a9e2aefa |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
2c799aa2 |
12 | * about the suitability of this software for any purpeateose. It is * |
a9e2aefa |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
16 | /* |
17 | $Log$ |
21a18f36 |
18 | Revision 1.24 2001/03/14 17:22:15 pcrochet |
19 | Geometry of the trigger chambers : a vertical gap of has been introduced around x=0 according fig.3.27 of the TDR (P.Dupieux) |
20 | |
236fe2c5 |
21 | Revision 1.23 2001/01/18 15:23:49 egangler |
22 | Bug correction in StepManager : |
23 | Now the systematic offset with angle is cured |
24 | |
e0f71fb7 |
25 | Revision 1.22 2001/01/17 21:01:21 hristov |
26 | Unused variable removed |
27 | |
a7e8b51a |
28 | Revision 1.21 2000/12/20 13:00:22 egangler |
29 | |
30 | Added charge correlation between cathods. |
31 | In Config_slat.C, use |
32 | MUON->Chamber(chamber-1).SetChargeCorrel(0.11); to set the RMS of |
33 | q1/q2 to 11 % (number from Alberto) |
34 | This is stored in AliMUONChamber fChargeCorrel member. |
35 | At generation time, when a tracks enters the volume, |
36 | AliMUONv1::StepManager calls |
37 | AliMUONChamber::ChargeCorrelationInit() to set the current value of |
38 | fCurrentCorrel which is then used at Disintegration level to scale |
39 | appropriately the PadHit charges. |
40 | |
681d067b |
41 | Revision 1.20 2000/12/04 17:48:23 gosset |
42 | Modifications for stations 1 et 2 mainly: |
43 | * station 1 with 4 mm gas gap and smaller cathode segmentation... |
44 | * stations 1 and 2 with "grey" frame crosses |
45 | * mean noise at 1.5 ADC channel |
46 | * Ar-CO2 gas (80%+20%) |
47 | |
b64652f5 |
48 | Revision 1.19 2000/12/02 17:15:46 morsch |
49 | Correction of dead zones in inner regions of stations 3-5 |
50 | Correction of length of slats 3 and 9 of station 4. |
51 | |
a083207d |
52 | Revision 1.17 2000/11/24 12:57:10 morsch |
53 | New version of geometry for stations 3-5 "Slats" (A. de Falco) |
54 | - sensitive region at station 3 inner radius |
55 | - improved volume tree structure |
56 | |
3c084d9f |
57 | Revision 1.16 2000/11/08 13:01:40 morsch |
58 | Chamber half-planes of stations 3-5 at different z-positions. |
59 | |
e1ad7d45 |
60 | Revision 1.15 2000/11/06 11:39:02 morsch |
61 | Bug in StepManager() corrected. |
62 | |
e3cf5faa |
63 | Revision 1.14 2000/11/06 09:16:50 morsch |
64 | Avoid overlap of slat volumes. |
65 | |
2c799aa2 |
66 | Revision 1.13 2000/10/26 07:33:44 morsch |
67 | Correct x-position of slats in station 5. |
68 | |
8013c580 |
69 | Revision 1.12 2000/10/25 19:55:35 morsch |
70 | Switches for each station individually for debug and lego. |
71 | |
b17c0c87 |
72 | Revision 1.11 2000/10/22 16:44:01 morsch |
73 | Update of slat geometry for stations 3,4,5 (A. deFalco) |
74 | |
f9f7c205 |
75 | Revision 1.10 2000/10/12 16:07:04 gosset |
76 | StepManager: |
77 | * SigGenCond only called for tracking chambers, |
78 | hence no more division by 0, |
79 | and may use last ALIROOT/dummies.C with exception handling; |
80 | * "10" replaced by "AliMUONConstants::NTrackingCh()". |
81 | |
a75f073c |
82 | Revision 1.9 2000/10/06 15:37:22 morsch |
83 | Problems with variable redefinition in for-loop solved. |
84 | Variable names starting with u-case letters changed to l-case. |
85 | |
6c5ddcfa |
86 | Revision 1.8 2000/10/06 09:06:31 morsch |
87 | Include Slat chambers (stations 3-5) into geometry (A. de Falco) |
88 | |
1e8fff9c |
89 | Revision 1.7 2000/10/02 21:28:09 fca |
90 | Removal of useless dependecies via forward declarations |
91 | |
94de3818 |
92 | Revision 1.6 2000/10/02 17:20:45 egangler |
93 | Cleaning of the code (continued ) : |
94 | -> coding conventions |
95 | -> void Streamers |
96 | -> some useless includes removed or replaced by "class" statement |
97 | |
8c449e83 |
98 | Revision 1.5 2000/06/28 15:16:35 morsch |
99 | (1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there) |
100 | to allow development of slat-muon chamber simulation and reconstruction code in the MUON |
101 | framework. The changes should have no side effects (mostly dummy arguments). |
102 | (2) Hit disintegration uses 3-dim hit coordinates to allow simulation |
103 | of chambers with overlapping modules (MakePadHits, Disintegration). |
104 | |
802a864d |
105 | Revision 1.4 2000/06/26 14:02:38 morsch |
106 | Add class AliMUONConstants with MUON specific constants using static memeber data and access methods. |
107 | |
f665c1ea |
108 | Revision 1.3 2000/06/22 14:10:05 morsch |
109 | HP scope problems corrected (PH) |
110 | |
e17592e9 |
111 | Revision 1.2 2000/06/15 07:58:49 morsch |
112 | Code from MUON-dev joined |
113 | |
a9e2aefa |
114 | Revision 1.1.2.14 2000/06/14 14:37:25 morsch |
115 | Initialization of TriggerCircuit added (PC) |
116 | |
117 | Revision 1.1.2.13 2000/06/09 21:55:47 morsch |
118 | Most coding rule violations corrected. |
119 | |
120 | Revision 1.1.2.12 2000/05/05 11:34:29 morsch |
121 | Log inside comments. |
122 | |
123 | Revision 1.1.2.11 2000/05/05 10:06:48 morsch |
124 | Coding Rule violations regarding trigger section corrected (CP) |
125 | Log messages included. |
126 | */ |
127 | |
128 | ///////////////////////////////////////////////////////// |
129 | // Manager and hits classes for set:MUON version 0 // |
130 | ///////////////////////////////////////////////////////// |
131 | |
132 | #include <TTUBE.h> |
133 | #include <TNode.h> |
134 | #include <TRandom.h> |
135 | #include <TLorentzVector.h> |
136 | #include <iostream.h> |
137 | |
138 | #include "AliMUONv1.h" |
139 | #include "AliRun.h" |
140 | #include "AliMC.h" |
94de3818 |
141 | #include "AliMagF.h" |
a9e2aefa |
142 | #include "AliCallf77.h" |
143 | #include "AliConst.h" |
144 | #include "AliMUONChamber.h" |
145 | #include "AliMUONHit.h" |
146 | #include "AliMUONPadHit.h" |
f665c1ea |
147 | #include "AliMUONConstants.h" |
8c449e83 |
148 | #include "AliMUONTriggerCircuit.h" |
a9e2aefa |
149 | |
150 | ClassImp(AliMUONv1) |
151 | |
152 | //___________________________________________ |
153 | AliMUONv1::AliMUONv1() : AliMUON() |
154 | { |
155 | // Constructor |
156 | fChambers = 0; |
157 | } |
158 | |
159 | //___________________________________________ |
160 | AliMUONv1::AliMUONv1(const char *name, const char *title) |
161 | : AliMUON(name,title) |
162 | { |
163 | // Constructor |
164 | } |
165 | |
166 | //___________________________________________ |
167 | void AliMUONv1::CreateGeometry() |
168 | { |
169 | // |
170 | // Note: all chambers have the same structure, which could be |
171 | // easily parameterised. This was intentionally not done in order |
172 | // to give a starting point for the implementation of the actual |
173 | // design of each station. |
174 | Int_t *idtmed = fIdtmed->GetArray()-1099; |
175 | |
176 | // Distance between Stations |
177 | // |
178 | Float_t bpar[3]; |
179 | Float_t tpar[3]; |
b64652f5 |
180 | // Float_t pgpar[10]; |
a9e2aefa |
181 | Float_t zpos1, zpos2, zfpos; |
b64652f5 |
182 | // Outer excess and inner recess for mother volume radius |
183 | // with respect to ROuter and RInner |
a9e2aefa |
184 | Float_t dframep=.001; // Value for station 3 should be 6 ... |
b64652f5 |
185 | // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm) |
186 | // Float_t dframep1=.001; |
187 | Float_t dframep1 = 11.0; |
188 | // Bool_t frameCrosses=kFALSE; |
189 | Bool_t frameCrosses=kTRUE; |
a9e2aefa |
190 | |
b64652f5 |
191 | // Float_t dframez=0.9; |
192 | // Half of the total thickness of frame crosses (including DAlu) |
193 | // for each chamber in stations 1 and 2: |
194 | // 3% of X0 of composite material, |
195 | // but taken as Aluminium here, with same thickness in number of X0 |
196 | Float_t dframez = 3. * 8.9 / 100; |
197 | // Float_t dr; |
a9e2aefa |
198 | Float_t dstation; |
199 | |
200 | // |
201 | // Rotation matrices in the x-y plane |
202 | Int_t idrotm[1199]; |
203 | // phi= 0 deg |
204 | AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.); |
205 | // phi= 90 deg |
206 | AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.); |
207 | // phi= 180 deg |
208 | AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.); |
209 | // phi= 270 deg |
210 | AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.); |
211 | // |
212 | Float_t phi=2*TMath::Pi()/12/2; |
213 | |
214 | // |
215 | // pointer to the current chamber |
216 | // pointer to the current chamber |
b64652f5 |
217 | Int_t idAlu1=idtmed[1103]; // medium 4 |
218 | Int_t idAlu2=idtmed[1104]; // medium 5 |
a9e2aefa |
219 | // Int_t idAlu1=idtmed[1100]; |
220 | // Int_t idAlu2=idtmed[1100]; |
b64652f5 |
221 | Int_t idAir=idtmed[1100]; // medium 1 |
222 | // Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas |
223 | Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%) |
a9e2aefa |
224 | |
225 | |
226 | AliMUONChamber *iChamber, *iChamber1, *iChamber2; |
b17c0c87 |
227 | Int_t stations[5] = {1, 1, 1, 1, 1}; |
228 | |
229 | if (stations[0]) { |
230 | |
a9e2aefa |
231 | //******************************************************************** |
232 | // Station 1 ** |
233 | //******************************************************************** |
234 | // CONCENTRIC |
235 | // indices 1 and 2 for first and second chambers in the station |
236 | // iChamber (first chamber) kept for other quanties than Z, |
237 | // assumed to be the same in both chambers |
238 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0]; |
239 | iChamber2 =(AliMUONChamber*) (*fChambers)[1]; |
240 | zpos1=iChamber1->Z(); |
241 | zpos2=iChamber2->Z(); |
242 | dstation = zpos2 - zpos1; |
b64652f5 |
243 | // DGas decreased from standard one (0.5) |
244 | iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4); |
245 | // DAlu increased from standard one (3% of X0), |
246 | // because more electronics with smaller pads |
247 | iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.); |
a9e2aefa |
248 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
249 | |
250 | // |
251 | // Mother volume |
b64652f5 |
252 | tpar[0] = iChamber->RInner()-dframep; |
253 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
2c799aa2 |
254 | tpar[2] = dstation/5; |
a9e2aefa |
255 | |
256 | gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3); |
257 | gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3); |
258 | gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
1e8fff9c |
259 | gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
b64652f5 |
260 | // // Aluminium frames |
261 | // // Outer frames |
262 | // pgpar[0] = 360/12/2; |
263 | // pgpar[1] = 360.; |
264 | // pgpar[2] = 12.; |
265 | // pgpar[3] = 2; |
266 | // pgpar[4] = -dframez/2; |
267 | // pgpar[5] = iChamber->ROuter(); |
268 | // pgpar[6] = pgpar[5]+dframep1; |
269 | // pgpar[7] = +dframez/2; |
270 | // pgpar[8] = pgpar[5]; |
271 | // pgpar[9] = pgpar[6]; |
272 | // gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10); |
273 | // gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10); |
274 | // gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); |
275 | // gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); |
276 | // gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); |
277 | // gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); |
278 | // // |
279 | // // Inner frame |
280 | // tpar[0]= iChamber->RInner()-dframep1; |
281 | // tpar[1]= iChamber->RInner(); |
282 | // tpar[2]= dframez/2; |
283 | // gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3); |
284 | // gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3); |
285 | |
286 | // gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); |
287 | // gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); |
288 | // gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); |
289 | // gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); |
a9e2aefa |
290 | // |
291 | // Frame Crosses |
b64652f5 |
292 | if (frameCrosses) { |
293 | // outside gas |
294 | // security for inside mother volume |
