]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PYTHIA6/AliPythia.cxx
And some more effc++
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
CommitLineData
8d2cd130 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
7cdba479 16/* $Id$ */
8d2cd130 17
18#include "AliPythia.h"
7cdba479 19#include "AliPythiaRndm.h"
0f482ae4 20#include "../FASTSIM/AliFastGlauber.h"
21#include "../FASTSIM/AliQuenchingWeights.h"
22#include "TVector3.h"
8d2cd130 23
24ClassImp(AliPythia)
25
26#ifndef WIN32
27# define pyclus pyclus_
28# define pycell pycell_
452af8c7 29# define pyshow pyshow_
30# define pyrobo pyrobo_
992f2843 31# define pyquen pyquen_
16a82508 32# define pyevnw pyevnw_
8d2cd130 33# define type_of_call
34#else
35# define pyclus PYCLUS
36# define pycell PYCELL
452af8c7 37# define pyrobo PYROBO
992f2843 38# define pyquen PYQUEN
16a82508 39# define pyevnw PYEVNW
8d2cd130 40# define type_of_call _stdcall
41#endif
42
43extern "C" void type_of_call pyclus(Int_t & );
44extern "C" void type_of_call pycell(Int_t & );
452af8c7 45extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
46extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
992f2843 47extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
0a2cfc0a 48extern "C" void type_of_call pyevnw(){;}
8d2cd130 49
50//_____________________________________________________________________________
51
52AliPythia* AliPythia::fgAliPythia=NULL;
53
e8a8adcd 54AliPythia::AliPythia():
55 fProcess(kPyMb),
56 fEcms(0.),
57 fStrucFunc(kCTEQ5L),
58 fXJet(0.),
59 fYJet(0.),
60 fGlauber(0),
61 fQuenchingWeights(0)
8d2cd130 62{
63// Default Constructor
64//
65// Set random number
7cdba479 66 if (!AliPythiaRndm::GetPythiaRandom())
67 AliPythiaRndm::SetPythiaRandom(GetRandom());
0f482ae4 68 fGlauber = 0;
69 fQuenchingWeights = 0;
8d2cd130 70}
71
e8a8adcd 72AliPythia::AliPythia(const AliPythia& pythia):
73 fProcess(kPyMb),
74 fEcms(0.),
75 fStrucFunc(kCTEQ5L),
76 fXJet(0.),
77 fYJet(0.),
78 fGlauber(0),
79 fQuenchingWeights(0)
80{
81 // Copy Constructor
82 pythia.Copy(*this);
83}
84
8d2cd130 85void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
86{
87// Initialise the process to generate
7cdba479 88 if (!AliPythiaRndm::GetPythiaRandom())
89 AliPythiaRndm::SetPythiaRandom(GetRandom());
8d2cd130 90
91 fProcess = process;
92 fEcms = energy;
93 fStrucFunc = strucfunc;
1d5b1b20 94//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
95 SetMDCY(Pycomp(111) ,1,0);
96 SetMDCY(Pycomp(310) ,1,0);
97 SetMDCY(Pycomp(3122),1,0);
98 SetMDCY(Pycomp(3112),1,0);
99 SetMDCY(Pycomp(3212),1,0);
100 SetMDCY(Pycomp(3222),1,0);
101 SetMDCY(Pycomp(3312),1,0);
102 SetMDCY(Pycomp(3322),1,0);
103 SetMDCY(Pycomp(3334),1,0);
1c50ec12 104 // Select structure function
8d2cd130 105 SetMSTP(52,2);
106 SetMSTP(51,strucfunc);
1c50ec12 107 // Particles produced in string fragmentation point directly to either of the two endpoints
108 // of the string (depending in the side they were generated from).
109 SetMSTU(16,2);
110
8d2cd130 111//
112// Pythia initialisation for selected processes//
113//
114// Make MSEL clean
115//
116 for (Int_t i=1; i<= 200; i++) {
117 SetMSUB(i,0);
118 }
119// select charm production
120 switch (process)
121 {
65f2626c 122 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
123// Multiple interactions on.
124 SetMSTP(81,1);
125// Double Gaussian matter distribution.
126 SetMSTP(82,4);
127 SetPARP(83,0.5);
128 SetPARP(84,0.4);
129// pT0.
130 SetPARP(82,2.0);
131// Reference energy for pT0 and energy rescaling pace.
132 SetPARP(89,1800);
133 SetPARP(90,0.25);
134// String drawing almost completely minimizes string length.
135 SetPARP(85,0.9);
136 SetPARP(86,0.95);
137// ISR and FSR activity.
138 SetPARP(67,4);
139 SetPARP(71,4);
140// Lambda_FSR scale.
141 SetPARJ(81,0.29);
142 break;
143 case kPyOldUEQ2ordered2:
144// Old underlying events with Q2 ordered QCD processes
145// Multiple interactions on.
146 SetMSTP(81,1);
147// Double Gaussian matter distribution.
148 SetMSTP(82,4);
149 SetPARP(83,0.5);
150 SetPARP(84,0.4);
151// pT0.
152 SetPARP(82,2.0);
153// Reference energy for pT0 and energy rescaling pace.
154 SetPARP(89,1800);
155 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
156// String drawing almost completely minimizes string length.
