]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONv1.cxx
stdlib.h included (for Alpha)
[u/mrichter/AliRoot.git] / MUON / AliMUONv1.cxx
CommitLineData
a9e2aefa 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
2c799aa2 12 * about the suitability of this software for any purpeateose. It is *
a9e2aefa 13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
be3bb6c1 18Revision 1.26 2001/03/17 10:07:20 morsch
19Correct inconsistent variable name / method name / comments.
20
2eb55fab 21Revision 1.25 2001/03/16 15:32:06 morsch
22Corrections of overlap with beam shield and dipole (A. de Falco)
23
21a18f36 24Revision 1.24 2001/03/14 17:22:15 pcrochet
25Geometry of the trigger chambers : a vertical gap of has been introduced around x=0 according fig.3.27 of the TDR (P.Dupieux)
26
236fe2c5 27Revision 1.23 2001/01/18 15:23:49 egangler
28Bug correction in StepManager :
29Now the systematic offset with angle is cured
30
e0f71fb7 31Revision 1.22 2001/01/17 21:01:21 hristov
32Unused variable removed
33
a7e8b51a 34Revision 1.21 2000/12/20 13:00:22 egangler
35
36Added charge correlation between cathods.
37In Config_slat.C, use
38 MUON->Chamber(chamber-1).SetChargeCorrel(0.11); to set the RMS of
39 q1/q2 to 11 % (number from Alberto)
40 This is stored in AliMUONChamber fChargeCorrel member.
41 At generation time, when a tracks enters the volume,
42 AliMUONv1::StepManager calls
43 AliMUONChamber::ChargeCorrelationInit() to set the current value of
44 fCurrentCorrel which is then used at Disintegration level to scale
45 appropriately the PadHit charges.
46
681d067b 47Revision 1.20 2000/12/04 17:48:23 gosset
48Modifications for stations 1 et 2 mainly:
49* station 1 with 4 mm gas gap and smaller cathode segmentation...
50* stations 1 and 2 with "grey" frame crosses
51* mean noise at 1.5 ADC channel
52* Ar-CO2 gas (80%+20%)
53
b64652f5 54Revision 1.19 2000/12/02 17:15:46 morsch
55Correction of dead zones in inner regions of stations 3-5
56Correction of length of slats 3 and 9 of station 4.
57
a083207d 58Revision 1.17 2000/11/24 12:57:10 morsch
59New version of geometry for stations 3-5 "Slats" (A. de Falco)
60 - sensitive region at station 3 inner radius
61 - improved volume tree structure
62
3c084d9f 63Revision 1.16 2000/11/08 13:01:40 morsch
64Chamber half-planes of stations 3-5 at different z-positions.
65
e1ad7d45 66Revision 1.15 2000/11/06 11:39:02 morsch
67Bug in StepManager() corrected.
68
e3cf5faa 69Revision 1.14 2000/11/06 09:16:50 morsch
70Avoid overlap of slat volumes.
71
2c799aa2 72Revision 1.13 2000/10/26 07:33:44 morsch
73Correct x-position of slats in station 5.
74
8013c580 75Revision 1.12 2000/10/25 19:55:35 morsch
76Switches for each station individually for debug and lego.
77
b17c0c87 78Revision 1.11 2000/10/22 16:44:01 morsch
79Update of slat geometry for stations 3,4,5 (A. deFalco)
80
f9f7c205 81Revision 1.10 2000/10/12 16:07:04 gosset
82StepManager:
83* SigGenCond only called for tracking chambers,
84 hence no more division by 0,
85 and may use last ALIROOT/dummies.C with exception handling;
86* "10" replaced by "AliMUONConstants::NTrackingCh()".
87
a75f073c 88Revision 1.9 2000/10/06 15:37:22 morsch
89Problems with variable redefinition in for-loop solved.
90Variable names starting with u-case letters changed to l-case.
91
6c5ddcfa 92Revision 1.8 2000/10/06 09:06:31 morsch
93Include Slat chambers (stations 3-5) into geometry (A. de Falco)
94
1e8fff9c 95Revision 1.7 2000/10/02 21:28:09 fca
96Removal of useless dependecies via forward declarations
97
94de3818 98Revision 1.6 2000/10/02 17:20:45 egangler
99Cleaning of the code (continued ) :
100-> coding conventions
101-> void Streamers
102-> some useless includes removed or replaced by "class" statement
103
8c449e83 104Revision 1.5 2000/06/28 15:16:35 morsch
105(1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there)
106to allow development of slat-muon chamber simulation and reconstruction code in the MUON
107framework. The changes should have no side effects (mostly dummy arguments).
108(2) Hit disintegration uses 3-dim hit coordinates to allow simulation
109of chambers with overlapping modules (MakePadHits, Disintegration).
110
802a864d 111Revision 1.4 2000/06/26 14:02:38 morsch
112Add class AliMUONConstants with MUON specific constants using static memeber data and access methods.
113
f665c1ea 114Revision 1.3 2000/06/22 14:10:05 morsch
115HP scope problems corrected (PH)
116
e17592e9 117Revision 1.2 2000/06/15 07:58:49 morsch
118Code from MUON-dev joined
119
a9e2aefa 120Revision 1.1.2.14 2000/06/14 14:37:25 morsch
121Initialization of TriggerCircuit added (PC)
122
123Revision 1.1.2.13 2000/06/09 21:55:47 morsch
124Most coding rule violations corrected.
125
126Revision 1.1.2.12 2000/05/05 11:34:29 morsch
127Log inside comments.
128
129Revision 1.1.2.11 2000/05/05 10:06:48 morsch
130Coding Rule violations regarding trigger section corrected (CP)
131Log messages included.
