEWPLO
4aba9d66 90# define genout GENOUT
91# define flkend FLKEND
829fb838 92#endif
93
94extern "C"
95{
96 //
97 // Prototypes for FLUKA functions
98 //
99 void type_of_call flukam(const int&);
eea53470 100 void type_of_call newplo();
4aba9d66 101 void type_of_call genout();
102 void type_of_call flkend();
829fb838 103 void type_of_call fluka_openinp(const int&, DEFCHARA);
8e5bf079 104 void type_of_call fluka_openout(const int&, DEFCHARA);
829fb838 105 void type_of_call fluka_closeinp(const int&);
106 int type_of_call mcihad(const int&);
107 int type_of_call mpdgha(const int&);
108}
109
110//
111// Class implementation for ROOT
112//
113ClassImp(TFluka)
114
115//
116//----------------------------------------------------------------------------
117// TFluka constructors and destructors.
118//______________________________________________________________________________
119TFluka::TFluka()
120 :TVirtualMC(),
121 fVerbosityLevel(0),
4aba9d66 122 fNEvent(0),
1df5fa54 123 fInputFileName(""),
4aba9d66 124 fCoreInputFileName(""),
125 fCaller(kNoCaller),
126 fIcode(kNoProcess),
127 fNewReg(-1),
128 fRull(0),
129 fXsco(0),
130 fYsco(0),
131 fZsco(0),
132 fTrackIsEntering(kFALSE),
133 fTrackIsExiting(kFALSE),
134 fTrackIsNew(kFALSE),
135 fFieldFlag(kTRUE),
4aba9d66 136 fDummyBoundary(kFALSE),
137 fStopped(kFALSE),
138 fStopEvent(kFALSE),
139 fStopRun(kFALSE),
5125d6e5 140 fPrimaryElectronIndex(-1),
1b7bf6a6 141 fLowEnergyNeutronTransport(kFALSE),
4aba9d66 142 fMaterials(0),
143 fNVolumes(0),
144 fCurrentFlukaRegion(-1),
145 fNCerenkov(0),
146 fGeom(0),
147 fMCGeo(0),
fb2cbbec 148 fUserConfig(0),
1df5fa54 149 fUserScore(0)
829fb838 150{
151 //
152 // Default constructor
153 //
82a3f706 154 for (Int_t i = 0; i < 4; i++) fPint[i] = 0.;
829fb838 155}
156
157//______________________________________________________________________________
158TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported)
159 :TVirtualMC("TFluka",title, isRootGeometrySupported),
160 fVerbosityLevel(verbosity),
4aba9d66 161 fNEvent(0),
829fb838 162 fInputFileName(""),
4aba9d66 163 fCoreInputFileName(""),
164 fCaller(kNoCaller),
165 fIcode(kNoProcess),
166 fNewReg(-1),
167 fRull(0),
168 fXsco(0),
169 fYsco(0),
170 fZsco(0),
171 fTrackIsEntering(kFALSE),
172 fTrackIsExiting(kFALSE),
173 fTrackIsNew(kFALSE),
174 fFieldFlag(kTRUE),
4aba9d66 175 fDummyBoundary(kFALSE),
176 fStopped(kFALSE),
177 fStopEvent(kFALSE),
178 fStopRun(kFALSE),
5125d6e5 179 fPrimaryElectronIndex(-1),
1b7bf6a6 180 fLowEnergyNeutronTransport(kFALSE),
4aba9d66 181 fMaterials(0),
182 fNVolumes(0),
183 fCurrentFlukaRegion(-1),
184 fNCerenkov(0),
185 fGeom(0),
186 fMCGeo(0),
fb2cbbec 187 fUserConfig(new TObjArray(100)),
1df5fa54 188 fUserScore(new TObjArray(100))
829fb838 189{
190 // create geometry interface
82a3f706 191 for (Int_t i = 0; i < 4; i++) fPint[i] = 0.;
192
7f13be31 193 if (fVerbosityLevel >=3)
194 cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl;
195 SetCoreInputFileName();
196 SetInputFileName();
11e4ab84 197 fMCGeo = new TGeoMCGeometry("MCGeo", "TGeo Implementation of VirtualMCGeometry", kFALSE);
fb2cbbec 198 fGeom = new TFlukaMCGeometry("geom", "FLUKA VMC Geometry");
829fb838 199 if (verbosity > 2) fGeom->SetDebugMode(kTRUE);
8e5bf079 200 PrintHeader();
829fb838 201}
202
203//______________________________________________________________________________
4aba9d66 204TFluka::~TFluka()
205{
206 // Destructor
1df5fa54 207 if (fVerbosityLevel >=3)
4aba9d66 208 cout << "<== TFluka::~TFluka() destructor called." << endl;
209 if (fMaterials) delete [] fMaterials;
1df5fa54 210
eac7af60 211// delete fGeom;
212// delete fMCGeo;
1df5fa54 213
fb2cbbec 214 if (fUserConfig) {
4aba9d66 215 fUserConfig->Delete();
216 delete fUserConfig;
1df5fa54 217 }
6d184c54 218
219 if (fUserScore) {
4aba9d66 220 fUserScore->Delete();
221 delete fUserScore;
6d184c54 222 }
829fb838 223}
224
225//
226//______________________________________________________________________________
227// TFluka control methods
228//______________________________________________________________________________
229void TFluka::Init() {
230//
231// Geometry initialisation
232//
233 if (fVerbosityLevel >=3) cout << "==> TFluka::Init() called." << endl;
234
235 if (!gGeoManager) new TGeoManager("geom", "FLUKA geometry");
236 fApplication->ConstructGeometry();
d59acfe7 237 if (!gGeoManager->IsClosed()) {
238 TGeoVolume *top = (TGeoVolume*)gGeoManager->GetListOfVolumes()->First();
239 gGeoManager->SetTopVolume(top);
240 gGeoManager->CloseGeometry("di");
241 } else {
242 TGeoNodeCache *cache = gGeoManager->GetCache();
243 if (!cache->HasIdArray()) {
a9ea1616 244 Warning("Init", "Node ID tracking must be enabled with TFluka: enabling...\n");
d59acfe7 245 cache->BuildIdArray();
246 }
247 }
829fb838 248 fNVolumes = fGeom->NofVolumes();
249 fGeom->CreateFlukaMatFile("flukaMat.inp");
250 if (fVerbosityLevel >=3) {
251 printf("== Number of volumes: %i\n ==", fNVolumes);
252 cout << "\t* InitPhysics() - Prepare input file to be called" << endl;
6d184c54 253 }
881cb248 254
255 fApplication->InitGeometry();
661663fa 256 fApplication->ConstructOpGeometry();
78df7be0 257 //
258 // Add ions to PDG Data base
259 //
260 AddParticlesToPdgDataBase();
cee6a756 261 //
829fb838 262}
263
264
265//______________________________________________________________________________
266void TFluka::FinishGeometry() {
267//
268// Build-up table with region to medium correspondance
269//
270 if (fVerbosityLevel >=3) {
271 cout << "==> TFluka::FinishGeometry() called." << endl;
2753cb27 272 printf("----FinishGeometry - applying misalignment if any\n");
829fb838 273 cout << "<== TFluka::FinishGeometry() called." << endl;
274 }
2753cb27 275 TVirtualMCApplication::Instance()->MisalignGeometry();
829fb838 276}
277
278//______________________________________________________________________________
279void TFluka::BuildPhysics() {
280//
281// Prepare FLUKA input files and call FLUKA physics initialisation
282//
283
284 if (fVerbosityLevel >=3)
4aba9d66 285 cout << "==> TFluka::BuildPhysics() called." << endl;
6d184c54 286
287
288 if (fVerbosityLevel >=3) {
4aba9d66 289 TList *medlist = gGeoManager->GetListOfMedia();
290 TIter next(medlist);
291 TGeoMedium* med = 0x0;
292 TGeoMaterial* mat = 0x0;
293 Int_t ic = 0;
294
295 while((med = (TGeoMedium*)next()))
296 {
297 mat = med->GetMaterial();
298 printf("Medium %5d %12s %5d %5d\n", ic, (med->GetName()), med->GetId(), mat->GetIndex());
299 ic++;
300 }
6d184c54 301 }
302
d23f4fcd 303
6d184c54 304 // Prepare input file with the current physics settings
305
829fb838 306 InitPhysics();
b8a8a88c 307// Open fortran files
829fb838 308 const char* fname = fInputFileName;
309 fluka_openinp(lunin, PASSCHARA(fname));
8e5bf079 310 fluka_openout(11, PASSCHARA("fluka.out"));
b8a8a88c 311// Read input cards
4aba9d66 312 cout << "==> TFluka::BuildPhysics() Read input cards." << endl;
313 TStopwatch timer;
314 timer.Start();
b8a8a88c 315 GLOBAL.lfdrtr = true;
829fb838 316 flukam(1);
4aba9d66 317 cout << "<== TFluka::BuildPhysics() Read input cards End"
318 << Form(" R:%.2fs C:%.2fs", timer.RealTime(),timer.CpuTime()) << endl;
b8a8a88c 319// Close input file
829fb838 320 fluka_closeinp(lunin);
b8a8a88c 321// Finish geometry
829fb838 322 FinishGeometry();
829fb838 323}
324
325//______________________________________________________________________________
326void TFluka::ProcessEvent() {
327//
328// Process one event
329//
b496f27c 330 if (fStopRun) {
4aba9d66 331 Warning("ProcessEvent", "User Run Abortion: No more events handled !\n");
332 fNEvent += 1;
333 return;
b496f27c 334 }
335
336 if (fVerbosityLevel >=3)
4aba9d66 337 cout << "==> TFluka::ProcessEvent() called." << endl;
b496f27c 338 fApplication->GeneratePrimaries();
81f1d030 339 SOURCM.lsouit = true;
b496f27c 340 flukam(1);
341 if (fVerbosityLevel >=3)
4aba9d66 342 cout << "<== TFluka::ProcessEvent() called." << endl;
b496f27c 343 //
344 // Increase event number
345 //
346 fNEvent += 1;
829fb838 347}
348
349//______________________________________________________________________________
350Bool_t TFluka::ProcessRun(Int_t nevent) {
351//
352// Run steering
353//
4678abb9 354
829fb838 355 if (fVerbosityLevel >=3)
356 cout << "==> TFluka::ProcessRun(" << nevent << ") called."
4aba9d66 357 << endl;
829fb838 358
359 if (fVerbosityLevel >=2) {
360 cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl;
361 cout << "\t* Calling flukam again..." << endl;
362 }
363
829fb838 364 Int_t todo = TMath::Abs(nevent);
365 for (Int_t ev = 0; ev < todo; ev++) {
4aba9d66 366 TStopwatch timer;
367 timer.Start();
829fb838 368 fApplication->BeginEvent();
369 ProcessEvent();
370 fApplication->FinishEvent();
4aba9d66 371 cout << "Event: "<< ev
372 << Form(" R:%.2fs C:%.2fs", timer.RealTime(),timer.CpuTime()) << endl;
829fb838 373 }
374
375 if (fVerbosityLevel >=3)
376 cout << "<== TFluka::ProcessRun(" << nevent << ") called."
4aba9d66 377 << endl;
378
eea53470 379 // Write fluka specific scoring output
4aba9d66 380 genout();
eea53470 381 newplo();
4aba9d66 382 flkend();
eea53470 383
829fb838 384 return kTRUE;
385}
386
387//_____________________________________________________________________________
388// methods for building/management of geometry
389
390// functions from GCONS
391//____________________________________________________________________________
392void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z,
4aba9d66 393 Float_t &dens, Float_t &radl, Float_t &absl,
394 Float_t* /*ubuf*/, Int_t& /*nbuf*/) {
829fb838 395//
396 TGeoMaterial *mat;
397 TIter next (gGeoManager->GetListOfMaterials());
398 while ((mat = (TGeoMaterial*)next())) {
399 if (mat->GetUniqueID() == (UInt_t)imat) break;
400 }
401 if (!mat) {
402 Error("Gfmate", "no material with index %i found", imat);
403 return;
404 }
405 sprintf(name, "%s", mat->GetName());
406 a = mat->GetA();
407 z = mat->GetZ();
408 dens = mat->GetDensity();
409 radl = mat->GetRadLen();
410 absl = mat->GetIntLen();
411}
412
413//______________________________________________________________________________
414void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z,
4aba9d66 415 Double_t &dens, Double_t &radl, Double_t &absl,
416 Double_t* /*ubuf*/, Int_t& /*nbuf*/) {
829fb838 417//
418 TGeoMaterial *mat;
419 TIter next (gGeoManager->GetListOfMaterials());
420 while ((mat = (TGeoMaterial*)next())) {
421 if (mat->GetUniqueID() == (UInt_t)imat) break;
422 }
423 if (!mat) {
424 Error("Gfmate", "no material with index %i found", imat);
425 return;
426 }
427 sprintf(name, "%s", mat->GetName());
428 a = mat->GetA();
429 z = mat->GetZ();
430 dens = mat->GetDensity();
431 radl = mat->GetRadLen();
432 absl = mat->GetIntLen();
433}
434
435// detector composition
436//______________________________________________________________________________
437void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
4aba9d66 438 Double_t z, Double_t dens, Double_t radl, Double_t absl,
439 Float_t* buf, Int_t nwbuf) {
829fb838 440//
441 Double_t* dbuf = fGeom->CreateDoubleArray(buf, nwbuf);
442 Material(kmat, name, a, z, dens, radl, absl, dbuf, nwbuf);
443 delete [] dbuf;
444}
445
446//______________________________________________________________________________
447void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
4aba9d66 448 Double_t z, Double_t dens, Double_t radl, Double_t absl,
449 Double_t* /*buf*/, Int_t /*nwbuf*/) {
829fb838 450//
fb2cbbec 451// Define a material
829fb838 452 TGeoMaterial *mat;
453 kmat = gGeoManager->GetListOfMaterials()->GetSize();
454 if ((z-Int_t(z)) > 1E-3) {
455 mat = fGeom->GetMakeWrongMaterial(z);
456 if (mat) {
457 mat->SetRadLen(radl,absl);
458 mat->SetUniqueID(kmat);
459 return;
460 }
461 }
462 gGeoManager->Material(name, a, z, dens, kmat, radl, absl);
463}
464
465//______________________________________________________________________________
466void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a,
4aba9d66 467 Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) {
fb2cbbec 468//
469// Define a material mixture
829fb838 470//
471 Double_t* da = fGeom->CreateDoubleArray(a, TMath::Abs(nlmat));
472 Double_t* dz = fGeom->CreateDoubleArray(z, TMath::Abs(nlmat));
473 Double_t* dwmat = fGeom->CreateDoubleArray(wmat, TMath::Abs(nlmat));
474
475 Mixture(kmat, name, da, dz, dens, nlmat, dwmat);
476 for (Int_t i=0; i<nlmat; i++) {
477 a[i] = da[i]; z[i] = dz[i]; wmat[i] = dwmat[i];
478 }
479
480 delete [] da;
481 delete [] dz;
482 delete [] dwmat;
483}
484
485//______________________________________________________________________________
486void TFluka::Mixture(Int_t& kmat, const char *name, Double_t *a,
4aba9d66 487 Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat) {
829fb838 488//
489 // Defines mixture OR COMPOUND IMAT as composed by
490 // THE BASIC NLMAT materials defined by arrays A,Z and WMAT
491 //
492 // If NLMAT > 0 then wmat contains the proportion by
493 // weights of each basic material in the mixture.