157 SetPARP(85,0.9);
158 SetPARP(86,0.95);
159// ISR and FSR activity.
160 SetPARP(67,4);
161 SetPARP(71,4);
162// Lambda_FSR scale.
163 SetPARJ(81,0.29);
164 break;
165 case kPyOldPopcorn:
166// Old production mechanism: Old Popcorn
167 SetMSEL(1);
168 SetMSTJ(12,3);
169// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
170 SetMSTP(88,2);
171// (D=1)see can be used to form baryons (BARYON JUNCTION)
172 SetMSTJ(1,1);
e0e89f40 173 AtlasTuning();
65f2626c 174 break;
8d2cd130 175 case kPyCharm:
176 SetMSEL(4);
8d2cd130 177// heavy quark masses
178
179 SetPMAS(4,1,1.2);
8d2cd130 180//
181// primordial pT
182 SetMSTP(91,1);
183 SetPARP(91,1.);
184 SetPARP(93,5.);
185//
186 break;
187 case kPyBeauty:
188 SetMSEL(5);
189 SetPMAS(5,1,4.75);
8d2cd130 190 break;
191 case kPyJpsi:
192 SetMSEL(0);
193// gg->J/Psi g
194 SetMSUB(86,1);
195 break;
196 case kPyJpsiChi:
197 SetMSEL(0);
198// gg->J/Psi g
199 SetMSUB(86,1);
200// gg-> chi_0c g
201 SetMSUB(87,1);
202// gg-> chi_1c g
203 SetMSUB(88,1);
204// gg-> chi_2c g
205 SetMSUB(89,1);
206 break;
207 case kPyCharmUnforced:
208 SetMSEL(0);
209// gq->qg
210 SetMSUB(28,1);
211// gg->qq
212 SetMSUB(53,1);
213// gg->gg
214 SetMSUB(68,1);
215 break;
216 case kPyBeautyUnforced:
217 SetMSEL(0);
218// gq->qg
219 SetMSUB(28,1);
220// gg->qq
221 SetMSUB(53,1);
222// gg->gg
223 SetMSUB(68,1);
224 break;
225 case kPyMb:
226// Minimum Bias pp-Collisions
227//
228//
229// select Pythia min. bias model
230 SetMSEL(0);
511db649 231 SetMSUB(92,1); // single diffraction AB-->XB
232 SetMSUB(93,1); // single diffraction AB-->AX
233 SetMSUB(94,1); // double diffraction
234 SetMSUB(95,1); // low pt production
235
e0e89f40 236 AtlasTuning();
511db649 237 break;
8d2cd130 238 case kPyMbNonDiffr:
239// Minimum Bias pp-Collisions
240//
241//
242// select Pythia min. bias model
243 SetMSEL(0);
511db649 244 SetMSUB(95,1); // low pt production
0f482ae4 245
d7de4a67 246 AtlasTuning();
247 break;
248 case kPyMbMSEL1:
249 ConfigHeavyFlavor();
250// Intrinsic <kT^2>
251 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
252 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
253 SetPARP(93,5.); // Upper cut-off
254// Set Q-quark mass
255 SetPMAS(4,1,1.2); // Charm quark mass
256 SetPMAS(5,1,4.78); // Beauty quark mass
257 SetPARP(71,4.); // Defaut value
258// Atlas Tuning
e0e89f40 259 AtlasTuning();
8d2cd130 260 break;
261 case kPyJets:
262//
263// QCD Jets
264//
265 SetMSEL(1);
65f2626c 266 // Pythia Tune A (CDF)
267 //
268 SetPARP(67,4.); // Regulates Initial State Radiation
269 SetMSTP(82,4); // Double Gaussian Model
270 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
271 SetPARP(84,0.4); // Core radius
272 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
273 SetPARP(86,0.95); // Regulates gluon prod. mechanism
274 SetPARP(89,1800.); // [GeV] Ref. energy
275 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
276 break;
8d2cd130 277 case kPyDirectGamma:
278 SetMSEL(10);
279 break;
adf4d898 280 case kPyCharmPbPbMNR:
281 case kPyD0PbPbMNR:
90d7b703 282 case kPyDPlusPbPbMNR:
e0e89f40 283 case kPyDPlusStrangePbPbMNR:
90d7b703 284 // Tuning of Pythia parameters aimed to get a resonable agreement
285 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
286 // c-cbar single inclusive and double differential distributions.
287 // This parameter settings are meant to work with Pb-Pb collisions
288 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
289 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
290 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 291 ConfigHeavyFlavor();
90d7b703 292 // Intrinsic <kT>
293 SetMSTP(91,1);
294 SetPARP(91,1.304);
295 SetPARP(93,6.52);
90d7b703 296 // Set c-quark mass
297 SetPMAS(4,1,1.2);
8d2cd130 298 break;
adf4d898 299 case kPyCharmpPbMNR:
300 case kPyD0pPbMNR:
90d7b703 301 case kPyDPluspPbMNR:
e0e89f40 302 case kPyDPlusStrangepPbMNR:
90d7b703 303 // Tuning of Pythia parameters aimed to get a resonable agreement
304 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
305 // c-cbar single inclusive and double differential distributions.