295 | bpar[0] = (iChamber->ROuter() - iChamber->RInner()) |
296 | * TMath::Cos(TMath::ASin(dframep1 / |
297 | (iChamber->ROuter() - iChamber->RInner()))) |
298 | / 2.0; |
a9e2aefa |
299 | bpar[1] = dframep1/2; |
b64652f5 |
300 | // total thickness will be (4 * bpar[2]) for each chamber, |
301 | // which has to be equal to (2 * dframez) - DAlu |
302 | bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0; |
a9e2aefa |
303 | gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3); |
304 | gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3); |
305 | |
306 | gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
307 | idrotm[1100],"ONLY"); |
308 | gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
309 | idrotm[1100],"ONLY"); |
310 | gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
311 | idrotm[1101],"ONLY"); |
312 | gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
313 | idrotm[1101],"ONLY"); |
314 | gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
315 | idrotm[1100],"ONLY"); |
316 | gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
317 | idrotm[1100],"ONLY"); |
318 | gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
319 | idrotm[1101],"ONLY"); |
320 | gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
321 | idrotm[1101],"ONLY"); |
322 | |
323 | gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
324 | idrotm[1100],"ONLY"); |
325 | gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
326 | idrotm[1100],"ONLY"); |
327 | gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
328 | idrotm[1101],"ONLY"); |
329 | gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
330 | idrotm[1101],"ONLY"); |
331 | gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
332 | idrotm[1100],"ONLY"); |
333 | gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
334 | idrotm[1100],"ONLY"); |
335 | gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
336 | idrotm[1101],"ONLY"); |
337 | gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
338 | idrotm[1101],"ONLY"); |
339 | } |
340 | // |
341 | // Chamber Material represented by Alu sheet |
342 | tpar[0]= iChamber->RInner(); |
343 | tpar[1]= iChamber->ROuter(); |
344 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
345 | gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3); |
346 | gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3); |
347 | gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY"); |
348 | gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY"); |
349 | // |
350 | // Sensitive volumes |
351 | // tpar[2] = iChamber->DGas(); |
352 | tpar[2] = iChamber->DGas()/2; |
b64652f5 |
353 | gMC->Gsvolu("C01G", "TUBE", idGas, tpar, 3); |
354 | gMC->Gsvolu("C02G", "TUBE", idGas, tpar, 3); |
a9e2aefa |
355 | gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY"); |
356 | gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY"); |
357 | // |
b64652f5 |
358 | // Frame Crosses to be placed inside gas |
359 | // NONE: chambers are sensitive everywhere |
360 | // if (frameCrosses) { |
361 | |
362 | // dr = (iChamber->ROuter() - iChamber->RInner()); |
363 | // bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; |
364 | // bpar[1] = dframep1/2; |
365 | // bpar[2] = iChamber->DGas()/2; |
366 | // gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3); |
367 | // gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3); |
a9e2aefa |
368 | |
b64652f5 |
369 | // gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0, |
370 | // idrotm[1100],"ONLY"); |
371 | // gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0, |
372 | // idrotm[1100],"ONLY"); |
373 | // gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0, |
374 | // idrotm[1101],"ONLY"); |
375 | // gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0, |
376 | // idrotm[1101],"ONLY"); |
a9e2aefa |
377 | |
b64652f5 |
378 | // gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0, |
379 | // idrotm[1100],"ONLY"); |
380 | // gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0, |
381 | // idrotm[1100],"ONLY"); |
382 | // gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0, |
383 | // idrotm[1101],"ONLY"); |
384 | // gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0, |
385 | // idrotm[1101],"ONLY"); |
386 | // } |
b17c0c87 |
387 | } |
388 | if (stations[1]) { |
389 | |
a9e2aefa |
390 | //******************************************************************** |
391 | // Station 2 ** |
392 | //******************************************************************** |
393 | // indices 1 and 2 for first and second chambers in the station |
394 | // iChamber (first chamber) kept for other quanties than Z, |
395 | // assumed to be the same in both chambers |
396 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2]; |
397 | iChamber2 =(AliMUONChamber*) (*fChambers)[3]; |
398 | zpos1=iChamber1->Z(); |
399 | zpos2=iChamber2->Z(); |
400 | dstation = zpos2 - zpos1; |
b64652f5 |
401 | // DGas and DAlu not changed from standard values |
a9e2aefa |
402 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
403 | |
404 | // |
405 | // Mother volume |
406 | tpar[0] = iChamber->RInner()-dframep; |
407 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
2c799aa2 |
408 | tpar[2] = dstation/5; |
a9e2aefa |
409 | |
410 | gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3); |
411 | gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3); |
412 | gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
413 | gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
414 | |
b64652f5 |
415 | // // Aluminium frames |
416 | // // Outer frames |
417 | // pgpar[0] = 360/12/2; |
418 | // pgpar[1] = 360.; |
419 | // pgpar[2] = 12.; |
420 | // pgpar[3] = 2; |
421 | // pgpar[4] = -dframez/2; |
422 | // pgpar[5] = iChamber->ROuter(); |
423 | // pgpar[6] = pgpar[5]+dframep; |
424 | // pgpar[7] = +dframez/2; |
425 | // pgpar[8] = pgpar[5]; |
426 | // pgpar[9] = pgpar[6]; |
427 | // gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10); |
428 | // gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10); |
429 | // gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); |
430 | // gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); |
431 | // gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); |
432 | // gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); |
433 | // // |
434 | // // Inner frame |
435 | // tpar[0]= iChamber->RInner()-dframep; |
436 | // tpar[1]= iChamber->RInner(); |
437 | // tpar[2]= dframez/2; |
438 | // gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3); |
439 | // gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3); |
440 | |
441 | // gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); |
442 | // gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); |
443 | // gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); |
444 | // gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); |
a9e2aefa |
445 | // |
446 | // Frame Crosses |
b64652f5 |
447 | if (frameCrosses) { |
448 | // outside gas |
449 | // security for inside mother volume |
450 | bpar[0] = (iChamber->ROuter() - iChamber->RInner()) |
451 | * TMath::Cos(TMath::ASin(dframep1 / |
452 | (iChamber->ROuter() - iChamber->RInner()))) |
453 | / 2.0; |
454 | bpar[1] = dframep1/2; |
455 | // total thickness will be (4 * bpar[2]) for each chamber, |
456 | // which has to be equal to (2 * dframez) - DAlu |
457 | bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0; |
a9e2aefa |
458 | gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3); |
459 | gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3); |
460 | |
461 | gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
462 | idrotm[1100],"ONLY"); |
463 | gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
464 | idrotm[1100],"ONLY"); |
465 | gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
466 | idrotm[1101],"ONLY"); |
467 | gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
468 | idrotm[1101],"ONLY"); |
469 | gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
470 | idrotm[1100],"ONLY"); |
471 | gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
472 | idrotm[1100],"ONLY"); |
473 | gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
474 | idrotm[1101],"ONLY"); |
475 | gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
476 | idrotm[1101],"ONLY"); |
477 | |
478 | gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
479 | idrotm[1100],"ONLY"); |
480 | gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
481 | idrotm[1100],"ONLY"); |
482 | gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
483 | idrotm[1101],"ONLY"); |
484 | gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
485 | idrotm[1101],"ONLY"); |
486 | gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
487 | idrotm[1100],"ONLY"); |
488 | gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
489 | idrotm[1100],"ONLY"); |
490 | gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
491 | idrotm[1101],"ONLY"); |
492 | gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
493 | idrotm[1101],"ONLY"); |
494 | } |
495 | // |
496 | // Chamber Material represented by Alu sheet |
497 | tpar[0]= iChamber->RInner(); |
498 | tpar[1]= iChamber->ROuter(); |
499 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
500 | gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3); |
501 | gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3); |
502 | gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY"); |
503 | gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY"); |
504 | // |
505 | // Sensitive volumes |
506 | // tpar[2] = iChamber->DGas(); |
507 | tpar[2] = iChamber->DGas()/2; |
508 | gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3); |
509 | gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3); |
510 | gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY"); |
511 | gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY"); |
a9e2aefa |
512 | // |
513 | // Frame Crosses to be placed inside gas |
b64652f5 |
514 | // NONE: chambers are sensitive everywhere |
515 | // if (frameCrosses) { |
516 | |
517 | // dr = (iChamber->ROuter() - iChamber->RInner()); |
518 | // bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; |
519 | // bpar[1] = dframep1/2; |
520 | // bpar[2] = iChamber->DGas()/2; |
521 | // gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3); |
522 | // gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3); |
a9e2aefa |
523 | |
b64652f5 |
524 | // gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0, |
525 | // idrotm[1100],"ONLY"); |
526 | // gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0, |
527 | // idrotm[1100],"ONLY"); |
528 | // gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0, |
529 | // idrotm[1101],"ONLY"); |
530 | // gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0, |
531 | // idrotm[1101],"ONLY"); |
a9e2aefa |
532 | |
b64652f5 |
533 | // gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0, |
534 | // idrotm[1100],"ONLY"); |
535 | // gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0, |
536 | // idrotm[1100],"ONLY"); |
537 | // gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0, |
538 | // idrotm[1101],"ONLY"); |
539 | // gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0, |
540 | // idrotm[1101],"ONLY"); |
541 | // } |
b17c0c87 |
542 | } |
1e8fff9c |
543 | // define the id of tracking media: |
544 | Int_t idCopper = idtmed[1110]; |
545 | Int_t idGlass = idtmed[1111]; |
546 | Int_t idCarbon = idtmed[1112]; |
547 | Int_t idRoha = idtmed[1113]; |
548 | |
1e8fff9c |
549 | // sensitive area: 40*40 cm**2 |
6c5ddcfa |
550 | const Float_t sensLength = 40.; |
551 | const Float_t sensHeight = 40.; |
552 | const Float_t sensWidth = 0.5; // according to TDR fig 2.120 |
553 | const Int_t sensMaterial = idGas; |
1e8fff9c |
554 | const Float_t yOverlap = 1.5; |
555 | |
556 | // PCB dimensions in cm; width: 30 mum copper |