494 //
495 // If nlmat < 0 then WMAT contains the number of atoms
496 // of a given kind into the molecule of the COMPOUND
497 // In this case, WMAT in output is changed to relative
498 // weigths.
499 //
500 Int_t i,j;
501 if (nlmat < 0) {
502 nlmat = - nlmat;
503 Double_t amol = 0;
504 for (i=0;i<nlmat;i++) {
505 amol += a[i]*wmat[i];
506 }
507 for (i=0;i<nlmat;i++) {
508 wmat[i] *= a[i]/amol;
509 }
510 }
511 kmat = gGeoManager->GetListOfMaterials()->GetSize();
512 // Check if we have elements with fractional Z
513 TGeoMaterial *mat = 0;
514 TGeoMixture *mix = 0;
515 Bool_t mixnew = kFALSE;
516 for (i=0; i<nlmat; i++) {
517 if (z[i]-Int_t(z[i]) < 1E-3) continue;
518 // We have found an element with fractional Z -> loop mixtures to look for it
519 for (j=0; j<kmat; j++) {
520 mat = (TGeoMaterial*)gGeoManager->GetListOfMaterials()->At(j);
521 if (!mat) break;
522 if (!mat->IsMixture()) continue;
523 mix = (TGeoMixture*)mat;
524 if (TMath::Abs(z[i]-mix->GetZ()) >1E-3) continue;
829fb838 525 mixnew = kTRUE;
526 break;
527 }
528 if (!mixnew) Warning("Mixture","%s : cannot find component %i with fractional Z=%f\n", name, i, z[i]);
529 break;
530 }
531 if (mixnew) {
532 Int_t nlmatnew = nlmat+mix->GetNelements()-1;
533 Double_t *anew = new Double_t[nlmatnew];
534 Double_t *znew = new Double_t[nlmatnew];
535 Double_t *wmatnew = new Double_t[nlmatnew];
536 Int_t ind=0;
537 for (j=0; j<nlmat; j++) {
538 if (j==i) continue;
539 anew[ind] = a[j];
540 znew[ind] = z[j];
541 wmatnew[ind] = wmat[j];
542 ind++;
543 }
544 for (j=0; j<mix->GetNelements(); j++) {
545 anew[ind] = mix->GetAmixt()[j];
546 znew[ind] = mix->GetZmixt()[j];
547 wmatnew[ind] = wmat[i]*mix->GetWmixt()[j];
548 ind++;
549 }
550 Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew);
551 delete [] anew;
552 delete [] znew;
553 delete [] wmatnew;
554 return;
555 }
556 // Now we need to compact identical elements within the mixture
557 // First check if this happens
558 mixnew = kFALSE;
559 for (i=0; i<nlmat-1; i++) {
560 for (j=i+1; j<nlmat; j++) {
561 if (z[i] == z[j]) {
562 mixnew = kTRUE;
563 break;
564 }
565 }
566 if (mixnew) break;
567 }
568 if (mixnew) {
569 Int_t nlmatnew = 0;
570 Double_t *anew = new Double_t[nlmat];
571 Double_t *znew = new Double_t[nlmat];
572 memset(znew, 0, nlmat*sizeof(Double_t));
573 Double_t *wmatnew = new Double_t[nlmat];
574 Bool_t skipi;
575 for (i=0; i<nlmat; i++) {
576 skipi = kFALSE;
577 for (j=0; j<nlmatnew; j++) {
578 if (z[i] == z[j]) {
579 wmatnew[j] += wmat[i];
580 skipi = kTRUE;
581 break;
582 }
583 }
584 if (skipi) continue;
585 anew[nlmatnew] = a[i];
586 znew[nlmatnew] = z[i];
587 wmatnew[nlmatnew] = wmat[i];
588 nlmatnew++;
589 }
590 Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew);
591 delete [] anew;
592 delete [] znew;
593 delete [] wmatnew;
594 return;
595 }
a8e4986c 596 gGeoManager->Mixture(name, a, z, dens, nlmat, wmat, kmat);
829fb838 597}
598
599//______________________________________________________________________________
600void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
4aba9d66 601 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
602 Double_t stemax, Double_t deemax, Double_t epsil,
603 Double_t stmin, Float_t* ubuf, Int_t nbuf) {
b2129742 604 // Define a medium
605 //
829fb838 606 kmed = gGeoManager->GetListOfMedia()->GetSize()+1;
607 fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
4aba9d66 608 epsil, stmin, ubuf, nbuf);
829fb838 609}
610
611//______________________________________________________________________________
612void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
4aba9d66 613 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
614 Double_t stemax, Double_t deemax, Double_t epsil,
615 Double_t stmin, Double_t* ubuf, Int_t nbuf) {
b2129742 616 // Define a medium
617 //
829fb838 618 kmed = gGeoManager->GetListOfMedia()->GetSize()+1;
619 fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
4aba9d66 620 epsil, stmin, ubuf, nbuf);
829fb838 621}
622
623//______________________________________________________________________________
624void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX,
4aba9d66 625 Double_t thetaY, Double_t phiY, Double_t thetaZ,
626 Double_t phiZ) {
627//
829fb838 628 krot = gGeoManager->GetListOfMatrices()->GetEntriesFast();
629 fMCGeo->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ);
630}
631
632//______________________________________________________________________________
633void TFluka::Gstpar(Int_t itmed, const char* param, Double_t parval) {
634//
635//
7b203b6e 636//
829fb838 637 Bool_t process = kFALSE;
acf2e119 638 Bool_t modelp = kFALSE;
639
829fb838 640 if (strncmp(param, "DCAY", 4) == 0 ||
641 strncmp(param, "PAIR", 4) == 0 ||
642 strncmp(param, "COMP", 4) == 0 ||
643 strncmp(param, "PHOT", 4) == 0 ||
644 strncmp(param, "PFIS", 4) == 0 ||
645 strncmp(param, "DRAY", 4) == 0 ||
646 strncmp(param, "ANNI", 4) == 0 ||
647 strncmp(param, "BREM", 4) == 0 ||
648 strncmp(param, "MUNU", 4) == 0 ||
649 strncmp(param, "CKOV", 4) == 0 ||
650 strncmp(param, "HADR", 4) == 0 ||
651 strncmp(param, "LOSS", 4) == 0 ||
652 strncmp(param, "MULS", 4) == 0 ||
695d8af9 653 strncmp(param, "RAYL", 4) == 0 ||
654 strncmp(param, "STRA", 4) == 0)
829fb838 655 {
656 process = kTRUE;
657 }
81f1d030 658
acf2e119 659 if (strncmp(param, "PRIMIO_N", 8) == 0 ||
660 strncmp(param, "PRIMIO_E", 8) == 0)
661 {
662 modelp = kTRUE;
663 }
664
829fb838 665 if (process) {
acf2e119 666 // Process switch
81f1d030 667 SetProcess(param, Int_t (parval), itmed);
acf2e119 668 } else if (modelp) {
669 // Model parameters
670 SetModelParameter(param, parval, itmed);
829fb838 671 } else {
acf2e119 672 // Cuts
81f1d030 673 SetCut(param, parval, itmed);
829fb838 674 }
acf2e119 675
676
829fb838 677}
678
679// functions from GGEOM
680//_____________________________________________________________________________
681void TFluka::Gsatt(const char *name, const char *att, Int_t val)
682{
6f5667d1 683 // Set visualisation attributes for one volume
829fb838 684 char vname[5];
685 fGeom->Vname(name,vname);
686 char vatt[5];
687 fGeom->Vname(att,vatt);
688 gGeoManager->SetVolumeAttribute(vname, vatt, val);
689}
690
691//______________________________________________________________________________
692Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
4aba9d66 693 Float_t *upar, Int_t np) {
829fb838 694//
695 return fMCGeo->Gsvolu(name, shape, nmed, upar, np);
696}
697
698//______________________________________________________________________________
699Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
4aba9d66 700 Double_t *upar, Int_t np) {
829fb838 701//
702 return fMCGeo->Gsvolu(name, shape, nmed, upar, np);
703}
704
705//______________________________________________________________________________
706void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv,
4aba9d66 707 Int_t iaxis) {
829fb838 708//
709 fMCGeo->Gsdvn(name, mother, ndiv, iaxis);
710}
711
712//______________________________________________________________________________
713void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv,
4aba9d66 714 Int_t iaxis, Double_t c0i, Int_t numed) {
829fb838 715//
716 fMCGeo->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed);
717}
718
719//______________________________________________________________________________
720void TFluka::Gsdvt(const char *name, const char *mother, Double_t step,
4aba9d66 721 Int_t iaxis, Int_t numed, Int_t ndvmx) {
722//
829fb838 723 fMCGeo->Gsdvt(name, mother, step, iaxis, numed, ndvmx);
724}
725
726//______________________________________________________________________________
727void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step,
4aba9d66 728 Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) {
829fb838 729//
730 fMCGeo->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx);
731}
732
733//______________________________________________________________________________
734void TFluka::Gsord(const char * /*name*/, Int_t /*iax*/) {
735//
736// Nothing to do with TGeo
737}
738
739//______________________________________________________________________________
740void TFluka::Gspos(const char *name, Int_t nr, const char *mother,
4aba9d66 741 Double_t x, Double_t y, Double_t z, Int_t irot,
742 const char *konly) {
829fb838 743//
744 fMCGeo->Gspos(name, nr, mother, x, y, z, irot, konly);
745}
746
747//______________________________________________________________________________
748void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
4aba9d66 749 Double_t x, Double_t y, Double_t z, Int_t irot,
750 const char *konly, Float_t *upar, Int_t np) {
829fb838 751 //
752 fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
753}
754
755//______________________________________________________________________________
756void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
4aba9d66 757 Double_t x, Double_t y, Double_t z, Int_t irot,
758 const char *konly, Double_t *upar, Int_t np) {
829fb838 759 //
760 fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
761}
762
763//______________________________________________________________________________
764void TFluka::Gsbool(const char* /*onlyVolName*/, const char* /*manyVolName*/) {
765//
766// Nothing to do with TGeo
767}
768
a9ea1616 769//______________________________________________________________________
770Bool_t TFluka::GetTransformation(const TString &volumePath,TGeoHMatrix &mat)
771{
772 // Returns the Transformation matrix between the volume specified
773 // by the path volumePath and the Top or mater volume. The format
774 // of the path volumePath is as follows (assuming ALIC is the Top volume)
775 // "/ALIC_1/DDIP_1/S05I_2/S05H_1/S05G_3". Here ALIC is the top most
776 // or master volume which has only 1 instance of. Of all of the daughter
777 // volumes of ALICE, DDIP volume copy #1 is indicated. Similarly for
778 // the daughter volume of DDIP is S05I copy #2 and so on.
779 // Inputs:
780 // TString& volumePath The volume path to the specific volume
781 // for which you want the matrix. Volume name
782 // hierarchy is separated by "/" while the
783 // copy number is appended using a "_".
784 // Outputs:
785 // TGeoHMatrix &mat A matrix with its values set to those
786 // appropriate to the Local to Master transformation
787 // Return:
788 // A logical value if kFALSE then an error occurred and no change to
789 // mat was made.
790
791 // We have to preserve the modeler state
792 return fMCGeo->GetTransformation(volumePath, mat);
793}
794
795//______________________________________________________________________
796Bool_t TFluka::GetShape(const TString &volumePath,TString &shapeType,
797 TArrayD &par)
798{
799 // Returns the shape and its parameters for the volume specified
800 // by volumeName.