306 // This parameter settings are meant to work with p-Pb collisions
307 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
308 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
309 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 310 ConfigHeavyFlavor();
90d7b703 311 // Intrinsic <kT>
3dc3ec94 312 SetMSTP(91,1);
313 SetPARP(91,1.16);
314 SetPARP(93,5.8);
315
90d7b703 316 // Set c-quark mass
3dc3ec94 317 SetPMAS(4,1,1.2);
adf4d898 318 break;
319 case kPyCharmppMNR:
320 case kPyD0ppMNR:
90d7b703 321 case kPyDPlusppMNR:
e0e89f40 322 case kPyDPlusStrangeppMNR:
90d7b703 323 // Tuning of Pythia parameters aimed to get a resonable agreement
324 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
325 // c-cbar single inclusive and double differential distributions.
326 // This parameter settings are meant to work with pp collisions
327 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
328 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
329 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 330 ConfigHeavyFlavor();
90d7b703 331 // Intrinsic <kT^2>
3dc3ec94 332 SetMSTP(91,1);
333 SetPARP(91,1.);
334 SetPARP(93,5.);
335
90d7b703 336 // Set c-quark mass
3dc3ec94 337 SetPMAS(4,1,1.2);
adf4d898 338 break;
e0e89f40 339 case kPyCharmppMNRwmi:
340 // Tuning of Pythia parameters aimed to get a resonable agreement
341 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
342 // c-cbar single inclusive and double differential distributions.
343 // This parameter settings are meant to work with pp collisions
344 // and with kCTEQ5L PDFs.
345 // Added multiple interactions according to ATLAS tune settings.
346 // To get a "reasonable" agreement with MNR results, events have to be
347 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
348 // set to 2.76 GeV.
349 // To get a "perfect" agreement with MNR results, events have to be
350 // generated in four ptHard bins with the following relative
351 // normalizations:
352 // 2.76-3 GeV: 25%
353 // 3-4 GeV: 40%
354 // 4-8 GeV: 29%
355 // >8 GeV: 6%
356 ConfigHeavyFlavor();
357 // Intrinsic <kT^2>
358 SetMSTP(91,1);
359 SetPARP(91,1.);
360 SetPARP(93,5.);
361
362 // Set c-quark mass
363 SetPMAS(4,1,1.2);
364 AtlasTuning();
365 break;
adf4d898 366 case kPyBeautyPbPbMNR:
8d2cd130 367 // Tuning of Pythia parameters aimed to get a resonable agreement
368 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
369 // b-bbar single inclusive and double differential distributions.
370 // This parameter settings are meant to work with Pb-Pb collisions
371 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
372 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
373 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 374 ConfigHeavyFlavor();
8d2cd130 375 // QCD scales
3dc3ec94 376 SetPARP(67,1.0);
377 SetPARP(71,1.0);
adf4d898 378 // Intrinsic <kT>
3dc3ec94 379 SetMSTP(91,1);
380 SetPARP(91,2.035);
381 SetPARP(93,10.17);
8d2cd130 382 // Set b-quark mass
3dc3ec94 383 SetPMAS(5,1,4.75);
adf4d898 384 break;
385 case kPyBeautypPbMNR:
386 // Tuning of Pythia parameters aimed to get a resonable agreement
387 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
388 // b-bbar single inclusive and double differential distributions.
389 // This parameter settings are meant to work with p-Pb collisions
390 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
391 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
392 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 393 ConfigHeavyFlavor();
adf4d898 394 // QCD scales
3dc3ec94 395 SetPARP(67,1.0);
396 SetPARP(71,1.0);
adf4d898 397 // Intrinsic <kT>
3dc3ec94 398 SetMSTP(91,1);
399 SetPARP(91,1.60);
400 SetPARP(93,8.00);
adf4d898 401 // Set b-quark mass
3dc3ec94 402 SetPMAS(5,1,4.75);
adf4d898 403 break;
404 case kPyBeautyppMNR:
405 // Tuning of Pythia parameters aimed to get a resonable agreement
406 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
407 // b-bbar single inclusive and double differential distributions.
408 // This parameter settings are meant to work with pp collisions
409 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
410 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
411 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 412 ConfigHeavyFlavor();
adf4d898 413 // QCD scales
3dc3ec94 414 SetPARP(67,1.0);
415 SetPARP(71,1.0);
416
417 // Intrinsic <kT>
418 SetMSTP(91,1);
419 SetPARP(91,1.);
420 SetPARP(93,5.);
421
422 // Set b-quark mass
423 SetPMAS(5,1,4.75);
8d2cd130 424 break;
e0e89f40 425 case kPyBeautyppMNRwmi:
426 // Tuning of Pythia parameters aimed to get a resonable agreement
427 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
428 // b-bbar single inclusive and double differential distributions.
429 // This parameter settings are meant to work with pp collisions
430 // and with kCTEQ5L PDFs.
431 // Added multiple interactions according to ATLAS tune settings.
432 // To get a "reasonable" agreement with MNR results, events have to be
433 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
434 // set to 2.76 GeV.
