]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONv1.cxx
Take pi from TMath.
[u/mrichter/AliRoot.git] / MUON / AliMUONv1.cxx
CommitLineData
a9e2aefa 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
2c799aa2 12 * about the suitability of this software for any purpeateose. It is *
a9e2aefa 13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
a7e8b51a 18Revision 1.21 2000/12/20 13:00:22 egangler
19
20Added charge correlation between cathods.
21In Config_slat.C, use
22 MUON->Chamber(chamber-1).SetChargeCorrel(0.11); to set the RMS of
23 q1/q2 to 11 % (number from Alberto)
24 This is stored in AliMUONChamber fChargeCorrel member.
25 At generation time, when a tracks enters the volume,
26 AliMUONv1::StepManager calls
27 AliMUONChamber::ChargeCorrelationInit() to set the current value of
28 fCurrentCorrel which is then used at Disintegration level to scale
29 appropriately the PadHit charges.
30
681d067b 31Revision 1.20 2000/12/04 17:48:23 gosset
32Modifications for stations 1 et 2 mainly:
33* station 1 with 4 mm gas gap and smaller cathode segmentation...
34* stations 1 and 2 with "grey" frame crosses
35* mean noise at 1.5 ADC channel
36* Ar-CO2 gas (80%+20%)
37
b64652f5 38Revision 1.19 2000/12/02 17:15:46 morsch
39Correction of dead zones in inner regions of stations 3-5
40Correction of length of slats 3 and 9 of station 4.
41
a083207d 42Revision 1.17 2000/11/24 12:57:10 morsch
43New version of geometry for stations 3-5 "Slats" (A. de Falco)
44 - sensitive region at station 3 inner radius
45 - improved volume tree structure
46
3c084d9f 47Revision 1.16 2000/11/08 13:01:40 morsch
48Chamber half-planes of stations 3-5 at different z-positions.
49
e1ad7d45 50Revision 1.15 2000/11/06 11:39:02 morsch
51Bug in StepManager() corrected.
52
e3cf5faa 53Revision 1.14 2000/11/06 09:16:50 morsch
54Avoid overlap of slat volumes.
55
2c799aa2 56Revision 1.13 2000/10/26 07:33:44 morsch
57Correct x-position of slats in station 5.
58
8013c580 59Revision 1.12 2000/10/25 19:55:35 morsch
60Switches for each station individually for debug and lego.
61
b17c0c87 62Revision 1.11 2000/10/22 16:44:01 morsch
63Update of slat geometry for stations 3,4,5 (A. deFalco)
64
f9f7c205 65Revision 1.10 2000/10/12 16:07:04 gosset
66StepManager:
67* SigGenCond only called for tracking chambers,
68 hence no more division by 0,
69 and may use last ALIROOT/dummies.C with exception handling;
70* "10" replaced by "AliMUONConstants::NTrackingCh()".
71
a75f073c 72Revision 1.9 2000/10/06 15:37:22 morsch
73Problems with variable redefinition in for-loop solved.
74Variable names starting with u-case letters changed to l-case.
75
6c5ddcfa 76Revision 1.8 2000/10/06 09:06:31 morsch
77Include Slat chambers (stations 3-5) into geometry (A. de Falco)
78
1e8fff9c 79Revision 1.7 2000/10/02 21:28:09 fca
80Removal of useless dependecies via forward declarations
81
94de3818 82Revision 1.6 2000/10/02 17:20:45 egangler
83Cleaning of the code (continued ) :
84-> coding conventions
85-> void Streamers
86-> some useless includes removed or replaced by "class" statement
87
8c449e83 88Revision 1.5 2000/06/28 15:16:35 morsch
89(1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there)
90to allow development of slat-muon chamber simulation and reconstruction code in the MUON
91framework. The changes should have no side effects (mostly dummy arguments).
92(2) Hit disintegration uses 3-dim hit coordinates to allow simulation
93of chambers with overlapping modules (MakePadHits, Disintegration).
94
802a864d 95Revision 1.4 2000/06/26 14:02:38 morsch
96Add class AliMUONConstants with MUON specific constants using static memeber data and access methods.
97
f665c1ea 98Revision 1.3 2000/06/22 14:10:05 morsch
99HP scope problems corrected (PH)
100
e17592e9 101Revision 1.2 2000/06/15 07:58:49 morsch
102Code from MUON-dev joined
103
a9e2aefa 104Revision 1.1.2.14 2000/06/14 14:37:25 morsch
105Initialization of TriggerCircuit added (PC)
106
107Revision 1.1.2.13 2000/06/09 21:55:47 morsch
108Most coding rule violations corrected.
109
110Revision 1.1.2.12 2000/05/05 11:34:29 morsch
111Log inside comments.
112
113Revision 1.1.2.11 2000/05/05 10:06:48 morsch
114Coding Rule violations regarding trigger section corrected (CP)
115Log messages included.
116*/
117
118/////////////////////////////////////////////////////////
119// Manager and hits classes for set:MUON version 0 //
120/////////////////////////////////////////////////////////
121
122#include <TTUBE.h>
123#include <TNode.h>
124#include <TRandom.h>
125#include <TLorentzVector.h>
126#include <iostream.h>
127
128#include "AliMUONv1.h"
129#include "AliRun.h"
130#include "AliMC.h"
94de3818 131#include "AliMagF.h"
a9e2aefa 132#include "AliCallf77.h"
133#include "AliConst.h"
134#include "AliMUONChamber.h"
135#include "AliMUONHit.h"
136#include "AliMUONPadHit.h"
f665c1ea 137#include "AliMUONConstants.h"
8c449e83 138#include "AliMUONTriggerCircuit.h"
a9e2aefa 139
140ClassImp(AliMUONv1)
141
142//___________________________________________
143AliMUONv1::AliMUONv1() : AliMUON()
144{
145// Constructor
146 fChambers = 0;
147}
148
149//___________________________________________
150AliMUONv1::AliMUONv1(const char *name, const char *title)
151 : AliMUON(name,title)
152{
153// Constructor
154}
155
156//___________________________________________
157void AliMUONv1::CreateGeometry()
158{
159//
160// Note: all chambers have the same structure, which could be
161// easily parameterised. This was intentionally not done in order
162// to give a starting point for the implementation of the actual
163// design of each station.
164 Int_t *idtmed = fIdtmed->GetArray()-1099;
165
166// Distance between Stations
167//
168 Float_t bpar[3];
169 Float_t tpar[3];
b64652f5 170// Float_t pgpar[10];
a9e2aefa 171 Float_t zpos1, zpos2, zfpos;
b64652f5 172 // Outer excess and inner recess for mother volume radius
173 // with respect to ROuter and RInner
a9e2aefa 174 Float_t dframep=.001; // Value for station 3 should be 6 ...