801 // Inputs:
802 // TString& volumeName The volume name
803 // Outputs:
804 // TString &shapeType Shape type
805 // TArrayD &par A TArrayD of parameters with all of the
806 // parameters of the specified shape.
807 // Return:
808 // A logical indicating whether there was an error in getting this
809 // information
810 return fMCGeo->GetShape(volumePath, shapeType, par);
811}
812
813//______________________________________________________________________
814Bool_t TFluka::GetMaterial(const TString &volumeName,
815 TString &name,Int_t &imat,
816 Double_t &a,Double_t &z,Double_t &dens,
817 Double_t &radl,Double_t &inter,TArrayD &par)
818{
819 // Returns the Material and its parameters for the volume specified
820 // by volumeName.
821 // Note, Geant3 stores and uses mixtures as an element with an effective
822 // Z and A. Consequently, if the parameter Z is not integer, then
823 // this material represents some sort of mixture.
824 // Inputs:
825 // TString& volumeName The volume name
826 // Outputs:
827 // TSrting &name Material name
828 // Int_t &imat Material index number
829 // Double_t &a Average Atomic mass of material
830 // Double_t &z Average Atomic number of material
831 // Double_t &dens Density of material [g/cm^3]
832 // Double_t &radl Average radiation length of material [cm]
833 // Double_t &inter Average interaction length of material [cm]
834 // TArrayD &par A TArrayD of user defined parameters.
835 // Return:
836 // kTRUE if no errors
837 return fMCGeo->GetMaterial(volumeName,name,imat,a,z,dens,radl,inter,par);
838}
839
840//______________________________________________________________________
841Bool_t TFluka::GetMedium(const TString &volumeName,TString &name,
842 Int_t &imed,Int_t &nmat,Int_t &isvol,Int_t &ifield,
843 Double_t &fieldm,Double_t &tmaxfd,Double_t &stemax,
844 Double_t &deemax,Double_t &epsil, Double_t &stmin,
845 TArrayD &par)
846{
847 // Returns the Medium and its parameters for the volume specified
848 // by volumeName.
849 // Inputs:
850 // TString& volumeName The volume name.
851 // Outputs:
852 // TString &name Medium name
853 // Int_t &nmat Material number defined for this medium
854 // Int_t &imed The medium index number
855 // Int_t &isvol volume number defined for this medium
856 // Int_t &iflield Magnetic field flag
857 // Double_t &fieldm Magnetic field strength
858 // Double_t &tmaxfd Maximum angle of deflection per step
859 // Double_t &stemax Maximum step size
860 // Double_t &deemax Maximum fraction of energy allowed to be lost
861 // to continuous process.
862 // Double_t &epsil Boundary crossing precision
863 // Double_t &stmin Minimum step size allowed
864 // TArrayD &par A TArrayD of user parameters with all of the
865 // parameters of the specified medium.
866 // Return:
867 // kTRUE if there where no errors
868 return fMCGeo->GetMedium(volumeName,name,imed,nmat,isvol,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin,par);
869}
870
829fb838 871//______________________________________________________________________________
872void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov,
4aba9d66 873 Float_t* absco, Float_t* effic, Float_t* rindex) {
829fb838 874//
875// Set Cerenkov properties for medium itmed
876//
877// npckov: number of sampling points
878// ppckov: energy values
879// absco: absorption length
880// effic: quantum efficiency
881// rindex: refraction index
882//
883//
884//
885// Create object holding Cerenkov properties
b6a89226 886//
887
829fb838 888 TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex);
889//
890// Pass object to medium
891 TGeoMedium* medium = gGeoManager->GetMedium(itmed);
892 medium->SetCerenkovProperties(cerenkovProperties);
893}
894
b2be0e73 895void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov,
4aba9d66 896 Float_t* absco, Float_t* effic, Float_t* rindex, Float_t* rfl) {
b2be0e73 897//
898// Set Cerenkov properties for medium itmed
899//
900// npckov: number of sampling points
901// ppckov: energy values
902// absco: absorption length
903// effic: quantum efficiency
904// rindex: refraction index
905// rfl: reflectivity for boundary to medium itmed
906//
907//
908// Create object holding Cerenkov properties
909//
910 TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex, rfl);
911//
912// Pass object to medium
913 TGeoMedium* medium = gGeoManager->GetMedium(itmed);
914 medium->SetCerenkovProperties(cerenkovProperties);
915}
916
917
829fb838 918//______________________________________________________________________________
b6a89226 919void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Double_t *ppckov,
920 Double_t *absco, Double_t *effic, Double_t *rindex) {
921//
922// Set Cerenkov properties for medium itmed
829fb838 923//
b6a89226 924// npckov: number of sampling points
925// ppckov: energy values
926// absco: absorption length
927// effic: quantum efficiency
928// rindex: refraction index
929//
930
931//
932// Double_t version
933 Float_t* fppckov = CreateFloatArray(ppckov, npckov);
934 Float_t* fabsco = CreateFloatArray(absco, npckov);
935 Float_t* feffic = CreateFloatArray(effic, npckov);
936 Float_t* frindex = CreateFloatArray(rindex, npckov);
937
938 SetCerenkov(itmed, npckov, fppckov, fabsco, feffic, frindex);
939
940 delete [] fppckov;
941 delete [] fabsco;
942 delete [] feffic;
943 delete [] frindex;
829fb838 944}
b2be0e73 945
b6a89226 946void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Double_t* ppckov,
947 Double_t* absco, Double_t* effic, Double_t* rindex, Double_t* rfl) {
b2be0e73 948//
b6a89226 949// Set Cerenkov properties for medium itmed
950//
951// npckov: number of sampling points
952// ppckov: energy values
953// absco: absorption length
954// effic: quantum efficiency
955// rindex: refraction index
956// rfl: reflectivity for boundary to medium itmed
957//
958
959//
960// // Double_t version
961 Float_t* fppckov = CreateFloatArray(ppckov, npckov);
962 Float_t* fabsco = CreateFloatArray(absco, npckov);
963 Float_t* feffic = CreateFloatArray(effic, npckov);
964 Float_t* frindex = CreateFloatArray(rindex, npckov);
965 Float_t* frfl = CreateFloatArray(rfl, npckov);
966
967 SetCerenkov(itmed, npckov, fppckov, fabsco, feffic, frindex, frfl);
968
969 delete [] fppckov;
970 delete [] fabsco;
971 delete [] feffic;
972 delete [] frindex;
973 delete [] frfl;
b2be0e73 974}
975
829fb838 976// Euclid
977//______________________________________________________________________________
978void TFluka::WriteEuclid(const char* /*fileName*/, const char* /*topVol*/,
979 Int_t /*number*/, Int_t /*nlevel*/) {
980//
981// Not with TGeo
a9ea1616 982 Warning("WriteEuclid", "Not implemented !");
829fb838 983}
984
985
986
987//_____________________________________________________________________________
988// methods needed by the stepping
989//____________________________________________________________________________
990
991Int_t TFluka::GetMedium() const {
992//
993// Get the medium number for the current fluka region
994//
ab2afdda 995 if (gGeoManager->IsOutside()) {
996 return (-1);
997 } else {
998 return (fGeom->GetMedium()); // this I need to check due to remapping !!!
999 }
829fb838 1000}
1001
a9ea1616 1002//____________________________________________________________________________
1003Int_t TFluka::GetDummyRegion() const
1004{
1005// Returns index of the dummy region.
1006 return fGeom->GetDummyRegion();
1007}
829fb838 1008
a9ea1616 1009//____________________________________________________________________________
1010Int_t TFluka::GetDummyLattice() const
1011{
1012// Returns index of the dummy lattice.
1013 return fGeom->GetDummyLattice();
1014}
829fb838 1015
1016//____________________________________________________________________________
1017// particle table usage
1018// ID <--> PDG transformations
1019//_____________________________________________________________________________
1020Int_t TFluka::IdFromPDG(Int_t pdg) const
1021{
1022 //
1023 // Return Fluka code from PDG and pseudo ENDF code
1024
1025 // Catch the feedback photons
a9ea1616 1026 if (pdg == 50000051) return (kFLUKAoptical);
829fb838 1027 // MCIHAD() goes from pdg to fluka internal.
1028 Int_t intfluka = mcihad(pdg);
1029 // KPTOIP array goes from internal to official
1030 return GetFlukaKPTOIP(intfluka);
1031}
1032
1033//______________________________________________________________________________
1034Int_t TFluka::PDGFromId(Int_t id) const
1035{
1036 //
1037 // Return PDG code and pseudo ENDF code from Fluka code
f926898e 1038 // Alpha He3 Triton Deuteron gen. ion opt. photon
13858fbd 1039 Int_t idSpecial[6] = {GetIonPdg(2,4), GetIonPdg(2, 3), GetIonPdg(1,3), GetIonPdg(1,2), GetIonPdg(0,0), 50000050};
829fb838 1040 // IPTOKP array goes from official to internal
1041
a9ea1616 1042 if (id == kFLUKAoptical) {
829fb838 1043// Cerenkov photon
4aba9d66 1044// if (fVerbosityLevel >= 3)
1045// printf("\n PDGFromId: Cerenkov Photon \n");
1046 return 50000050;
829fb838 1047 }
1048// Error id
ece92b30 1049 if (id == 0 || id < kFLUKAcodemin || id > kFLUKAcodemax) {
66e5eb54 1050 if (fVerbosityLevel >= 3)
a9923346 1051 printf("PDGFromId: Error id = 0 %5d %5d\n", id, fCaller);
4aba9d66 1052 return -1;
829fb838 1053 }
1054// Good id
f926898e 1055 if (id > 0) {
4aba9d66 1056 Int_t intfluka = GetFlukaIPTOKP(id);
1057 if (intfluka == 0) {
1058 if (fVerbosityLevel >= 3)
1059 printf("PDGFromId: Error intfluka = 0: %d\n", id);
1060 return -1;
1061 } else if (intfluka < 0) {
1062 if (fVerbosityLevel >= 3)
1063 printf("PDGFromId: Error intfluka < 0: %d\n", id);
1064 return -1;
1065 }
1066// if (fVerbosityLevel >= 3)
1067// printf("mpdgha called with %d %d \n", id, intfluka);
1068 return mpdgha(intfluka);
f926898e 1069 } else {
4aba9d66 1070 // ions and optical photons
1071 return idSpecial[id - kFLUKAcodemin];
829fb838 1072 }
829fb838 1073}
1074
bd3d5c8a 1075void TFluka::StopTrack()
1076{
1077 // Set stopping conditions
1078 // Works for photons and charged particles
1079 fStopped = kTRUE;
1080}
1081
829fb838 1082//_____________________________________________________________________________
1083// methods for physics management
1084//____________________________________________________________________________
1085//
1086// set methods
1087//
1088
1df5fa54 1089void TFluka::SetProcess(const char* flagName, Int_t flagValue, Int_t imed)
829fb838 1090{
1091// Set process user flag for material imat
1df5fa54 1092//
1093//
1094// Update if already in the list
829fb838 1095//
fb2cbbec 1096 TIter next(fUserConfig);
1df5fa54 1097 TFlukaConfigOption* proc;
1098 while((proc = (TFlukaConfigOption*)next()))
1099 {
4aba9d66 1100 if (proc->Medium() == imed) {
1101 proc->SetProcess(flagName, flagValue);
1102 return;
1103 }
1df5fa54 1104 }
fb2cbbec 1105 proc = new TFlukaConfigOption(imed);
1106 proc->SetProcess(flagName, flagValue);
1107 fUserConfig->Add(proc);
1108}
1109
1110//______________________________________________________________________________
1111Bool_t TFluka::SetProcess(const char* flagName, Int_t flagValue)
1112{
1113// Set process user flag
1df5fa54 1114//
1df5fa54 1115//
fb2cbbec 1116 SetProcess(flagName, flagValue, -1);
1df5fa54 1117 return kTRUE;
829fb838 1118}
1119
1120//______________________________________________________________________________
1121void TFluka::SetCut(const char* cutName, Double_t cutValue, Int_t imed)
1122{
1123// Set user cut value for material imed
1124//
fb2cbbec 1125 TIter next(fUserConfig);