435 // To get a "perfect" agreement with MNR results, events have to be
436 // generated in four ptHard bins with the following relative
437 // normalizations:
438 // 2.76-4 GeV: 5%
439 // 4-6 GeV: 31%
440 // 6-8 GeV: 28%
441 // >8 GeV: 36%
442 ConfigHeavyFlavor();
443 // QCD scales
444 SetPARP(67,1.0);
445 SetPARP(71,1.0);
446
447 // Intrinsic <kT>
448 SetMSTP(91,1);
449 SetPARP(91,1.);
450 SetPARP(93,5.);
451
452 // Set b-quark mass
453 SetPMAS(5,1,4.75);
454
455 AtlasTuning();
456 break;
589380c6 457 case kPyW:
458
459 //Inclusive production of W+/-
460 SetMSEL(0);
461 //f fbar -> W+
462 SetMSUB(2,1);
463 // //f fbar -> g W+
464 // SetMSUB(16,1);
465 // //f fbar -> gamma W+
466 // SetMSUB(20,1);
467 // //f g -> f W+
468 // SetMSUB(31,1);
469 // //f gamma -> f W+
470 // SetMSUB(36,1);
471
472 // Initial/final parton shower on (Pythia default)
473 // With parton showers on we are generating "W inclusive process"
474 SetMSTP(61,1); //Initial QCD & QED showers on
475 SetMSTP(71,1); //Final QCD & QED showers on
476
477 break;
0f6ee828 478
479 case kPyZ:
480
481 //Inclusive production of Z
482 SetMSEL(0);
483 //f fbar -> Z/gamma
484 SetMSUB(1,1);
485
486 // // f fbar -> g Z/gamma
487 // SetMSUB(15,1);
488 // // f fbar -> gamma Z/gamma
489 // SetMSUB(19,1);
490 // // f g -> f Z/gamma
491 // SetMSUB(30,1);
492 // // f gamma -> f Z/gamma
493 // SetMSUB(35,1);
494
495 //only Z included, not gamma
496 SetMSTP(43,2);
497
498 // Initial/final parton shower on (Pythia default)
499 // With parton showers on we are generating "Z inclusive process"
500 SetMSTP(61,1); //Initial QCD & QED showers on
501 SetMSTP(71,1); //Final QCD & QED showers on
502
503 break;
504
8d2cd130 505 }
506//
507// Initialize PYTHIA
508 SetMSTP(41,1); // all resonance decays switched on
509
510 Initialize("CMS","p","p",fEcms);
511
512}
513
514Int_t AliPythia::CheckedLuComp(Int_t kf)
515{
516// Check Lund particle code (for debugging)
517 Int_t kc=Pycomp(kf);
518 printf("\n Lucomp kf,kc %d %d",kf,kc);
519 return kc;
520}
521
522void AliPythia::SetNuclei(Int_t a1, Int_t a2)
523{
524// Treat protons as inside nuclei with mass numbers a1 and a2
525// The MSTP array in the PYPARS common block is used to enable and
526// select the nuclear structure functions.
527// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
528// =1: internal PYTHIA acording to MSTP(51)
529// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
530// If the following mass number both not equal zero, nuclear corrections of the stf are used.
531// MSTP(192) : Mass number of nucleus side 1
532// MSTP(193) : Mass number of nucleus side 2
533 SetMSTP(52,2);
534 SetMSTP(192, a1);
535 SetMSTP(193, a2);
536}
537
538
539AliPythia* AliPythia::Instance()
540{
541// Set random number generator
542 if (fgAliPythia) {
543 return fgAliPythia;
544 } else {
545 fgAliPythia = new AliPythia();
546 return fgAliPythia;
547 }
548}
549
550void AliPythia::PrintParticles()
551{
552// Print list of particl properties
553 Int_t np = 0;
c31f1d37 554 char* name = new char[16];
8d2cd130 555 for (Int_t kf=0; kf<1000000; kf++) {
556 for (Int_t c = 1; c > -2; c-=2) {
8d2cd130 557 Int_t kc = Pycomp(c*kf);
558 if (kc) {
559 Float_t mass = GetPMAS(kc,1);
560 Float_t width = GetPMAS(kc,2);
561 Float_t tau = GetPMAS(kc,4);
c31f1d37 562
8d2cd130 563 Pyname(kf,name);
564
565 np++;
566
567 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
568 c*kf, name, mass, width, tau);
569 }
570 }
571 }
572 printf("\n Number of particles %d \n \n", np);
573}
574
575void AliPythia::ResetDecayTable()
576{
577// Set default values for pythia decay switches
578 Int_t i;
579 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
580 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
581}
582
583void AliPythia::SetDecayTable()
584{
585// Set default values for pythia decay switches
586//
587 Int_t i;
588 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
589 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
590}
591
592void AliPythia::Pyclus(Int_t& njet)
593{
594// Call Pythia clustering algorithm
595//
596 pyclus(njet);
597}
598
599void AliPythia::Pycell(Int_t& njet)
600{
601// Call Pythia jet reconstruction algorithm
602//
603 pycell(njet);
604}
605
452af8c7 606void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
607{
608// Call Pythia jet reconstruction algorithm
609//
452af8c7 610 pyshow(ip1, ip2, qmax);
611}
612
613void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
614{
615 pyrobo(imi, ima, the, phi, bex, bey, bez);
616}
617
618
619
86b6ad68 620void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod)
0f482ae4 621{
622// Initializes
623// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
624// (2) The nuclear geometry using the Glauber Model
625//
626
627
628 fGlauber = new AliFastGlauber();
629 fGlauber->Init(2);
630 fGlauber->SetCentralityClass(cMin, cMax);
631
632 fQuenchingWeights = new AliQuenchingWeights();
633 fQuenchingWeights->InitMult();
86b6ad68 634 fQuenchingWeights->SetK(k);
0f482ae4 635 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
0f482ae4 636}
637
638
452af8c7 639void AliPythia::Quench()
640{
641//
642//
643// Simple Jet Quenching routine:
644// =============================
645// The jet formed by all final state partons radiated by the parton created
0f482ae4 646// in the hard collisions is quenched by a factor (1-z) using light cone variables in
647// the initial parton reference frame:
452af8c7 648// (E + p_z)new = (1-z) (E + p_z)old
649//
0f482ae4 650//
651//
652//
452af8c7 653// The lost momentum is first balanced by one gluon with virtuality > 0.