b64652f5 175 // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm)
176// Float_t dframep1=.001;
177 Float_t dframep1 = 11.0;
178// Bool_t frameCrosses=kFALSE;
179 Bool_t frameCrosses=kTRUE;
a9e2aefa 180
b64652f5 181// Float_t dframez=0.9;
182 // Half of the total thickness of frame crosses (including DAlu)
183 // for each chamber in stations 1 and 2:
184 // 3% of X0 of composite material,
185 // but taken as Aluminium here, with same thickness in number of X0
186 Float_t dframez = 3. * 8.9 / 100;
187// Float_t dr;
a9e2aefa 188 Float_t dstation;
189
190//
191// Rotation matrices in the x-y plane
192 Int_t idrotm[1199];
193// phi= 0 deg
194 AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.);
195// phi= 90 deg
196 AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.);
197// phi= 180 deg
198 AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.);
199// phi= 270 deg
200 AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.);
201//
202 Float_t phi=2*TMath::Pi()/12/2;
203
204//
205// pointer to the current chamber
206// pointer to the current chamber
b64652f5 207 Int_t idAlu1=idtmed[1103]; // medium 4
208 Int_t idAlu2=idtmed[1104]; // medium 5
a9e2aefa 209// Int_t idAlu1=idtmed[1100];
210// Int_t idAlu2=idtmed[1100];
b64652f5 211 Int_t idAir=idtmed[1100]; // medium 1
212// Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas
213 Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%)
a9e2aefa 214
215
216 AliMUONChamber *iChamber, *iChamber1, *iChamber2;
b17c0c87 217 Int_t stations[5] = {1, 1, 1, 1, 1};
218
219 if (stations[0]) {
220
a9e2aefa 221//********************************************************************
222// Station 1 **
223//********************************************************************
224// CONCENTRIC
225 // indices 1 and 2 for first and second chambers in the station
226 // iChamber (first chamber) kept for other quanties than Z,
227 // assumed to be the same in both chambers
228 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0];
229 iChamber2 =(AliMUONChamber*) (*fChambers)[1];
230 zpos1=iChamber1->Z();
231 zpos2=iChamber2->Z();
232 dstation = zpos2 - zpos1;
b64652f5 233 // DGas decreased from standard one (0.5)
234 iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4);
235 // DAlu increased from standard one (3% of X0),
236 // because more electronics with smaller pads
237 iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.);
a9e2aefa 238 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
239
240//
241// Mother volume
b64652f5 242 tpar[0] = iChamber->RInner()-dframep;
243 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2c799aa2 244 tpar[2] = dstation/5;
a9e2aefa 245
246 gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3);
247 gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3);
248 gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1e8fff9c 249 gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
b64652f5 250// // Aluminium frames
251// // Outer frames
252// pgpar[0] = 360/12/2;
253// pgpar[1] = 360.;
254// pgpar[2] = 12.;
255// pgpar[3] = 2;
256// pgpar[4] = -dframez/2;
257// pgpar[5] = iChamber->ROuter();
258// pgpar[6] = pgpar[5]+dframep1;
259// pgpar[7] = +dframez/2;
260// pgpar[8] = pgpar[5];
261// pgpar[9] = pgpar[6];
262// gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10);
263// gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10);
264// gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY");
265// gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY");
266// gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY");
267// gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY");
268// //
269// // Inner frame
270// tpar[0]= iChamber->RInner()-dframep1;
271// tpar[1]= iChamber->RInner();
272// tpar[2]= dframez/2;
273// gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3);
274// gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3);
275
276// gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY");
277// gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY");
278// gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY");
279// gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY");
a9e2aefa 280//
281// Frame Crosses
b64652f5 282 if (frameCrosses) {
283 // outside gas
284 // security for inside mother volume
285 bpar[0] = (iChamber->ROuter() - iChamber->RInner())
286 * TMath::Cos(TMath::ASin(dframep1 /
287 (iChamber->ROuter() - iChamber->RInner())))
288 / 2.0;
a9e2aefa 289 bpar[1] = dframep1/2;
b64652f5 290 // total thickness will be (4 * bpar[2]) for each chamber,
291 // which has to be equal to (2 * dframez) - DAlu
292 bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
a9e2aefa 293 gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3);
294 gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3);
295
296 gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
297 idrotm[1100],"ONLY");
298 gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
299 idrotm[1100],"ONLY");
300 gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
301 idrotm[1101],"ONLY");
302 gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
303 idrotm[1101],"ONLY");
304 gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
305 idrotm[1100],"ONLY");
306 gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
307 idrotm[1100],"ONLY");
308 gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
309 idrotm[1101],"ONLY");
310 gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
311 idrotm[1101],"ONLY");
312
313 gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
314 idrotm[1100],"ONLY");
315 gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
316 idrotm[1100],"ONLY");
317 gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
318 idrotm[1101],"ONLY");
319 gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
320 idrotm[1101],"ONLY");
321 gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
322 idrotm[1100],"ONLY");
323 gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
324 idrotm[1100],"ONLY");
325 gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
326 idrotm[1101],"ONLY");
327 gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
328 idrotm[1101],"ONLY");
329 }
330//
331// Chamber Material represented by Alu sheet
332 tpar[0]= iChamber->RInner();
333 tpar[1]= iChamber->ROuter();
334 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
335 gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3);
336 gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3);
337 gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY");
338 gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY");
339//
340// Sensitive volumes
341 // tpar[2] = iChamber->DGas();
342 tpar[2] = iChamber->DGas()/2;
b64652f5 343 gMC->Gsvolu("C01G", "TUBE", idGas, tpar, 3);
344 gMC->Gsvolu("C02G", "TUBE", idGas, tpar, 3);
a9e2aefa 345 gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY");
346 gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY");
347//
b64652f5 348// Frame Crosses to be placed inside gas
349 // NONE: chambers are sensitive everywhere
350// if (frameCrosses) {
351
352// dr = (iChamber->ROuter() - iChamber->RInner());
353// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
354// bpar[1] = dframep1/2;
355// bpar[2] = iChamber->DGas()/2;
356// gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3);
357// gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3);
a9e2aefa 358
b64652f5 359// gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0,
360// idrotm[1100],"ONLY");
361// gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0,
362// idrotm[1100],"ONLY");
363// gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0,
364// idrotm[1101],"ONLY");
365// gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0,
366// idrotm[1101],"ONLY");
a9e2aefa 367
b64652f5 368// gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0,
369// idrotm[1100],"ONLY");
370// gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0,
371// idrotm[1100],"ONLY");
372// gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0,
373// idrotm[1101],"ONLY");
374// gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0,
375// idrotm[1101],"ONLY");
376// }
b17c0c87 377 }
378 if (stations[1]) {
379
a9e2aefa 380//********************************************************************
381// Station 2 **
382//********************************************************************
383 // indices 1 and 2 for first and second chambers in the station
384 // iChamber (first chamber) kept for other quanties than Z,
385 // assumed to be the same in both chambers
386 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2];
387 iChamber2 =(AliMUONChamber*) (*fChambers)[3];
388 zpos1=iChamber1->Z();
389 zpos2=iChamber2->Z();
390 dstation = zpos2 - zpos1;
b64652f5 391 // DGas and DAlu not changed from standard values
a9e2aefa 392 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
393
394//
395// Mother volume
396 tpar[0] = iChamber->RInner()-dframep;
397 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2c799aa2 398 tpar[2] = dstation/5;
a9e2aefa 399
400 gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3);
401 gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3);
402 gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
403 gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 404
b64652f5 405// // Aluminium frames
406// // Outer frames
407// pgpar[0] = 360/12/2;
408// pgpar[1] = 360.;
409// pgpar[2] = 12.;
410// pgpar[3] = 2;
411// pgpar[4] = -dframez/2;
412// pgpar[5] = iChamber->ROuter();
413// pgpar[6] = pgpar[5]+dframep;
414// pgpar[7] = +dframez/2;
415// pgpar[8] = pgpar[5];
416// pgpar[9] = pgpar[6];
417// gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10);
418// gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10);
419// gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY");
420// gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY");
421// gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY");
422// gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY");
423// //
424// // Inner frame
425// tpar[0]= iChamber->RInner()-dframep;
426// tpar[1]= iChamber->RInner();
427// tpar[2]= dframez/2;
428// gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3);
429// gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3);
430
431// gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY");
432// gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY");
433// gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY");
434// gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY");
a9e2aefa 435//
436// Frame Crosses
b64652f5 437 if (frameCrosses) {
438 // outside gas
439 // security for inside mother volume
440 bpar[0] = (iChamber->ROuter() - iChamber->RInner())
441 * TMath::Cos(TMath::ASin(dframep1 /
442 (iChamber->ROuter() - iChamber->RInner())))
443 / 2.0;
444 bpar[1] = dframep1/2;
445 // total thickness will be (4 * bpar[2]) for each chamber,
446 // which has to be equal to (2 * dframez) - DAlu
447 bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
a9e2aefa 448 gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3);
449 gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3);
450
451 gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
452 idrotm[1100],"ONLY");
453 gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
454 idrotm[1100],"ONLY");
455 gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
456 idrotm[1101],"ONLY");
457 gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
458 idrotm[1101],"ONLY");
459 gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
460 idrotm[1100],"ONLY");
461 gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
462 idrotm[1100],"ONLY");
463 gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
464 idrotm[1101],"ONLY");