1126 TFlukaConfigOption* proc;
1127 while((proc = (TFlukaConfigOption*)next()))
1128 {
4aba9d66 1129 if (proc->Medium() == imed) {
1130 proc->SetCut(cutName, cutValue);
1131 return;
1132 }
fb2cbbec 1133 }
1134
1135 proc = new TFlukaConfigOption(imed);
1136 proc->SetCut(cutName, cutValue);
1137 fUserConfig->Add(proc);
829fb838 1138}
1139
acf2e119 1140
1141//______________________________________________________________________________
1142void TFluka::SetModelParameter(const char* parName, Double_t parValue, Int_t imed)
1143{
1144// Set model parameter for material imed
1145//
1146 TIter next(fUserConfig);
1147 TFlukaConfigOption* proc;
1148 while((proc = (TFlukaConfigOption*)next()))
1149 {
4aba9d66 1150 if (proc->Medium() == imed) {
1151 proc->SetModelParameter(parName, parValue);
1152 return;
1153 }
acf2e119 1154 }
1155
1156 proc = new TFlukaConfigOption(imed);
1157 proc->SetModelParameter(parName, parValue);
1158 fUserConfig->Add(proc);
1159}
1160
829fb838 1161//______________________________________________________________________________
1162Bool_t TFluka::SetCut(const char* cutName, Double_t cutValue)
1163{
1164// Set user cut value
1165//
1df5fa54 1166//
fb2cbbec 1167 SetCut(cutName, cutValue, -1);
1168 return kTRUE;
829fb838 1169}
1170
f450e9d0 1171
6f1aaa8e 1172void TFluka::SetUserScoring(const char* option, const char* sdum, Int_t npr, char* outfile, Float_t* what)
b496f27c 1173{
1174//
f450e9d0 1175// Adds a user scoring option to the list
b496f27c 1176//
6f1aaa8e 1177 TFlukaScoringOption* opt = new TFlukaScoringOption(option, sdum, npr,outfile,what);
f450e9d0 1178 fUserScore->Add(opt);
1179}
1180//______________________________________________________________________________
6f1aaa8e 1181void TFluka::SetUserScoring(const char* option, const char* sdum, Int_t npr, char* outfile, Float_t* what,
1182 const char* det1, const char* det2, const char* det3)
f450e9d0 1183{
1184//
1185// Adds a user scoring option to the list
1186//
6f1aaa8e 1187 TFlukaScoringOption* opt = new TFlukaScoringOption(option, sdum, npr, outfile, what, det1, det2, det3);
b496f27c 1188 fUserScore->Add(opt);
1189}
b496f27c 1190
829fb838 1191//______________________________________________________________________________
1192Double_t TFluka::Xsec(char*, Double_t, Int_t, Int_t)
1193{
a9ea1616 1194 Warning("Xsec", "Not yet implemented.!\n"); return -1.;
829fb838 1195}
1196
1197
1198//______________________________________________________________________________
1199void TFluka::InitPhysics()
1200{
1201//
1202// Physics initialisation with preparation of FLUKA input cards
1203//
fb2cbbec 1204// Construct file names
1205 FILE *pFlukaVmcCoreInp, *pFlukaVmcFlukaMat, *pFlukaVmcInp;
fb2cbbec 1206 TString sFlukaVmcTmp = "flukaMat.inp";
1207 TString sFlukaVmcInp = GetInputFileName();
ff2d1491 1208 TString sFlukaVmcCoreInp = GetCoreInputFileName();
fb2cbbec 1209
1210// Open files
1211 if ((pFlukaVmcCoreInp = fopen(sFlukaVmcCoreInp.Data(),"r")) == NULL) {
4aba9d66 1212 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcCoreInp.Data());
1213 exit(1);
fb2cbbec 1214 }
1215 if ((pFlukaVmcFlukaMat = fopen(sFlukaVmcTmp.Data(),"r")) == NULL) {
4aba9d66 1216 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcTmp.Data());
1217 exit(1);
fb2cbbec 1218 }
1219 if ((pFlukaVmcInp = fopen(sFlukaVmcInp.Data(),"w")) == NULL) {
4aba9d66 1220 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcInp.Data());
1221 exit(1);
fb2cbbec 1222 }
829fb838 1223
fb2cbbec 1224// Copy core input file
1225 Char_t sLine[255];
1226 Float_t fEventsPerRun;
829fb838 1227
fb2cbbec 1228 while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) {
4aba9d66 1229 if (strncmp(sLine,"GEOEND",6) != 0)
1230 fprintf(pFlukaVmcInp,"%s",sLine); // copy until GEOEND card
1231 else {
1232 fprintf(pFlukaVmcInp,"GEOEND\n"); // add GEOEND card
1233 goto flukamat;
1234 }
fb2cbbec 1235 } // end of while until GEOEND card
1236
829fb838 1237
fb2cbbec 1238 flukamat:
1239 while ((fgets(sLine,255,pFlukaVmcFlukaMat)) != NULL) { // copy flukaMat.inp file
4aba9d66 1240 fprintf(pFlukaVmcInp,"%s\n",sLine);
fb2cbbec 1241 }
1242
1243 while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) {
8fc475a1 1244 if (strncmp(sLine,"START",5) != 0)
4aba9d66 1245 fprintf(pFlukaVmcInp,"%s\n",sLine);
1246 else {
1247 sscanf(sLine+10,"%10f",&fEventsPerRun);
1248 goto fin;
1249 }
8fc475a1 1250 } //end of while until START card
fb2cbbec 1251
1252 fin:
829fb838 1253
f450e9d0 1254
1255// Pass information to configuration objects
829fb838 1256
fb2cbbec 1257 Float_t fLastMaterial = fGeom->GetLastMaterialIndex();
1258 TFlukaConfigOption::SetStaticInfo(pFlukaVmcInp, 3, fLastMaterial, fGeom);
1259
1260 TIter next(fUserConfig);
1261 TFlukaConfigOption* proc;
f450e9d0 1262 while((proc = dynamic_cast<TFlukaConfigOption*> (next()))) proc->WriteFlukaInputCards();
1263//
1264// Process Fluka specific scoring options
1265//
1266 TFlukaScoringOption::SetStaticInfo(pFlukaVmcInp, fGeom);
0bb2c369 1267 Float_t loginp = -49.0;
f450e9d0 1268 Int_t inp = 0;
1269 Int_t nscore = fUserScore->GetEntries();
1270
a9ea1616 1271 TFlukaScoringOption *mopo = 0;
1272 TFlukaScoringOption *mopi = 0;
fb2cbbec 1273
f450e9d0 1274 for (Int_t isc = 0; isc < nscore; isc++)
1275 {
4aba9d66 1276 mopo = dynamic_cast<TFlukaScoringOption*> (fUserScore->At(isc));
1277 char* fileName = mopo->GetFileName();
1278 Int_t size = strlen(fileName);
1279 Float_t lun = -1.;
f450e9d0 1280//
1281// Check if new output file has to be opened
4aba9d66 1282 for (Int_t isci = 0; isci < isc; isci++) {
1283
1284
1285 mopi = dynamic_cast<TFlukaScoringOption*> (fUserScore->At(isci));
1286 if(strncmp(mopi->GetFileName(), fileName, size)==0) {
1287 //
1288 // No, the file already exists
1289 lun = mopi->GetLun();
1290 mopo->SetLun(lun);
1291 break;
1292 }
1293 } // inner loop
1294
1295 if (lun == -1.) {
1296 // Open new output file
1297 inp++;
1298 mopo->SetLun(loginp + inp);
1299 mopo->WriteOpenFlukaFile();
1300 }
1301 mopo->WriteFlukaInputCards();
f450e9d0 1302 }
b8a8a88c 1303
1304// Add RANDOMIZ card
1305 fprintf(pFlukaVmcInp,"RANDOMIZ %10.1f%10.0f\n", 1., Float_t(gRandom->GetSeed()));
8fc475a1 1306// Add START and STOP card
1307 fprintf(pFlukaVmcInp,"START %10.1f\n",fEventsPerRun);
f450e9d0 1308 fprintf(pFlukaVmcInp,"STOP \n");
829fb838 1309
1310
1311// Close files
3b8c325d 1312 fclose(pFlukaVmcCoreInp);
1313 fclose(pFlukaVmcFlukaMat);
1314 fclose(pFlukaVmcInp);
fb2cbbec 1315
1316
1317//
1318// Initialisation needed for Cerenkov photon production and transport
1319 TObjArray *matList = GetFlukaMaterials();
1320 Int_t nmaterial = matList->GetEntriesFast();
9968e86c 1321 fMaterials = new Int_t[nmaterial+25];
fb2cbbec 1322
1323 for (Int_t im = 0; im < nmaterial; im++)
1324 {
4aba9d66 1325 TGeoMaterial* material = dynamic_cast<TGeoMaterial*> (matList->At(im));
1326 Int_t idmat = material->GetIndex();
1327 fMaterials[idmat] = im;
fb2cbbec 1328 }
829fb838 1329} // end of InitPhysics
1330
1331
1332//______________________________________________________________________________
07f5b33e 1333void TFluka::SetMaxStep(Double_t step)
829fb838 1334{
07f5b33e 1335// Set the maximum step size
4aba9d66 1336// if (step > 1.e4) return;
07f5b33e 1337
4aba9d66 1338// Int_t mreg=0, latt=0;
1339// fGeom->GetCurrentRegion(mreg, latt);
ff2d1491 1340
1341
4aba9d66 1342 Int_t mreg = fGeom->GetCurrentRegion();
9c0c08ce 1343 STEPSZ.stepmx[mreg - 1] = step;
829fb838 1344}
1345
2f09b80e 1346
1347Double_t TFluka::MaxStep() const
1348{
1349// Return the maximum for current medium
1350 Int_t mreg, latt;
1351 fGeom->GetCurrentRegion(mreg, latt);
1352 return (STEPSZ.stepmx[mreg - 1]);
1353}
1354
829fb838 1355//______________________________________________________________________________
1356void TFluka::SetMaxNStep(Int_t)
1357{
1358// SetMaxNStep is dummy procedure in TFluka !
1359 if (fVerbosityLevel >=3)
1360 cout << "SetMaxNStep is dummy procedure in TFluka !" << endl;
1361}
1362
1363//______________________________________________________________________________
1364void TFluka::SetUserDecay(Int_t)
1365{
1366// SetUserDecay is dummy procedure in TFluka !
1367 if (fVerbosityLevel >=3)
1368 cout << "SetUserDecay is dummy procedure in TFluka !" << endl;
1369}
1370
1371//
1372// dynamic properties
1373//
1374//______________________________________________________________________________
1375void TFluka::TrackPosition(TLorentzVector& position) const
1376{
1377// Return the current position in the master reference frame of the
1378// track being transported
1379// TRACKR.atrack = age of the particle
1380// TRACKR.xtrack = x-position of the last point
1381// TRACKR.ytrack = y-position of the last point
1382// TRACKR.ztrack = z-position of the last point
a9ea1616 1383 FlukaCallerCode_t caller = GetCaller();
1384 if (caller == kENDRAW || caller == kUSDRAW ||
1385 caller == kBXExiting || caller == kBXEntering ||
1386 caller == kUSTCKV) {
42b936d1 1387 position.SetX(GetXsco());
1388 position.SetY(GetYsco());
1389 position.SetZ(GetZsco());
1390 position.SetT(TRACKR.atrack);
829fb838 1391 }
5125d6e5 1392 else if (caller == kMGDRAW) {
1393 Int_t i = -1;
1394 if ((i = fPrimaryElectronIndex) > -1) {
1395 // Primary Electron Ionisation
15a8a899 1396 Double_t x, y, z, t;
1397 GetPrimaryElectronPosition(i, x, y, z, t);
5125d6e5 1398 position.SetX(x);
1399 position.SetY(y);
1400 position.SetZ(z);
15a8a899 1401 position.SetT(t);
5125d6e5 1402 } else {
1403 position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
1404 position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
1405 position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
1406 position.SetT(TRACKR.atrack);
1407 }
829fb838 1408 }
a9ea1616 1409 else if (caller == kSODRAW) {
42b936d1 1410 Int_t ist = FLKSTK.npflka;
1411 position.SetX(FLKSTK.xflk[ist]);
1412 position.SetY(FLKSTK.yflk[ist]);
1413 position.SetZ(FLKSTK.zflk[ist]);
1414 position.SetT(FLKSTK.agestk[ist]);
a9ea1616 1415 } else if (caller == kMGResumedTrack) {
42b936d1 1416 position.SetX(TRACKR.spausr[0]);
1417 position.SetY(TRACKR.spausr[1]);
1418 position.SetZ(TRACKR.spausr[2]);
1419 position.SetT(TRACKR.spausr[3]);
829fb838 1420 }
1421 else
42b936d1 1422 Warning("TrackPosition","position not available");
829fb838 1423}
1424
1425//______________________________________________________________________________
1426void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const
1427{
1428// Return the current position in the master reference frame of the
1429// track being transported
1430// TRACKR.atrack = age of the particle
1431// TRACKR.xtrack = x-position of the last point
1432// TRACKR.ytrack = y-position of the last point
1433// TRACKR.ztrack = z-position of the last point
a9ea1616 1434 FlukaCallerCode_t caller = GetCaller();
1435 if (caller == kENDRAW || caller == kUSDRAW ||
1436 caller == kBXExiting || caller == kBXEntering ||
1437 caller == kUSTCKV) {
5125d6e5 1438 x = GetXsco();
1439 y = GetYsco();
1440 z = GetZsco();
829fb838 1441 }
42b936d1 1442 else if (caller == kMGDRAW) {
5125d6e5 1443 Int_t i = -1;
1444 if ((i = fPrimaryElectronIndex) > -1) {
15a8a899 1445 Double_t t;
1446 GetPrimaryElectronPosition(i, x, y, z, t);
5125d6e5 1447 } else {
1448 x = TRACKR.xtrack[TRACKR.ntrack];
1449 y = TRACKR.ytrack[TRACKR.ntrack];
1450 z = TRACKR.ztrack[TRACKR.ntrack];
1451 }
829fb838 1452 }
42b936d1 1453 else if (caller == kSODRAW) {
1454 Int_t ist = FLKSTK.npflka;
1455 x = FLKSTK.xflk[ist];
1456 y = FLKSTK.yflk[ist];