654// Subsequently the gluon splits to yield two gluons with E = p.
655//
0f482ae4 656//
657//
4e383037 658 static Float_t eMean = 0.;
659 static Int_t icall = 0;
0f482ae4 660
c2c598a3 661 Double_t p0[4][5];
662 Double_t p1[4][5];
663 Double_t p2[4][5];
664 Int_t klast[4] = {-1, -1, -1, -1};
452af8c7 665
666 Int_t numpart = fPyjets->N;
86b6ad68 667 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
c2c598a3 668 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
669 Bool_t quenched[4];
b280c4cc 670 Double_t wjtKick[4];
c2c598a3 671 Int_t nGluon[4];
86b6ad68 672 Int_t qPdg[4];
0f482ae4 673 Int_t imo, kst, pdg;
b280c4cc 674
511db649 675//
c2c598a3 676// Sore information about Primary partons
677//
678// j =
679// 0, 1 partons from hard scattering
680// 2, 3 partons from initial state radiation
681//
682 for (Int_t i = 2; i <= 7; i++) {
683 Int_t j = 0;
684 // Skip gluons that participate in hard scattering
685 if (i == 4 || i == 5) continue;
686 // Gluons from hard Scattering
687 if (i == 6 || i == 7) {
688 j = i - 6;
689 pxq[j] = fPyjets->P[0][i];
690 pyq[j] = fPyjets->P[1][i];
691 pzq[j] = fPyjets->P[2][i];
692 eq[j] = fPyjets->P[3][i];
693 mq[j] = fPyjets->P[4][i];
694 } else {
695 // Gluons from initial state radiation
696 //
697 // Obtain 4-momentum vector from difference between original parton and parton after gluon
698 // radiation. Energy is calculated independently because initial state radition does not
699 // conserve strictly momentum and energy for each partonic system independently.
700 //
701 // Not very clean. Should be improved !
702 //
703 //
704 j = i;
705 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
706 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
707 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
708 mq[j] = fPyjets->P[4][i];
709 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
710 }
711//
712// Calculate some kinematic variables
511db649 713//
4e383037 714 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
0f482ae4 715 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
716 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
717 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
718 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
86b6ad68 719 qPdg[j] = fPyjets->K[1][i];
720 }
721
722 Double_t int0[4];
723 Double_t int1[4];
86b6ad68 724
b280c4cc 725 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
726
86b6ad68 727 for (Int_t j = 0; j < 4; j++) {
c2c598a3 728 //
729 // Quench only central jets and with E > 10.
730 //
86b6ad68 731
732
733 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
734 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
735
c2c598a3 736 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
b280c4cc 737 fZQuench[j] = 0.;
0f482ae4 738 } else {
c2c598a3 739 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
4e383037 740 icall ++;
741 eMean += eloss;
742 }
0f482ae4 743 //
744 // Extra pt
86b6ad68 745 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
746 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
0f482ae4 747 //
748 // Fractional energy loss
b280c4cc 749 fZQuench[j] = eloss / eq[j];
0f482ae4 750 //
751 // Avoid complete loss
752 //
b280c4cc 753 if (fZQuench[j] == 1.) fZQuench[j] = 0.95;
0f482ae4 754 //
755 // Some debug printing
86b6ad68 756
757
bf9bb016 758// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
759// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
4e383037 760
b280c4cc 761// fZQuench[j] = 0.8;
762// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
0f482ae4 763 }
4e383037 764
b280c4cc 765 quenched[j] = (fZQuench[j] > 0.01);
4e383037 766 } // primary partons
c2c598a3 767
b280c4cc 768
769
6e90ad26 770 Double_t pNew[1000][4];
771 Int_t kNew[1000];
772 Int_t icount = 0;
b280c4cc 773 Double_t zquench[4];
774
6e90ad26 775//
4e383037 776// System Loop
c2c598a3 777 for (Int_t isys = 0; isys < 4; isys++) {
6e90ad26 778// Skip to next system if not quenched.