465 gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
466 idrotm[1101],"ONLY");
467
468 gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
469 idrotm[1100],"ONLY");
470 gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
471 idrotm[1100],"ONLY");
472 gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
473 idrotm[1101],"ONLY");
474 gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
475 idrotm[1101],"ONLY");
476 gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
477 idrotm[1100],"ONLY");
478 gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
479 idrotm[1100],"ONLY");
480 gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
481 idrotm[1101],"ONLY");
482 gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
483 idrotm[1101],"ONLY");
484 }
485//
486// Chamber Material represented by Alu sheet
487 tpar[0]= iChamber->RInner();
488 tpar[1]= iChamber->ROuter();
489 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
490 gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3);
491 gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3);
492 gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY");
493 gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY");
494//
495// Sensitive volumes
496 // tpar[2] = iChamber->DGas();
497 tpar[2] = iChamber->DGas()/2;
498 gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3);
499 gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3);
500 gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY");
501 gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY");
a9e2aefa 502//
503// Frame Crosses to be placed inside gas
b64652f5 504 // NONE: chambers are sensitive everywhere
505// if (frameCrosses) {
506
507// dr = (iChamber->ROuter() - iChamber->RInner());
508// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
509// bpar[1] = dframep1/2;
510// bpar[2] = iChamber->DGas()/2;
511// gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3);
512// gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3);
a9e2aefa 513
b64652f5 514// gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0,
515// idrotm[1100],"ONLY");
516// gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0,
517// idrotm[1100],"ONLY");
518// gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0,
519// idrotm[1101],"ONLY");
520// gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0,
521// idrotm[1101],"ONLY");
a9e2aefa 522
b64652f5 523// gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0,
524// idrotm[1100],"ONLY");
525// gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0,
526// idrotm[1100],"ONLY");
527// gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0,
528// idrotm[1101],"ONLY");
529// gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0,
530// idrotm[1101],"ONLY");
531// }
b17c0c87 532 }
1e8fff9c 533 // define the id of tracking media:
534 Int_t idCopper = idtmed[1110];
535 Int_t idGlass = idtmed[1111];
536 Int_t idCarbon = idtmed[1112];
537 Int_t idRoha = idtmed[1113];
538
1e8fff9c 539 // sensitive area: 40*40 cm**2
6c5ddcfa 540 const Float_t sensLength = 40.;
541 const Float_t sensHeight = 40.;
542 const Float_t sensWidth = 0.5; // according to TDR fig 2.120
543 const Int_t sensMaterial = idGas;
1e8fff9c 544 const Float_t yOverlap = 1.5;
545
546 // PCB dimensions in cm; width: 30 mum copper
6c5ddcfa 547 const Float_t pcbLength = sensLength;
548 const Float_t pcbHeight = 60.;
549 const Float_t pcbWidth = 0.003;
550 const Int_t pcbMaterial = idCopper;
1e8fff9c 551
552 // Insulating material: 200 mum glass fiber glued to pcb
6c5ddcfa 553 const Float_t insuLength = pcbLength;
554 const Float_t insuHeight = pcbHeight;
555 const Float_t insuWidth = 0.020;
556 const Int_t insuMaterial = idGlass;
1e8fff9c 557
558 // Carbon fiber panels: 200mum carbon/epoxy skin
6c5ddcfa 559 const Float_t panelLength = sensLength;
560 const Float_t panelHeight = sensHeight;
561 const Float_t panelWidth = 0.020;
562 const Int_t panelMaterial = idCarbon;
1e8fff9c 563
564 // rohacell between the two carbon panels
6c5ddcfa 565 const Float_t rohaLength = sensLength;
566 const Float_t rohaHeight = sensHeight;
567 const Float_t rohaWidth = 0.5;
568 const Int_t rohaMaterial = idRoha;
1e8fff9c 569
570 // Frame around the slat: 2 sticks along length,2 along height
571 // H: the horizontal ones
6c5ddcfa 572 const Float_t hFrameLength = pcbLength;
573 const Float_t hFrameHeight = 1.5;
574 const Float_t hFrameWidth = sensWidth;
575 const Int_t hFrameMaterial = idGlass;
1e8fff9c 576
577 // V: the vertical ones
6c5ddcfa 578 const Float_t vFrameLength = 4.0;
579 const Float_t vFrameHeight = sensHeight + hFrameHeight;
580 const Float_t vFrameWidth = sensWidth;
581 const Int_t vFrameMaterial = idGlass;
1e8fff9c 582
583 // B: the horizontal border filled with rohacell
6c5ddcfa 584 const Float_t bFrameLength = hFrameLength;
585 const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight;
586 const Float_t bFrameWidth = hFrameWidth;
587 const Int_t bFrameMaterial = idRoha;
1e8fff9c 588
589 // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper)
6c5ddcfa 590 const Float_t nulocLength = 2.5;
591 const Float_t nulocHeight = 7.5;
592 const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite;
593 const Int_t nulocMaterial = idCopper;
1e8fff9c 594
6c5ddcfa 595 const Float_t slatHeight = pcbHeight;
596 const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth +
597 2.* panelWidth + rohaWidth);
598 const Int_t slatMaterial = idAir;
599 const Float_t dSlatLength = vFrameLength; // border on left and right
1e8fff9c 600
1e8fff9c 601 Float_t spar[3];
b17c0c87 602 Int_t i, j;
603
3c084d9f 604 // the panel volume contains the rohacell
605
606 Float_t twidth = 2 * panelWidth + rohaWidth;
607 Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. };
b17c0c87 608 Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. };
3c084d9f 609
610 // insulating material contains PCB-> gas-> 2 borders filled with rohacell
611
612 twidth = 2*(insuWidth + pcbWidth) + sensWidth;
613 Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. };
614 twidth -= 2 * insuWidth;
615 Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. };
616 Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. };
617 Float_t theight = 2*hFrameHeight + sensHeight;
618 Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.};
b17c0c87 619 Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.};
3c084d9f 620 Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.};
b17c0c87 621 Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.};
b17c0c87 622 Float_t xx;
623 Float_t xxmax = (bFrameLength - nulocLength)/2.;
624 Int_t index=0;
625
626 if (stations[2]) {
627
628//********************************************************************
629// Station 3 **
630//********************************************************************
631 // indices 1 and 2 for first and second chambers in the station
632 // iChamber (first chamber) kept for other quanties than Z,
633 // assumed to be the same in both chambers
634 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4];
635 iChamber2 =(AliMUONChamber*) (*fChambers)[5];
636 zpos1=iChamber1->Z();
637 zpos2=iChamber2->Z();
638 dstation = zpos2 - zpos1;
639
b64652f5 640// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
b17c0c87 641//
642// Mother volume
643 tpar[0] = iChamber->RInner()-dframep;
644 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
3c084d9f 645 tpar[2] = dstation/4;
b17c0c87 646 gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3);
647 gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3);
648 gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
649 gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
650
651 // volumes for slat geometry (xx=5,..,10 chamber id):
652 // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes
653 // SxxG --> Sensitive volume (gas)
654 // SxxP --> PCB (copper)
655 // SxxI --> Insulator (vetronite)
656 // SxxC --> Carbon panel
657 // SxxR --> Rohacell
658 // SxxH, SxxV --> Horizontal and Vertical frames (vetronite)
659
660 // slat dimensions: slat is a MOTHER volume!!! made of air
661
a083207d 662 const Int_t nSlats3 = 5; // number of slats per quadrant
663 const Int_t nPCB3[nSlats3] = {3,3,4,3,2}; // n PCB per slat
664 const Float_t xpos3[nSlats3] = {30., 40., 0., 0., 0.};
b17c0c87 665 Float_t slatLength3[nSlats3];
666
667 // create and position the slat (mother) volumes
668
6c5ddcfa 669 char volNam5[5];
670 char volNam6[5];
f9f7c205 671 Float_t xSlat3;
b17c0c87 672
6c5ddcfa 673 for (i = 0; i<nSlats3; i++){
3c084d9f 674 slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength;
a083207d 675 xSlat3 = slatLength3[i]/2. - vFrameLength/2. + xpos3[i];
676 if (i==1) slatLength3[i] -= 2. *dSlatLength; // frame out in PCB with circular border
677 Float_t ySlat31 = sensHeight * i - yOverlap * i;
678 Float_t ySlat32 = -sensHeight * i + yOverlap * i;
3c084d9f 679 spar[0] = slatLength3[i]/2.;
680 spar[1] = slatHeight/2.;
681 spar[2] = slatWidth/2. * 1.01;
682 Float_t dzCh3=spar[2] * 1.01;
683 // zSlat to be checked (odd downstream or upstream?)
684 Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2];
685 sprintf(volNam5,"S05%d",i);
686 gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar,3);
687 gMC->Gspos(volNam5, i*4+1,"C05M", xSlat3, ySlat31, zSlat+2.*dzCh3, 0, "ONLY");
688 gMC->Gspos(volNam5, i*4+2,"C05M",-xSlat3, ySlat31, zSlat-2.*dzCh3, 0, "ONLY");
a083207d 689 if (i>0) {
690 gMC->Gspos(volNam5, i*4+3,"C05M", xSlat3, ySlat32, zSlat+2.*dzCh3, 0, "ONLY");
691 gMC->Gspos(volNam5, i*4+4,"C05M",-xSlat3, ySlat32, zSlat-2.*dzCh3, 0, "ONLY");
692 }
3c084d9f 693 sprintf(volNam6,"S06%d",i);
694 gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3);
695 gMC->Gspos(volNam6, i*4+1,"C06M", xSlat3, ySlat31, zSlat+2.*dzCh3, 0, "ONLY");
696 gMC->Gspos(volNam6, i*4+2,"C06M",-xSlat3, ySlat31, zSlat-2.*dzCh3, 0, "ONLY");
a083207d 697 if (i>0) {
698 gMC->Gspos(volNam6, i*4+3,"C06M", xSlat3, ySlat32, zSlat+2.*dzCh3, 0, "ONLY");
699 gMC->Gspos(volNam6, i*4+4,"C06M",-xSlat3, ySlat32, zSlat-2.*dzCh3, 0, "ONLY");
700 }
3c084d9f 701 }
1e8fff9c 702
703 // create the panel volume
b17c0c87 704
6c5ddcfa 705 gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3);
706 gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3);
1e8fff9c 707
708 // create the rohacell volume
b17c0c87 709
6c5ddcfa 710 gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3);
711 gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3);
1e8fff9c 712
3c084d9f 713 // create the insulating material volume
714
715 gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3);
716 gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3);
717
718 // create the PCB volume
719
720 gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3);
721 gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3);
722
723 // create the sensitive volumes,
724 gMC->Gsvolu("S05G","BOX",sensMaterial,0,0);
725 gMC->Gsvolu("S06G","BOX",sensMaterial,0,0);
726
727
1e8fff9c 728 // create the vertical frame volume
b17c0c87 729
6c5ddcfa 730 gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3);
731 gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 732
733 // create the horizontal frame volume
b17c0c87 734
6c5ddcfa 735 gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3);
736 gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 737
738 // create the horizontal border volume
b17c0c87 739
6c5ddcfa 740 gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3);
741 gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3);
1e8fff9c 742
b17c0c87 743 index=0;
6c5ddcfa 744 for (i = 0; i<nSlats3; i++){
745 sprintf(volNam5,"S05%d",i);
746 sprintf(volNam6,"S06%d",i);
f9f7c205 747 Float_t xvFrame = (slatLength3[i] - vFrameLength)/2.;
3c084d9f 748 // position the vertical frames
a083207d 749 if (i!=1) {