1457 z = FLKSTK.zflk[ist];
1458 }
a9ea1616 1459 else if (caller == kMGResumedTrack) {
42b936d1 1460 x = TRACKR.spausr[0];
1461 y = TRACKR.spausr[1];
1462 z = TRACKR.spausr[2];
5d80a015 1463 }
829fb838 1464 else
42b936d1 1465 Warning("TrackPosition","position not available");
829fb838 1466}
1467
1468//______________________________________________________________________________
1469void TFluka::TrackMomentum(TLorentzVector& momentum) const
1470{
1471// Return the direction and the momentum (GeV/c) of the track
1472// currently being transported
1473// TRACKR.ptrack = momentum of the particle (not always defined, if
1474// < 0 must be obtained from etrack)
1475// TRACKR.cx,y,ztrck = direction cosines of the current particle
1476// TRACKR.etrack = total energy of the particle
1477// TRACKR.jtrack = identity number of the particle
1478// PAPROP.am[TRACKR.jtrack] = particle mass in gev
a9ea1616 1479 FlukaCallerCode_t caller = GetCaller();
1480 FlukaProcessCode_t icode = GetIcode();
1481
82a3f706 1482 if (caller != kEEDRAW &&
1483 caller != kMGResumedTrack &&
1484 caller != kSODRAW &&
1485 caller != kUSDRAW &&
a9ea1616 1486 (caller != kENDRAW || (icode != kEMFSCOstopping1 && icode != kEMFSCOstopping2))) {
42b936d1 1487 if (TRACKR.ptrack >= 0) {
1488 momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck);
1489 momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck);
1490 momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck);
1491 momentum.SetE(TRACKR.etrack);
1492 return;
1493 }
1494 else {
1495 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
1496 momentum.SetPx(p*TRACKR.cxtrck);
1497 momentum.SetPy(p*TRACKR.cytrck);
1498 momentum.SetPz(p*TRACKR.cztrck);
1499 momentum.SetE(TRACKR.etrack);
1500 return;
1501 }
a9ea1616 1502 } else if (caller == kMGResumedTrack) {
42b936d1 1503 momentum.SetPx(TRACKR.spausr[4]);
1504 momentum.SetPy(TRACKR.spausr[5]);
1505 momentum.SetPz(TRACKR.spausr[6]);
1506 momentum.SetE (TRACKR.spausr[7]);
1507 return;
a9ea1616 1508 } else if (caller == kENDRAW && (icode == kEMFSCOstopping1 || icode == kEMFSCOstopping2)) {
1509 momentum.SetPx(0.);
1510 momentum.SetPy(0.);
1511 momentum.SetPz(0.);
1512 momentum.SetE(TrackMass());
42b936d1 1513
1514 } else if (caller == kSODRAW) {
1515 Int_t ist = FLKSTK.npflka;
1516 Double_t p = FLKSTK.pmoflk[ist];
1517 Int_t ifl = FLKSTK.iloflk[ist];
1518 Double_t m = PAPROP.am[ifl + 6];
1519 Double_t e = TMath::Sqrt(p * p + m * m);
1520 momentum.SetPx(p * FLKSTK.txflk[ist]);
1521 momentum.SetPy(p * FLKSTK.tyflk[ist]);
1522 momentum.SetPz(p * FLKSTK.tzflk[ist]);
1523 momentum.SetE(e);
82a3f706 1524 } else if (caller == kUSDRAW) {
6df2c1cc 1525 if (icode == kEMFSCObrems ||
1526 icode == kEMFSCOmoller ||
1527 icode == kEMFSCObhabha ||
1528 icode == kEMFSCOcompton )
1529 {
82a3f706 1530 momentum.SetPx(fPint[0]);
1531 momentum.SetPy(fPint[1]);
1532 momentum.SetPz(fPint[2]);
1533 momentum.SetE(fPint[3]);
6df2c1cc 1534 } else if (icode == kKASKADdray ||
1535 icode == kKASKADbrems ||
1536 icode == kKASKADpair) {
1537 momentum.SetPx(GENSTK.plr[0] * GENSTK.cxr[0]);
1538 momentum.SetPy(GENSTK.plr[0] * GENSTK.cyr[0]);
1539 momentum.SetPz(GENSTK.plr[0] * GENSTK.czr[0]);
1540 momentum.SetE (GENSTK.tki[0] + PAPROP.am[GENSTK.kpart[0]+6]);
82a3f706 1541 } else {
6df2c1cc 1542 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack
1543 - ParticleMassFPC(TRACKR.jtrack)
1544 * ParticleMassFPC(TRACKR.jtrack));
82a3f706 1545 momentum.SetPx(p*TRACKR.cxtrck);
1546 momentum.SetPy(p*TRACKR.cytrck);
1547 momentum.SetPz(p*TRACKR.cztrck);
1548 momentum.SetE(TRACKR.etrack);
1549 }
829fb838 1550 }
1551 else
1552 Warning("TrackMomentum","momentum not available");
1553}
1554
1555//______________________________________________________________________________
1556void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const
1557{
1558// Return the direction and the momentum (GeV/c) of the track
1559// currently being transported
1560// TRACKR.ptrack = momentum of the particle (not always defined, if
1561// < 0 must be obtained from etrack)
1562// TRACKR.cx,y,ztrck = direction cosines of the current particle
1563// TRACKR.etrack = total energy of the particle
1564// TRACKR.jtrack = identity number of the particle
1565// PAPROP.am[TRACKR.jtrack] = particle mass in gev
a9ea1616 1566 FlukaCallerCode_t caller = GetCaller();
1567 FlukaProcessCode_t icode = GetIcode();
42b936d1 1568 if (caller != kEEDRAW &&
1569 caller != kMGResumedTrack &&
1570 caller != kSODRAW &&
82a3f706 1571 caller != kUSDRAW &&
a9ea1616 1572 (caller != kENDRAW || (icode != kEMFSCOstopping1 && icode != kEMFSCOstopping2))) {
829fb838 1573 if (TRACKR.ptrack >= 0) {
1574 px = TRACKR.ptrack*TRACKR.cxtrck;
1575 py = TRACKR.ptrack*TRACKR.cytrck;
1576 pz = TRACKR.ptrack*TRACKR.cztrck;
a9ea1616 1577 e = TRACKR.etrack;
829fb838 1578 return;
1579 }
1580 else {
ece92b30 1581 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
829fb838 1582 px = p*TRACKR.cxtrck;
1583 py = p*TRACKR.cytrck;
1584 pz = p*TRACKR.cztrck;
a9ea1616 1585 e = TRACKR.etrack;
829fb838 1586 return;
1587 }
a9ea1616 1588 } else if (caller == kMGResumedTrack) {
5d80a015 1589 px = TRACKR.spausr[4];
1590 py = TRACKR.spausr[5];
1591 pz = TRACKR.spausr[6];
1592 e = TRACKR.spausr[7];
0773d0ac 1593 return;
a9ea1616 1594 } else if (caller == kENDRAW && (icode == kEMFSCOstopping1 || icode == kEMFSCOstopping2)) {
1595 px = 0.;
1596 py = 0.;
1597 pz = 0.;
1598 e = TrackMass();
42b936d1 1599 } else if (caller == kSODRAW) {
1600 Int_t ist = FLKSTK.npflka;
1601 Double_t p = FLKSTK.pmoflk[ist];
1602 Int_t ifl = FLKSTK.iloflk[ist];
1603 Double_t m = PAPROP.am[ifl + 6];
1604 e = TMath::Sqrt(p * p + m * m);
1605 px = p * FLKSTK.txflk[ist];
1606 py = p * FLKSTK.tyflk[ist];
1607 pz = p * FLKSTK.tzflk[ist];
82a3f706 1608 } else if (caller == kUSDRAW) {
6df2c1cc 1609 if (icode == kEMFSCObrems ||
1610 icode == kEMFSCOmoller ||
1611 icode == kEMFSCObhabha ||
1612 icode == kEMFSCOcompton )
1613 {
82a3f706 1614 px = fPint[0];
1615 py = fPint[1];
1616 pz = fPint[2];
1617 e = fPint[3];
6df2c1cc 1618 } else if (icode == kKASKADdray ||
1619 icode == kKASKADbrems ||
1620 icode == kKASKADpair) {
1621 px = GENSTK.plr[0] * GENSTK.cxr[0];
1622 py = GENSTK.plr[0] * GENSTK.cyr[0];
1623 pz = GENSTK.plr[0] * GENSTK.czr[0];
1624 e = GENSTK.tki[0] + PAPROP.am[GENSTK.kpart[0]+6];
82a3f706 1625 } else {
1626 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
1627 px = p*TRACKR.cxtrck;
1628 py = p*TRACKR.cytrck;
1629 pz = p*TRACKR.cztrck;
1630 e = TRACKR.etrack;
1631 }
829fb838 1632 }
1633 else
42b936d1 1634 Warning("TrackMomentum","momentum not available");
829fb838 1635}
1636
1637//______________________________________________________________________________
1638Double_t TFluka::TrackStep() const
1639{
1640// Return the length in centimeters of the current step
1641// TRACKR.ctrack = total curved path
42b936d1 1642 FlukaCallerCode_t caller = GetCaller();
1643 if (caller == kBXEntering || caller == kBXExiting ||
1644 caller == kENDRAW || caller == kUSDRAW ||
1645 caller == kUSTCKV || caller == kMGResumedTrack ||
1646 caller == kSODRAW)
1647 return 0.0;
a9ea1616 1648 else if (caller == kMGDRAW)
829fb838 1649 return TRACKR.ctrack;
669cede4 1650 else {
1651 Warning("TrackStep", "track step not available");
1652 return 0.0;
1653 }
829fb838 1654}
1655
1656//______________________________________________________________________________
1657Double_t TFluka::TrackLength() const
1658{
1659// TRACKR.cmtrck = cumulative curved path since particle birth
a9ea1616 1660 FlukaCallerCode_t caller = GetCaller();
1661 if (caller == kBXEntering || caller == kBXExiting ||
1662 caller == kENDRAW || caller == kUSDRAW || caller == kMGDRAW ||
1663 caller == kUSTCKV)
829fb838 1664 return TRACKR.cmtrck;
a9ea1616 1665 else if (caller == kMGResumedTrack)
5d80a015 1666 return TRACKR.spausr[8];
82a3f706 1667 else if (caller == kSODRAW)
1668 return 0.0;
669cede4 1669 else {
82a3f706 1670 Warning("TrackLength", "track length not available for caller %5d \n", caller);
669cede4 1671 return 0.0;
1672 }
829fb838 1673}
1674
1675//______________________________________________________________________________
1676Double_t TFluka::TrackTime() const
1677{
1678// Return the current time of flight of the track being transported
1679// TRACKR.atrack = age of the particle
a9ea1616 1680 FlukaCallerCode_t caller = GetCaller();
15a8a899 1681 if (caller == kMGDRAW) {
1682 Int_t i;
1683 if ((i = fPrimaryElectronIndex) > -1) {
1684 Double_t x, y, z, t;
1685 GetPrimaryElectronPosition(i, x, y, z, t);
1686 return t;
1687 } else {
1688 return TRACKR.atrack;
1689 }
1690 } else if (caller == kBXEntering || caller == kBXExiting ||
1691 caller == kENDRAW || caller == kUSDRAW ||
1692 caller == kUSTCKV)
829fb838 1693 return TRACKR.atrack;
a9ea1616 1694 else if (caller == kMGResumedTrack)
5d80a015 1695 return TRACKR.spausr[3];
42b936d1 1696 else if (caller == kSODRAW) {
1697 return (FLKSTK.agestk[FLKSTK.npflka]);
1698 }
669cede4 1699 else {
1700 Warning("TrackTime", "track time not available");
1701 return 0.0;
1702 }
829fb838 1703}
1704
1705//______________________________________________________________________________
1706Double_t TFluka::Edep() const
1707{
1708// Energy deposition
1709// if TRACKR.ntrack = 0, TRACKR.mtrack = 0:
1710// -->local energy deposition (the value and the point are not recorded in TRACKR)
1711// but in the variable "rull" of the procedure "endraw.cxx"
1712// if TRACKR.ntrack > 0, TRACKR.mtrack = 0:
1713// -->no energy loss along the track
1714// if TRACKR.ntrack > 0, TRACKR.mtrack > 0:
1715// -->energy loss distributed along the track
07f5b33e 1716// TRACKR.dtrack = energy deposition of the jth deposition event
829fb838 1717
1718 // If coming from bxdraw we have 2 steps of 0 length and 0 edep
669cede4 1719 // If coming from usdraw we just signal particle production - no edep
1720 // If just first time after resuming, no edep for the primary
a9ea1616 1721 FlukaCallerCode_t caller = GetCaller();
ada781c7 1722
a9ea1616 1723 if (caller == kBXExiting || caller == kBXEntering ||
42b936d1 1724 caller == kUSDRAW || caller == kMGResumedTrack ||
1725 caller == kSODRAW)
1726 return 0.0;
829fb838 1727 Double_t sum = 0;
5125d6e5 1728 Int_t i = -1;
09cdde8a 1729
ada781c7 1730 // Material with primary ionisation activated but number of primary electrons nprim = 0
1731 if (fPrimaryElectronIndex == -2) return 0.0;
1732 // nprim > 0
5125d6e5 1733 if ((i = fPrimaryElectronIndex) > -1) {
1734 // Primary ionisation
ada781c7 1735 sum = GetPrimaryElectronKineticEnergy(i);
1736 if (sum > 100.) {
1737 printf("edep > 100. %d %d %f \n", i, ALLDLT.nalldl, sum);
1738 }
1739 return sum;
5125d6e5 1740 } else {
1741 // Normal ionisation
1742 if (TRACKR.mtrack > 1) printf("Edep: %6d\n", TRACKR.mtrack);
1743
1744 for ( Int_t j=0;j<TRACKR.mtrack;j++) {
1745 sum +=TRACKR.dtrack[j];
1746 }
1747 if (TRACKR.ntrack == 0 && TRACKR.mtrack == 0)
1748 return fRull + sum;
1749 else {
1750 return sum;
1751 }
829fb838 1752 }
1753}
1754
18e0cabb 1755//______________________________________________________________________________
1756Int_t TFluka::CorrectFlukaId() const
1757{
1758 // since we don't put photons and e- created bellow transport cut on the vmc stack
1759 // and there is a call to endraw for energy deposition for each of them
1760 // and they have the track number of their parent, but different identity (pdg)
4aba9d66 1761 // so we want to assign also their parent identity.