6c5ddcfa |
557 | const Float_t pcbLength = sensLength; |
558 | const Float_t pcbHeight = 60.; |
559 | const Float_t pcbWidth = 0.003; |
560 | const Int_t pcbMaterial = idCopper; |
1e8fff9c |
561 | |
562 | // Insulating material: 200 mum glass fiber glued to pcb |
6c5ddcfa |
563 | const Float_t insuLength = pcbLength; |
564 | const Float_t insuHeight = pcbHeight; |
565 | const Float_t insuWidth = 0.020; |
566 | const Int_t insuMaterial = idGlass; |
1e8fff9c |
567 | |
568 | // Carbon fiber panels: 200mum carbon/epoxy skin |
6c5ddcfa |
569 | const Float_t panelLength = sensLength; |
570 | const Float_t panelHeight = sensHeight; |
571 | const Float_t panelWidth = 0.020; |
572 | const Int_t panelMaterial = idCarbon; |
1e8fff9c |
573 | |
574 | // rohacell between the two carbon panels |
6c5ddcfa |
575 | const Float_t rohaLength = sensLength; |
576 | const Float_t rohaHeight = sensHeight; |
577 | const Float_t rohaWidth = 0.5; |
578 | const Int_t rohaMaterial = idRoha; |
1e8fff9c |
579 | |
580 | // Frame around the slat: 2 sticks along length,2 along height |
581 | // H: the horizontal ones |
6c5ddcfa |
582 | const Float_t hFrameLength = pcbLength; |
583 | const Float_t hFrameHeight = 1.5; |
584 | const Float_t hFrameWidth = sensWidth; |
585 | const Int_t hFrameMaterial = idGlass; |
1e8fff9c |
586 | |
587 | // V: the vertical ones |
6c5ddcfa |
588 | const Float_t vFrameLength = 4.0; |
589 | const Float_t vFrameHeight = sensHeight + hFrameHeight; |
590 | const Float_t vFrameWidth = sensWidth; |
591 | const Int_t vFrameMaterial = idGlass; |
1e8fff9c |
592 | |
593 | // B: the horizontal border filled with rohacell |
6c5ddcfa |
594 | const Float_t bFrameLength = hFrameLength; |
595 | const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; |
596 | const Float_t bFrameWidth = hFrameWidth; |
597 | const Int_t bFrameMaterial = idRoha; |
1e8fff9c |
598 | |
599 | // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) |
6c5ddcfa |
600 | const Float_t nulocLength = 2.5; |
601 | const Float_t nulocHeight = 7.5; |
602 | const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite; |
603 | const Int_t nulocMaterial = idCopper; |
1e8fff9c |
604 | |
6c5ddcfa |
605 | const Float_t slatHeight = pcbHeight; |
606 | const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + |
607 | 2.* panelWidth + rohaWidth); |
608 | const Int_t slatMaterial = idAir; |
609 | const Float_t dSlatLength = vFrameLength; // border on left and right |
1e8fff9c |
610 | |
1e8fff9c |
611 | Float_t spar[3]; |
b17c0c87 |
612 | Int_t i, j; |
613 | |
3c084d9f |
614 | // the panel volume contains the rohacell |
615 | |
616 | Float_t twidth = 2 * panelWidth + rohaWidth; |
617 | Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. }; |
b17c0c87 |
618 | Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; |
3c084d9f |
619 | |
620 | // insulating material contains PCB-> gas-> 2 borders filled with rohacell |
621 | |
622 | twidth = 2*(insuWidth + pcbWidth) + sensWidth; |
623 | Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. }; |
624 | twidth -= 2 * insuWidth; |
625 | Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. }; |
626 | Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; |
627 | Float_t theight = 2*hFrameHeight + sensHeight; |
628 | Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.}; |
b17c0c87 |
629 | Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; |
3c084d9f |
630 | Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; |
b17c0c87 |
631 | Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; |
b17c0c87 |
632 | Float_t xx; |
633 | Float_t xxmax = (bFrameLength - nulocLength)/2.; |
634 | Int_t index=0; |
635 | |
636 | if (stations[2]) { |
637 | |
638 | //******************************************************************** |
639 | // Station 3 ** |
640 | //******************************************************************** |
641 | // indices 1 and 2 for first and second chambers in the station |
642 | // iChamber (first chamber) kept for other quanties than Z, |
643 | // assumed to be the same in both chambers |
644 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4]; |
645 | iChamber2 =(AliMUONChamber*) (*fChambers)[5]; |
646 | zpos1=iChamber1->Z(); |
647 | zpos2=iChamber2->Z(); |
648 | dstation = zpos2 - zpos1; |
649 | |
b64652f5 |
650 | // zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more |
b17c0c87 |
651 | // |
652 | // Mother volume |
653 | tpar[0] = iChamber->RInner()-dframep; |
654 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
21a18f36 |
655 | tpar[2] = dstation/5; |
b17c0c87 |
656 | gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3); |
657 | gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3); |
21a18f36 |
658 | gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "MANY"); |
659 | gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "MANY"); |
b17c0c87 |
660 | |
661 | // volumes for slat geometry (xx=5,..,10 chamber id): |
662 | // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes |
663 | // SxxG --> Sensitive volume (gas) |
664 | // SxxP --> PCB (copper) |
665 | // SxxI --> Insulator (vetronite) |
666 | // SxxC --> Carbon panel |
667 | // SxxR --> Rohacell |
668 | // SxxH, SxxV --> Horizontal and Vertical frames (vetronite) |
21a18f36 |
669 | // SB5x --> Volumes for the 35 cm long PCB |
b17c0c87 |
670 | // slat dimensions: slat is a MOTHER volume!!! made of air |
671 | |
21a18f36 |
672 | // only for chamber 5: slat 1 has a PCB shorter by 5cm! |
673 | |
674 | Float_t tlength = 35.; |
675 | Float_t panelpar2[3] = { tlength/2., panelpar[1], panelpar[2]}; |
676 | Float_t rohapar2[3] = { tlength/2., rohapar[1], rohapar[2]}; |
677 | Float_t insupar2[3] = { tlength/2., insupar[1], insupar[2]}; |
678 | Float_t pcbpar2[3] = { tlength/2., pcbpar[1], pcbpar[2]}; |
679 | Float_t senspar2[3] = { tlength/2., senspar[1], senspar[2]}; |
680 | Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]}; |
681 | Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]}; |
682 | |
a083207d |
683 | const Int_t nSlats3 = 5; // number of slats per quadrant |
684 | const Int_t nPCB3[nSlats3] = {3,3,4,3,2}; // n PCB per slat |
21a18f36 |
685 | const Float_t xpos3[nSlats3] = {31., 40., 0., 0., 0.}; |
b17c0c87 |
686 | Float_t slatLength3[nSlats3]; |
687 | |
688 | // create and position the slat (mother) volumes |
689 | |
6c5ddcfa |
690 | char volNam5[5]; |
691 | char volNam6[5]; |
f9f7c205 |
692 | Float_t xSlat3; |
b17c0c87 |
693 | |
21a18f36 |
694 | Float_t spar2[3]; |
6c5ddcfa |
695 | for (i = 0; i<nSlats3; i++){ |
3c084d9f |
696 | slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength; |
a083207d |
697 | xSlat3 = slatLength3[i]/2. - vFrameLength/2. + xpos3[i]; |
21a18f36 |
698 | if (i==1 || i==0) slatLength3[i] -= 2. *dSlatLength; // frame out in PCB with circular border |
a083207d |
699 | Float_t ySlat31 = sensHeight * i - yOverlap * i; |
700 | Float_t ySlat32 = -sensHeight * i + yOverlap * i; |
3c084d9f |
701 | spar[0] = slatLength3[i]/2.; |
702 | spar[1] = slatHeight/2.; |
703 | spar[2] = slatWidth/2. * 1.01; |
21a18f36 |
704 | // take away 5 cm from the first slat in chamber 5 |
705 | Float_t xSlat32 = 0; |
706 | if (i==1 || i==2) { // 1 pcb is shortened by 5cm |
707 | spar2[0] = spar[0]-5./2.; |
708 | xSlat32 = xSlat3 - 5/2.; |
709 | } |
710 | else { |
711 | spar2[0] = spar[0]; |
712 | xSlat32 = xSlat3; |
713 | } |
714 | spar2[1] = spar[1]; |
715 | spar2[2] = spar[2]; |
3c084d9f |
716 | Float_t dzCh3=spar[2] * 1.01; |
717 | // zSlat to be checked (odd downstream or upstream?) |
718 | Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; |
719 | sprintf(volNam5,"S05%d",i); |
21a18f36 |
720 | gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar2,3); |
721 | gMC->Gspos(volNam5, i*4+1,"C05M", xSlat32, ySlat31, zSlat+2.*dzCh3, 0, "ONLY"); |
722 | gMC->Gspos(volNam5, i*4+2,"C05M",-xSlat32, ySlat31, zSlat-2.*dzCh3, 0, "ONLY"); |
723 | |
a083207d |
724 | if (i>0) { |
21a18f36 |
725 | gMC->Gspos(volNam5, i*4+3,"C05M", xSlat32, ySlat32, zSlat+2.*dzCh3, 0, "ONLY"); |
726 | gMC->Gspos(volNam5, i*4+4,"C05M",-xSlat32, ySlat32, zSlat-2.*dzCh3, 0, "ONLY"); |
a083207d |
727 | } |
3c084d9f |
728 | sprintf(volNam6,"S06%d",i); |
729 | gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3); |
730 | gMC->Gspos(volNam6, i*4+1,"C06M", xSlat3, ySlat31, zSlat+2.*dzCh3, 0, "ONLY"); |
731 | gMC->Gspos(volNam6, i*4+2,"C06M",-xSlat3, ySlat31, zSlat-2.*dzCh3, 0, "ONLY"); |
a083207d |
732 | if (i>0) { |
733 | gMC->Gspos(volNam6, i*4+3,"C06M", xSlat3, ySlat32, zSlat+2.*dzCh3, 0, "ONLY"); |
734 | gMC->Gspos(volNam6, i*4+4,"C06M",-xSlat3, ySlat32, zSlat-2.*dzCh3, 0, "ONLY"); |
735 | } |
3c084d9f |
736 | } |
1e8fff9c |
737 | |
738 | // create the panel volume |
b17c0c87 |
739 | |
6c5ddcfa |
740 | gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3); |
21a18f36 |
741 | gMC->Gsvolu("SB5C","BOX",panelMaterial,panelpar2,3); |
6c5ddcfa |
742 | gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3); |
1e8fff9c |
743 | |
744 | // create the rohacell volume |
b17c0c87 |
745 | |
6c5ddcfa |
746 | gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3); |
21a18f36 |
747 | gMC->Gsvolu("SB5R","BOX",rohaMaterial,rohapar2,3); |
6c5ddcfa |
748 | gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
749 | |
3c084d9f |
750 | // create the insulating material volume |
751 | |
752 | gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3); |
21a18f36 |
753 | gMC->Gsvolu("SB5I","BOX",insuMaterial,insupar2,3); |
3c084d9f |
754 | gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3); |
755 | |
756 | // create the PCB volume |
757 | |
758 | gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3); |
21a18f36 |
759 | gMC->Gsvolu("SB5P","BOX",pcbMaterial,pcbpar2,3); |
3c084d9f |
760 | gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3); |
761 | |
762 | // create the sensitive volumes, |
763 | gMC->Gsvolu("S05G","BOX",sensMaterial,0,0); |
764 | gMC->Gsvolu("S06G","BOX",sensMaterial,0,0); |
765 | |
766 | |
1e8fff9c |
767 | // create the vertical frame volume |
b17c0c87 |
768 | |
6c5ddcfa |
769 | gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3); |
770 | gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
771 | |
772 | // create the horizontal frame volume |
b17c0c87 |
773 | |
6c5ddcfa |
774 | gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3); |
21a18f36 |
775 | gMC->Gsvolu("SB5H","BOX",hFrameMaterial,hFramepar2,3); |
6c5ddcfa |
776 | gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
777 | |
778 | // create the horizontal border volume |
b17c0c87 |
779 | |
6c5ddcfa |
780 | gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3); |
21a18f36 |
781 | gMC->Gsvolu("SB5B","BOX",bFrameMaterial,bFramepar2,3); |
6c5ddcfa |
782 | gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
783 | |
b17c0c87 |
784 | index=0; |
6c5ddcfa |
785 | for (i = 0; i<nSlats3; i++){ |
786 | sprintf(volNam5,"S05%d",i); |
787 | sprintf(volNam6,"S06%d",i); |
f9f7c205 |
788 | Float_t xvFrame = (slatLength3[i] - vFrameLength)/2.; |
21a18f36 |
789 | Float_t xvFrame2 = xvFrame; |
790 | if ( i==1 || i ==2 ) xvFrame2 -= 5./2.; |
3c084d9f |
791 | // position the vertical frames |
21a18f36 |
792 | if (i!=1 && i!=0) { |
793 | gMC->Gspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY"); |
794 | gMC->Gspos("S05V",2*i ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY"); |
3c084d9f |
795 | gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY"); |
796 | gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY"); |
797 | } |
798 | // position the panels and the insulating material |
6c5ddcfa |
799 | for (j=0; j<nPCB3[i]; j++){ |
1e8fff9c |
800 | index++; |
6c5ddcfa |
801 | Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5); |
21a18f36 |
802 | Float_t xx2 = xx + 5/2.; |
3c084d9f |
803 | |
804 | Float_t zPanel = spar[2] - panelpar[2]; |
21a18f36 |
805 | if ( (i==1 || i==2) && j == nPCB3[i]-1) { // 1 pcb is shortened by 5cm |