3c084d9f 750 gMC->Gspos("S05V",2*i-1,volNam5, xvFrame, 0., 0. , 0, "ONLY");
751 gMC->Gspos("S05V",2*i ,volNam5,-xvFrame, 0., 0. , 0, "ONLY");
752 gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY");
753 gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY");
754 }
755 // position the panels and the insulating material
6c5ddcfa 756 for (j=0; j<nPCB3[i]; j++){
1e8fff9c 757 index++;
6c5ddcfa 758 Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5);
3c084d9f 759
760 Float_t zPanel = spar[2] - panelpar[2];
761 gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
762 gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
763 gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY");
764 gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY");
765
766 gMC->Gspos("S05I",index,volNam5, xx, 0., 0 , 0, "ONLY");
767 gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY");
1e8fff9c 768 }
a9e2aefa 769 }
a9e2aefa 770
3c084d9f 771 // position the rohacell volume inside the panel volume
772 gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY");
773 gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY");
774
775 // position the PCB volume inside the insulating material volume
776 gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY");
777 gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY");
778 // position the horizontal frame volume inside the PCB volume
779 gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY");
780 gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY");
781 // position the sensitive volume inside the horizontal frame volume
782 gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3);
783 gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3);
784 // position the border volumes inside the PCB volume
785 Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.;
786 gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY");
787 gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY");
788 gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY");
789 gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY");
790
1e8fff9c 791 // create the NULOC volume and position it in the horizontal frame
b17c0c87 792
6c5ddcfa 793 gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3);
794 gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3);
6c5ddcfa 795 index = 0;
6c5ddcfa 796 for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) {
1e8fff9c 797 index++;
6c5ddcfa 798 gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
799 gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY");
800 gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
801 gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY");
1e8fff9c 802 }
3c084d9f 803
804 // position the volumes approximating the circular section of the pipe
a083207d 805 Float_t yoffs = sensHeight/2. - yOverlap;
3c084d9f 806 Float_t epsilon = 0.001;
807 Int_t ndiv=6;
808 Float_t divpar[3];
809 Double_t dydiv= sensHeight/ndiv;
a083207d 810 Double_t ydiv = yoffs -dydiv - yOverlap/2.;
3c084d9f 811 Int_t imax=0;
812 // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat];
813 imax = 1;
814 Float_t rmin = 35.;
a083207d 815 Float_t z1 = spar[2], z2=2*spar[2]*1.01;
3c084d9f 816 for (Int_t idiv=0;idiv<ndiv; idiv++){
817 ydiv+= dydiv;
425ebd0a 818 Float_t xdiv = 0.;
3c084d9f 819 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
820 divpar[0] = (pcbLength-xdiv)/2.;
821 divpar[1] = dydiv/2. - epsilon;
822 divpar[2] = sensWidth/2.;
425ebd0a 823 Float_t xvol=(pcbLength+xdiv)/2.+1.999;
a083207d 824 Float_t yvol=ydiv + dydiv/2.;
3c084d9f 825 gMC->Gsposp("S05G",imax+4*idiv+1,"C05M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
826 gMC->Gsposp("S06G",imax+4*idiv+1,"C06M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
a083207d 827 gMC->Gsposp("S05G",imax+4*idiv+2,"C05M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
828 gMC->Gsposp("S06G",imax+4*idiv+2,"C06M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
829 gMC->Gsposp("S05G",imax+4*idiv+3,"C05M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
830 gMC->Gsposp("S06G",imax+4*idiv+3,"C06M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
831 gMC->Gsposp("S05G",imax+4*idiv+4,"C05M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
832 gMC->Gsposp("S06G",imax+4*idiv+4,"C06M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
3c084d9f 833 }
b17c0c87 834 }
b17c0c87 835
a9e2aefa 836
3c084d9f 837 if (stations[3]) {
838
a9e2aefa 839//********************************************************************
840// Station 4 **
841//********************************************************************
842 // indices 1 and 2 for first and second chambers in the station
843 // iChamber (first chamber) kept for other quanties than Z,
844 // assumed to be the same in both chambers
845 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6];
846 iChamber2 =(AliMUONChamber*) (*fChambers)[7];
847 zpos1=iChamber1->Z();
848 zpos2=iChamber2->Z();
849 dstation = zpos2 - zpos1;
b64652f5 850// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
a9e2aefa 851
852//
853// Mother volume
854 tpar[0] = iChamber->RInner()-dframep;
855 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
3c084d9f 856 tpar[2] = 3.252;
a9e2aefa 857
858 gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3);
859 gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3);
860 gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
861 gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 862
a9e2aefa 863
f9f7c205 864 const Int_t nSlats4 = 6; // number of slats per quadrant
425ebd0a 865 const Int_t nPCB4[nSlats4] = {4,4,5,5,4,3}; // n PCB per slat
a083207d 866 const Float_t xpos4[nSlats4] = {37.5, 40., 0., 0., 0., 0.};
6c5ddcfa 867 Float_t slatLength4[nSlats4];
1e8fff9c 868
869 // create and position the slat (mother) volumes
870
6c5ddcfa 871 char volNam7[5];
872 char volNam8[5];
1e8fff9c 873 Float_t xSlat4;
f9f7c205 874 Float_t ySlat4;
1e8fff9c 875
6c5ddcfa 876 for (i = 0; i<nSlats4; i++){
a083207d 877 slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength;
878 xSlat4 = slatLength4[i]/2. - vFrameLength/2. + xpos4[i];
879 if (i==1) slatLength4[i] -= 2. *dSlatLength; // frame out in PCB with circular border
880 ySlat4 = sensHeight * i - yOverlap *i;
881
882 spar[0] = slatLength4[i]/2.;
883 spar[1] = slatHeight/2.;
884 spar[2] = slatWidth/2.*1.01;
885 Float_t dzCh4=spar[2]*1.01;
886 // zSlat to be checked (odd downstream or upstream?)
887 Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2];
888 sprintf(volNam7,"S07%d",i);
889 gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3);
890 gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
891 gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
892 if (i>0) {
893 gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
894 gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
895 }
896 sprintf(volNam8,"S08%d",i);
897 gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3);
898 gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
899 gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
900 if (i>0) {
901 gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
902 gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
903 }
a9e2aefa 904 }
a083207d 905
3c084d9f 906
907 // create the panel volume
1e8fff9c 908
3c084d9f 909 gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3);
910 gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3);
a9e2aefa 911
3c084d9f 912 // create the rohacell volume
913
914 gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3);
915 gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3);
1e8fff9c 916
1e8fff9c 917 // create the insulating material volume
918
6c5ddcfa 919 gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3);
920 gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3);
1e8fff9c 921
3c084d9f 922 // create the PCB volume
1e8fff9c 923
3c084d9f 924 gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3);
925 gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3);
1e8fff9c 926
3c084d9f 927 // create the sensitive volumes,
928
929 gMC->Gsvolu("S07G","BOX",sensMaterial,0,0);
930 gMC->Gsvolu("S08G","BOX",sensMaterial,0,0);
1e8fff9c 931
932 // create the vertical frame volume
933
6c5ddcfa 934 gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3);
935 gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 936
937 // create the horizontal frame volume
938
6c5ddcfa 939 gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3);
940 gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 941
942 // create the horizontal border volume
943
6c5ddcfa 944 gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3);
945 gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3);
3c084d9f 946
947 index=0;
6c5ddcfa 948 for (i = 0; i<nSlats4; i++){
949 sprintf(volNam7,"S07%d",i);
950 sprintf(volNam8,"S08%d",i);
951 Float_t xvFrame = (slatLength4[i] - vFrameLength)/2.;
3c084d9f 952 // position the vertical frames
a083207d 953 if (i!=1) {
954 gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY");
955 gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY");
956 gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY");
957 gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY");
958 }
3c084d9f 959 // position the panels and the insulating material
6c5ddcfa 960 for (j=0; j<nPCB4[i]; j++){
1e8fff9c 961 index++;
6c5ddcfa 962 Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5);
3c084d9f 963
964 Float_t zPanel = spar[2] - panelpar[2];
965 gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY");
966 gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY");
967 gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY");
968 gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY");
969
970 gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY");
971 gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY");
1e8fff9c 972 }
a9e2aefa 973 }
1e8fff9c 974
3c084d9f 975 // position the rohacell volume inside the panel volume
976 gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY");
977 gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY");
978
979 // position the PCB volume inside the insulating material volume
980 gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY");
981 gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY");
982 // position the horizontal frame volume inside the PCB volume
983 gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY");
984 gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY");
985 // position the sensitive volume inside the horizontal frame volume
986 gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3);
987 gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3);
3c084d9f 988 // position the border volumes inside the PCB volume
989 Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.;
990 gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY");
991 gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY");
992 gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY");
993 gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY");
994
1e8fff9c 995 // create the NULOC volume and position it in the horizontal frame
3c084d9f 996
6c5ddcfa 997 gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3);
998 gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3);
3c084d9f 999 index = 0;
6c5ddcfa 1000 for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) {
1e8fff9c 1001 index++;
6c5ddcfa 1002 gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1003 gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY");
1004 gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1005 gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY");
1e8fff9c 1006 }
a083207d 1007
1008 // position the volumes approximating the circular section of the pipe