132*/
133
134/////////////////////////////////////////////////////////
135// Manager and hits classes for set:MUON version 0 //
136/////////////////////////////////////////////////////////
137
138#include <TTUBE.h>
139#include <TNode.h>
140#include <TRandom.h>
141#include <TLorentzVector.h>
142#include <iostream.h>
143
144#include "AliMUONv1.h"
145#include "AliRun.h"
146#include "AliMC.h"
94de3818 147#include "AliMagF.h"
a9e2aefa 148#include "AliCallf77.h"
149#include "AliConst.h"
150#include "AliMUONChamber.h"
151#include "AliMUONHit.h"
152#include "AliMUONPadHit.h"
f665c1ea 153#include "AliMUONConstants.h"
8c449e83 154#include "AliMUONTriggerCircuit.h"
be3bb6c1 155#include "AliMUONFactory.h"
a9e2aefa 156
157ClassImp(AliMUONv1)
158
159//___________________________________________
160AliMUONv1::AliMUONv1() : AliMUON()
161{
162// Constructor
163 fChambers = 0;
164}
165
166//___________________________________________
167AliMUONv1::AliMUONv1(const char *name, const char *title)
168 : AliMUON(name,title)
169{
170// Constructor
be3bb6c1 171 AliMUONFactory::Build(this, title);
a9e2aefa 172}
173
174//___________________________________________
175void AliMUONv1::CreateGeometry()
176{
177//
178// Note: all chambers have the same structure, which could be
179// easily parameterised. This was intentionally not done in order
180// to give a starting point for the implementation of the actual
181// design of each station.
182 Int_t *idtmed = fIdtmed->GetArray()-1099;
183
184// Distance between Stations
185//
186 Float_t bpar[3];
187 Float_t tpar[3];
b64652f5 188// Float_t pgpar[10];
a9e2aefa 189 Float_t zpos1, zpos2, zfpos;
b64652f5 190 // Outer excess and inner recess for mother volume radius
191 // with respect to ROuter and RInner
a9e2aefa 192 Float_t dframep=.001; // Value for station 3 should be 6 ...
b64652f5 193 // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm)
194// Float_t dframep1=.001;
195 Float_t dframep1 = 11.0;
196// Bool_t frameCrosses=kFALSE;
197 Bool_t frameCrosses=kTRUE;
a9e2aefa 198
b64652f5 199// Float_t dframez=0.9;
200 // Half of the total thickness of frame crosses (including DAlu)
201 // for each chamber in stations 1 and 2:
202 // 3% of X0 of composite material,
203 // but taken as Aluminium here, with same thickness in number of X0
204 Float_t dframez = 3. * 8.9 / 100;
205// Float_t dr;
a9e2aefa 206 Float_t dstation;
207
208//
209// Rotation matrices in the x-y plane
210 Int_t idrotm[1199];
211// phi= 0 deg
212 AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.);
213// phi= 90 deg
214 AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.);
215// phi= 180 deg
216 AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.);
217// phi= 270 deg
218 AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.);
219//
220 Float_t phi=2*TMath::Pi()/12/2;
221
222//
223// pointer to the current chamber
224// pointer to the current chamber
b64652f5 225 Int_t idAlu1=idtmed[1103]; // medium 4
226 Int_t idAlu2=idtmed[1104]; // medium 5
a9e2aefa 227// Int_t idAlu1=idtmed[1100];
228// Int_t idAlu2=idtmed[1100];
b64652f5 229 Int_t idAir=idtmed[1100]; // medium 1
230// Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas
231 Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%)
a9e2aefa 232
233
234 AliMUONChamber *iChamber, *iChamber1, *iChamber2;
b17c0c87 235 Int_t stations[5] = {1, 1, 1, 1, 1};
236
237 if (stations[0]) {
238
a9e2aefa 239//********************************************************************
240// Station 1 **
241//********************************************************************
242// CONCENTRIC
243 // indices 1 and 2 for first and second chambers in the station
244 // iChamber (first chamber) kept for other quanties than Z,
245 // assumed to be the same in both chambers
246 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0];
247 iChamber2 =(AliMUONChamber*) (*fChambers)[1];
248 zpos1=iChamber1->Z();
249 zpos2=iChamber2->Z();
250 dstation = zpos2 - zpos1;
b64652f5 251 // DGas decreased from standard one (0.5)
252 iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4);
253 // DAlu increased from standard one (3% of X0),
254 // because more electronics with smaller pads
255 iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.);
a9e2aefa 256 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
257
258//
259// Mother volume
b64652f5 260 tpar[0] = iChamber->RInner()-dframep;
261 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2c799aa2 262 tpar[2] = dstation/5;
a9e2aefa 263
264 gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3);
265 gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3);
266 gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1e8fff9c 267 gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
b64652f5 268// // Aluminium frames
269// // Outer frames
270// pgpar[0] = 360/12/2;
271// pgpar[1] = 360.;
272// pgpar[2] = 12.;
273// pgpar[3] = 2;
274// pgpar[4] = -dframez/2;
275// pgpar[5] = iChamber->ROuter();
276// pgpar[6] = pgpar[5]+dframep1;
277// pgpar[7] = +dframez/2;
278// pgpar[8] = pgpar[5];
279// pgpar[9] = pgpar[6];
280// gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10);
281// gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10);
282// gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY");
283// gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY");
284// gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY");
285// gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY");
286// //
287// // Inner frame
288// tpar[0]= iChamber->RInner()-dframep1;
289// tpar[1]= iChamber->RInner();
290// tpar[2]= dframez/2;
291// gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3);
292// gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3);
293
294// gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY");
295// gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY");
296// gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY");
297// gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY");
a9e2aefa 298//
299// Frame Crosses
b64652f5 300 if (frameCrosses) {
301 // outside gas
302 // security for inside mother volume
303 bpar[0] = (iChamber->ROuter() - iChamber->RInner())
304 * TMath::Cos(TMath::ASin(dframep1 /
305 (iChamber->ROuter() - iChamber->RInner())))
306 / 2.0;
a9e2aefa 307 bpar[1] = dframep1/2;
b64652f5 308 // total thickness will be (4 * bpar[2]) for each chamber,
309 // which has to be equal to (2 * dframez) - DAlu
310 bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
a9e2aefa 311 gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3);
312 gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3);
313
314 gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
315 idrotm[1100],"ONLY");
316 gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
317 idrotm[1100],"ONLY");
318 gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
319 idrotm[1101],"ONLY");
320 gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
321 idrotm[1101],"ONLY");
322 gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
323 idrotm[1100],"ONLY");
324 gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
325 idrotm[1100],"ONLY");
326 gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
327 idrotm[1101],"ONLY");
328 gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