806 | gMC->Gspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY"); |
807 | gMC->Gspos("SB5C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY"); |
808 | gMC->Gspos("SB5I",index ,volNam5, xx, 0., 0 , 0, "ONLY"); |
809 | } |
810 | else if ( (i==1 || i==2) && j < nPCB3[i]-1) { |
811 | gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY"); |
812 | gMC->Gspos("S05C",2*index ,volNam5, xx2, 0.,-zPanel , 0, "ONLY"); |
813 | gMC->Gspos("S05I",index ,volNam5, xx2, 0., 0 , 0, "ONLY"); |
814 | } |
815 | else { |
816 | gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY"); |
817 | gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY"); |
818 | gMC->Gspos("S05I",index ,volNam5, xx, 0., 0 , 0, "ONLY"); |
819 | } |
3c084d9f |
820 | gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY"); |
821 | gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY"); |
3c084d9f |
822 | gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
823 | } |
a9e2aefa |
824 | } |
21a18f36 |
825 | |
3c084d9f |
826 | // position the rohacell volume inside the panel volume |
827 | gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY"); |
21a18f36 |
828 | gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY"); |
3c084d9f |
829 | gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY"); |
830 | |
831 | // position the PCB volume inside the insulating material volume |
832 | gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); |
21a18f36 |
833 | gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY"); |
3c084d9f |
834 | gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); |
835 | // position the horizontal frame volume inside the PCB volume |
836 | gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); |
21a18f36 |
837 | gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY"); |
3c084d9f |
838 | gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); |
839 | // position the sensitive volume inside the horizontal frame volume |
840 | gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); |
21a18f36 |
841 | gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3); |
3c084d9f |
842 | gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); |
843 | // position the border volumes inside the PCB volume |
844 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
845 | gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); |
846 | gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); |
21a18f36 |
847 | gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY"); |
848 | gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY"); |
3c084d9f |
849 | gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); |
850 | gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); |
851 | |
1e8fff9c |
852 | // create the NULOC volume and position it in the horizontal frame |
b17c0c87 |
853 | |
6c5ddcfa |
854 | gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3); |
855 | gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3); |
6c5ddcfa |
856 | index = 0; |
21a18f36 |
857 | Float_t xxmax2 = xxmax - 5./2.; |
858 | for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { |
1e8fff9c |
859 | index++; |
6c5ddcfa |
860 | gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
861 | gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
21a18f36 |
862 | if (xx > -xxmax2 && xx< xxmax2) { |
863 | gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
864 | gMC->Gspos("S05N",2*index ,"SB5B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
865 | } |
6c5ddcfa |
866 | gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
867 | gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
868 | } |
3c084d9f |
869 | |
870 | // position the volumes approximating the circular section of the pipe |
a083207d |
871 | Float_t yoffs = sensHeight/2. - yOverlap; |
3c084d9f |
872 | Float_t epsilon = 0.001; |
873 | Int_t ndiv=6; |
874 | Float_t divpar[3]; |
875 | Double_t dydiv= sensHeight/ndiv; |
21a18f36 |
876 | Double_t ydiv = yoffs -dydiv; |
3c084d9f |
877 | Int_t imax=0; |
3c084d9f |
878 | imax = 1; |
21a18f36 |
879 | Float_t rmin = 33.; |
a083207d |
880 | Float_t z1 = spar[2], z2=2*spar[2]*1.01; |
3c084d9f |
881 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
882 | ydiv+= dydiv; |
425ebd0a |
883 | Float_t xdiv = 0.; |
3c084d9f |
884 | if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ); |
885 | divpar[0] = (pcbLength-xdiv)/2.; |
886 | divpar[1] = dydiv/2. - epsilon; |
887 | divpar[2] = sensWidth/2.; |
425ebd0a |
888 | Float_t xvol=(pcbLength+xdiv)/2.+1.999; |
a083207d |
889 | Float_t yvol=ydiv + dydiv/2.; |
21a18f36 |
890 | //printf ("y ll = %f y ur = %f \n",yvol - divpar[1], yvol + divpar[1]); |
3c084d9f |
891 | gMC->Gsposp("S05G",imax+4*idiv+1,"C05M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
892 | gMC->Gsposp("S06G",imax+4*idiv+1,"C06M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
a083207d |
893 | gMC->Gsposp("S05G",imax+4*idiv+2,"C05M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
894 | gMC->Gsposp("S06G",imax+4*idiv+2,"C06M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
895 | gMC->Gsposp("S05G",imax+4*idiv+3,"C05M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
896 | gMC->Gsposp("S06G",imax+4*idiv+3,"C06M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
897 | gMC->Gsposp("S05G",imax+4*idiv+4,"C05M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
898 | gMC->Gsposp("S06G",imax+4*idiv+4,"C06M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
3c084d9f |
899 | } |
b17c0c87 |
900 | } |
b17c0c87 |
901 | |
a9e2aefa |
902 | |
3c084d9f |
903 | if (stations[3]) { |
904 | |
a9e2aefa |
905 | //******************************************************************** |
906 | // Station 4 ** |
907 | //******************************************************************** |
908 | // indices 1 and 2 for first and second chambers in the station |
909 | // iChamber (first chamber) kept for other quanties than Z, |
910 | // assumed to be the same in both chambers |
911 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6]; |
912 | iChamber2 =(AliMUONChamber*) (*fChambers)[7]; |
913 | zpos1=iChamber1->Z(); |
914 | zpos2=iChamber2->Z(); |
915 | dstation = zpos2 - zpos1; |
b64652f5 |
916 | // zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more |
a9e2aefa |
917 | |
918 | // |
919 | // Mother volume |
920 | tpar[0] = iChamber->RInner()-dframep; |
921 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
21a18f36 |
922 | tpar[2] = dstation/5; |
a9e2aefa |
923 | |
924 | gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3); |
925 | gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3); |
926 | gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
927 | gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
928 | |
a9e2aefa |
929 | |
f9f7c205 |
930 | const Int_t nSlats4 = 6; // number of slats per quadrant |
425ebd0a |
931 | const Int_t nPCB4[nSlats4] = {4,4,5,5,4,3}; // n PCB per slat |
21a18f36 |
932 | const Float_t xpos4[nSlats4] = {38.5, 40., 0., 0., 0., 0.}; |
6c5ddcfa |
933 | Float_t slatLength4[nSlats4]; |
1e8fff9c |
934 | |
935 | // create and position the slat (mother) volumes |
936 | |
6c5ddcfa |
937 | char volNam7[5]; |
938 | char volNam8[5]; |
1e8fff9c |
939 | Float_t xSlat4; |
f9f7c205 |
940 | Float_t ySlat4; |
1e8fff9c |
941 | |
6c5ddcfa |
942 | for (i = 0; i<nSlats4; i++){ |
a083207d |
943 | slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength; |
944 | xSlat4 = slatLength4[i]/2. - vFrameLength/2. + xpos4[i]; |
21a18f36 |
945 | if (i==1 || i==0) slatLength4[i] -= 2. *dSlatLength; // frame out in PCB with circular border |
a083207d |
946 | ySlat4 = sensHeight * i - yOverlap *i; |
947 | |
948 | spar[0] = slatLength4[i]/2.; |
949 | spar[1] = slatHeight/2.; |
950 | spar[2] = slatWidth/2.*1.01; |
951 | Float_t dzCh4=spar[2]*1.01; |
952 | // zSlat to be checked (odd downstream or upstream?) |
953 | Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2]; |
954 | sprintf(volNam7,"S07%d",i); |
955 | gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3); |
956 | gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
957 | gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
958 | if (i>0) { |
959 | gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
960 | gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
961 | } |
962 | sprintf(volNam8,"S08%d",i); |
963 | gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3); |
964 | gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
965 | gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
966 | if (i>0) { |
967 | gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
968 | gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
969 | } |
a9e2aefa |
970 | } |
a083207d |
971 | |
3c084d9f |
972 | |
973 | // create the panel volume |
1e8fff9c |
974 | |
3c084d9f |
975 | gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3); |
976 | gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3); |
a9e2aefa |
977 | |
3c084d9f |
978 | // create the rohacell volume |
979 | |
980 | gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3); |
981 | gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
982 | |
1e8fff9c |
983 | // create the insulating material volume |
984 | |
6c5ddcfa |
985 | gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3); |
986 | gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3); |
1e8fff9c |
987 | |
3c084d9f |
988 | // create the PCB volume |
1e8fff9c |
989 | |
3c084d9f |
990 | gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3); |
991 | gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3); |
1e8fff9c |
992 | |
3c084d9f |
993 | // create the sensitive volumes, |
994 | |
995 | gMC->Gsvolu("S07G","BOX",sensMaterial,0,0); |
996 | gMC->Gsvolu("S08G","BOX",sensMaterial,0,0); |
1e8fff9c |
997 | |
998 | // create the vertical frame volume |
999 | |
6c5ddcfa |
1000 | gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3); |
1001 | gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
1002 | |
1003 | // create the horizontal frame volume |
1004 | |
6c5ddcfa |
1005 | gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3); |
1006 | gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
1007 | |
1008 | // create the horizontal border volume |
1009 | |
6c5ddcfa |
1010 | gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3); |
1011 | gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3); |
3c084d9f |
1012 | |
1013 | index=0; |
6c5ddcfa |
1014 | for (i = 0; i<nSlats4; i++){ |
1015 | sprintf(volNam7,"S07%d",i); |
1016 | sprintf(volNam8,"S08%d",i); |
1017 | Float_t xvFrame = (slatLength4[i] - vFrameLength)/2.; |
3c084d9f |
1018 | // position the vertical frames |
21a18f36 |
1019 | if (i!=1 && i!=0) { |
a083207d |
1020 | gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY"); |
1021 | gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY"); |
1022 | gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY"); |
1023 | gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY"); |
1024 | } |
3c084d9f |
1025 | // position the panels and the insulating material |
6c5ddcfa |
1026 | for (j=0; j<nPCB4[i]; j++){ |
1e8fff9c |
1027 | index++; |
6c5ddcfa |
1028 | Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5); |
3c084d9f |
1029 | |
1030 | Float_t zPanel = spar[2] - panelpar[2]; |
1031 | gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY"); |
1032 | gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY"); |
1033 | gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY"); |
1034 | gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY"); |
1035 | |
1036 | gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY"); |
1037 | gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
1038 | } |
a9e2aefa |
1039 | } |
1e8fff9c |
1040 | |
3c084d9f |
1041 | // position the rohacell volume inside the panel volume |
1042 | gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY"); |