4e383037 779 if (!quenched[isys]) continue;
780
b280c4cc 781 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
4e383037 782 if (nGluon[isys] > 6) nGluon[isys] = 6;
b280c4cc 783 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
4e383037 784 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
0f482ae4 785
4e383037 786
787
788 Int_t igMin = -1;
789 Int_t igMax = -1;
790 Double_t pg[4] = {0., 0., 0., 0.};
791
792//
793// Loop on radiation events
794
795 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
6e90ad26 796 while (1) {
797 icount = 0;
798 for (Int_t k = 0; k < 4; k++)
799 {
800 p0[isys][k] = 0.;
801 p1[isys][k] = 0.;
802 p2[isys][k] = 0.;
803 }
804// Loop over partons
805 for (Int_t i = 0; i < numpart; i++)
806 {
807 imo = fPyjets->K[2][i];
808 kst = fPyjets->K[0][i];
809 pdg = fPyjets->K[1][i];
810
811
812
0f482ae4 813// Quarks and gluons only
6e90ad26 814 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
0f482ae4 815// Particles from hard scattering only
c2c598a3 816
6e90ad26 817 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
c2c598a3 818 Int_t imom = imo % 1000;
819 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
820 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
821
6e90ad26 822
0f482ae4 823// Skip comment lines
6e90ad26 824 if (kst != 1 && kst != 2) continue;
0f482ae4 825//
826// Parton kinematic
6e90ad26 827 px = fPyjets->P[0][i];
828 py = fPyjets->P[1][i];
829 pz = fPyjets->P[2][i];
830 e = fPyjets->P[3][i];
831 m = fPyjets->P[4][i];
832 pt = TMath::Sqrt(px * px + py * py);
833 p = TMath::Sqrt(px * px + py * py + pz * pz);
834 phi = TMath::Pi() + TMath::ATan2(-py, -px);
835 theta = TMath::ATan2(pt, pz);
836
0f482ae4 837//
c2c598a3 838// Save 4-momentum sum for balancing
839 Int_t index = isys;
6e90ad26 840
841 p0[index][0] += px;
842 p0[index][1] += py;
843 p0[index][2] += pz;
844 p0[index][3] += e;
6e90ad26 845
846 klast[index] = i;
847
0f482ae4 848//
849// Fractional energy loss
b280c4cc 850 Double_t z = zquench[index];
4e383037 851
c2c598a3 852
4e383037 853// Don't fully quench radiated gluons
854//
855 if (imo > 1000) {
856// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
857//
858
c2c598a3 859 z = 0.02;
4e383037 860 }
c2c598a3 861// printf("z: %d %f\n", imo, z);
862
4e383037 863
864//
6e90ad26 865
866 //
867 //
868 // Transform into frame in which initial parton is along z-axis
869 //
870 TVector3 v(px, py, pz);
871 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
872 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
873
874 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
875 Double_t mt2 = jt * jt + m * m;
876 Double_t zmax = 1.;
877 //
878 // Kinematic limit on z
879 //
4e383037 880 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
6e90ad26 881 //
882 // Change light-cone kinematics rel. to initial parton
883 //
884 Double_t eppzOld = e + pl;
885 Double_t empzOld = e - pl;
886
887 Double_t eppzNew = (1. - z) * eppzOld;
888 Double_t empzNew = empzOld - mt2 * z / eppzOld;
889 Double_t eNew = 0.5 * (eppzNew + empzNew);
890 Double_t plNew = 0.5 * (eppzNew - empzNew);
891
892 Double_t jtNew;
893 //
894 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
895 Double_t mt2New = eppzNew * empzNew;
896 if (mt2New < 1.e-8) mt2New = 0.;
4e383037 897 if (z < zmax) {
898 if (m * m > mt2New) {
899 //
900 // This should not happen
901 //
902 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
903 jtNew = 0;
904 } else {
905 jtNew = TMath::Sqrt(mt2New - m * m);
906 }
6e90ad26 907 } else {
4e383037 908 // If pT is to small (probably a leading massive particle) we scale only the energy
909 // This can cause negative masses of the radiated gluon
910 // Let's hope for the best ...
911 jtNew = jt;
912 eNew = TMath::Sqrt(plNew * plNew + mt2);
913
6e90ad26 914 }
6e90ad26 915 //
916 // Calculate new px, py
917 //
918 Double_t pxNew = jtNew / jt * pxs;
919 Double_t pyNew = jtNew / jt * pys;
920
921// Double_t dpx = pxs - pxNew;
922// Double_t dpy = pys - pyNew;
923// Double_t dpz = pl - plNew;
924// Double_t de = e - eNew;
925// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
926// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
927// printf("New mass (2) %e %e \n", pxNew, pyNew);
928 //
929 // Rotate back
930 //
931 TVector3 w(pxNew, pyNew, plNew);
932 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
933 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
934
935 p1[index][0] += pxNew;
936 p1[index][1] += pyNew;
937 p1[index][2] += plNew;
938 p1[index][3] += eNew;
939 //
940 // Updated 4-momentum vectors
941 //
942 pNew[icount][0] = pxNew;
943 pNew[icount][1] = pyNew;
944 pNew[icount][2] = plNew;
945 pNew[icount][3] = eNew;
946 kNew[icount] = i;
947 icount++;
948 } // parton loop
0f482ae4 949 //
6e90ad26 950 // Check if there was phase-space for quenching
0f482ae4 951 //
0f482ae4 952
6e90ad26 953 if (icount == 0) quenched[isys] = kFALSE;
954 if (!quenched[isys]) break;
955
956 for (Int_t j = 0; j < 4; j++)
957 {
958 p2[isys][j] = p0[isys][j] - p1[isys][j];
959 }
960 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
6e90ad26 961 if (p2[isys][4] > 0.) {
962 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
963 break;
964 } else {
b280c4cc 965 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
4e383037 966 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
6e90ad26 967 if (p2[isys][4] < -0.01) {
4e383037 968 printf("Negative mass squared !\n");
969 // Here we have to put the gluon back to mass shell
970 // This will lead to a small energy imbalance
971 p2[isys][4] = 0.;
972 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
973 break;
6e90ad26 974 } else {
975 p2[isys][4] = 0.;
976 break;
977 }
978 }
6e90ad26 979 /*
6e90ad26 980 zHeavy *= 0.98;
981 printf("zHeavy lowered to %f\n", zHeavy);
982 if (zHeavy < 0.01) {
983 printf("No success ! \n");
984 icount = 0;
985 quenched[isys] = kFALSE;
986 break;
987 }
4e383037 988 */
989 } // iteration on z (while)
990
6e90ad26 991// Update event record
992 for (Int_t k = 0; k < icount; k++) {
993// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
994 fPyjets->P[0][kNew[k]] = pNew[k][0];
995 fPyjets->P[1][kNew[k]] = pNew[k][1];
996 fPyjets->P[2][kNew[k]] = pNew[k][2];
997 fPyjets->P[3][kNew[k]] = pNew[k][3];
0f482ae4 998 }
4e383037 999 //
1000 // Add the gluons
1001 //
1002 Int_t ish = 0;
1837e95c 1003 Int_t iGlu;
4e383037 1004 if (!quenched[isys]) continue;
0f482ae4 1005//
1006// Last parton from shower i
4e383037 1007 Int_t in = klast[isys];
0f482ae4 1008//
1009// Continue if no parton in shower i selected
1010 if (in == -1) continue;
1011//
1012// If this is the second initial parton and it is behind the first move pointer by previous ish
4e383037 1013 if (isys == 1 && klast[1] > klast[0]) in += ish;
0f482ae4 1014//
1015// Starting index
452af8c7 1016
4e383037 1017// jmin = in - 1;
0f482ae4 1018// How many additional gluons will be generated
1019 ish = 1;
4e383037 1020 if (p2[isys][4] > 0.05) ish = 2;
0f482ae4 1021//
1022// Position of gluons
4e383037 1023 iGlu = numpart;
1024 if (iglu == 0) igMin = iGlu;
1025 igMax = iGlu;
0f482ae4 1026 numpart += ish;
1027 (fPyjets->N) += ish;
4e383037 1028
0f482ae4 1029 if (ish == 1) {
4e383037 1030 fPyjets->P[0][iGlu] = p2[isys][0];
1031 fPyjets->P[1][iGlu] = p2[isys][1];
1032 fPyjets->P[2][iGlu] = p2[isys][2];
1033 fPyjets->P[3][iGlu] = p2[isys][3];
1034 fPyjets->P[4][iGlu] = p2[isys][4];
0f482ae4 1035
4e383037 1036 fPyjets->K[0][iGlu] = 1;
1037 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
0f482ae4 1038 fPyjets->K[1][iGlu] = 21;
4e383037 1039 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1040 fPyjets->K[3][iGlu] = -1;
1041 fPyjets->K[4][iGlu] = -1;
4e383037 1042
1043 pg[0] += p2[isys][0];
1044 pg[1] += p2[isys][1];
1045 pg[2] += p2[isys][2];
1046 pg[3] += p2[isys][3];
0f482ae4 1047 } else {
1048 //
1049 // Split gluon in rest frame.
1050 //
4e383037 1051 Double_t bx = p2[isys][0] / p2[isys][3];
1052 Double_t by = p2[isys][1] / p2[isys][3];
1053 Double_t bz = p2[isys][2] / p2[isys][3];
1054 Double_t pst = p2[isys][4] / 2.;
0f482ae4 1055 //
1056 // Isotropic decay ????