1009 Float_t yoffs = sensHeight/2. - yOverlap/2.;
1010 Float_t epsilon = 0.001;
1011 Int_t ndiv=6;
1012 Float_t divpar[3];
1013 Double_t dydiv= sensHeight/ndiv;
1014 Double_t ydiv = yoffs -dydiv - yOverlap/2.;
1015 Int_t imax=0;
1016 // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat];
1017 imax = 1;
1018 Float_t rmin = 40.;
1019 Float_t z1 = -spar[2], z2=2*spar[2]*1.01;
1020 for (Int_t idiv=0;idiv<ndiv; idiv++){
1021 ydiv+= dydiv;
425ebd0a 1022 Float_t xdiv = 0.;
a083207d 1023 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1024 divpar[0] = (pcbLength-xdiv)/2.;
1025 divpar[1] = dydiv/2. - epsilon;
1026 divpar[2] = sensWidth/2.;
425ebd0a 1027 Float_t xvol=(pcbLength+xdiv)/2.+1.999;
a083207d 1028 Float_t yvol=ydiv + dydiv/2.;
1029 gMC->Gsposp("S07G",imax+4*idiv+1,"C07M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1030 gMC->Gsposp("S08G",imax+4*idiv+1,"C08M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1031 gMC->Gsposp("S07G",imax+4*idiv+2,"C07M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1032 gMC->Gsposp("S08G",imax+4*idiv+2,"C08M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1033 gMC->Gsposp("S07G",imax+4*idiv+3,"C07M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1034 gMC->Gsposp("S08G",imax+4*idiv+3,"C08M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1035 gMC->Gsposp("S07G",imax+4*idiv+4,"C07M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1036 gMC->Gsposp("S08G",imax+4*idiv+4,"C08M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1037 }
1038
1039
1040
1041
1042
b17c0c87 1043 }
3c084d9f 1044
b17c0c87 1045 if (stations[4]) {
1046
1e8fff9c 1047
a9e2aefa 1048//********************************************************************
1049// Station 5 **
1050//********************************************************************
1051 // indices 1 and 2 for first and second chambers in the station
1052 // iChamber (first chamber) kept for other quanties than Z,
1053 // assumed to be the same in both chambers
1054 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8];
1055 iChamber2 =(AliMUONChamber*) (*fChambers)[9];
1056 zpos1=iChamber1->Z();
1057 zpos2=iChamber2->Z();
1058 dstation = zpos2 - zpos1;
b64652f5 1059// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
3c084d9f 1060
a9e2aefa 1061//
1062// Mother volume
1063 tpar[0] = iChamber->RInner()-dframep;
1064 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
3c084d9f 1065 tpar[2] = dstation/5.;
a9e2aefa 1066
1067 gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3);
1068 gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3);
1069 gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1070 gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
a9e2aefa 1071
a9e2aefa 1072
1e8fff9c 1073 const Int_t nSlats5 = 7; // number of slats per quadrant
a083207d 1074 const Int_t nPCB5[nSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat
1075 const Float_t xpos5[nSlats5] = {37.5, 40., 0., 0., 0., 0., 0.};
6c5ddcfa 1076 Float_t slatLength5[nSlats5];
6c5ddcfa 1077 char volNam9[5];
1078 char volNam10[5];
f9f7c205 1079 Float_t xSlat5;
1080 Float_t ySlat5;
1e8fff9c 1081
6c5ddcfa 1082 for (i = 0; i<nSlats5; i++){
1083 slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength;
a083207d 1084 xSlat5 = slatLength5[i]/2. - vFrameLength/2. +xpos5[i];
1085 if (i==1) slatLength5[i] -= 2. *dSlatLength; // frame out in PCB with circular border
f9f7c205 1086 ySlat5 = sensHeight * i - yOverlap * i;
6c5ddcfa 1087 spar[0] = slatLength5[i]/2.;
1088 spar[1] = slatHeight/2.;
3c084d9f 1089 spar[2] = slatWidth/2. * 1.01;
1090 Float_t dzCh5=spar[2]*1.01;
1e8fff9c 1091 // zSlat to be checked (odd downstream or upstream?)
3c084d9f 1092 Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2];
6c5ddcfa 1093 sprintf(volNam9,"S09%d",i);
1094 gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3);
e1ad7d45 1095 gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1096 gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
f9f7c205 1097 if (i>0) {
3c084d9f 1098 gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1099 gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
f9f7c205 1100 }
6c5ddcfa 1101 sprintf(volNam10,"S10%d",i);
1102 gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3);
e1ad7d45 1103 gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1104 gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
f9f7c205 1105 if (i>0) {
3c084d9f 1106 gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1107 gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
f9f7c205 1108 }
a9e2aefa 1109 }
1110
1e8fff9c 1111 // create the panel volume
3c084d9f 1112
6c5ddcfa 1113 gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3);
1114 gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3);
3c084d9f 1115
1e8fff9c 1116 // create the rohacell volume
3c084d9f 1117
6c5ddcfa 1118 gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3);
1119 gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3);
3c084d9f 1120
1121 // create the insulating material volume
1122
1123 gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3);
1124 gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3);
1125
1126 // create the PCB volume
1127
1128 gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3);
1129 gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3);
1130
1131 // create the sensitive volumes,
1132
1133 gMC->Gsvolu("S09G","BOX",sensMaterial,0,0);
1134 gMC->Gsvolu("S10G","BOX",sensMaterial,0,0);
3c084d9f 1135
1e8fff9c 1136 // create the vertical frame volume
3c084d9f 1137
6c5ddcfa 1138 gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3);
1139 gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 1140
1141 // create the horizontal frame volume
3c084d9f 1142
6c5ddcfa 1143 gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3);
1144 gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 1145
1146 // create the horizontal border volume
1147
6c5ddcfa 1148 gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3);
1149 gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3);
1e8fff9c 1150
3c084d9f 1151 index=0;
6c5ddcfa 1152 for (i = 0; i<nSlats5; i++){
1153 sprintf(volNam9,"S09%d",i);
1154 sprintf(volNam10,"S10%d",i);
1155 Float_t xvFrame = (slatLength5[i] - vFrameLength)/2.;
3c084d9f 1156 // position the vertical frames
a083207d 1157 if (i!=1) {
1158 gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY");
1159 gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY");
1160 gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY");
1161 gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY");
1162 }
3c084d9f 1163
1164 // position the panels and the insulating material
6c5ddcfa 1165 for (j=0; j<nPCB5[i]; j++){
1e8fff9c 1166 index++;
3c084d9f 1167 Float_t xx = sensLength * (-nPCB5[i]/2.+j+.5);
1168
1169 Float_t zPanel = spar[2] - panelpar[2];
1170 gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY");
1171 gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY");
1172 gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY");
1173 gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY");
1174
1175 gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY");
1176 gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY");
1e8fff9c 1177 }
1178 }
1179
3c084d9f 1180 // position the rohacell volume inside the panel volume
1181 gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY");
1182 gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY");
1183
1184 // position the PCB volume inside the insulating material volume
1185 gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY");
1186 gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY");
1187 // position the horizontal frame volume inside the PCB volume
1188 gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY");
1189 gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY");
1190 // position the sensitive volume inside the horizontal frame volume
1191 gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3);
1192 gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3);
3c084d9f 1193 // position the border volumes inside the PCB volume
1194 Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.;
1195 gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY");
1196 gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY");
1197 gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY");
1198 gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY");
1199
1e8fff9c 1200 // create the NULOC volume and position it in the horizontal frame
3c084d9f 1201
6c5ddcfa 1202 gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3);
1203 gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3);
3c084d9f 1204 index = 0;
6c5ddcfa 1205 for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) {
1e8fff9c 1206 index++;
6c5ddcfa 1207 gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1208 gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY");
1209 gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1210 gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY");
a9e2aefa 1211 }
a083207d 1212 // position the volumes approximating the circular section of the pipe
1213 Float_t yoffs = sensHeight/2. - yOverlap/2.;
1214 Float_t epsilon = 0.001;
1215 Int_t ndiv=6;
1216 Float_t divpar[3];
1217 Double_t dydiv= sensHeight/ndiv;
1218 Double_t ydiv = yoffs -dydiv - yOverlap/2.;
1219 Int_t imax=0;
1220 // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat];
1221 imax = 1;
1222 Float_t rmin = 40.;
1223 Float_t z1 = spar[2], z2=2*spar[2]*1.01;
1224 for (Int_t idiv=0;idiv<ndiv; idiv++){
1225 ydiv+= dydiv;
425ebd0a 1226 Float_t xdiv = 0.;
a083207d 1227 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1228 divpar[0] = (pcbLength-xdiv)/2.;
1229 divpar[1] = dydiv/2. - epsilon;
1230 divpar[2] = sensWidth/2.;
425ebd0a 1231 Float_t xvol=(pcbLength+xdiv)/2. + 1.999;
a083207d 1232 Float_t yvol=ydiv + dydiv/2.;
1233 gMC->Gsposp("S09G",imax+4*idiv+1,"C09M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1234 gMC->Gsposp("S10G",imax+4*idiv+1,"C10M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1235 gMC->Gsposp("S09G",imax+4*idiv+2,"C09M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1236 gMC->Gsposp("S10G",imax+4*idiv+2,"C10M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1237 gMC->Gsposp("S09G",imax+4*idiv+3,"C09M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1238 gMC->Gsposp("S10G",imax+4*idiv+3,"C10M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1239 gMC->Gsposp("S09G",imax+4*idiv+4,"C09M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1240 gMC->Gsposp("S10G",imax+4*idiv+4,"C10M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1241 }
1242
b17c0c87 1243 }
1244
1e8fff9c 1245
a9e2aefa 1246///////////////////////////////////////
1247// GEOMETRY FOR THE TRIGGER CHAMBERS //
1248///////////////////////////////////////
1249
1250// 03/00 P. Dupieux : introduce a slighly more realistic
1251// geom. of the trigger readout planes with
1252// 2 Zpos per trigger plane (alternate
1253// between left and right of the trigger)
1254
1255// Parameters of the Trigger Chambers
1256
1257
1258 const Float_t kXMC1MIN=34.;
1259 const Float_t kXMC1MED=51.;
1260 const Float_t kXMC1MAX=272.;
1261 const Float_t kYMC1MIN=34.;
1262 const Float_t kYMC1MAX=51.;
1263 const Float_t kRMIN1=50.;
1264 const Float_t kRMAX1=62.;
1265 const Float_t kRMIN2=50.;
1266 const Float_t kRMAX2=66.;
1267
1268// zposition of the middle of the gas gap in mother vol
1269 const Float_t kZMCm=-3.6;
1270 const Float_t kZMCp=+3.6;
1271
1272
1273// TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1
1274
1275 // iChamber 1 and 2 for first and second chambers in the station
1276 // iChamber (first chamber) kept for other quanties than Z,
1277 // assumed to be the same in both chambers