1043 | gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY"); |
1044 | |
1045 | // position the PCB volume inside the insulating material volume |
1046 | gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); |
1047 | gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); |
1048 | // position the horizontal frame volume inside the PCB volume |
1049 | gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); |
1050 | gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); |
1051 | // position the sensitive volume inside the horizontal frame volume |
1052 | gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); |
1053 | gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); |
3c084d9f |
1054 | // position the border volumes inside the PCB volume |
1055 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
1056 | gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); |
1057 | gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); |
1058 | gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); |
1059 | gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); |
1060 | |
1e8fff9c |
1061 | // create the NULOC volume and position it in the horizontal frame |
3c084d9f |
1062 | |
6c5ddcfa |
1063 | gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3); |
1064 | gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3); |
3c084d9f |
1065 | index = 0; |
21a18f36 |
1066 | for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { |
1e8fff9c |
1067 | index++; |
6c5ddcfa |
1068 | gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1069 | gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1070 | gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1071 | gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
1072 | } |
a083207d |
1073 | |
1074 | // position the volumes approximating the circular section of the pipe |
21a18f36 |
1075 | Float_t yoffs = sensHeight/2. - yOverlap; |
a083207d |
1076 | Float_t epsilon = 0.001; |
1077 | Int_t ndiv=6; |
1078 | Float_t divpar[3]; |
1079 | Double_t dydiv= sensHeight/ndiv; |
21a18f36 |
1080 | Double_t ydiv = yoffs -dydiv; |
a083207d |
1081 | Int_t imax=0; |
a083207d |
1082 | imax = 1; |
1083 | Float_t rmin = 40.; |
1084 | Float_t z1 = -spar[2], z2=2*spar[2]*1.01; |
1085 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
1086 | ydiv+= dydiv; |
425ebd0a |
1087 | Float_t xdiv = 0.; |
a083207d |
1088 | if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ); |
1089 | divpar[0] = (pcbLength-xdiv)/2.; |
1090 | divpar[1] = dydiv/2. - epsilon; |
1091 | divpar[2] = sensWidth/2.; |
425ebd0a |
1092 | Float_t xvol=(pcbLength+xdiv)/2.+1.999; |
a083207d |
1093 | Float_t yvol=ydiv + dydiv/2.; |
1094 | gMC->Gsposp("S07G",imax+4*idiv+1,"C07M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1095 | gMC->Gsposp("S08G",imax+4*idiv+1,"C08M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1096 | gMC->Gsposp("S07G",imax+4*idiv+2,"C07M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1097 | gMC->Gsposp("S08G",imax+4*idiv+2,"C08M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1098 | gMC->Gsposp("S07G",imax+4*idiv+3,"C07M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1099 | gMC->Gsposp("S08G",imax+4*idiv+3,"C08M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1100 | gMC->Gsposp("S07G",imax+4*idiv+4,"C07M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
1101 | gMC->Gsposp("S08G",imax+4*idiv+4,"C08M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
1102 | } |
1103 | |
1104 | |
1105 | |
1106 | |
1107 | |
b17c0c87 |
1108 | } |
3c084d9f |
1109 | |
b17c0c87 |
1110 | if (stations[4]) { |
1111 | |
1e8fff9c |
1112 | |
a9e2aefa |
1113 | //******************************************************************** |
1114 | // Station 5 ** |
1115 | //******************************************************************** |
1116 | // indices 1 and 2 for first and second chambers in the station |
1117 | // iChamber (first chamber) kept for other quanties than Z, |
1118 | // assumed to be the same in both chambers |
1119 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8]; |
1120 | iChamber2 =(AliMUONChamber*) (*fChambers)[9]; |
1121 | zpos1=iChamber1->Z(); |
1122 | zpos2=iChamber2->Z(); |
1123 | dstation = zpos2 - zpos1; |
b64652f5 |
1124 | // zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more |
3c084d9f |
1125 | |
a9e2aefa |
1126 | // |
1127 | // Mother volume |
1128 | tpar[0] = iChamber->RInner()-dframep; |
1129 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
3c084d9f |
1130 | tpar[2] = dstation/5.; |
a9e2aefa |
1131 | |
1132 | gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3); |
1133 | gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3); |
1134 | gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
1135 | gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
a9e2aefa |
1136 | |
a9e2aefa |
1137 | |
1e8fff9c |
1138 | const Int_t nSlats5 = 7; // number of slats per quadrant |
a083207d |
1139 | const Int_t nPCB5[nSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat |
21a18f36 |
1140 | const Float_t xpos5[nSlats5] = {38.5, 40., 0., 0., 0., 0., 0.}; |
6c5ddcfa |
1141 | Float_t slatLength5[nSlats5]; |
6c5ddcfa |
1142 | char volNam9[5]; |
1143 | char volNam10[5]; |
f9f7c205 |
1144 | Float_t xSlat5; |
1145 | Float_t ySlat5; |
1e8fff9c |
1146 | |
6c5ddcfa |
1147 | for (i = 0; i<nSlats5; i++){ |
1148 | slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength; |
a083207d |
1149 | xSlat5 = slatLength5[i]/2. - vFrameLength/2. +xpos5[i]; |
21a18f36 |
1150 | if (i==1 || i==0) slatLength5[i] -= 2. *dSlatLength; // frame out in PCB with circular border |
f9f7c205 |
1151 | ySlat5 = sensHeight * i - yOverlap * i; |
6c5ddcfa |
1152 | spar[0] = slatLength5[i]/2.; |
1153 | spar[1] = slatHeight/2.; |
3c084d9f |
1154 | spar[2] = slatWidth/2. * 1.01; |
1155 | Float_t dzCh5=spar[2]*1.01; |
1e8fff9c |
1156 | // zSlat to be checked (odd downstream or upstream?) |
3c084d9f |
1157 | Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; |
6c5ddcfa |
1158 | sprintf(volNam9,"S09%d",i); |
1159 | gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3); |
e1ad7d45 |
1160 | gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1161 | gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1162 | if (i>0) { |
3c084d9f |
1163 | gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1164 | gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1165 | } |
6c5ddcfa |
1166 | sprintf(volNam10,"S10%d",i); |
1167 | gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3); |
e1ad7d45 |
1168 | gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1169 | gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1170 | if (i>0) { |
3c084d9f |
1171 | gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1172 | gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1173 | } |
a9e2aefa |
1174 | } |
1175 | |
1e8fff9c |
1176 | // create the panel volume |
3c084d9f |
1177 | |
6c5ddcfa |
1178 | gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3); |
1179 | gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3); |
3c084d9f |
1180 | |
1e8fff9c |
1181 | // create the rohacell volume |
3c084d9f |
1182 | |
6c5ddcfa |
1183 | gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3); |
1184 | gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3); |
3c084d9f |
1185 | |
1186 | // create the insulating material volume |
1187 | |
1188 | gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3); |
1189 | gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3); |
1190 | |
1191 | // create the PCB volume |
1192 | |
1193 | gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3); |
1194 | gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3); |
1195 | |
1196 | // create the sensitive volumes, |
1197 | |
1198 | gMC->Gsvolu("S09G","BOX",sensMaterial,0,0); |
1199 | gMC->Gsvolu("S10G","BOX",sensMaterial,0,0); |
3c084d9f |
1200 | |
1e8fff9c |
1201 | // create the vertical frame volume |
3c084d9f |
1202 | |
6c5ddcfa |
1203 | gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3); |
1204 | gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
1205 | |
1206 | // create the horizontal frame volume |
3c084d9f |
1207 | |
6c5ddcfa |
1208 | gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3); |
1209 | gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
1210 | |
1211 | // create the horizontal border volume |
1212 | |
6c5ddcfa |
1213 | gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3); |
1214 | gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
1215 | |
3c084d9f |
1216 | index=0; |
6c5ddcfa |
1217 | for (i = 0; i<nSlats5; i++){ |
1218 | sprintf(volNam9,"S09%d",i); |
1219 | sprintf(volNam10,"S10%d",i); |
1220 | Float_t xvFrame = (slatLength5[i] - vFrameLength)/2.; |
3c084d9f |
1221 | // position the vertical frames |
21a18f36 |
1222 | if (i!=1 && i!=0) { |
a083207d |
1223 | gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY"); |
1224 | gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY"); |
1225 | gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY"); |
1226 | gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY"); |
1227 | } |
3c084d9f |
1228 | |
1229 | // position the panels and the insulating material |
6c5ddcfa |
1230 | for (j=0; j<nPCB5[i]; j++){ |
1e8fff9c |
1231 | index++; |
3c084d9f |
1232 | Float_t xx = sensLength * (-nPCB5[i]/2.+j+.5); |
1233 | |
1234 | Float_t zPanel = spar[2] - panelpar[2]; |
1235 | gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY"); |
1236 | gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY"); |
1237 | gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY"); |
1238 | gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY"); |
1239 | |
1240 | gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY"); |
1241 | gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
1242 | } |
1243 | } |
1244 | |
3c084d9f |
1245 | // position the rohacell volume inside the panel volume |
1246 | gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY"); |
1247 | gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY"); |
1248 | |
1249 | // position the PCB volume inside the insulating material volume |
1250 | gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); |
1251 | gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); |
1252 | // position the horizontal frame volume inside the PCB volume |
1253 | gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); |
1254 | gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); |
1255 | // position the sensitive volume inside the horizontal frame volume |
1256 | gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); |
1257 | gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); |
3c084d9f |
1258 | // position the border volumes inside the PCB volume |
1259 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
1260 | gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); |
1261 | gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); |
1262 | gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); |
1263 | gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); |
1264 | |
1e8fff9c |
1265 | // create the NULOC volume and position it in the horizontal frame |
3c084d9f |
1266 | |
6c5ddcfa |
1267 | gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3); |
1268 | gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3); |
3c084d9f |
1269 | index = 0; |
21a18f36 |
1270 | for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { |
1e8fff9c |
1271 | index++; |
6c5ddcfa |
1272 | gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1273 | gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1274 | gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1275 | gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
a9e2aefa |
1276 | } |
a083207d |
1277 | // position the volumes approximating the circular section of the pipe |
21a18f36 |
1278 | Float_t yoffs = sensHeight/2. - yOverlap; |