329 idrotm[1101],"ONLY");
330
331 gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
332 idrotm[1100],"ONLY");
333 gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
334 idrotm[1100],"ONLY");
335 gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
336 idrotm[1101],"ONLY");
337 gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
338 idrotm[1101],"ONLY");
339 gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
340 idrotm[1100],"ONLY");
341 gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
342 idrotm[1100],"ONLY");
343 gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
344 idrotm[1101],"ONLY");
345 gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
346 idrotm[1101],"ONLY");
347 }
348//
349// Chamber Material represented by Alu sheet
350 tpar[0]= iChamber->RInner();
351 tpar[1]= iChamber->ROuter();
352 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
353 gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3);
354 gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3);
355 gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY");
356 gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY");
357//
358// Sensitive volumes
359 // tpar[2] = iChamber->DGas();
360 tpar[2] = iChamber->DGas()/2;
b64652f5 361 gMC->Gsvolu("C01G", "TUBE", idGas, tpar, 3);
362 gMC->Gsvolu("C02G", "TUBE", idGas, tpar, 3);
a9e2aefa 363 gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY");
364 gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY");
365//
b64652f5 366// Frame Crosses to be placed inside gas
367 // NONE: chambers are sensitive everywhere
368// if (frameCrosses) {
369
370// dr = (iChamber->ROuter() - iChamber->RInner());
371// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
372// bpar[1] = dframep1/2;
373// bpar[2] = iChamber->DGas()/2;
374// gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3);
375// gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3);
a9e2aefa 376
b64652f5 377// gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0,
378// idrotm[1100],"ONLY");
379// gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0,
380// idrotm[1100],"ONLY");
381// gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0,
382// idrotm[1101],"ONLY");
383// gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0,
384// idrotm[1101],"ONLY");
a9e2aefa 385
b64652f5 386// gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0,
387// idrotm[1100],"ONLY");
388// gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0,
389// idrotm[1100],"ONLY");
390// gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0,
391// idrotm[1101],"ONLY");
392// gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0,
393// idrotm[1101],"ONLY");
394// }
b17c0c87 395 }
396 if (stations[1]) {
397
a9e2aefa 398//********************************************************************
399// Station 2 **
400//********************************************************************
401 // indices 1 and 2 for first and second chambers in the station
402 // iChamber (first chamber) kept for other quanties than Z,
403 // assumed to be the same in both chambers
404 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2];
405 iChamber2 =(AliMUONChamber*) (*fChambers)[3];
406 zpos1=iChamber1->Z();
407 zpos2=iChamber2->Z();
408 dstation = zpos2 - zpos1;
b64652f5 409 // DGas and DAlu not changed from standard values
a9e2aefa 410 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
411
412//
413// Mother volume
414 tpar[0] = iChamber->RInner()-dframep;
415 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2c799aa2 416 tpar[2] = dstation/5;
a9e2aefa 417
418 gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3);
419 gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3);
420 gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
421 gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 422
b64652f5 423// // Aluminium frames
424// // Outer frames
425// pgpar[0] = 360/12/2;
426// pgpar[1] = 360.;
427// pgpar[2] = 12.;
428// pgpar[3] = 2;
429// pgpar[4] = -dframez/2;
430// pgpar[5] = iChamber->ROuter();
431// pgpar[6] = pgpar[5]+dframep;
432// pgpar[7] = +dframez/2;
433// pgpar[8] = pgpar[5];
434// pgpar[9] = pgpar[6];
435// gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10);
436// gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10);
437// gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY");
438// gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY");
439// gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY");
440// gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY");
441// //
442// // Inner frame
443// tpar[0]= iChamber->RInner()-dframep;
444// tpar[1]= iChamber->RInner();
445// tpar[2]= dframez/2;
446// gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3);
447// gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3);
448
449// gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY");
450// gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY");
451// gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY");
452// gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY");
a9e2aefa 453//
454// Frame Crosses
b64652f5 455 if (frameCrosses) {
456 // outside gas
457 // security for inside mother volume
458 bpar[0] = (iChamber->ROuter() - iChamber->RInner())
459 * TMath::Cos(TMath::ASin(dframep1 /
460 (iChamber->ROuter() - iChamber->RInner())))
461 / 2.0;
462 bpar[1] = dframep1/2;
463 // total thickness will be (4 * bpar[2]) for each chamber,
464 // which has to be equal to (2 * dframez) - DAlu
465 bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
a9e2aefa 466 gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3);
467 gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3);
468
469 gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
470 idrotm[1100],"ONLY");
471 gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
472 idrotm[1100],"ONLY");
473 gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
474 idrotm[1101],"ONLY");
475 gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
476 idrotm[1101],"ONLY");
477 gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
478 idrotm[1100],"ONLY");
479 gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
480 idrotm[1100],"ONLY");
481 gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
482 idrotm[1101],"ONLY");
483 gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
484 idrotm[1101],"ONLY");
485
486 gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
487 idrotm[1100],"ONLY");
488 gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
489 idrotm[1100],"ONLY");
490 gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
491 idrotm[1101],"ONLY");
492 gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
493 idrotm[1101],"ONLY");
494 gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
495 idrotm[1100],"ONLY");
496 gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
497 idrotm[1100],"ONLY");
498 gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
499 idrotm[1101],"ONLY");
500 gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
501 idrotm[1101],"ONLY");
502 }
503//
504// Chamber Material represented by Alu sheet
505 tpar[0]= iChamber->RInner();
506 tpar[1]= iChamber->ROuter();
507 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