1278 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10];
1279 iChamber2 =(AliMUONChamber*) (*fChambers)[11];
1280
1281 // 03/00
1282 // zpos1 and zpos2 are now the middle of the first and second
1283 // plane of station 1 :
1284 // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm
1285 // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm
1286 //
1287 // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps)
1288 // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps)
1289 // rem : the total thickness accounts for 1 mm of al on both
1290 // side of the RPCs (see zpos1 and zpos2), as previously
1291
1292 zpos1=iChamber1->Z();
1293 zpos2=iChamber2->Z();
1294
1295
1296// Mother volume definition
1297 tpar[0] = iChamber->RInner();
1298 tpar[1] = iChamber->ROuter();
1299 tpar[2] = 4.0;
1300 gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3);
1301 gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3);
1302
1303// Definition of the flange between the beam shielding and the RPC
1304 tpar[0]= kRMIN1;
1305 tpar[1]= kRMAX1;
1306 tpar[2]= 4.0;
1307
1308 gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al
1309 gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY");
1310 gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY");
1311
1312
1313// FIRST PLANE OF STATION 1
1314
1315// ratios of zpos1m/zpos1p and inverse for first plane
1316 Float_t zmp=(zpos1-3.6)/(zpos1+3.6);
1317 Float_t zpm=1./zmp;
1318
1319
1320// Definition of prototype for chambers in the first plane
1321
1322 tpar[0]= 0.;
1323 tpar[1]= 0.;
1324 tpar[2]= 0.;
1325
1326 gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al
1327 gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1328 gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1329
1330// chamber type A
1331 tpar[0] = -1.;
1332 tpar[1] = -1.;
1333
1334 const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.;
1335 const Float_t kYMC1Am=0.;
1336 const Float_t kYMC1Ap=0.;
1337
1338 tpar[2] = 0.1;
1339 gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3);
1340 tpar[2] = 0.3;
1341 gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3);
1342
1343 tpar[2] = 0.4;
1344 tpar[0] = (kXMC1MAX-kXMC1MED)/2.;
1345 tpar[1] = kYMC1MIN;
1346
1347 gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3);
1348 gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3);
1349
1350// chamber type B
1351 Float_t tpar1save=tpar[1];
1352 Float_t y1msave=kYMC1Am;
1353 Float_t y1psave=kYMC1Ap;
1354
1355 tpar[0] = (kXMC1MAX-kXMC1MIN)/2.;
1356 tpar[1] = (kYMC1MAX-kYMC1MIN)/2.;
1357
1358 const Float_t kXMC1B=kXMC1MIN+tpar[0];
1359 const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1];
1360 const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1];
1361
1362 gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3);
1363 gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3);
1364 gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3);
1365 gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3);
1366
1367// chamber type C (end of type B !!)
1368 tpar1save=tpar[1];
1369 y1msave=kYMC1Bm;
1370 y1psave=kYMC1Bp;
1371
1372 tpar[0] = kXMC1MAX/2;
1373 tpar[1] = kYMC1MAX/2;
1374
1375 const Float_t kXMC1C=tpar[0];
1376// warning : same Z than type B
1377 const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1];
1378 const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1];
1379
1380 gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3);
1381 gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3);
1382 gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3);
1383 gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3);
1384
1385// chamber type D, E and F (same size)
1386 tpar1save=tpar[1];
1387 y1msave=kYMC1Cm;
1388 y1psave=kYMC1Cp;
1389
1390 tpar[0] = kXMC1MAX/2.;
1391 tpar[1] = kYMC1MIN;
1392
1393 const Float_t kXMC1D=tpar[0];
1394 const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1];
1395 const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1];
1396
1397 gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3);
1398 gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3);
1399 gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3);
1400 gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3);
1401
1402
1403 tpar1save=tpar[1];
1404 y1msave=kYMC1Dm;
1405 y1psave=kYMC1Dp;
1406 const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1];
1407 const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1];
1408
1409 gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3);
1410 gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3);
1411 gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3);
1412 gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3);
1413
1414 tpar1save=tpar[1];
1415 y1msave=kYMC1Em;
1416 y1psave=kYMC1Ep;
1417 const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1];
1418 const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1];
1419
1420 gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3);
1421 gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3);
1422 gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3);
1423 gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3);
1424
1425// Positioning first plane in ALICE
1426 gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY");
1427
1428// End of geometry definition for the first plane of station 1
1429
1430
1431
1432// SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1
1433
1434 const Float_t kZ12=zpos2/zpos1;
1435
1436// Definition of prototype for chambers in the second plane of station 1
1437
1438 tpar[0]= 0.;
1439 tpar[1]= 0.;
1440 tpar[2]= 0.;
1441
1442 gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al
1443 gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1444 gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1445
1446// chamber type A
1447 tpar[0] = -1.;
1448 tpar[1] = -1.;
1449
1450 const Float_t kXMC2A=kXMC1A*kZ12;
1451 const Float_t kYMC2Am=0.;
1452 const Float_t kYMC2Ap=0.;
1453
1454 tpar[2] = 0.1;
1455 gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3);
1456 tpar[2] = 0.3;
1457 gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3);
1458
1459 tpar[2] = 0.4;
1460 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12;
1461 tpar[1] = kYMC1MIN*kZ12;
1462
1463 gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3);
1464 gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3);
1465
1466
1467// chamber type B
1468
1469 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12;
1470 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12;
1471
1472 const Float_t kXMC2B=kXMC1B*kZ12;
1473 const Float_t kYMC2Bp=kYMC1Bp*kZ12;
1474 const Float_t kYMC2Bm=kYMC1Bm*kZ12;
1475 gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3);
1476 gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3);
1477 gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3);
1478 gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3);
1479
1480
1481// chamber type C (end of type B !!)
1482
1483 tpar[0] = (kXMC1MAX/2)*kZ12;
1484 tpar[1] = (kYMC1MAX/2)*kZ12;
1485
1486 const Float_t kXMC2C=kXMC1C*kZ12;
1487 const Float_t kYMC2Cp=kYMC1Cp*kZ12;
1488 const Float_t kYMC2Cm=kYMC1Cm*kZ12;
1489 gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3);
1490 gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3);
1491 gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3);
1492 gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3);
1493
1494// chamber type D, E and F (same size)
1495
1496 tpar[0] = (kXMC1MAX/2.)*kZ12;
1497 tpar[1] = kYMC1MIN*kZ12;
1498
1499 const Float_t kXMC2D=kXMC1D*kZ12;
1500 const Float_t kYMC2Dp=kYMC1Dp*kZ12;
1501 const Float_t kYMC2Dm=kYMC1Dm*kZ12;
1502 gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3);
1503 gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3);
1504 gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3);
1505 gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3);
1506
1507 const Float_t kYMC2Ep=kYMC1Ep*kZ12;
1508 const Float_t kYMC2Em=kYMC1Em*kZ12;
1509 gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3);
1510 gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3);
1511 gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3);
1512 gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3);
1513
1514
1515 const Float_t kYMC2Fp=kYMC1Fp*kZ12;
1516 const Float_t kYMC2Fm=kYMC1Fm*kZ12;
1517 gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3);
1518 gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3);
1519 gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3);
1520 gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3);
1521
1522// Positioning second plane of station 1 in ALICE
1523
1524 gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY");
1525
1526// End of geometry definition for the second plane of station 1
1527
1528
1529
1530// TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2
1531
1532 // 03/00
1533 // zpos3 and zpos4 are now the middle of the first and second
1534 // plane of station 2 :
1535 // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm
1536 // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm
1537 //
1538 // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps)
1539 // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps)
1540 // rem : the total thickness accounts for 1 mm of al on both
1541 // side of the RPCs (see zpos3 and zpos4), as previously
1542 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12];
1543 iChamber2 =(AliMUONChamber*) (*fChambers)[13];
1544 Float_t zpos3=iChamber1->Z();
1545 Float_t zpos4=iChamber2->Z();
1546
1547
1548// Mother volume definition
1549 tpar[0] = iChamber->RInner();
1550 tpar[1] = iChamber->ROuter();
1551 tpar[2] = 4.0;
1552
1553 gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3);
1554 gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3);
1555
1556// Definition of the flange between the beam shielding and the RPC
1557// ???? interface shielding
1558
1559 tpar[0]= kRMIN2;
1560 tpar[1]= kRMAX2;
1561 tpar[2]= 4.0;
1562
1563 gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al
1564 gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY");
1565 gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY");
1566
1567
1568
1569// FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1
1570
1571 const Float_t kZ13=zpos3/zpos1;
1572
1573// Definition of prototype for chambers in the first plane of station 2
1574 tpar[0]= 0.;
1575 tpar[1]= 0.;
1576 tpar[2]= 0.;
1577
1578 gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al
1579 gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1580 gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1581
1582
1583// chamber type A
1584 tpar[0] = -1.;
1585 tpar[1] = -1.;
1586
1587 const Float_t kXMC3A=kXMC1A*kZ13;
1588 const Float_t kYMC3Am=0.;
1589 const Float_t kYMC3Ap=0.;
1590
1591 tpar[2] = 0.1;
1592 gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3);
1593 tpar[2] = 0.3;
1594 gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3);
1595
1596 tpar[2] = 0.4;
1597 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13;
1598 tpar[1] = kYMC1MIN*kZ13;
1599 gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3);
1600 gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3);
1601
1602
1603// chamber type B
1604 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13;
1605 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13;
1606
1607 const Float_t kXMC3B=kXMC1B*kZ13;
1608 const Float_t kYMC3Bp=kYMC1Bp*kZ13;
1609 const Float_t kYMC3Bm=kYMC1Bm*kZ13;
1610 gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3);
1611 gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3);
1612 gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3);
1613 gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3);
1614
1615
1616// chamber type C (end of type B !!)