a083207d |
1279 | Float_t epsilon = 0.001; |
1280 | Int_t ndiv=6; |
1281 | Float_t divpar[3]; |
1282 | Double_t dydiv= sensHeight/ndiv; |
21a18f36 |
1283 | Double_t ydiv = yoffs -dydiv; |
a083207d |
1284 | Int_t imax=0; |
1285 | // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat]; |
1286 | imax = 1; |
1287 | Float_t rmin = 40.; |
1288 | Float_t z1 = spar[2], z2=2*spar[2]*1.01; |
1289 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
1290 | ydiv+= dydiv; |
425ebd0a |
1291 | Float_t xdiv = 0.; |
a083207d |
1292 | if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ); |
1293 | divpar[0] = (pcbLength-xdiv)/2.; |
1294 | divpar[1] = dydiv/2. - epsilon; |
1295 | divpar[2] = sensWidth/2.; |
425ebd0a |
1296 | Float_t xvol=(pcbLength+xdiv)/2. + 1.999; |
a083207d |
1297 | Float_t yvol=ydiv + dydiv/2.; |
1298 | gMC->Gsposp("S09G",imax+4*idiv+1,"C09M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1299 | gMC->Gsposp("S10G",imax+4*idiv+1,"C10M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1300 | gMC->Gsposp("S09G",imax+4*idiv+2,"C09M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1301 | gMC->Gsposp("S10G",imax+4*idiv+2,"C10M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1302 | gMC->Gsposp("S09G",imax+4*idiv+3,"C09M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1303 | gMC->Gsposp("S10G",imax+4*idiv+3,"C10M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1304 | gMC->Gsposp("S09G",imax+4*idiv+4,"C09M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
1305 | gMC->Gsposp("S10G",imax+4*idiv+4,"C10M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
1306 | } |
1307 | |
b17c0c87 |
1308 | } |
1309 | |
1e8fff9c |
1310 | |
a9e2aefa |
1311 | /////////////////////////////////////// |
1312 | // GEOMETRY FOR THE TRIGGER CHAMBERS // |
1313 | /////////////////////////////////////// |
1314 | |
1315 | // 03/00 P. Dupieux : introduce a slighly more realistic |
1316 | // geom. of the trigger readout planes with |
1317 | // 2 Zpos per trigger plane (alternate |
1318 | // between left and right of the trigger) |
1319 | |
1320 | // Parameters of the Trigger Chambers |
1321 | |
236fe2c5 |
1322 | // DP03-01 introduce dead zone of +/- 2 cm arround x=0 (as in TDR, fig3.27) |
1323 | const Float_t kDXZERO=2.; |
a9e2aefa |
1324 | const Float_t kXMC1MIN=34.; |
1325 | const Float_t kXMC1MED=51.; |
1326 | const Float_t kXMC1MAX=272.; |
1327 | const Float_t kYMC1MIN=34.; |
1328 | const Float_t kYMC1MAX=51.; |
1329 | const Float_t kRMIN1=50.; |
236fe2c5 |
1330 | // DP03-01 const Float_t kRMAX1=62.; |
1331 | const Float_t kRMAX1=64.; |
a9e2aefa |
1332 | const Float_t kRMIN2=50.; |
236fe2c5 |
1333 | // DP03-01 const Float_t kRMAX2=66.; |
1334 | const Float_t kRMAX2=68.; |
a9e2aefa |
1335 | |
1336 | // zposition of the middle of the gas gap in mother vol |
1337 | const Float_t kZMCm=-3.6; |
1338 | const Float_t kZMCp=+3.6; |
1339 | |
1340 | |
1341 | // TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1 |
1342 | |
1343 | // iChamber 1 and 2 for first and second chambers in the station |
1344 | // iChamber (first chamber) kept for other quanties than Z, |
1345 | // assumed to be the same in both chambers |
1346 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10]; |
1347 | iChamber2 =(AliMUONChamber*) (*fChambers)[11]; |
1348 | |
1349 | // 03/00 |
1350 | // zpos1 and zpos2 are now the middle of the first and second |
1351 | // plane of station 1 : |
1352 | // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm |
1353 | // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm |
1354 | // |
1355 | // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps) |
1356 | // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps) |
1357 | // rem : the total thickness accounts for 1 mm of al on both |
1358 | // side of the RPCs (see zpos1 and zpos2), as previously |
1359 | |
1360 | zpos1=iChamber1->Z(); |
1361 | zpos2=iChamber2->Z(); |
1362 | |
1363 | |
1364 | // Mother volume definition |
1365 | tpar[0] = iChamber->RInner(); |
1366 | tpar[1] = iChamber->ROuter(); |
1367 | tpar[2] = 4.0; |
1368 | gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3); |
1369 | gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3); |
1370 | |
1371 | // Definition of the flange between the beam shielding and the RPC |
1372 | tpar[0]= kRMIN1; |
1373 | tpar[1]= kRMAX1; |
1374 | tpar[2]= 4.0; |
1375 | |
1376 | gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al |
1377 | gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY"); |
1378 | gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY"); |
1379 | |
1380 | |
1381 | // FIRST PLANE OF STATION 1 |
1382 | |
1383 | // ratios of zpos1m/zpos1p and inverse for first plane |
1384 | Float_t zmp=(zpos1-3.6)/(zpos1+3.6); |
1385 | Float_t zpm=1./zmp; |
1386 | |
1387 | |
1388 | // Definition of prototype for chambers in the first plane |
1389 | |
1390 | tpar[0]= 0.; |
1391 | tpar[1]= 0.; |
1392 | tpar[2]= 0.; |
1393 | |
1394 | gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al |
1395 | gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1396 | gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1397 | |
1398 | // chamber type A |
1399 | tpar[0] = -1.; |
1400 | tpar[1] = -1.; |
1401 | |
236fe2c5 |
1402 | // DP03-01 const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; |
1403 | const Float_t kXMC1A=kDXZERO+kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; |
a9e2aefa |
1404 | const Float_t kYMC1Am=0.; |
1405 | const Float_t kYMC1Ap=0.; |
1406 | |
1407 | tpar[2] = 0.1; |
1408 | gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3); |
1409 | tpar[2] = 0.3; |
1410 | gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3); |
1411 | |
1412 | tpar[2] = 0.4; |
1413 | tpar[0] = (kXMC1MAX-kXMC1MED)/2.; |
1414 | tpar[1] = kYMC1MIN; |
1415 | |
1416 | gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3); |
1417 | gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3); |
1418 | |
1419 | // chamber type B |
1420 | Float_t tpar1save=tpar[1]; |
1421 | Float_t y1msave=kYMC1Am; |
1422 | Float_t y1psave=kYMC1Ap; |
1423 | |
1424 | tpar[0] = (kXMC1MAX-kXMC1MIN)/2.; |
1425 | tpar[1] = (kYMC1MAX-kYMC1MIN)/2.; |
1426 | |
236fe2c5 |
1427 | // DP03-01 const Float_t kXMC1B=kXMC1MIN+tpar[0]; |
1428 | const Float_t kXMC1B=kDXZERO+kXMC1MIN+tpar[0]; |
a9e2aefa |
1429 | const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1]; |
1430 | const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1]; |
1431 | |
1432 | gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1433 | gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
1434 | gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1435 | gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
1436 | |
1437 | // chamber type C (end of type B !!) |
1438 | tpar1save=tpar[1]; |
1439 | y1msave=kYMC1Bm; |
1440 | y1psave=kYMC1Bp; |
1441 | |
1442 | tpar[0] = kXMC1MAX/2; |
1443 | tpar[1] = kYMC1MAX/2; |
1444 | |
236fe2c5 |
1445 | |
1446 | // DP03-01 const Float_t kXMC1C=tpar[0]; |
1447 | const Float_t kXMC1C=kDXZERO+tpar[0]; |
a9e2aefa |
1448 | // warning : same Z than type B |
1449 | const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1]; |
1450 | const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1]; |
1451 | |
1452 | gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1453 | gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
1454 | gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1455 | gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
1456 | |
1457 | // chamber type D, E and F (same size) |
1458 | tpar1save=tpar[1]; |
1459 | y1msave=kYMC1Cm; |
1460 | y1psave=kYMC1Cp; |
1461 | |
1462 | tpar[0] = kXMC1MAX/2.; |
1463 | tpar[1] = kYMC1MIN; |
1464 | |
236fe2c5 |
1465 | // DP03-01 const Float_t kXMC1D=tpar[0]; |
1466 | const Float_t kXMC1D=kDXZERO+tpar[0]; |
a9e2aefa |
1467 | const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1]; |
1468 | const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1]; |
1469 | |
1470 | gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1471 | gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
1472 | gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1473 | gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
1474 | |
1475 | |
1476 | tpar1save=tpar[1]; |
1477 | y1msave=kYMC1Dm; |
1478 | y1psave=kYMC1Dp; |
1479 | const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1]; |
1480 | const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1]; |
1481 | |
1482 | gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1483 | gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
1484 | gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1485 | gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
1486 | |
1487 | tpar1save=tpar[1]; |
1488 | y1msave=kYMC1Em; |
1489 | y1psave=kYMC1Ep; |
1490 | const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1]; |
1491 | const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1]; |
1492 | |
1493 | gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1494 | gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
1495 | gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1496 | gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
1497 | |
1498 | // Positioning first plane in ALICE |
1499 | gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY"); |
1500 | |
1501 | // End of geometry definition for the first plane of station 1 |
1502 | |
1503 | |
1504 | |
1505 | // SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1 |
1506 | |
1507 | const Float_t kZ12=zpos2/zpos1; |
1508 | |
1509 | // Definition of prototype for chambers in the second plane of station 1 |
1510 | |
1511 | tpar[0]= 0.; |
1512 | tpar[1]= 0.; |
1513 | tpar[2]= 0.; |
1514 | |
1515 | gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al |
1516 | gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1517 | gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1518 | |
1519 | // chamber type A |
1520 | tpar[0] = -1.; |
1521 | tpar[1] = -1.; |
1522 | |
1523 | const Float_t kXMC2A=kXMC1A*kZ12; |
1524 | const Float_t kYMC2Am=0.; |
1525 | const Float_t kYMC2Ap=0.; |
1526 | |
1527 | tpar[2] = 0.1; |
1528 | gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3); |
1529 | tpar[2] = 0.3; |
1530 | gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3); |
1531 | |
1532 | tpar[2] = 0.4; |
1533 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12; |
1534 | tpar[1] = kYMC1MIN*kZ12; |
1535 | |
1536 | gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3); |
1537 | gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3); |
1538 | |
1539 | |
1540 | // chamber type B |
1541 | |
1542 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12; |
1543 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12; |
1544 | |
1545 | const Float_t kXMC2B=kXMC1B*kZ12; |
1546 | const Float_t kYMC2Bp=kYMC1Bp*kZ12; |
1547 | const Float_t kYMC2Bm=kYMC1Bm*kZ12; |
1548 | gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1549 | gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
1550 | gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1551 | gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
1552 | |
1553 | |
1554 | // chamber type C (end of type B !!) |
1555 | |
1556 | tpar[0] = (kXMC1MAX/2)*kZ12; |
1557 | tpar[1] = (kYMC1MAX/2)*kZ12; |
1558 | |
1559 | const Float_t kXMC2C=kXMC1C*kZ12; |
1560 | const Float_t kYMC2Cp=kYMC1Cp*kZ12; |
1561 | const Float_t kYMC2Cm=kYMC1Cm*kZ12; |
1562 | gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1563 | gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
1564 | gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1565 | gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
1566 | |
1567 | // chamber type D, E and F (same size) |
1568 | |
1569 | tpar[0] = (kXMC1MAX/2.)*kZ12; |
1570 | tpar[1] = kYMC1MIN*kZ12; |
1571 | |
1572 | const Float_t kXMC2D=kXMC1D*kZ12; |
1573 | const Float_t kYMC2Dp=kYMC1Dp*kZ12; |