508 gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3);
509 gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3);
510 gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY");
511 gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY");
512//
513// Sensitive volumes
514 // tpar[2] = iChamber->DGas();
515 tpar[2] = iChamber->DGas()/2;
516 gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3);
517 gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3);
518 gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY");
519 gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY");
a9e2aefa 520//
521// Frame Crosses to be placed inside gas
b64652f5 522 // NONE: chambers are sensitive everywhere
523// if (frameCrosses) {
524
525// dr = (iChamber->ROuter() - iChamber->RInner());
526// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
527// bpar[1] = dframep1/2;
528// bpar[2] = iChamber->DGas()/2;
529// gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3);
530// gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3);
a9e2aefa 531
b64652f5 532// gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0,
533// idrotm[1100],"ONLY");
534// gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0,
535// idrotm[1100],"ONLY");
536// gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0,
537// idrotm[1101],"ONLY");
538// gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0,
539// idrotm[1101],"ONLY");
a9e2aefa 540
b64652f5 541// gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0,
542// idrotm[1100],"ONLY");
543// gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0,
544// idrotm[1100],"ONLY");
545// gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0,
546// idrotm[1101],"ONLY");
547// gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0,
548// idrotm[1101],"ONLY");
549// }
b17c0c87 550 }
1e8fff9c 551 // define the id of tracking media:
552 Int_t idCopper = idtmed[1110];
553 Int_t idGlass = idtmed[1111];
554 Int_t idCarbon = idtmed[1112];
555 Int_t idRoha = idtmed[1113];
556
1e8fff9c 557 // sensitive area: 40*40 cm**2
6c5ddcfa 558 const Float_t sensLength = 40.;
559 const Float_t sensHeight = 40.;
560 const Float_t sensWidth = 0.5; // according to TDR fig 2.120
561 const Int_t sensMaterial = idGas;
1e8fff9c 562 const Float_t yOverlap = 1.5;
563
564 // PCB dimensions in cm; width: 30 mum copper
6c5ddcfa 565 const Float_t pcbLength = sensLength;
566 const Float_t pcbHeight = 60.;
567 const Float_t pcbWidth = 0.003;
568 const Int_t pcbMaterial = idCopper;
1e8fff9c 569
570 // Insulating material: 200 mum glass fiber glued to pcb
6c5ddcfa 571 const Float_t insuLength = pcbLength;
572 const Float_t insuHeight = pcbHeight;
573 const Float_t insuWidth = 0.020;
574 const Int_t insuMaterial = idGlass;
1e8fff9c 575
576 // Carbon fiber panels: 200mum carbon/epoxy skin
6c5ddcfa 577 const Float_t panelLength = sensLength;
578 const Float_t panelHeight = sensHeight;
579 const Float_t panelWidth = 0.020;
580 const Int_t panelMaterial = idCarbon;
1e8fff9c 581
582 // rohacell between the two carbon panels
6c5ddcfa 583 const Float_t rohaLength = sensLength;
584 const Float_t rohaHeight = sensHeight;
585 const Float_t rohaWidth = 0.5;
586 const Int_t rohaMaterial = idRoha;
1e8fff9c 587
588 // Frame around the slat: 2 sticks along length,2 along height
589 // H: the horizontal ones
6c5ddcfa 590 const Float_t hFrameLength = pcbLength;
591 const Float_t hFrameHeight = 1.5;
592 const Float_t hFrameWidth = sensWidth;
593 const Int_t hFrameMaterial = idGlass;
1e8fff9c 594
595 // V: the vertical ones
6c5ddcfa 596 const Float_t vFrameLength = 4.0;
597 const Float_t vFrameHeight = sensHeight + hFrameHeight;
598 const Float_t vFrameWidth = sensWidth;
599 const Int_t vFrameMaterial = idGlass;
1e8fff9c 600
601 // B: the horizontal border filled with rohacell
6c5ddcfa 602 const Float_t bFrameLength = hFrameLength;
603 const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight;
604 const Float_t bFrameWidth = hFrameWidth;
605 const Int_t bFrameMaterial = idRoha;
1e8fff9c 606
607 // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper)
6c5ddcfa 608 const Float_t nulocLength = 2.5;
609 const Float_t nulocHeight = 7.5;
610 const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite;
611 const Int_t nulocMaterial = idCopper;
1e8fff9c 612
6c5ddcfa 613 const Float_t slatHeight = pcbHeight;
614 const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth +
615 2.* panelWidth + rohaWidth);
616 const Int_t slatMaterial = idAir;
617 const Float_t dSlatLength = vFrameLength; // border on left and right
1e8fff9c 618
1e8fff9c 619 Float_t spar[3];
b17c0c87 620 Int_t i, j;
621
3c084d9f 622 // the panel volume contains the rohacell
623
624 Float_t twidth = 2 * panelWidth + rohaWidth;
625 Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. };
b17c0c87 626 Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. };
3c084d9f 627
628 // insulating material contains PCB-> gas-> 2 borders filled with rohacell
629
630 twidth = 2*(insuWidth + pcbWidth) + sensWidth;
631 Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. };
632 twidth -= 2 * insuWidth;
633 Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. };
634 Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. };
635 Float_t theight = 2*hFrameHeight + sensHeight;
636 Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.};
b17c0c87 637 Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.};
3c084d9f 638 Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.};
b17c0c87 639 Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.};
b17c0c87 640 Float_t xx;
641 Float_t xxmax = (bFrameLength - nulocLength)/2.;
642 Int_t index=0;
643
644 if (stations[2]) {
645
646//********************************************************************
647// Station 3 **
648//********************************************************************
649 // indices 1 and 2 for first and second chambers in the station
650 // iChamber (first chamber) kept for other quanties than Z,
651 // assumed to be the same in both chambers
652 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4];
653 iChamber2 =(AliMUONChamber*) (*fChambers)[5];
654 zpos1=iChamber1->Z();
655 zpos2=iChamber2->Z();
656 dstation = zpos2 - zpos1;
657
b64652f5 658// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
b17c0c87 659//
660// Mother volume
661 tpar[0] = iChamber->RInner()-dframep;
662 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
21a18f36 663 tpar[2] = dstation/5;
b17c0c87 664 gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3);
665 gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3);
21a18f36 666 gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "MANY");
667 gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "MANY");
b17c0c87 668
669 // volumes for slat geometry (xx=5,..,10 chamber id):
670 // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes
671 // SxxG --> Sensitive volume (gas)
672 // SxxP --> PCB (copper)
673 // SxxI --> Insulator (vetronite)
674 // SxxC --> Carbon panel
675 // SxxR --> Rohacell
676 // SxxH, SxxV --> Horizontal and Vertical frames (vetronite)
21a18f36 677 // SB5x --> Volumes for the 35 cm long PCB
b17c0c87 678 // slat dimensions: slat is a MOTHER volume!!! made of air
679
21a18f36 680 // only for chamber 5: slat 1 has a PCB shorter by 5cm!