cc7af78a 1762
a9923346 1763 if( (IsTrackStop())
18e0cabb 1764 && TRACKR.ispusr[mkbmx2 - 4] == TRACKR.ispusr[mkbmx2 - 1]
1765 && TRACKR.jtrack != TRACKR.ispusr[mkbmx2 - 3] ) {
1766 if (fVerbosityLevel >=3)
1767 cout << "CorrectFlukaId() for icode=" << GetIcode()
1768 << " track=" << TRACKR.ispusr[mkbmx2 - 1]
1769 << " current PDG=" << PDGFromId(TRACKR.jtrack)
1770 << " assign parent PDG=" << PDGFromId(TRACKR.ispusr[mkbmx2 - 3]) << endl;
1771 return TRACKR.ispusr[mkbmx2 - 3]; // assign parent identity
1772 }
13858fbd 1773 if (TRACKR.jtrack <= 64){
cc7af78a 1774 return TRACKR.jtrack;
1775 } else {
1776 return TRACKR.j0trck;
1777 }
18e0cabb 1778}
1779
1780
829fb838 1781//______________________________________________________________________________
1782Int_t TFluka::TrackPid() const
1783{
1784// Return the id of the particle transported
1785// TRACKR.jtrack = identity number of the particle
a9ea1616 1786 FlukaCallerCode_t caller = GetCaller();
42b936d1 1787 if (caller != kEEDRAW && caller != kSODRAW) {
18e0cabb 1788 return PDGFromId( CorrectFlukaId() );
f926898e 1789 }
42b936d1 1790 else if (caller == kSODRAW) {
1791 return PDGFromId(FLKSTK.iloflk[FLKSTK.npflka]);
1792 }
829fb838 1793 else
1794 return -1000;
1795}
1796
1797//______________________________________________________________________________
1798Double_t TFluka::TrackCharge() const
1799{
1800// Return charge of the track currently transported
1801// PAPROP.ichrge = electric charge of the particle
1802// TRACKR.jtrack = identity number of the particle
13858fbd 1803
a9ea1616 1804 FlukaCallerCode_t caller = GetCaller();
42b936d1 1805 if (caller != kEEDRAW && caller != kSODRAW)
1806 return PAPROP.ichrge[CorrectFlukaId() + 6];
1807 else if (caller == kSODRAW) {
1808 Int_t ifl = PDGFromId(FLKSTK.iloflk[FLKSTK.npflka]);
1809 return PAPROP.ichrge[ifl + 6];
1810 }
829fb838 1811 else
1812 return -1000.0;
1813}
1814
1815//______________________________________________________________________________
1816Double_t TFluka::TrackMass() const
1817{
1818// PAPROP.am = particle mass in GeV
1819// TRACKR.jtrack = identity number of the particle
a9ea1616 1820 FlukaCallerCode_t caller = GetCaller();
42b936d1 1821 if (caller != kEEDRAW && caller != kSODRAW)
18e0cabb 1822 return PAPROP.am[CorrectFlukaId()+6];
42b936d1 1823 else if (caller == kSODRAW) {
82a3f706 1824 Int_t ifl = FLKSTK.iloflk[FLKSTK.npflka];
42b936d1 1825 return PAPROP.am[ifl + 6];
1826 }
829fb838 1827 else
1828 return -1000.0;
1829}
1830
1831//______________________________________________________________________________
1832Double_t TFluka::Etot() const
1833{
1834// TRACKR.etrack = total energy of the particle
6df2c1cc 1835 FlukaCallerCode_t caller = GetCaller();
1836 FlukaProcessCode_t icode = GetIcode();
1837 if (caller != kEEDRAW && caller != kSODRAW && caller != kUSDRAW)
1838 {
1839 return TRACKR.etrack;
1840 } else if (caller == kUSDRAW) {
1841 if (icode == kEMFSCObrems ||
1842 icode == kEMFSCOmoller ||
1843 icode == kEMFSCObhabha ||
1844 icode == kEMFSCOcompton ) {
1845 return fPint[3];
1846 }
1847 else if (icode == kKASKADdray ||
1848 icode == kKASKADbrems ||
1849 icode == kKASKADpair) {
1850 return (GENSTK.tki[0] + PAPROP.am[GENSTK.kpart[0]+6]);
ca01d0af 1851 } else {
1852 return TRACKR.etrack;
6df2c1cc 1853 }
ca01d0af 1854
6df2c1cc 1855 }
42b936d1 1856 else if (caller == kSODRAW) {
1857 Int_t ist = FLKSTK.npflka;
1858 Double_t p = FLKSTK.pmoflk[ist];
1859 Int_t ifl = FLKSTK.iloflk[ist];
1860 Double_t m = PAPROP.am[ifl + 6];
1861 Double_t e = TMath::Sqrt(p * p + m * m);
1862 return e;
1863 }
ca01d0af 1864 printf("Etot %5d %5d \n", caller, icode);
6df2c1cc 1865
1866 return -1000.0;
829fb838 1867}
1868
1869//
1870// track status
1871//
1872//______________________________________________________________________________
1873Bool_t TFluka::IsNewTrack() const
1874{
1875// Return true for the first call of Stepping()
1876 return fTrackIsNew;
1877}
1878
0dabe425 1879void TFluka::SetTrackIsNew(Bool_t flag)
1880{
1881// Return true for the first call of Stepping()
1882 fTrackIsNew = flag;
1883
1884}
1885
1886
829fb838 1887//______________________________________________________________________________
1888Bool_t TFluka::IsTrackInside() const
1889{
1890// True if the track is not at the boundary of the current volume
1891// In Fluka a step is always inside one kind of material
1892// If the step would go behind the region of one material,
1893// it will be shortened to reach only the boundary.
1894// Therefore IsTrackInside() is always true.
a9ea1616 1895 FlukaCallerCode_t caller = GetCaller();
1896 if (caller == kBXEntering || caller == kBXExiting)
829fb838 1897 return 0;
1898 else
1899 return 1;
1900}
1901
1902//______________________________________________________________________________
1903Bool_t TFluka::IsTrackEntering() const
1904{
1905// True if this is the first step of the track in the current volume
1906
a9ea1616 1907 FlukaCallerCode_t caller = GetCaller();
1908 if (caller == kBXEntering)
829fb838 1909 return 1;
1910 else return 0;
1911}
1912
1913//______________________________________________________________________________
1914Bool_t TFluka::IsTrackExiting() const
1915{
1916// True if track is exiting volume
1917//
a9ea1616 1918 FlukaCallerCode_t caller = GetCaller();
1919 if (caller == kBXExiting)
829fb838 1920 return 1;
1921 else return 0;
1922}
1923
1924//______________________________________________________________________________
1925Bool_t TFluka::IsTrackOut() const
1926{
1927// True if the track is out of the setup
1928// means escape
a9ea1616 1929 FlukaProcessCode_t icode = GetIcode();
1930
1931 if (icode == kKASKADescape ||
1932 icode == kEMFSCOescape ||
1933 icode == kKASNEUescape ||
1934 icode == kKASHEAescape ||
1935 icode == kKASOPHescape)
1936 return 1;
829fb838 1937 else return 0;
1938}
1939
1940//______________________________________________________________________________
1941Bool_t TFluka::IsTrackDisappeared() const
1942{
a9ea1616 1943// All inelastic interactions and decays
829fb838 1944// fIcode from usdraw
a9ea1616 1945 FlukaProcessCode_t icode = GetIcode();
1946 if (icode == kKASKADinelint || // inelastic interaction
1947 icode == kKASKADdecay || // particle decay
1948 icode == kKASKADdray || // delta ray generation by hadron
1949 icode == kKASKADpair || // direct pair production
1950 icode == kKASKADbrems || // bremsstrahlung (muon)
1951 icode == kEMFSCObrems || // bremsstrahlung (electron)
1952 icode == kEMFSCOmoller || // Moller scattering
1953 icode == kEMFSCObhabha || // Bhaba scattering
1954 icode == kEMFSCOanniflight || // in-flight annihilation
1955 icode == kEMFSCOannirest || // annihilation at rest
1956 icode == kEMFSCOpair || // pair production
1957 icode == kEMFSCOcompton || // Compton scattering
1958 icode == kEMFSCOphotoel || // Photoelectric effect
1959 icode == kKASNEUhadronic || // hadronic interaction
2047b055 1960 icode == kKASHEAdray // delta-ray
0dabe425 1961 ) return 1;
829fb838 1962 else return 0;
1963}
1964
1965//______________________________________________________________________________
1966Bool_t TFluka::IsTrackStop() const
1967{
1968// True if the track energy has fallen below the threshold
1969// means stopped by signal or below energy threshold
a9ea1616 1970 FlukaProcessCode_t icode = GetIcode();
18e0cabb 1971 if (icode == kKASKADstopping || // stopping particle
1972 icode == kKASKADtimekill || // time kill
1973 icode == kEMFSCOstopping1 || // below user-defined cut-off
1974 icode == kEMFSCOstopping2 || // below user cut-off
1975 icode == kEMFSCOtimekill || // time kill
1976 icode == kKASNEUstopping || // neutron below threshold
1977 icode == kKASNEUtimekill || // time kill
1978 icode == kKASHEAtimekill || // time kill
1979 icode == kKASOPHtimekill) return 1; // time kill
829fb838 1980 else return 0;
1981}
1982
1983//______________________________________________________________________________
1984Bool_t TFluka::IsTrackAlive() const
1985{
695d8af9 1986// Means not disappeared or not out
1987 FlukaProcessCode_t icode = GetIcode();
1988
1989 if (IsTrackOut() ||
1990 IsTrackStop() ||
1991 icode == kKASKADinelint || // inelastic interaction
1992 icode == kKASKADdecay || // particle decay
1993 icode == kEMFSCOanniflight || // in-flight annihilation
1994 icode == kEMFSCOannirest || // annihilation at rest
1995 icode == kEMFSCOpair || // pair production
1996 icode == kEMFSCOphotoel || // Photoelectric effect
1997 icode == kKASNEUhadronic // hadronic interaction
1998 )
1999 {
2000 // Exclude the cases for which the particle has disappeared (paused) but will reappear later (= alive).
2001 return 0;
2002 } else {
2003 return 1;
2004 }
829fb838 2005}
2006
2007//
2008// secondaries
2009//
2010
2011//______________________________________________________________________________
2012Int_t TFluka::NSecondaries() const
2013
2014{
2015// Number of secondary particles generated in the current step
81f1d030 2016// GENSTK.np = number of secondaries except light and heavy ions
829fb838 2017// FHEAVY.npheav = number of secondaries for light and heavy secondary ions
a9ea1616 2018 FlukaCallerCode_t caller = GetCaller();
2019 if (caller == kUSDRAW) // valid only after usdraw
4aba9d66 2020 return GENSTK.np + FHEAVY.npheav;
a9ea1616 2021 else if (caller == kUSTCKV) {
4aba9d66 2022 // Cerenkov Photon production
2023 return fNCerenkov;
7b203b6e 2024 }
829fb838 2025 return 0;
2026} // end of NSecondaries
2027
2028//______________________________________________________________________________
2029void TFluka::GetSecondary(Int_t isec, Int_t& particleId,
4aba9d66 2030 TLorentzVector& position, TLorentzVector& momentum)
829fb838 2031{
2032// Copy particles from secondary stack to vmc stack
2033//
2034
a9ea1616 2035 FlukaCallerCode_t caller = GetCaller();
2036 if (caller == kUSDRAW) { // valid only after usdraw
4aba9d66 2037 if (GENSTK.np > 0) {
2038 // Hadronic interaction
2039 if (isec >= 0 && isec < GENSTK.np) {
2040 particleId = PDGFromId(GENSTK.kpart[isec]);
2041 position.SetX(fXsco);
2042 position.SetY(fYsco);
2043 position.SetZ(fZsco);
2044 position.SetT(TRACKR.atrack);
2045 momentum.SetPx(GENSTK.plr[isec]*GENSTK.cxr[isec]);
2046 momentum.SetPy(GENSTK.plr[isec]*GENSTK.cyr[isec]);
2047 momentum.SetPz(GENSTK.plr[isec]*GENSTK.czr[isec]);
2048 momentum.SetE(GENSTK.tki[isec] + PAPROP.am[GENSTK.kpart[isec]+6]);
2049 }
2050 else if (isec >= GENSTK.np && isec < GENSTK.np + FHEAVY.npheav) {
2051 Int_t jsec = isec - GENSTK.np;
2052 particleId = FHEAVY.kheavy[jsec]; // this is Fluka id !!!
2053 position.SetX(fXsco);
2054 position.SetY(fYsco);
2055 position.SetZ(fZsco);
2056 position.SetT(TRACKR.atrack);
2057 momentum.SetPx(FHEAVY.pheavy[jsec]*FHEAVY.cxheav[jsec]);
2058 momentum.SetPy(FHEAVY.pheavy[jsec]*FHEAVY.cyheav[jsec]);
2059 momentum.SetPz(FHEAVY.pheavy[jsec]*FHEAVY.czheav[jsec]);
2060 if (FHEAVY.tkheav[jsec] >= 3 && FHEAVY.tkheav[jsec] <= 6)
2061 momentum.SetE(FHEAVY.tkheav[jsec] + PAPROP.am[jsec+6]);
2062 else if (FHEAVY.tkheav[jsec] > 6)
2063 momentum.SetE(FHEAVY.tkheav[jsec] + FHEAVY.amnhea[jsec]); // to be checked !!!