1574 | const Float_t kYMC2Dm=kYMC1Dm*kZ12; |
1575 | gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1576 | gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
1577 | gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1578 | gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
1579 | |
1580 | const Float_t kYMC2Ep=kYMC1Ep*kZ12; |
1581 | const Float_t kYMC2Em=kYMC1Em*kZ12; |
1582 | gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1583 | gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
1584 | gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1585 | gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
1586 | |
1587 | |
1588 | const Float_t kYMC2Fp=kYMC1Fp*kZ12; |
1589 | const Float_t kYMC2Fm=kYMC1Fm*kZ12; |
1590 | gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1591 | gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
1592 | gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1593 | gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
1594 | |
1595 | // Positioning second plane of station 1 in ALICE |
1596 | |
1597 | gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY"); |
1598 | |
1599 | // End of geometry definition for the second plane of station 1 |
1600 | |
1601 | |
1602 | |
1603 | // TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2 |
1604 | |
1605 | // 03/00 |
1606 | // zpos3 and zpos4 are now the middle of the first and second |
1607 | // plane of station 2 : |
1608 | // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm |
1609 | // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm |
1610 | // |
1611 | // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps) |
1612 | // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps) |
1613 | // rem : the total thickness accounts for 1 mm of al on both |
1614 | // side of the RPCs (see zpos3 and zpos4), as previously |
1615 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12]; |
1616 | iChamber2 =(AliMUONChamber*) (*fChambers)[13]; |
1617 | Float_t zpos3=iChamber1->Z(); |
1618 | Float_t zpos4=iChamber2->Z(); |
1619 | |
1620 | |
1621 | // Mother volume definition |
1622 | tpar[0] = iChamber->RInner(); |
1623 | tpar[1] = iChamber->ROuter(); |
1624 | tpar[2] = 4.0; |
1625 | |
1626 | gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3); |
1627 | gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3); |
1628 | |
1629 | // Definition of the flange between the beam shielding and the RPC |
1630 | // ???? interface shielding |
1631 | |
1632 | tpar[0]= kRMIN2; |
1633 | tpar[1]= kRMAX2; |
1634 | tpar[2]= 4.0; |
1635 | |
1636 | gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al |
1637 | gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY"); |
1638 | gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY"); |
1639 | |
1640 | |
1641 | |
1642 | // FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1 |
1643 | |
1644 | const Float_t kZ13=zpos3/zpos1; |
1645 | |
1646 | // Definition of prototype for chambers in the first plane of station 2 |
1647 | tpar[0]= 0.; |
1648 | tpar[1]= 0.; |
1649 | tpar[2]= 0.; |
1650 | |
1651 | gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al |
1652 | gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1653 | gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1654 | |
1655 | |
1656 | // chamber type A |
1657 | tpar[0] = -1.; |
1658 | tpar[1] = -1.; |
1659 | |
1660 | const Float_t kXMC3A=kXMC1A*kZ13; |
1661 | const Float_t kYMC3Am=0.; |
1662 | const Float_t kYMC3Ap=0.; |
1663 | |
1664 | tpar[2] = 0.1; |
1665 | gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3); |
1666 | tpar[2] = 0.3; |
1667 | gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3); |
1668 | |
1669 | tpar[2] = 0.4; |
1670 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13; |
1671 | tpar[1] = kYMC1MIN*kZ13; |
1672 | gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3); |
1673 | gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3); |
1674 | |
1675 | |
1676 | // chamber type B |
1677 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13; |
1678 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13; |
1679 | |
1680 | const Float_t kXMC3B=kXMC1B*kZ13; |
1681 | const Float_t kYMC3Bp=kYMC1Bp*kZ13; |
1682 | const Float_t kYMC3Bm=kYMC1Bm*kZ13; |
1683 | gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1684 | gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
1685 | gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1686 | gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
1687 | |
1688 | |
1689 | // chamber type C (end of type B !!) |
1690 | tpar[0] = (kXMC1MAX/2)*kZ13; |
1691 | tpar[1] = (kYMC1MAX/2)*kZ13; |
1692 | |
1693 | const Float_t kXMC3C=kXMC1C*kZ13; |
1694 | const Float_t kYMC3Cp=kYMC1Cp*kZ13; |
1695 | const Float_t kYMC3Cm=kYMC1Cm*kZ13; |
1696 | gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1697 | gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
1698 | gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1699 | gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
1700 | |
1701 | |
1702 | // chamber type D, E and F (same size) |
1703 | |
1704 | tpar[0] = (kXMC1MAX/2.)*kZ13; |
1705 | tpar[1] = kYMC1MIN*kZ13; |
1706 | |
1707 | const Float_t kXMC3D=kXMC1D*kZ13; |
1708 | const Float_t kYMC3Dp=kYMC1Dp*kZ13; |
1709 | const Float_t kYMC3Dm=kYMC1Dm*kZ13; |
1710 | gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1711 | gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
1712 | gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1713 | gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
1714 | |
1715 | const Float_t kYMC3Ep=kYMC1Ep*kZ13; |
1716 | const Float_t kYMC3Em=kYMC1Em*kZ13; |
1717 | gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1718 | gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
1719 | gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1720 | gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
1721 | |
1722 | const Float_t kYMC3Fp=kYMC1Fp*kZ13; |
1723 | const Float_t kYMC3Fm=kYMC1Fm*kZ13; |
1724 | gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1725 | gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
1726 | gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1727 | gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
1728 | |
1729 | |
1730 | // Positioning first plane of station 2 in ALICE |
1731 | |
1732 | gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY"); |
1733 | |
1734 | // End of geometry definition for the first plane of station 2 |
1735 | |
1736 | |
1737 | |
1738 | |
1739 | // SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1 |
1740 | |
1741 | const Float_t kZ14=zpos4/zpos1; |
1742 | |
1743 | // Definition of prototype for chambers in the second plane of station 2 |
1744 | |
1745 | tpar[0]= 0.; |
1746 | tpar[1]= 0.; |
1747 | tpar[2]= 0.; |
1748 | |
1749 | gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al |
1750 | gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1751 | gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1752 | |
1753 | // chamber type A |
1754 | tpar[0] = -1.; |
1755 | tpar[1] = -1.; |
1756 | |
1757 | const Float_t kXMC4A=kXMC1A*kZ14; |
1758 | const Float_t kYMC4Am=0.; |
1759 | const Float_t kYMC4Ap=0.; |
1760 | |
1761 | tpar[2] = 0.1; |
1762 | gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3); |
1763 | tpar[2] = 0.3; |
1764 | gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3); |
1765 | |
1766 | tpar[2] = 0.4; |
1767 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14; |
1768 | tpar[1] = kYMC1MIN*kZ14; |
1769 | gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3); |
1770 | gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3); |
1771 | |
1772 | |
1773 | // chamber type B |
1774 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14; |
1775 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14; |
1776 | |
1777 | const Float_t kXMC4B=kXMC1B*kZ14; |
1778 | const Float_t kYMC4Bp=kYMC1Bp*kZ14; |
1779 | const Float_t kYMC4Bm=kYMC1Bm*kZ14; |
1780 | gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1781 | gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
1782 | gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1783 | gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
1784 | |
1785 | |
1786 | // chamber type C (end of type B !!) |
1787 | tpar[0] =(kXMC1MAX/2)*kZ14; |
1788 | tpar[1] = (kYMC1MAX/2)*kZ14; |
1789 | |
1790 | const Float_t kXMC4C=kXMC1C*kZ14; |
1791 | const Float_t kYMC4Cp=kYMC1Cp*kZ14; |
1792 | const Float_t kYMC4Cm=kYMC1Cm*kZ14; |
1793 | gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1794 | gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
1795 | gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1796 | gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
1797 | |
1798 | |
1799 | // chamber type D, E and F (same size) |
1800 | tpar[0] = (kXMC1MAX/2.)*kZ14; |
1801 | tpar[1] = kYMC1MIN*kZ14; |
1802 | |
1803 | const Float_t kXMC4D=kXMC1D*kZ14; |
1804 | const Float_t kYMC4Dp=kYMC1Dp*kZ14; |
1805 | const Float_t kYMC4Dm=kYMC1Dm*kZ14; |
1806 | gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1807 | gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
1808 | gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1809 | gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
1810 | |
1811 | const Float_t kYMC4Ep=kYMC1Ep*kZ14; |
1812 | const Float_t kYMC4Em=kYMC1Em*kZ14; |
1813 | gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1814 | gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
1815 | gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1816 | gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
1817 | |
1818 | const Float_t kYMC4Fp=kYMC1Fp*kZ14; |
1819 | const Float_t kYMC4Fm=kYMC1Fm*kZ14; |
1820 | gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1821 | gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
1822 | gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1823 | gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
1824 | |
1825 | |
1826 | // Positioning second plane of station 2 in ALICE |
1827 | |
1828 | gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY"); |
1829 | |
1830 | // End of geometry definition for the second plane of station 2 |
1831 | |
1832 | // End of trigger geometry definition |
1833 | |
1834 | } |
1835 | |
1836 | |
1837 | |
1838 | //___________________________________________ |
1839 | void AliMUONv1::CreateMaterials() |
1840 | { |
1841 | // *** DEFINITION OF AVAILABLE MUON MATERIALS *** |
1842 | // |
b64652f5 |
1843 | // Ar-CO2 gas (80%+20%) |
a9e2aefa |
1844 | Float_t ag1[3] = { 39.95,12.01,16. }; |
1845 | Float_t zg1[3] = { 18.,6.,8. }; |
1846 | Float_t wg1[3] = { .8,.0667,.13333 }; |
1847 | Float_t dg1 = .001821; |
1848 | // |
1849 | // Ar-buthane-freon gas -- trigger chambers |
1850 | Float_t atr1[4] = { 39.95,12.01,1.01,19. }; |
1851 | Float_t ztr1[4] = { 18.,6.,1.,9. }; |
1852 | Float_t wtr1[4] = { .56,.1262857,.2857143,.028 }; |
1853 | Float_t dtr1 = .002599; |
1854 | // |
1855 | // Ar-CO2 gas |
1856 | Float_t agas[3] = { 39.95,12.01,16. }; |
1857 | Float_t zgas[3] = { 18.,6.,8. }; |
1858 | Float_t wgas[3] = { .74,.086684,.173316 }; |
1859 | Float_t dgas = .0018327; |
1860 | // |
1861 | // Ar-Isobutane gas (80%+20%) -- tracking |
1862 | Float_t ag[3] = { 39.95,12.01,1.01 }; |
1863 | Float_t zg[3] = { 18.,6.,1. }; |
1864 | Float_t wg[3] = { .8,.057,.143 }; |
1865 | Float_t dg = .0019596; |
1866 | // |
1867 | // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger |
1868 | Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 }; |
1869 | Float_t ztrig[5] = { 18.,6.,1.,9.,16. }; |
1870 | Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 }; |
1871 | Float_t dtrig = .0031463; |
1872 | // |
1873 | // bakelite |
1874 | |
1875 | Float_t abak[3] = {12.01 , 1.01 , 16.}; |
1876 | Float_t zbak[3] = {6. , 1. , 8.}; |
1877 | Float_t wbak[3] = {6. , 6. , 1.}; |