1057 Double_t cost = 2. * gRandom->Rndm() - 1.;
1058 Double_t sint = TMath::Sqrt(1. - cost * cost);
1059 Double_t phi = 2. * TMath::Pi() * gRandom->Rndm();
1060
1061 Double_t pz1 = pst * cost;
1062 Double_t pz2 = -pst * cost;
1063 Double_t pt1 = pst * sint;
1064 Double_t pt2 = -pst * sint;
1065 Double_t px1 = pt1 * TMath::Cos(phi);
1066 Double_t py1 = pt1 * TMath::Sin(phi);
1067 Double_t px2 = pt2 * TMath::Cos(phi);
1068 Double_t py2 = pt2 * TMath::Sin(phi);
1069
1070 fPyjets->P[0][iGlu] = px1;
1071 fPyjets->P[1][iGlu] = py1;
1072 fPyjets->P[2][iGlu] = pz1;
1073 fPyjets->P[3][iGlu] = pst;
1074 fPyjets->P[4][iGlu] = 0.;
1075
4e383037 1076 fPyjets->K[0][iGlu] = 1 ;
0f482ae4 1077 fPyjets->K[1][iGlu] = 21;
4e383037 1078 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1079 fPyjets->K[3][iGlu] = -1;
1080 fPyjets->K[4][iGlu] = -1;
1081
1082 fPyjets->P[0][iGlu+1] = px2;
1083 fPyjets->P[1][iGlu+1] = py2;
1084 fPyjets->P[2][iGlu+1] = pz2;
1085 fPyjets->P[3][iGlu+1] = pst;
1086 fPyjets->P[4][iGlu+1] = 0.;
1087
4e383037 1088 fPyjets->K[0][iGlu+1] = 1;
1089 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
0f482ae4 1090 fPyjets->K[1][iGlu+1] = 21;
4e383037 1091 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
0f482ae4 1092 fPyjets->K[3][iGlu+1] = -1;
1093 fPyjets->K[4][iGlu+1] = -1;
1094 SetMSTU(1,0);
1095 SetMSTU(2,0);
1096 //
1097 // Boost back
1098 //
1099 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1100 }
4e383037 1101/*
1102 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1103 Double_t px, py, pz;
1104 px = fPyjets->P[0][ig];
1105 py = fPyjets->P[1][ig];
1106 pz = fPyjets->P[2][ig];
1107 TVector3 v(px, py, pz);
1108 v.RotateZ(-phiq[isys]);
1109 v.RotateY(-thetaq[isys]);
1110 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1111 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1112 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1113 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1114 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1115 pxs += jtKick * TMath::Cos(phiKick);
1116 pys += jtKick * TMath::Sin(phiKick);
1117 TVector3 w(pxs, pys, pzs);
1118 w.RotateY(thetaq[isys]);
1119 w.RotateZ(phiq[isys]);
1120 fPyjets->P[0][ig] = w.X();
1121 fPyjets->P[1][ig] = w.Y();
1122 fPyjets->P[2][ig] = w.Z();
1123 fPyjets->P[2][ig] = w.Mag();
1124 }
1125*/
1126 } // kGluon
1127
6e90ad26 1128
4e383037 1129 // Check energy conservation
0f482ae4 1130 Double_t pxs = 0.;
1131 Double_t pys = 0.;
1132 Double_t pzs = 0.;
1133 Double_t es = 14000.;
1134
1135 for (Int_t i = 0; i < numpart; i++)
1136 {
1137 kst = fPyjets->K[0][i];
1138 if (kst != 1 && kst != 2) continue;
1139 pxs += fPyjets->P[0][i];
1140 pys += fPyjets->P[1][i];
1141 pzs += fPyjets->P[2][i];
1142 es -= fPyjets->P[3][i];
1143 }
1144 if (TMath::Abs(pxs) > 1.e-2 ||
1145 TMath::Abs(pys) > 1.e-2 ||
1146 TMath::Abs(pzs) > 1.e-1) {
1147 printf("%e %e %e %e\n", pxs, pys, pzs, es);
4e383037 1148// Fatal("Quench()", "4-Momentum non-conservation");
452af8c7 1149 }
4e383037 1150
1151 } // end quenching loop (systems)
6e90ad26 1152// Clean-up
0f482ae4 1153 for (Int_t i = 0; i < numpart; i++)
1154 {
4e383037 1155 imo = fPyjets->K[2][i];
1156 if (imo > 1000) {
1157 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1158 }
0f482ae4 1159 }
4e383037 1160// this->Pylist(1);
0f482ae4 1161} // end quench
90d7b703 1162
992f2843 1163
1164void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b)
1165{
1166 // Igor Lokthine's quenching routine
1167 pyquen(a, ibf, b);
1168}
b280c4cc 1169
16a82508 1170void AliPythia::Pyevnw()
1171{
1172 // New multiple interaction scenario
1173 pyevnw();
1174}
1175
b280c4cc 1176void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1177{
1178 // Return event specific quenching parameters
1179 xp = fXJet;
1180 yp = fYJet;
1181 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1182
1183}
1184
3dc3ec94 1185void AliPythia::ConfigHeavyFlavor()
1186{
1187 //
1188 // Default configuration for Heavy Flavor production
1189 //
1190 // All QCD processes
1191 //
1192 SetMSEL(1);
1193
1194 // No multiple interactions
1195 SetMSTP(81,0);
3dc3ec94 1196 // Initial/final parton shower on (Pythia default)
1197 SetMSTP(61,1);
1198 SetMSTP(71,1);
1199
1200 // 2nd order alpha_s
1201 SetMSTP(2,2);
1202
1203 // QCD scales
1204 SetMSTP(32,2);
1205 SetPARP(34,1.0);
1206}
e0e89f40 1207
1208void AliPythia::AtlasTuning()
1209{
1210 //
1211 // Configuration for the ATLAS tuning
1212 SetMSTP(51, kCTEQ5L); // CTEQ5L pdf
1213 SetMSTP(81,1); // Multiple Interactions ON
1214 SetMSTP(82,4); // Double Gaussian Model
1215 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1216 SetPARP(89,1000.); // [GeV] Ref. energy
1217 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1218 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1219 SetPARP(84,0.5); // Core radius
1220 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1221 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1222 SetPARP(67,1); // Regulates Initial State Radiation
1223}
e8a8adcd 1224
1225AliPythia& AliPythia::operator=(const AliPythia& rhs)
1226{
1227// Assignment operator
1228 rhs.Copy(*this);
1229 return *this;
1230}
1231
1232 void AliPythia::Copy(TObject&) const
1233{
1234 //
1235 // Copy
1236 //
1237 Fatal("Copy","Not implemented!\n");
1238}