681
682 Float_t tlength = 35.;
683 Float_t panelpar2[3] = { tlength/2., panelpar[1], panelpar[2]};
684 Float_t rohapar2[3] = { tlength/2., rohapar[1], rohapar[2]};
685 Float_t insupar2[3] = { tlength/2., insupar[1], insupar[2]};
686 Float_t pcbpar2[3] = { tlength/2., pcbpar[1], pcbpar[2]};
687 Float_t senspar2[3] = { tlength/2., senspar[1], senspar[2]};
688 Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]};
689 Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]};
690
a083207d 691 const Int_t nSlats3 = 5; // number of slats per quadrant
692 const Int_t nPCB3[nSlats3] = {3,3,4,3,2}; // n PCB per slat
21a18f36 693 const Float_t xpos3[nSlats3] = {31., 40., 0., 0., 0.};
b17c0c87 694 Float_t slatLength3[nSlats3];
695
696 // create and position the slat (mother) volumes
697
6c5ddcfa 698 char volNam5[5];
699 char volNam6[5];
f9f7c205 700 Float_t xSlat3;
b17c0c87 701
21a18f36 702 Float_t spar2[3];
6c5ddcfa 703 for (i = 0; i<nSlats3; i++){
3c084d9f 704 slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength;
a083207d 705 xSlat3 = slatLength3[i]/2. - vFrameLength/2. + xpos3[i];
21a18f36 706 if (i==1 || i==0) slatLength3[i] -= 2. *dSlatLength; // frame out in PCB with circular border
a083207d 707 Float_t ySlat31 = sensHeight * i - yOverlap * i;
708 Float_t ySlat32 = -sensHeight * i + yOverlap * i;
3c084d9f 709 spar[0] = slatLength3[i]/2.;
710 spar[1] = slatHeight/2.;
711 spar[2] = slatWidth/2. * 1.01;
21a18f36 712 // take away 5 cm from the first slat in chamber 5
713 Float_t xSlat32 = 0;
714 if (i==1 || i==2) { // 1 pcb is shortened by 5cm
715 spar2[0] = spar[0]-5./2.;
716 xSlat32 = xSlat3 - 5/2.;
717 }
718 else {
719 spar2[0] = spar[0];
720 xSlat32 = xSlat3;
721 }
722 spar2[1] = spar[1];
723 spar2[2] = spar[2];
3c084d9f 724 Float_t dzCh3=spar[2] * 1.01;
725 // zSlat to be checked (odd downstream or upstream?)
726 Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2];
727 sprintf(volNam5,"S05%d",i);
21a18f36 728 gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar2,3);
729 gMC->Gspos(volNam5, i*4+1,"C05M", xSlat32, ySlat31, zSlat+2.*dzCh3, 0, "ONLY");
730 gMC->Gspos(volNam5, i*4+2,"C05M",-xSlat32, ySlat31, zSlat-2.*dzCh3, 0, "ONLY");
731
a083207d 732 if (i>0) {
21a18f36 733 gMC->Gspos(volNam5, i*4+3,"C05M", xSlat32, ySlat32, zSlat+2.*dzCh3, 0, "ONLY");
734 gMC->Gspos(volNam5, i*4+4,"C05M",-xSlat32, ySlat32, zSlat-2.*dzCh3, 0, "ONLY");
a083207d 735 }
3c084d9f 736 sprintf(volNam6,"S06%d",i);
737 gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3);
738 gMC->Gspos(volNam6, i*4+1,"C06M", xSlat3, ySlat31, zSlat+2.*dzCh3, 0, "ONLY");
739 gMC->Gspos(volNam6, i*4+2,"C06M",-xSlat3, ySlat31, zSlat-2.*dzCh3, 0, "ONLY");
a083207d 740 if (i>0) {
741 gMC->Gspos(volNam6, i*4+3,"C06M", xSlat3, ySlat32, zSlat+2.*dzCh3, 0, "ONLY");
742 gMC->Gspos(volNam6, i*4+4,"C06M",-xSlat3, ySlat32, zSlat-2.*dzCh3, 0, "ONLY");
743 }
3c084d9f 744 }
1e8fff9c 745
746 // create the panel volume
b17c0c87 747
6c5ddcfa 748 gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3);
21a18f36 749 gMC->Gsvolu("SB5C","BOX",panelMaterial,panelpar2,3);
6c5ddcfa 750 gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3);
1e8fff9c 751
752 // create the rohacell volume
b17c0c87 753
6c5ddcfa 754 gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3);
21a18f36 755 gMC->Gsvolu("SB5R","BOX",rohaMaterial,rohapar2,3);
6c5ddcfa 756 gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3);
1e8fff9c 757
3c084d9f 758 // create the insulating material volume
759
760 gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3);
21a18f36 761 gMC->Gsvolu("SB5I","BOX",insuMaterial,insupar2,3);
3c084d9f 762 gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3);
763
764 // create the PCB volume
765
766 gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3);
21a18f36 767 gMC->Gsvolu("SB5P","BOX",pcbMaterial,pcbpar2,3);
3c084d9f 768 gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3);
769
770 // create the sensitive volumes,
771 gMC->Gsvolu("S05G","BOX",sensMaterial,0,0);
772 gMC->Gsvolu("S06G","BOX",sensMaterial,0,0);
773
774
1e8fff9c 775 // create the vertical frame volume
b17c0c87 776
6c5ddcfa 777 gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3);
778 gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 779
780 // create the horizontal frame volume
b17c0c87 781
6c5ddcfa 782 gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3);
21a18f36 783 gMC->Gsvolu("SB5H","BOX",hFrameMaterial,hFramepar2,3);
6c5ddcfa 784 gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 785
786 // create the horizontal border volume
b17c0c87 787
6c5ddcfa 788 gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3);
21a18f36 789 gMC->Gsvolu("SB5B","BOX",bFrameMaterial,bFramepar2,3);
6c5ddcfa 790 gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3);
1e8fff9c 791
b17c0c87 792 index=0;
6c5ddcfa 793 for (i = 0; i<nSlats3; i++){
794 sprintf(volNam5,"S05%d",i);
795 sprintf(volNam6,"S06%d",i);
f9f7c205 796 Float_t xvFrame = (slatLength3[i] - vFrameLength)/2.;
21a18f36 797 Float_t xvFrame2 = xvFrame;
798 if ( i==1 || i ==2 ) xvFrame2 -= 5./2.;
3c084d9f 799 // position the vertical frames
21a18f36 800 if (i!=1 && i!=0) {
801 gMC->Gspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY");
802 gMC->Gspos("S05V",2*i ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY");
3c084d9f 803 gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY");
804 gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY");
805 }
806 // position the panels and the insulating material
6c5ddcfa 807 for (j=0; j<nPCB3[i]; j++){
1e8fff9c 808 index++;
6c5ddcfa 809 Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5);
21a18f36 810 Float_t xx2 = xx + 5/2.;
3c084d9f 811
812 Float_t zPanel = spar[2] - panelpar[2];
21a18f36 813 if ( (i==1 || i==2) && j == nPCB3[i]-1) { // 1 pcb is shortened by 5cm
814 gMC->Gspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
815 gMC->Gspos("SB5C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
816 gMC->Gspos("SB5I",index ,volNam5, xx, 0., 0 , 0, "ONLY");
817 }
818 else if ( (i==1 || i==2) && j < nPCB3[i]-1) {
819 gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY");
820 gMC->Gspos("S05C",2*index ,volNam5, xx2, 0.,-zPanel , 0, "ONLY");
821 gMC->Gspos("S05I",index ,volNam5, xx2, 0., 0 , 0, "ONLY");
822 }
823 else {
824 gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
825 gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
826 gMC->Gspos("S05I",index ,volNam5, xx, 0., 0 , 0, "ONLY");
827 }