1617 tpar[0] = (kXMC1MAX/2)*kZ13;
1618 tpar[1] = (kYMC1MAX/2)*kZ13;
1619
1620 const Float_t kXMC3C=kXMC1C*kZ13;
1621 const Float_t kYMC3Cp=kYMC1Cp*kZ13;
1622 const Float_t kYMC3Cm=kYMC1Cm*kZ13;
1623 gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3);
1624 gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3);
1625 gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3);
1626 gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3);
1627
1628
1629// chamber type D, E and F (same size)
1630
1631 tpar[0] = (kXMC1MAX/2.)*kZ13;
1632 tpar[1] = kYMC1MIN*kZ13;
1633
1634 const Float_t kXMC3D=kXMC1D*kZ13;
1635 const Float_t kYMC3Dp=kYMC1Dp*kZ13;
1636 const Float_t kYMC3Dm=kYMC1Dm*kZ13;
1637 gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3);
1638 gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3);
1639 gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3);
1640 gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3);
1641
1642 const Float_t kYMC3Ep=kYMC1Ep*kZ13;
1643 const Float_t kYMC3Em=kYMC1Em*kZ13;
1644 gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3);
1645 gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3);
1646 gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3);
1647 gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3);
1648
1649 const Float_t kYMC3Fp=kYMC1Fp*kZ13;
1650 const Float_t kYMC3Fm=kYMC1Fm*kZ13;
1651 gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3);
1652 gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3);
1653 gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3);
1654 gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3);
1655
1656
1657// Positioning first plane of station 2 in ALICE
1658
1659 gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY");
1660
1661// End of geometry definition for the first plane of station 2
1662
1663
1664
1665
1666// SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1
1667
1668 const Float_t kZ14=zpos4/zpos1;
1669
1670// Definition of prototype for chambers in the second plane of station 2
1671
1672 tpar[0]= 0.;
1673 tpar[1]= 0.;
1674 tpar[2]= 0.;
1675
1676 gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al
1677 gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1678 gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1679
1680// chamber type A
1681 tpar[0] = -1.;
1682 tpar[1] = -1.;
1683
1684 const Float_t kXMC4A=kXMC1A*kZ14;
1685 const Float_t kYMC4Am=0.;
1686 const Float_t kYMC4Ap=0.;
1687
1688 tpar[2] = 0.1;
1689 gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3);
1690 tpar[2] = 0.3;
1691 gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3);
1692
1693 tpar[2] = 0.4;
1694 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14;
1695 tpar[1] = kYMC1MIN*kZ14;
1696 gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3);
1697 gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3);
1698
1699
1700// chamber type B
1701 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14;
1702 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14;
1703
1704 const Float_t kXMC4B=kXMC1B*kZ14;
1705 const Float_t kYMC4Bp=kYMC1Bp*kZ14;
1706 const Float_t kYMC4Bm=kYMC1Bm*kZ14;
1707 gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3);
1708 gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3);
1709 gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3);
1710 gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3);
1711
1712
1713// chamber type C (end of type B !!)
1714 tpar[0] =(kXMC1MAX/2)*kZ14;
1715 tpar[1] = (kYMC1MAX/2)*kZ14;
1716
1717 const Float_t kXMC4C=kXMC1C*kZ14;
1718 const Float_t kYMC4Cp=kYMC1Cp*kZ14;
1719 const Float_t kYMC4Cm=kYMC1Cm*kZ14;
1720 gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3);
1721 gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3);
1722 gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3);
1723 gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3);
1724
1725
1726// chamber type D, E and F (same size)
1727 tpar[0] = (kXMC1MAX/2.)*kZ14;
1728 tpar[1] = kYMC1MIN*kZ14;
1729
1730 const Float_t kXMC4D=kXMC1D*kZ14;
1731 const Float_t kYMC4Dp=kYMC1Dp*kZ14;
1732 const Float_t kYMC4Dm=kYMC1Dm*kZ14;
1733 gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3);
1734 gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3);
1735 gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3);
1736 gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3);
1737
1738 const Float_t kYMC4Ep=kYMC1Ep*kZ14;
1739 const Float_t kYMC4Em=kYMC1Em*kZ14;
1740 gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3);
1741 gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3);
1742 gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3);
1743 gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3);
1744
1745 const Float_t kYMC4Fp=kYMC1Fp*kZ14;
1746 const Float_t kYMC4Fm=kYMC1Fm*kZ14;
1747 gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3);
1748 gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3);
1749 gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3);
1750 gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3);
1751
1752
1753// Positioning second plane of station 2 in ALICE
1754
1755 gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY");
1756
1757// End of geometry definition for the second plane of station 2
1758
1759// End of trigger geometry definition
1760
1761}
1762
1763
1764
1765//___________________________________________
1766void AliMUONv1::CreateMaterials()
1767{
1768 // *** DEFINITION OF AVAILABLE MUON MATERIALS ***
1769 //
b64652f5 1770 // Ar-CO2 gas (80%+20%)
a9e2aefa 1771 Float_t ag1[3] = { 39.95,12.01,16. };
1772 Float_t zg1[3] = { 18.,6.,8. };
1773 Float_t wg1[3] = { .8,.0667,.13333 };
1774 Float_t dg1 = .001821;
1775 //
1776 // Ar-buthane-freon gas -- trigger chambers
1777 Float_t atr1[4] = { 39.95,12.01,1.01,19. };
1778 Float_t ztr1[4] = { 18.,6.,1.,9. };
1779 Float_t wtr1[4] = { .56,.1262857,.2857143,.028 };
1780 Float_t dtr1 = .002599;
1781 //
1782 // Ar-CO2 gas
1783 Float_t agas[3] = { 39.95,12.01,16. };
1784 Float_t zgas[3] = { 18.,6.,8. };
1785 Float_t wgas[3] = { .74,.086684,.173316 };
1786 Float_t dgas = .0018327;
1787 //
1788 // Ar-Isobutane gas (80%+20%) -- tracking
1789 Float_t ag[3] = { 39.95,12.01,1.01 };
1790 Float_t zg[3] = { 18.,6.,1. };
1791 Float_t wg[3] = { .8,.057,.143 };
1792 Float_t dg = .0019596;
1793 //
1794 // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger
1795 Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
1796 Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
1797 Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
1798 Float_t dtrig = .0031463;
1799 //
1800 // bakelite
1801
1802 Float_t abak[3] = {12.01 , 1.01 , 16.};
1803 Float_t zbak[3] = {6. , 1. , 8.};
1804 Float_t wbak[3] = {6. , 6. , 1.};
1805 Float_t dbak = 1.4;
1806
1807 Float_t epsil, stmin, deemax, tmaxfd, stemax;
1808
1809 Int_t iSXFLD = gAlice->Field()->Integ();
1810 Float_t sXMGMX = gAlice->Field()->Max();
1811 //
1812 // --- Define the various materials for GEANT ---
1813 AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1814 AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1815 AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500);
1816 AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
1817 AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
1818 AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
1819 AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
1820 AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
1821 AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
1e8fff9c 1822 // materials for slat:
1823 // Sensitive area: gas (already defined)
1824 // PCB: copper
1825 // insulating material and frame: vetronite
1826 // walls: carbon, rohacell, carbon
1827 Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.};
1828 Float_t zglass[5]={ 6., 14., 8., 5., 11.};
1829 Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01};
1830 Float_t dglass=1.74;
1831
1832 // rohacell: C9 H13 N1 O2
1833 Float_t arohac[4] = {12.01, 1.01, 14.010, 16.};
1834 Float_t zrohac[4] = { 6., 1., 7., 8.};
1835 Float_t wrohac[4] = { 9., 13., 1., 2.};
1836 Float_t drohac = 0.03;
1837
1838 AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.);
1839 AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass);
1840 AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9);
1841 AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac);
1842
a9e2aefa 1843
1844 epsil = .001; // Tracking precision,
1845 stemax = -1.; // Maximum displacement for multiple scat
1846 tmaxfd = -20.; // Maximum angle due to field deflection
1847 deemax = -.3; // Maximum fractional energy loss, DLS
1848 stmin = -.8;
1849 //
1850 // Air
1851 AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1852 //
1853 // Aluminum
1854
1855 AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1856 fMaxDestepAlu, epsil, stmin);
1857 AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1858 fMaxDestepAlu, epsil, stmin);
1859 //
1860 // Ar-isoC4H10 gas
1861
1862 AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1863 fMaxDestepGas, epsil, stmin);
1864//
1865 // Ar-Isobuthane-Forane-SF6 gas
1866
1867 AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1868
1869 AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1870 fMaxDestepAlu, epsil, stmin);
1871
1872 AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1873 fMaxDestepAlu, epsil, stmin);
1e8fff9c 1874 // tracking media for slats: check the parameters!!