2064 }
2065 else
2066 Warning("GetSecondary","isec out of range");
2067 }
a9ea1616 2068 } else if (caller == kUSTCKV) {
4aba9d66 2069 Int_t index = OPPHST.lstopp - isec;
2070 position.SetX(OPPHST.xoptph[index]);
2071 position.SetY(OPPHST.yoptph[index]);
2072 position.SetZ(OPPHST.zoptph[index]);
2073 position.SetT(OPPHST.agopph[index]);
2074 Double_t p = OPPHST.poptph[index];
2075
2076 momentum.SetPx(p * OPPHST.txopph[index]);
2077 momentum.SetPy(p * OPPHST.tyopph[index]);
2078 momentum.SetPz(p * OPPHST.tzopph[index]);
2079 momentum.SetE(p);
829fb838 2080 }
2081 else
4aba9d66 2082 Warning("GetSecondary","no secondaries available");
7b203b6e 2083
829fb838 2084} // end of GetSecondary
2085
7b203b6e 2086
829fb838 2087//______________________________________________________________________________
2088TMCProcess TFluka::ProdProcess(Int_t) const
2089
2090{
2091// Name of the process that has produced the secondary particles
2092// in the current step
0dabe425 2093
a9ea1616 2094 Int_t mugamma = (TRACKR.jtrack == kFLUKAphoton ||
4aba9d66 2095 TRACKR.jtrack == kFLUKAmuplus ||
2096 TRACKR.jtrack == kFLUKAmuminus);
a9ea1616 2097 FlukaProcessCode_t icode = GetIcode();
2098
2099 if (icode == kKASKADdecay) return kPDecay;
2100 else if (icode == kKASKADpair || icode == kEMFSCOpair) return kPPair;
2101 else if (icode == kEMFSCOcompton) return kPCompton;
2102 else if (icode == kEMFSCOphotoel) return kPPhotoelectric;
2103 else if (icode == kKASKADbrems || icode == kEMFSCObrems) return kPBrem;
2104 else if (icode == kKASKADdray || icode == kKASHEAdray) return kPDeltaRay;
2105 else if (icode == kEMFSCOmoller || icode == kEMFSCObhabha) return kPDeltaRay;
2106 else if (icode == kEMFSCOanniflight || icode == kEMFSCOannirest) return kPAnnihilation;
2107 else if (icode == kKASKADinelint) {
4aba9d66 2108 if (!mugamma) return kPHadronic;
2109 else if (TRACKR.jtrack == kFLUKAphoton) return kPPhotoFission;
2110 else return kPMuonNuclear;
829fb838 2111 }
a9ea1616 2112 else if (icode == kEMFSCOrayleigh) return kPRayleigh;
829fb838 2113// Fluka codes 100, 300 and 400 still to be investigasted
a9ea1616 2114 else return kPNoProcess;
829fb838 2115}
2116
829fb838 2117
b496f27c 2118Int_t TFluka::StepProcesses(TArrayI &proc) const
2119{
2120 //
2121 // Return processes active in the current step
2122 //
e71bcde8 2123 FlukaProcessCode_t icode = GetIcode();
2124 FlukaCallerCode_t caller = GetCaller();
b496f27c 2125 proc.Set(1);
2126 TMCProcess iproc;
87ad3c3e 2127 if (caller == kBXEntering || caller == kBXExiting || caller == kEEDRAW || caller == kSODRAW) {
e71bcde8 2128 iproc = kPTransportation;
87ad3c3e 2129 }
2130 else if (caller == kUSTCKV) {
2131 iproc = kPCerenkov;
e71bcde8 2132 } else {
2133 switch (icode) {
2134 case kEMFSCO:
82a3f706 2135 if (Edep() > 0.) {
2136 iproc = kPEnergyLoss;
2137 } else {
2138 iproc = kPTransportation;
2139 }
e71bcde8 2140 break;
6df2c1cc 2141 case kKASKAD:
2142 if (Edep() > 0.) {
2143 iproc = kPEnergyLoss;
2144 } else {
2145 iproc = kPTransportation;
2146 }
2147 break;
87ad3c3e 2148 case kKASHEA:
2149 case kKASNEU:
2150 case kKASOPH:
2151 case kKASKADescape:
2152 case kEMFSCOescape:
2153 case kKASNEUescape:
2154 case kKASHEAescape:
2155 case kKASOPHescape:
2156 iproc = kPTransportation;
2157 break;
e71bcde8 2158 case kKASKADtimekill:
2159 case kEMFSCOtimekill:
2160 case kKASNEUtimekill:
2161 case kKASHEAtimekill:
2162 case kKASOPHtimekill:
2163 iproc = kPTOFlimit;
2164 break;
2165 case kKASKADstopping:
e71bcde8 2166 case kEMFSCOstopping1:
2167 case kEMFSCOstopping2:
e71bcde8 2168 case kKASNEUstopping:
e71bcde8 2169 iproc = kPStop;
ca01d0af 2170 break;
2171 case kKASKADinelint:
2172 case kKASNEUhadronic:
2173 iproc = kPHadronic;
2174 break;
2175 case kKASKADinelarecoil:
2176 iproc = kPHadronic;
2177 break;
2178 case kKASKADnelint:
2179 iproc = kPHElastic;
e71bcde8 2180 break;
2181 case kKASOPHabsorption:
2182 iproc = kPLightAbsorption;
2183 break;
2184 case kKASOPHrefraction:
2185 iproc = kPLightRefraction;
87ad3c3e 2186 break;
e71bcde8 2187 case kEMFSCOlocaldep :
2188 iproc = kPPhotoelectric;
2189 break;
2190 default:
2191 iproc = ProdProcess(0);
2192 }
b496f27c 2193 }
e71bcde8 2194
07f5b33e 2195 proc[0] = iproc;
b496f27c 2196 return 1;
2197}
829fb838 2198//______________________________________________________________________________
2199Int_t TFluka::VolId2Mate(Int_t id) const
2200{
2201//
2202// Returns the material number for a given volume ID
2203//
2204 return fMCGeo->VolId2Mate(id);
2205}
2206
2207//______________________________________________________________________________
2208const char* TFluka::VolName(Int_t id) const
2209{
2210//
2211// Returns the volume name for a given volume ID
2212//
2213 return fMCGeo->VolName(id);
2214}
2215
a8e4986c 2216Int_t TFluka::MediumId(const Text_t* mediumName) const
2217{
2218 //
2219 // Return the unique medium id for medium with name mediumName
2220 TList *medlist = gGeoManager->GetListOfMedia();
2221 TGeoMedium* med = (TGeoMedium*) medlist->FindObject(mediumName);
2222 if (med) {
2223 return (med->GetId());
2224 } else {
2225 return (-1);
2226 }
2227}
2228
829fb838 2229//______________________________________________________________________________
2230Int_t TFluka::VolId(const Text_t* volName) const
2231{
2232//
2233// Converts from volume name to volume ID.
2234// Time consuming. (Only used during set-up)
2235// Could be replaced by hash-table
2236//
09cd6497 2237 char sname[20];
2238 Int_t len;
2239 strncpy(sname, volName, len = strlen(volName));
2240 sname[len] = 0;
2241 while (sname[len - 1] == ' ') sname[--len] = 0;
2242 return fMCGeo->VolId(sname);
829fb838 2243}
2244
2245//______________________________________________________________________________
2246Int_t TFluka::CurrentVolID(Int_t& copyNo) const
2247{
2248//
2249// Return the logical id and copy number corresponding to the current fluka region
2250//
2251 if (gGeoManager->IsOutside()) return 0;
2252 TGeoNode *node = gGeoManager->GetCurrentNode();
2253 copyNo = node->GetNumber();
2254 Int_t id = node->GetVolume()->GetNumber();
2255 return id;
2256}
2257
2258//______________________________________________________________________________
2259Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const
2260{
2261//
2262// Return the logical id and copy number of off'th mother
2263// corresponding to the current fluka region
2264//
2265 if (off<0 || off>gGeoManager->GetLevel()) return 0;
2266 if (off==0) return CurrentVolID(copyNo);
2267 TGeoNode *node = gGeoManager->GetMother(off);
2268 if (!node) return 0;
2269 copyNo = node->GetNumber();
2270 return node->GetVolume()->GetNumber();
2271}
2272
2273//______________________________________________________________________________
2274const char* TFluka::CurrentVolName() const
2275{
2276//
2277// Return the current volume name
2278//
ab2afdda 2279 if (gGeoManager->IsOutside()) return "OutOfWorld";
829fb838 2280 return gGeoManager->GetCurrentVolume()->GetName();
2281}
2282
2283//______________________________________________________________________________
2284const char* TFluka::CurrentVolOffName(Int_t off) const
2285{
2286//
2287// Return the volume name of the off'th mother of the current volume
2288//
2289 if (off<0 || off>gGeoManager->GetLevel()) return 0;
2290 if (off==0) return CurrentVolName();
2291 TGeoNode *node = gGeoManager->GetMother(off);
2292 if (!node) return 0;
2293 return node->GetVolume()->GetName();
2294}
2295
d59acfe7 2296const char* TFluka::CurrentVolPath() {
2297 // Return the current volume path
2298 return gGeoManager->GetPath();
2299}
829fb838 2300//______________________________________________________________________________
a60813de 2301Int_t TFluka::CurrentMaterial(Float_t & a, Float_t & z,
4aba9d66 2302 Float_t & dens, Float_t & radl, Float_t & absl) const
829fb838 2303{
2304//
a60813de 2305// Return the current medium number and material properties
829fb838 2306//
2307 Int_t copy;
2308 Int_t id = TFluka::CurrentVolID(copy);
2309 Int_t med = TFluka::VolId2Mate(id);
a60813de 2310 TGeoVolume* vol = gGeoManager->GetCurrentVolume();
2311 TGeoMaterial* mat = vol->GetMaterial();
2312 a = mat->GetA();
2313 z = mat->GetZ();
2314 dens = mat->GetDensity();
2315 radl = mat->GetRadLen();
2316 absl = mat->GetIntLen();
2317
829fb838 2318 return med;
2319}
2320
2321//______________________________________________________________________________
2322void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag)
2323{
2324// Transforms a position from the world reference frame
2325// to the current volume reference frame.
2326//
2327// Geant3 desription:
2328// ==================
2329// Computes coordinates XD (in DRS)
2330// from known coordinates XM in MRS
2331// The local reference system can be initialized by
2332// - the tracking routines and GMTOD used in GUSTEP
2333// - a call to GMEDIA(XM,NUMED)
2334// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER)
2335// (inverse routine is GDTOM)
2336//
2337// If IFLAG=1 convert coordinates
2338// IFLAG=2 convert direction cosinus
2339//
2340// ---
2341 Double_t xmL[3], xdL[3];
2342 Int_t i;
2343 for (i=0;i<3;i++) xmL[i]=xm[i];
2344 if (iflag == 1) gGeoManager->MasterToLocal(xmL,xdL);
2345 else gGeoManager->MasterToLocalVect(xmL,xdL);
2346 for (i=0;i<3;i++) xd[i] = xdL[i];
2347}
2348
2349//______________________________________________________________________________
2350void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag)
2351{
2047b055 2352//
2353// See Gmtod(Float_t*, Float_t*, Int_t)
2354//
829fb838 2355 if (iflag == 1) gGeoManager->MasterToLocal(xm,xd);
2356 else gGeoManager->MasterToLocalVect(xm,xd);
2357}
2358
2359//______________________________________________________________________________
2360void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag)
2361{
2362// Transforms a position from the current volume reference frame
2363// to the world reference frame.
2364//
2365// Geant3 desription:
2366// ==================
2367// Computes coordinates XM (Master Reference System
2368// knowing the coordinates XD (Detector Ref System)
2369// The local reference system can be initialized by
2370// - the tracking routines and GDTOM used in GUSTEP
2371// - a call to GSCMED(NLEVEL,NAMES,NUMBER)
2372// (inverse routine is GMTOD)
2373//
2374// If IFLAG=1 convert coordinates
2375// IFLAG=2 convert direction cosinus
2376//
2377// ---
2378 Double_t xmL[3], xdL[3];
2379 Int_t i;
2380 for (i=0;i<3;i++) xdL[i] = xd[i];
2381 if (iflag == 1) gGeoManager->LocalToMaster(xdL,xmL);
2382 else gGeoManager->LocalToMasterVect(xdL,xmL);
2383 for (i=0;i<3;i++) xm[i]=xmL[i];
2384}
2385
2386//______________________________________________________________________________
2387void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag)
2388{
2047b055 2389//
2390// See Gdtom(Float_t*, Float_t*, Int_t)
2391//
829fb838 2392 if (iflag == 1) gGeoManager->LocalToMaster(xd,xm);
2393 else gGeoManager->LocalToMasterVect(xd,xm);
2394}
2395
2396//______________________________________________________________________________
2397TObjArray *TFluka::GetFlukaMaterials()
2398{
2047b055 2399//
2400// Get array of Fluka materials
829fb838 2401 return fGeom->GetMatList();
2402}
2403
2404//______________________________________________________________________________
a9ea1616 2405void TFluka::SetMreg(Int_t l, Int_t lttc)
829fb838 2406{
2407// Set current fluka region
2408 fCurrentFlukaRegion = l;
a9ea1616 2409 fGeom->SetMreg(l,lttc);
829fb838 2410}
2411
2412
b496f27c 2413
2414
4aba9d66 2415//______________________________________________________________________________
b496f27c 2416TString TFluka::ParticleName(Int_t pdg) const
2417{
2418 // Return particle name for particle with pdg code pdg.