3c084d9f 828 gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY");
829 gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY");
3c084d9f 830 gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY");
1e8fff9c 831 }
a9e2aefa 832 }
21a18f36 833
3c084d9f 834 // position the rohacell volume inside the panel volume
835 gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY");
21a18f36 836 gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY");
3c084d9f 837 gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY");
838
839 // position the PCB volume inside the insulating material volume
840 gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY");
21a18f36 841 gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY");
3c084d9f 842 gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY");
843 // position the horizontal frame volume inside the PCB volume
844 gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY");
21a18f36 845 gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY");
3c084d9f 846 gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY");
847 // position the sensitive volume inside the horizontal frame volume
848 gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3);
21a18f36 849 gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3);
3c084d9f 850 gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3);
851 // position the border volumes inside the PCB volume
852 Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.;
853 gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY");
854 gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY");
21a18f36 855 gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY");
856 gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY");
3c084d9f 857 gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY");
858 gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY");
859
1e8fff9c 860 // create the NULOC volume and position it in the horizontal frame
b17c0c87 861
6c5ddcfa 862 gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3);
863 gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3);
6c5ddcfa 864 index = 0;
21a18f36 865 Float_t xxmax2 = xxmax - 5./2.;
866 for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) {
1e8fff9c 867 index++;
6c5ddcfa 868 gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
869 gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY");
21a18f36 870 if (xx > -xxmax2 && xx< xxmax2) {
871 gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
872 gMC->Gspos("S05N",2*index ,"SB5B", xx, 0., bFrameWidth/4., 0, "ONLY");
873 }
6c5ddcfa 874 gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
875 gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY");
1e8fff9c 876 }
3c084d9f 877
878 // position the volumes approximating the circular section of the pipe
a083207d 879 Float_t yoffs = sensHeight/2. - yOverlap;
3c084d9f 880 Float_t epsilon = 0.001;
881 Int_t ndiv=6;
882 Float_t divpar[3];
883 Double_t dydiv= sensHeight/ndiv;
21a18f36 884 Double_t ydiv = yoffs -dydiv;
3c084d9f 885 Int_t imax=0;
3c084d9f 886 imax = 1;
21a18f36 887 Float_t rmin = 33.;
a083207d 888 Float_t z1 = spar[2], z2=2*spar[2]*1.01;
3c084d9f 889 for (Int_t idiv=0;idiv<ndiv; idiv++){
890 ydiv+= dydiv;
425ebd0a 891 Float_t xdiv = 0.;
3c084d9f 892 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
893 divpar[0] = (pcbLength-xdiv)/2.;
894 divpar[1] = dydiv/2. - epsilon;
895 divpar[2] = sensWidth/2.;
425ebd0a 896 Float_t xvol=(pcbLength+xdiv)/2.+1.999;
a083207d 897 Float_t yvol=ydiv + dydiv/2.;
21a18f36 898 //printf ("y ll = %f y ur = %f \n",yvol - divpar[1], yvol + divpar[1]);
3c084d9f 899 gMC->Gsposp("S05G",imax+4*idiv+1,"C05M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
900 gMC->Gsposp("S06G",imax+4*idiv+1,"C06M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
a083207d 901 gMC->Gsposp("S05G",imax+4*idiv+2,"C05M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
902 gMC->Gsposp("S06G",imax+4*idiv+2,"C06M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
903 gMC->Gsposp("S05G",imax+4*idiv+3,"C05M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
904 gMC->Gsposp("S06G",imax+4*idiv+3,"C06M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
905 gMC->Gsposp("S05G",imax+4*idiv+4,"C05M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
906 gMC->Gsposp("S06G",imax+4*idiv+4,"C06M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
3c084d9f 907 }
b17c0c87 908 }
b17c0c87 909
a9e2aefa 910
3c084d9f 911 if (stations[3]) {
912
a9e2aefa 913//********************************************************************
914// Station 4 **
915//********************************************************************
916 // indices 1 and 2 for first and second chambers in the station
917 // iChamber (first chamber) kept for other quanties than Z,
918 // assumed to be the same in both chambers
919 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6];
920 iChamber2 =(AliMUONChamber*) (*fChambers)[7];
921 zpos1=iChamber1->Z();
922 zpos2=iChamber2->Z();
923 dstation = zpos2 - zpos1;
b64652f5 924// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
a9e2aefa 925
926//
927// Mother volume
928 tpar[0] = iChamber->RInner()-dframep;
929 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
21a18f36 930 tpar[2] = dstation/5;
a9e2aefa 931
932 gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3);
933 gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3);
934 gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
935 gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 936
a9e2aefa 937
f9f7c205 938 const Int_t nSlats4 = 6; // number of slats per quadrant
425ebd0a 939 const Int_t nPCB4[nSlats4] = {4,4,5,5,4,3}; // n PCB per slat
21a18f36 940 const Float_t xpos4[nSlats4] = {38.5, 40., 0., 0., 0., 0.};
6c5ddcfa 941 Float_t slatLength4[nSlats4];
1e8fff9c 942
943 // create and position the slat (mother) volumes
944
6c5ddcfa 945 char volNam7[5];
946 char volNam8[5];
1e8fff9c 947 Float_t xSlat4;
f9f7c205 948 Float_t ySlat4;
1e8fff9c 949
6c5ddcfa 950 for (i = 0; i<nSlats4; i++){
a083207d 951 slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength;
952 xSlat4 = slatLength4[i]/2. - vFrameLength/2. + xpos4[i];
21a18f36 953 if (i==1 || i==0) slatLength4[i] -= 2. *dSlatLength; // frame out in PCB with circular border
a083207d 954 ySlat4 = sensHeight * i - yOverlap *i;
955
956 spar[0] = slatLength4[i]/2.;
957 spar[1] = slatHeight/2.;
958 spar[2] = slatWidth/2.*1.01;
959 Float_t dzCh4=spar[2]*1.01;
960 // zSlat to be checked (odd downstream or upstream?)