1875 AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd,
1876 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1877 AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd,
1878 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1879 AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd,
1880 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1881 AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd,
1882 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
a9e2aefa 1883}
1884
1885//___________________________________________
1886
1887void AliMUONv1::Init()
1888{
1889 //
1890 // Initialize Tracking Chambers
1891 //
1892
1893 printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n");
e17592e9 1894 Int_t i;
f665c1ea 1895 for (i=0; i<AliMUONConstants::NCh(); i++) {
a9e2aefa 1896 ( (AliMUONChamber*) (*fChambers)[i])->Init();
1897 }
1898
1899 //
1900 // Set the chamber (sensitive region) GEANT identifier
1901 AliMC* gMC = AliMC::GetMC();
1902 ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G"));
1903 ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G"));
b17c0c87 1904
a9e2aefa 1905 ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G"));
1906 ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G"));
b17c0c87 1907
1e8fff9c 1908 ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G"));
1909 ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G"));
b17c0c87 1910
1e8fff9c 1911 ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G"));
1912 ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G"));
b17c0c87 1913
1e8fff9c 1914 ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G"));
1915 ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G"));
b17c0c87 1916
a9e2aefa 1917 ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A"));
1918 ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A"));
1919 ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A"));
1920 ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A"));
1921
1922 printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n");
1923
1924 //cp
1925 printf("\n\n\n Start Init for Trigger Circuits\n\n\n");
f665c1ea 1926 for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) {
a9e2aefa 1927 ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i);
1928 }
1929 printf(" Finished Init for Trigger Circuits\n\n\n");
1930 //cp
1931
1932}
1933
1934//___________________________________________
1935void AliMUONv1::StepManager()
1936{
1937 Int_t copy, id;
1938 static Int_t idvol;
1939 static Int_t vol[2];
1940 Int_t ipart;
1941 TLorentzVector pos;
1942 TLorentzVector mom;
1943 Float_t theta,phi;
1944 Float_t destep, step;
681d067b 1945
1e8fff9c 1946 static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength;
a9e2aefa 1947 const Float_t kBig=1.e10;
a9e2aefa 1948 // modifs perso
1949 static Float_t hits[15];
1950
1951 TClonesArray &lhits = *fHits;
1952
1953 //
1954 // Set maximum step size for gas
1955 // numed=gMC->GetMedium();
1956 //
1957 // Only charged tracks
1958 if( !(gMC->TrackCharge()) ) return;
1959 //
1960 // Only gas gap inside chamber
1961 // Tag chambers and record hits when track enters
1962 idvol=-1;
1963 id=gMC->CurrentVolID(copy);
1964
f665c1ea 1965 for (Int_t i=1; i<=AliMUONConstants::NCh(); i++) {
a9e2aefa 1966 if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){
1967 vol[0]=i;
1968 idvol=i-1;
1969 }
1970 }
1971 if (idvol == -1) return;
1972 //
1973 // Get current particle id (ipart), track position (pos) and momentum (mom)
1974 gMC->TrackPosition(pos);
1975 gMC->TrackMomentum(mom);
1976
1977 ipart = gMC->TrackPid();
1978 //Int_t ipart1 = gMC->IdFromPDG(ipart);
1979 //printf("ich, ipart %d %d \n",vol[0],ipart1);
1980
1981 //
1982 // momentum loss and steplength in last step
1983 destep = gMC->Edep();
1984 step = gMC->TrackStep();
1985
1986 //
1987 // record hits when track enters ...
1988 if( gMC->IsTrackEntering()) {
1989 gMC->SetMaxStep(fMaxStepGas);
1990 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
1991 Double_t rt = TMath::Sqrt(tc);
1992 Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]);
1993 Double_t tx=mom[0]/pmom;
1994 Double_t ty=mom[1]/pmom;
1995 Double_t tz=mom[2]/pmom;
1996 Double_t s=((AliMUONChamber*)(*fChambers)[idvol])
1997 ->ResponseModel()
1998 ->Pitch()/tz;
1999 theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
2000 phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
2001 hits[0] = Float_t(ipart); // Geant3 particle type
2002 hits[1] = pos[0]+s*tx; // X-position for hit
2003 hits[2] = pos[1]+s*ty; // Y-position for hit
2004 hits[3] = pos[2]+s*tz; // Z-position for hit
2005 hits[4] = theta; // theta angle of incidence
2006 hits[5] = phi; // phi angle of incidence
2007 hits[8] = (Float_t) fNPadHits; // first padhit
2008 hits[9] = -1; // last pad hit
2009
2010 // modifs perso
2011 hits[10] = mom[3]; // hit momentum P
2012 hits[11] = mom[0]; // Px/P
2013 hits[12] = mom[1]; // Py/P
2014 hits[13] = mom[2]; // Pz/P
2015 // fin modifs perso
2016 tof=gMC->TrackTime();
2017 hits[14] = tof; // Time of flight
2018 // phi angle of incidence
2019 tlength = 0;
2020 eloss = 0;
2021 eloss2 = 0;
2022 xhit = pos[0];
2023 yhit = pos[1];
1e8fff9c 2024 zhit = pos[2];
681d067b 2025 Chamber(idvol).ChargeCorrelationInit();
a9e2aefa 2026 // Only if not trigger chamber
1e8fff9c 2027
2028
2029
2030
a75f073c 2031 if(idvol<AliMUONConstants::NTrackingCh()) {
a9e2aefa 2032 //
2033 // Initialize hit position (cursor) in the segmentation model
2034 ((AliMUONChamber*) (*fChambers)[idvol])
2035 ->SigGenInit(pos[0], pos[1], pos[2]);
2036 } else {
2037 //geant3->Gpcxyz();
2038 //printf("In the Trigger Chamber #%d\n",idvol-9);
2039 }
2040 }
2041 eloss2+=destep;
2042
2043 //
2044 // Calculate the charge induced on a pad (disintegration) in case
2045 //
2046 // Mip left chamber ...
2047 if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
2048 gMC->SetMaxStep(kBig);
2049 eloss += destep;
2050 tlength += step;
2051
802a864d 2052 Float_t x0,y0,z0;
2053 Float_t localPos[3];
2054 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
802a864d 2055 gMC->Gmtod(globalPos,localPos,1);
2056
a75f073c 2057 if(idvol<AliMUONConstants::NTrackingCh()) {
a9e2aefa 2058// tracking chambers
2059 x0 = 0.5*(xhit+pos[0]);
2060 y0 = 0.5*(yhit+pos[1]);
1e8fff9c 2061 z0 = 0.5*(zhit+pos[2]);
2062 // z0 = localPos[2];
a9e2aefa 2063 } else {
2064// trigger chambers
2065 x0=xhit;
2066 y0=yhit;
1e8fff9c 2067// z0=yhit;
802a864d 2068 z0=0.;
a9e2aefa 2069 }
2070
1e8fff9c 2071
802a864d 2072 if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol);
a9e2aefa 2073
2074
2075 hits[6]=tlength;
2076 hits[7]=eloss2;
2077 if (fNPadHits > (Int_t)hits[8]) {
2078 hits[8]= hits[8]+1;
2079 hits[9]= (Float_t) fNPadHits;
2080 }
2081
2082 new(lhits[fNhits++])
2083 AliMUONHit(fIshunt,gAlice->CurrentTrack(),vol,hits);
2084 eloss = 0;
2085 //
2086 // Check additional signal generation conditions
2087 // defined by the segmentation
a75f073c 2088 // model (boundary crossing conditions)
2089 // only for tracking chambers
a9e2aefa 2090 } else if
a75f073c 2091 ((idvol < AliMUONConstants::NTrackingCh()) &&
2092 ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2]))
a9e2aefa 2093 {
2094 ((AliMUONChamber*) (*fChambers)[idvol])
2095 ->SigGenInit(pos[0], pos[1], pos[2]);
802a864d 2096
2097 Float_t localPos[3];
2098 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
2099 gMC->Gmtod(globalPos,localPos,1);
2100
2101
a75f073c 2102 if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh())
1e8fff9c 2103 MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol);
a9e2aefa 2104 xhit = pos[0];
2105 yhit = pos[1];
1e8fff9c 2106 zhit = pos[2];
a9e2aefa 2107 eloss = destep;
2108 tlength += step ;
2109 //
2110 // nothing special happened, add up energy loss
2111 } else {
2112 eloss += destep;
2113 tlength += step ;
2114 }
2115}
2116
2117