2419 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2420 return TString((CHPPRP.btype[ifluka - kFLUKAcodemin]), 8);
b496f27c 2421}
2422
2423
4aba9d66 2424//______________________________________________________________________________
b496f27c 2425Double_t TFluka::ParticleMass(Int_t pdg) const
2426{
2427 // Return particle mass for particle with pdg code pdg.
2428 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2429 return (PAPROP.am[ifluka - kFLUKAcodemin]);
2430}
2431
4aba9d66 2432//______________________________________________________________________________
ece92b30 2433Double_t TFluka::ParticleMassFPC(Int_t fpc) const
2434{
2435 // Return particle mass for particle with Fluka particle code fpc
2436 return (PAPROP.am[fpc - kFLUKAcodemin]);
b496f27c 2437}
2438
4aba9d66 2439//______________________________________________________________________________
b496f27c 2440Double_t TFluka::ParticleCharge(Int_t pdg) const
2441{
2442 // Return particle charge for particle with pdg code pdg.
2443 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2444 return Double_t(PAPROP.ichrge[ifluka - kFLUKAcodemin]);
b496f27c 2445}
2446
4aba9d66 2447//______________________________________________________________________________
b496f27c 2448Double_t TFluka::ParticleLifeTime(Int_t pdg) const
2449{
2450 // Return particle lifetime for particle with pdg code pdg.
2451 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2452 return (PAPROP.tmnlf[ifluka - kFLUKAcodemin]);
b496f27c 2453}
2454
4aba9d66 2455//______________________________________________________________________________
b496f27c 2456void TFluka::Gfpart(Int_t pdg, char* name, Int_t& type, Float_t& mass, Float_t& charge, Float_t& tlife)
2457{
2458 // Retrieve particle properties for particle with pdg code pdg.
2459
2460 strcpy(name, ParticleName(pdg).Data());
2461 type = ParticleMCType(pdg);
2462 mass = ParticleMass(pdg);
2463 charge = ParticleCharge(pdg);
2464 tlife = ParticleLifeTime(pdg);
2465}
2466
4aba9d66 2467//______________________________________________________________________________
8e5bf079 2468void TFluka::PrintHeader()
2469{
2470 //
2471 // Print a header
2472 printf("\n");
2473 printf("\n");
2474 printf("------------------------------------------------------------------------------\n");
2475 printf("- You are using the TFluka Virtual Monte Carlo Interface to FLUKA. -\n");
2476 printf("- Please see the file fluka.out for FLUKA output and licensing information. -\n");
2477 printf("------------------------------------------------------------------------------\n");
2478 printf("\n");
2479 printf("\n");
2480}
2481
b496f27c 2482
81f1d030 2483#define pshckp pshckp_
2484#define ustckv ustckv_
3a625972 2485
2486
2487extern "C" {
81f1d030 2488 void pshckp(Double_t & px, Double_t & py, Double_t & pz, Double_t & e,
4aba9d66 2489 Double_t & vx, Double_t & vy, Double_t & vz, Double_t & tof,
2490 Double_t & polx, Double_t & poly, Double_t & polz, Double_t & wgt, Int_t& ntr)
81f1d030 2491 {
2492 //
2493 // Pushes one cerenkov photon to the stack
2494 //
2495
2496 TFluka* fluka = (TFluka*) gMC;
2497 TVirtualMCStack* cppstack = fluka->GetStack();
2498 Int_t parent = TRACKR.ispusr[mkbmx2-1];
2499 cppstack->PushTrack(0, parent, 50000050,
4aba9d66 2500 px, py, pz, e,
2501 vx, vy, vz, tof,
2502 polx, poly, polz,
2503 kPCerenkov, ntr, wgt, 0);
2504 if (fluka->GetVerbosityLevel() >= 3)
2505 printf("pshckp: track=%d parent=%d lattc=%d %s\n", ntr, parent, TRACKR.lt1trk, fluka->CurrentVolName());
81f1d030 2506 }
2507
2508 void ustckv(Int_t & nphot, Int_t & mreg, Double_t & x, Double_t & y, Double_t & z)
7b203b6e 2509 {
4aba9d66 2510 //
2511 // Calls stepping in order to signal cerenkov production
2512 //
2513 TFluka *fluka = (TFluka*)gMC;
2514 fluka->SetMreg(mreg, TRACKR.lt1trk); //LTCLCM.mlatm1);
2515 fluka->SetXsco(x);
2516 fluka->SetYsco(y);
2517 fluka->SetZsco(z);
2518 fluka->SetNCerenkov(nphot);
2519 fluka->SetCaller(kUSTCKV);
2520 if (fluka->GetVerbosityLevel() >= 3)
2521 printf("ustckv: %10d mreg=%d lattc=%d newlat=%d (%f, %f, %f) edep=%f vol=%s\n",
2522 nphot, mreg, TRACKR.lt1trk, LTCLCM.newlat, x, y, z, fluka->Edep(), fluka->CurrentVolName());
2523
2524 // check region lattice consistency (debug Ernesto)
2525 // *****************************************************
2526 Int_t nodeId;
2527 Int_t volId = fluka->CurrentVolID(nodeId);
2528 Int_t crtlttc = gGeoManager->GetCurrentNodeId()+1;
2529
2530 if( mreg != volId && !gGeoManager->IsOutside() ) {
2531 cout << " ustckv: track=" << TRACKR.ispusr[mkbmx2-1] << " pdg=" << fluka->PDGFromId(TRACKR.jtrack)
2532 << " icode=" << fluka->GetIcode() << " gNstep=" << fluka->GetNstep() << endl
2533 << " fluka mreg=" << mreg << " mlttc=" << TRACKR.lt1trk << endl
2534 << " TGeo volId=" << volId << " crtlttc=" << crtlttc << endl
2535 << " common TRACKR lt1trk=" << TRACKR.lt1trk << " lt2trk=" << TRACKR.lt2trk << endl
2536 << " common LTCLCM newlat=" << LTCLCM.newlat << " mlatld=" << LTCLCM.mlatld << endl
2537 << " mlatm1=" << LTCLCM.mlatm1 << " mltsen=" << LTCLCM.mltsen << endl
2538 << " mltsm1=" << LTCLCM.mltsm1 << " mlattc=" << LTCLCM.mlattc << endl;
2539 if( TRACKR.lt1trk == crtlttc ) cout << " *************************************************************" << endl;
2540 }
2541 // *****************************************************
2542
2543
2544
2545 (TVirtualMCApplication::Instance())->Stepping();
7b203b6e 2546 }
3a625972 2547}
a9ea1616 2548
4aba9d66 2549//______________________________________________________________________________
78df7be0 2550void TFluka::AddParticlesToPdgDataBase() const
2551{
2552
2553//
2554// Add particles to the PDG data base
2555
2556 TDatabasePDG *pdgDB = TDatabasePDG::Instance();
2557
78df7be0 2558 const Double_t kAu2Gev = 0.9314943228;
2559 const Double_t khSlash = 1.0545726663e-27;
2560 const Double_t kErg2Gev = 1/1.6021773349e-3;
2561 const Double_t khShGev = khSlash*kErg2Gev;
2562 const Double_t kYear2Sec = 3600*24*365.25;
2563//
2564// Ions
2565//
78df7be0 2566 pdgDB->AddParticle("Deuteron","Deuteron",2*kAu2Gev+8.071e-3,kTRUE,
13858fbd 2567 0,3,"Ion",GetIonPdg(1,2));
78df7be0 2568 pdgDB->AddParticle("Triton","Triton",3*kAu2Gev+14.931e-3,kFALSE,
13858fbd 2569 khShGev/(12.33*kYear2Sec),3,"Ion",GetIonPdg(1,3));
78df7be0 2570 pdgDB->AddParticle("Alpha","Alpha",4*kAu2Gev+2.424e-3,kTRUE,
13858fbd 2571 khShGev/(12.33*kYear2Sec),6,"Ion",GetIonPdg(2,4));
78df7be0 2572 pdgDB->AddParticle("HE3","HE3",3*kAu2Gev+14.931e-3,kFALSE,
13858fbd 2573 0,6,"Ion",GetIonPdg(2,3));
cee6a756 2574//
2575//
2576//
2577// Special particles
2578//
2579 pdgDB->AddParticle("Cherenkov","Cherenkov",0,kFALSE,
2580 0,0,"Special",GetSpecialPdg(50));
2581 pdgDB->AddParticle("FeedbackPhoton","FeedbackPhoton",0,kFALSE,
2582 0,0,"Special",GetSpecialPdg(51));
78df7be0 2583}
2584
ca01d0af 2585void TFluka::AddIon(Int_t a, Int_t z) const
2586{
2587
2588 // Add a new ion
2589 TDatabasePDG *pdgDB = TDatabasePDG::Instance();
2590 const Double_t kAu2Gev = 0.9314943228;
2591 Int_t pdg = GetIonPdg(z, a);
2592 if (pdgDB->GetParticle(pdg)) return;
2593
2594 pdgDB->AddParticle(Form("Iion A = %5d Z = %5d", a, z),"Ion", Float_t(a) * kAu2Gev + 8.071e-3, kTRUE,
2595 0, 3 * z, "Ion", pdg);
2596}
2597
4aba9d66 2598//
2599// Info about primary ionization electrons
2600//
2601
2602//______________________________________________________________________________
2603Int_t TFluka::GetNPrimaryElectrons()
f2a98602 2604{
2605 // Get number of primary electrons
2606 return ALLDLT.nalldl;
2607}
2608
4aba9d66 2609//______________________________________________________________________________
5125d6e5 2610Double_t TFluka::GetPrimaryElectronKineticEnergy(Int_t i) const
f2a98602 2611{
2612 // Returns kinetic energy of primary electron i
5125d6e5 2613
2614 Double_t ekin = -1.;
ea262cc6 2615
f2a98602 2616 if (i >= 0 && i < ALLDLT.nalldl) {
6c854012 2617 ekin = ALLDLT.talldl[i];
f2a98602 2618 } else {
4aba9d66 2619 Warning("GetPrimaryElectronKineticEnergy",
2620 "Primary electron index out of range %d %d \n",
2621 i, ALLDLT.nalldl);
f2a98602 2622 }
f0734960 2623 return ekin;
f2a98602 2624}
5125d6e5 2625
15a8a899 2626void TFluka::GetPrimaryElectronPosition(Int_t i, Double_t& x, Double_t& y, Double_t& z, Double_t& t) const
5125d6e5 2627{
2628 // Returns position of primary electron i
2629 if (i >= 0 && i < ALLDLT.nalldl) {
6c854012 2630 x = ALLDLT.xalldl[i];
2631 y = ALLDLT.yalldl[i];
2632 z = ALLDLT.zalldl[i];
15a8a899 2633 t = ALLDLT.talldl[i];
5125d6e5 2634 return;
2635 } else {
2636 Warning("GetPrimaryElectronPosition",
2637 "Primary electron index out of range %d %d \n",
2638 i, ALLDLT.nalldl);
2639 return;
2640 }
2641 return;
2642}
2643
13858fbd 2644Int_t TFluka::GetIonPdg(Int_t z, Int_t a, Int_t i) const
2645{
2646// Acording to
2647// http://cepa.fnal.gov/psm/stdhep/pdg/montecarlorpp-2006.pdf
5125d6e5 2648
13858fbd 2649 return 1000000000 + 10*1000*z + 10*a + i;
2650}
cee6a756 2651
2652//__________________________________________________________________
2653Int_t TFluka::GetSpecialPdg(Int_t number) const
2654{
2655// Numbering for special particles
2656
2657 return 50000000 + number;
2658}
2659
13858fbd 2660
ea262cc6 2661void TFluka::PrimaryIonisationStepping(Int_t nprim)
2662{
2663// Call Stepping for primary ionisation electrons
2664 Int_t i;
2665// Protection against nprim > mxalld
2666
2667// Multiple steps for nprim > 0
2668 if (nprim > 0) {
2669 for (i = 0; i < nprim; i++) {
2670 SetCurrentPrimaryElectronIndex(i);
2671 (TVirtualMCApplication::Instance())->Stepping();
2672 if (i == 0) SetTrackIsNew(kFALSE);
2673 }
2674 } else {
2675 // No primary electron ionisation
2676 // Call Stepping anyway but flag nprim = 0 as index = -2
2677 SetCurrentPrimaryElectronIndex(-2);
2678 (TVirtualMCApplication::Instance())->Stepping();
2679 }
2680 // Reset the index
2681 SetCurrentPrimaryElectronIndex(-1);
2682}
b6a89226 2683
2684//______________________________________________________________________
2685Float_t* TFluka::CreateFloatArray(Double_t* array, Int_t size) const
2686{
2687// Converts Double_t* array to Float_t*,
2688// !! The new array has to be deleted by user.
2689// ---
2690
2691 Float_t* floatArray;
2692 if (size>0) {
2693 floatArray = new Float_t[size];
2694 for (Int_t i=0; i<size; i++)
2695 if (array[i] >= FLT_MAX )
2696 floatArray[i] = FLT_MAX/100.;
2697 else
2698 floatArray[i] = array[i];
2699 }
2700 else {
2701 //floatArray = 0;
2702 floatArray = new Float_t[1];
2703 }
2704 return floatArray;
2705}