961 Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2];
962 sprintf(volNam7,"S07%d",i);
963 gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3);
964 gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
965 gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
966 if (i>0) {
967 gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
968 gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
969 }
970 sprintf(volNam8,"S08%d",i);
971 gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3);
972 gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
973 gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
974 if (i>0) {
975 gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
976 gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
977 }
a9e2aefa 978 }
a083207d 979
3c084d9f 980
981 // create the panel volume
1e8fff9c 982
3c084d9f 983 gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3);
984 gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3);
a9e2aefa 985
3c084d9f 986 // create the rohacell volume
987
988 gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3);
989 gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3);
1e8fff9c 990
1e8fff9c 991 // create the insulating material volume
992
6c5ddcfa 993 gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3);
994 gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3);
1e8fff9c 995
3c084d9f 996 // create the PCB volume
1e8fff9c 997
3c084d9f 998 gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3);
999 gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3);
1e8fff9c 1000
3c084d9f 1001 // create the sensitive volumes,
1002
1003 gMC->Gsvolu("S07G","BOX",sensMaterial,0,0);
1004 gMC->Gsvolu("S08G","BOX",sensMaterial,0,0);
1e8fff9c 1005
1006 // create the vertical frame volume
1007
6c5ddcfa 1008 gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3);
1009 gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 1010
1011 // create the horizontal frame volume
1012
6c5ddcfa 1013 gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3);
1014 gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 1015
1016 // create the horizontal border volume
1017
6c5ddcfa 1018 gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3);
1019 gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3);
3c084d9f 1020
1021 index=0;
6c5ddcfa 1022 for (i = 0; i<nSlats4; i++){
1023 sprintf(volNam7,"S07%d",i);
1024 sprintf(volNam8,"S08%d",i);
1025 Float_t xvFrame = (slatLength4[i] - vFrameLength)/2.;
3c084d9f 1026 // position the vertical frames
21a18f36 1027 if (i!=1 && i!=0) {
a083207d 1028 gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY");
1029 gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY");
1030 gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY");
1031 gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY");
1032 }
3c084d9f 1033 // position the panels and the insulating material
6c5ddcfa 1034 for (j=0; j<nPCB4[i]; j++){
1e8fff9c 1035 index++;
6c5ddcfa 1036 Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5);
3c084d9f 1037
1038 Float_t zPanel = spar[2] - panelpar[2];
1039 gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY");
1040 gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY");
1041 gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY");
1042 gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY");
1043
1044 gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY");
1045 gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY");
1e8fff9c 1046 }
a9e2aefa 1047 }
1e8fff9c 1048
3c084d9f 1049 // position the rohacell volume inside the panel volume
1050 gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY");
1051 gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY");
1052
1053 // position the PCB volume inside the insulating material volume
1054 gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY");
1055 gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY");
1056 // position the horizontal frame volume inside the PCB volume
1057 gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY");
1058 gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY");
1059 // position the sensitive volume inside the horizontal frame volume
1060 gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3);
1061 gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3);
3c084d9f 1062 // position the border volumes inside the PCB volume
1063 Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.;
1064 gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY");
1065 gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY");
1066 gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY");
1067 gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY");
1068
1e8fff9c 1069 // create the NULOC volume and position it in the horizontal frame
3c084d9f 1070
6c5ddcfa 1071 gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3);
1072 gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3);
3c084d9f 1073 index = 0;
21a18f36 1074 for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) {
1e8fff9c 1075 index++;
6c5ddcfa 1076 gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1077 gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY");
1078 gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1079 gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY");
1e8fff9c 1080 }
a083207d 1081
1082 // position the volumes approximating the circular section of the pipe
21a18f36 1083 Float_t yoffs = sensHeight/2. - yOverlap;
a083207d 1084 Float_t epsilon = 0.001;
1085 Int_t ndiv=6;
1086 Float_t divpar[3];
1087 Double_t dydiv= sensHeight/ndiv;
21a18f36 1088 Double_t ydiv = yoffs -dydiv;
a083207d 1089 Int_t imax=0;
a083207d 1090 imax = 1;
1091 Float_t rmin = 40.;
1092 Float_t z1 = -spar[2], z2=2*spar[2]*1.01;
1093 for (Int_t idiv=0;idiv<ndiv; idiv++){
1094 ydiv+= dydiv;
425ebd0a 1095 Float_t xdiv = 0.;
a083207d 1096 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1097 divpar[0] = (pcbLength-xdiv)/2.;
1098 divpar[1] = dydiv/2. - epsilon;
1099 divpar[2] = sensWidth/2.;
425ebd0a 1100 Float_t xvol=(pcbLength+xdiv)/2.+1.999;
a083207d 1101 Float_t yvol=ydiv + dydiv/2.;
1102 gMC->Gsposp("S07G",imax+4*idiv+1,"C07M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1103 gMC->Gsposp("S08G",imax+4*idiv+1,"C08M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1104 gMC->Gsposp("S07G",imax+4*idiv+2,"C07M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1105 gMC->Gsposp("S08G",imax+4*idiv+2,"C08M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1106 gMC->Gsposp("S07G",imax+4*idiv+3,"C07M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1107 gMC->Gsposp("S08G",imax+4*idiv+3,"C08M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1108 gMC->Gsposp("S07G",imax+4*idiv+4,"C07M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1109 gMC->Gsposp("S08G",imax+4*idiv+4,"C08M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1110 }