1878 | Float_t dbak = 1.4; |
1879 | |
1880 | Float_t epsil, stmin, deemax, tmaxfd, stemax; |
1881 | |
1882 | Int_t iSXFLD = gAlice->Field()->Integ(); |
1883 | Float_t sXMGMX = gAlice->Field()->Max(); |
1884 | // |
1885 | // --- Define the various materials for GEANT --- |
1886 | AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1887 | AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1888 | AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500); |
1889 | AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak); |
1890 | AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg); |
1891 | AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig); |
1892 | AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1); |
1893 | AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1); |
1894 | AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas); |
1e8fff9c |
1895 | // materials for slat: |
1896 | // Sensitive area: gas (already defined) |
1897 | // PCB: copper |
1898 | // insulating material and frame: vetronite |
1899 | // walls: carbon, rohacell, carbon |
1900 | Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.}; |
1901 | Float_t zglass[5]={ 6., 14., 8., 5., 11.}; |
1902 | Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01}; |
1903 | Float_t dglass=1.74; |
1904 | |
1905 | // rohacell: C9 H13 N1 O2 |
1906 | Float_t arohac[4] = {12.01, 1.01, 14.010, 16.}; |
1907 | Float_t zrohac[4] = { 6., 1., 7., 8.}; |
1908 | Float_t wrohac[4] = { 9., 13., 1., 2.}; |
1909 | Float_t drohac = 0.03; |
1910 | |
1911 | AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.); |
1912 | AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass); |
1913 | AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9); |
1914 | AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac); |
1915 | |
a9e2aefa |
1916 | |
1917 | epsil = .001; // Tracking precision, |
1918 | stemax = -1.; // Maximum displacement for multiple scat |
1919 | tmaxfd = -20.; // Maximum angle due to field deflection |
1920 | deemax = -.3; // Maximum fractional energy loss, DLS |
1921 | stmin = -.8; |
1922 | // |
1923 | // Air |
1924 | AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1925 | // |
1926 | // Aluminum |
1927 | |
1928 | AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1929 | fMaxDestepAlu, epsil, stmin); |
1930 | AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1931 | fMaxDestepAlu, epsil, stmin); |
1932 | // |
1933 | // Ar-isoC4H10 gas |
1934 | |
1935 | AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1936 | fMaxDestepGas, epsil, stmin); |
1937 | // |
1938 | // Ar-Isobuthane-Forane-SF6 gas |
1939 | |
1940 | AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1941 | |
1942 | AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1943 | fMaxDestepAlu, epsil, stmin); |
1944 | |
1945 | AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1946 | fMaxDestepAlu, epsil, stmin); |
1e8fff9c |
1947 | // tracking media for slats: check the parameters!! |
1948 | AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd, |
1949 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1950 | AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd, |
1951 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1952 | AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd, |
1953 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1954 | AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd, |
1955 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
a9e2aefa |
1956 | } |
1957 | |
1958 | //___________________________________________ |
1959 | |
1960 | void AliMUONv1::Init() |
1961 | { |
1962 | // |
1963 | // Initialize Tracking Chambers |
1964 | // |
1965 | |
1966 | printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n"); |
e17592e9 |
1967 | Int_t i; |
f665c1ea |
1968 | for (i=0; i<AliMUONConstants::NCh(); i++) { |
a9e2aefa |
1969 | ( (AliMUONChamber*) (*fChambers)[i])->Init(); |
1970 | } |
1971 | |
1972 | // |
1973 | // Set the chamber (sensitive region) GEANT identifier |
1974 | AliMC* gMC = AliMC::GetMC(); |
1975 | ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G")); |
1976 | ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G")); |
b17c0c87 |
1977 | |
a9e2aefa |
1978 | ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G")); |
1979 | ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G")); |
b17c0c87 |
1980 | |
1e8fff9c |
1981 | ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G")); |
1982 | ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G")); |
b17c0c87 |
1983 | |
1e8fff9c |
1984 | ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G")); |
1985 | ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G")); |
b17c0c87 |
1986 | |
1e8fff9c |
1987 | ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G")); |
1988 | ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G")); |
b17c0c87 |
1989 | |
a9e2aefa |
1990 | ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A")); |
1991 | ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A")); |
1992 | ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A")); |
1993 | ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A")); |
1994 | |
1995 | printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n"); |
1996 | |
1997 | //cp |
1998 | printf("\n\n\n Start Init for Trigger Circuits\n\n\n"); |
f665c1ea |
1999 | for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) { |
a9e2aefa |
2000 | ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i); |
2001 | } |
2002 | printf(" Finished Init for Trigger Circuits\n\n\n"); |
2003 | //cp |
2004 | |
2005 | } |
2006 | |
2007 | //___________________________________________ |
2008 | void AliMUONv1::StepManager() |
2009 | { |
2010 | Int_t copy, id; |
2011 | static Int_t idvol; |
2012 | static Int_t vol[2]; |
2013 | Int_t ipart; |
2014 | TLorentzVector pos; |
2015 | TLorentzVector mom; |
2016 | Float_t theta,phi; |
2017 | Float_t destep, step; |
681d067b |
2018 | |
1e8fff9c |
2019 | static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength; |
a9e2aefa |
2020 | const Float_t kBig=1.e10; |
a9e2aefa |
2021 | // modifs perso |
2022 | static Float_t hits[15]; |
2023 | |
2024 | TClonesArray &lhits = *fHits; |
2025 | |
2026 | // |
2027 | // Set maximum step size for gas |
2028 | // numed=gMC->GetMedium(); |
2029 | // |
2030 | // Only charged tracks |
2031 | if( !(gMC->TrackCharge()) ) return; |
2032 | // |
2033 | // Only gas gap inside chamber |
2034 | // Tag chambers and record hits when track enters |
2035 | idvol=-1; |
2036 | id=gMC->CurrentVolID(copy); |
2037 | |
f665c1ea |
2038 | for (Int_t i=1; i<=AliMUONConstants::NCh(); i++) { |
a9e2aefa |
2039 | if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){ |
2040 | vol[0]=i; |
2041 | idvol=i-1; |
2042 | } |
2043 | } |
2044 | if (idvol == -1) return; |
2045 | // |
2046 | // Get current particle id (ipart), track position (pos) and momentum (mom) |
2047 | gMC->TrackPosition(pos); |
2048 | gMC->TrackMomentum(mom); |
2049 | |
2050 | ipart = gMC->TrackPid(); |
2051 | //Int_t ipart1 = gMC->IdFromPDG(ipart); |
2052 | //printf("ich, ipart %d %d \n",vol[0],ipart1); |
2053 | |
2054 | // |
2055 | // momentum loss and steplength in last step |
2056 | destep = gMC->Edep(); |
2057 | step = gMC->TrackStep(); |
2058 | |
2059 | // |
2060 | // record hits when track enters ... |
2061 | if( gMC->IsTrackEntering()) { |
2062 | gMC->SetMaxStep(fMaxStepGas); |
2063 | Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; |
2064 | Double_t rt = TMath::Sqrt(tc); |
2065 | Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]); |
2066 | Double_t tx=mom[0]/pmom; |
2067 | Double_t ty=mom[1]/pmom; |
2068 | Double_t tz=mom[2]/pmom; |
2069 | Double_t s=((AliMUONChamber*)(*fChambers)[idvol]) |
2070 | ->ResponseModel() |
2071 | ->Pitch()/tz; |
2072 | theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; |
2073 | phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; |
2074 | hits[0] = Float_t(ipart); // Geant3 particle type |
2075 | hits[1] = pos[0]+s*tx; // X-position for hit |
2076 | hits[2] = pos[1]+s*ty; // Y-position for hit |
2077 | hits[3] = pos[2]+s*tz; // Z-position for hit |
2078 | hits[4] = theta; // theta angle of incidence |
2079 | hits[5] = phi; // phi angle of incidence |
2080 | hits[8] = (Float_t) fNPadHits; // first padhit |
2081 | hits[9] = -1; // last pad hit |
2082 | |
2083 | // modifs perso |
2084 | hits[10] = mom[3]; // hit momentum P |
2085 | hits[11] = mom[0]; // Px/P |
2086 | hits[12] = mom[1]; // Py/P |
2087 | hits[13] = mom[2]; // Pz/P |
2088 | // fin modifs perso |
2089 | tof=gMC->TrackTime(); |
2090 | hits[14] = tof; // Time of flight |
2091 | // phi angle of incidence |
2092 | tlength = 0; |
2093 | eloss = 0; |
2094 | eloss2 = 0; |
2095 | xhit = pos[0]; |
2096 | yhit = pos[1]; |
1e8fff9c |
2097 | zhit = pos[2]; |
681d067b |
2098 | Chamber(idvol).ChargeCorrelationInit(); |
a9e2aefa |
2099 | // Only if not trigger chamber |
1e8fff9c |
2100 | |
2101 | |
2102 | |
2103 | |
a75f073c |
2104 | if(idvol<AliMUONConstants::NTrackingCh()) { |
a9e2aefa |
2105 | // |
2106 | // Initialize hit position (cursor) in the segmentation model |
2107 | ((AliMUONChamber*) (*fChambers)[idvol]) |
2108 | ->SigGenInit(pos[0], pos[1], pos[2]); |
2109 | } else { |
2110 | //geant3->Gpcxyz(); |
2111 | //printf("In the Trigger Chamber #%d\n",idvol-9); |
2112 | } |
2113 | } |
2114 | eloss2+=destep; |
2115 | |
2116 | // |
2117 | // Calculate the charge induced on a pad (disintegration) in case |
2118 | // |
2119 | // Mip left chamber ... |
2120 | if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ |
2121 | gMC->SetMaxStep(kBig); |
2122 | eloss += destep; |
2123 | tlength += step; |
2124 | |
802a864d |
2125 | Float_t x0,y0,z0; |
2126 | Float_t localPos[3]; |
2127 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
802a864d |
2128 | gMC->Gmtod(globalPos,localPos,1); |
2129 | |
a75f073c |
2130 | if(idvol<AliMUONConstants::NTrackingCh()) { |
a9e2aefa |
2131 | // tracking chambers |
2132 | x0 = 0.5*(xhit+pos[0]); |
2133 | y0 = 0.5*(yhit+pos[1]); |
1e8fff9c |
2134 | z0 = 0.5*(zhit+pos[2]); |
2135 | // z0 = localPos[2]; |
a9e2aefa |
2136 | } else { |
2137 | // trigger chambers |
2138 | x0=xhit; |
2139 | y0=yhit; |
1e8fff9c |
2140 | // z0=yhit; |
802a864d |
2141 | z0=0.; |
a9e2aefa |
2142 | } |
2143 | |
1e8fff9c |
2144 | |
802a864d |
2145 | if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol); |
a9e2aefa |
2146 | |
2147 | |
2148 | hits[6]=tlength; |
2149 | hits[7]=eloss2; |
2150 | if (fNPadHits > (Int_t)hits[8]) { |
2151 | hits[8]= hits[8]+1; |
2152 | hits[9]= (Float_t) fNPadHits; |
2153 | } |
2154 | |
2155 | new(lhits[fNhits++]) |
2156 | AliMUONHit(fIshunt,gAlice->CurrentTrack(),vol,hits); |
2157 | eloss = 0; |
2158 | // |
2159 | // Check additional signal generation conditions |
2160 | // defined by the segmentation |
a75f073c |
2161 | // model (boundary crossing conditions) |
2162 | // only for tracking chambers |
a9e2aefa |
2163 | } else if |
a75f073c |
2164 | ((idvol < AliMUONConstants::NTrackingCh()) && |
2165 | ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2])) |
a9e2aefa |
2166 | { |
2167 | ((AliMUONChamber*) (*fChambers)[idvol]) |
2168 | ->SigGenInit(pos[0], pos[1], pos[2]); |
802a864d |
2169 | |
2170 | Float_t localPos[3]; |
2171 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
2172 | gMC->Gmtod(globalPos,localPos,1); |
2173 | |
e0f71fb7 |
2174 | eloss += destep; |
802a864d |
2175 | |
a75f073c |
2176 | if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh()) |
1e8fff9c |
2177 | MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol); |
a9e2aefa |
2178 | xhit = pos[0]; |
2179 | yhit = pos[1]; |
e0f71fb7 |
2180 | zhit = pos[2]; |
2181 | eloss = 0; |
a9e2aefa |
2182 | tlength += step ; |
2183 | // |
2184 | // nothing special happened, add up energy loss |
2185 | } else { |
2186 | eloss += destep; |
2187 | tlength += step ; |
2188 | } |
2189 | } |
2190 | |
2191 | |