1111
1112
1113
1114
1115
b17c0c87 1116 }
3c084d9f 1117
b17c0c87 1118 if (stations[4]) {
1119
1e8fff9c 1120
a9e2aefa 1121//********************************************************************
1122// Station 5 **
1123//********************************************************************
1124 // indices 1 and 2 for first and second chambers in the station
1125 // iChamber (first chamber) kept for other quanties than Z,
1126 // assumed to be the same in both chambers
1127 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8];
1128 iChamber2 =(AliMUONChamber*) (*fChambers)[9];
1129 zpos1=iChamber1->Z();
1130 zpos2=iChamber2->Z();
1131 dstation = zpos2 - zpos1;
b64652f5 1132// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
3c084d9f 1133
a9e2aefa 1134//
1135// Mother volume
1136 tpar[0] = iChamber->RInner()-dframep;
1137 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
3c084d9f 1138 tpar[2] = dstation/5.;
a9e2aefa 1139
1140 gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3);
1141 gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3);
1142 gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1143 gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
a9e2aefa 1144
a9e2aefa 1145
1e8fff9c 1146 const Int_t nSlats5 = 7; // number of slats per quadrant
a083207d 1147 const Int_t nPCB5[nSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat
21a18f36 1148 const Float_t xpos5[nSlats5] = {38.5, 40., 0., 0., 0., 0., 0.};
6c5ddcfa 1149 Float_t slatLength5[nSlats5];
6c5ddcfa 1150 char volNam9[5];
1151 char volNam10[5];
f9f7c205 1152 Float_t xSlat5;
1153 Float_t ySlat5;
1e8fff9c 1154
6c5ddcfa 1155 for (i = 0; i<nSlats5; i++){
1156 slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength;
a083207d 1157 xSlat5 = slatLength5[i]/2. - vFrameLength/2. +xpos5[i];
21a18f36 1158 if (i==1 || i==0) slatLength5[i] -= 2. *dSlatLength; // frame out in PCB with circular border
f9f7c205 1159 ySlat5 = sensHeight * i - yOverlap * i;
6c5ddcfa 1160 spar[0] = slatLength5[i]/2.;
1161 spar[1] = slatHeight/2.;
3c084d9f 1162 spar[2] = slatWidth/2. * 1.01;
1163 Float_t dzCh5=spar[2]*1.01;
1e8fff9c 1164 // zSlat to be checked (odd downstream or upstream?)
3c084d9f 1165 Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2];
6c5ddcfa 1166 sprintf(volNam9,"S09%d",i);
1167 gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3);
e1ad7d45 1168 gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1169 gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
f9f7c205 1170 if (i>0) {
3c084d9f 1171 gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1172 gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
f9f7c205 1173 }
6c5ddcfa 1174 sprintf(volNam10,"S10%d",i);
1175 gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3);
e1ad7d45 1176 gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1177 gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
f9f7c205 1178 if (i>0) {
3c084d9f 1179 gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1180 gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
f9f7c205 1181 }
a9e2aefa 1182 }
1183
1e8fff9c 1184 // create the panel volume
3c084d9f 1185
6c5ddcfa 1186 gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3);
1187 gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3);
3c084d9f 1188
1e8fff9c 1189 // create the rohacell volume
3c084d9f 1190
6c5ddcfa 1191 gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3);
1192 gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3);
3c084d9f 1193
1194 // create the insulating material volume
1195
1196 gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3);
1197 gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3);
1198
1199 // create the PCB volume
1200
1201 gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3);
1202 gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3);
1203
1204 // create the sensitive volumes,
1205
1206 gMC->Gsvolu("S09G","BOX",sensMaterial,0,0);
1207 gMC->Gsvolu("S10G","BOX",sensMaterial,0,0);
3c084d9f 1208
1e8fff9c 1209 // create the vertical frame volume
3c084d9f 1210
6c5ddcfa 1211 gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3);
1212 gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 1213
1214 // create the horizontal frame volume
3c084d9f 1215
6c5ddcfa 1216 gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3);
1217 gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 1218
1219 // create the horizontal border volume
1220
6c5ddcfa 1221 gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3);
1222 gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3);
1e8fff9c 1223
3c084d9f 1224 index=0;
6c5ddcfa 1225 for (i = 0; i<nSlats5; i++){
1226 sprintf(volNam9,"S09%d",i);
1227 sprintf(volNam10,"S10%d",i);
1228 Float_t xvFrame = (slatLength5[i] - vFrameLength)/2.;
3c084d9f 1229 // position the vertical frames
21a18f36 1230 if (i!=1 && i!=0) {
a083207d 1231 gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY");
1232 gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY");
1233 gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY");
1234 gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY");
1235 }
3c084d9f 1236
1237 // position the panels and the insulating material
6c5ddcfa 1238 for (j=0; j<nPCB5[i]; j++){
1e8fff9c 1239 index++;
3c084d9f 1240 Float_t xx = sensLength * (-nPCB5[i]/2.+j+.5);
1241
1242 Float_t zPanel = spar[2] - panelpar[2];
1243 gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY");
1244 gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY");
1245 gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY");
1246 gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY");
1247
1248 gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY");
1249 gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY");
1e8fff9c 1250 }
1251 }
1252
3c084d9f 1253 // position the rohacell volume inside the panel volume
1254 gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY");
1255 gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY");
1256
1257 // position the PCB volume inside the insulating material volume
1258 gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY");
1259 gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY");
1260 // position the horizontal frame volume inside the PCB volume
1261 gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY");
1262 gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY");
1263 // position the sensitive volume inside the horizontal frame volume
1264 gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3);
1265 gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3);
3c084d9f 1266 // position the border volumes inside the PCB volume
1267 Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.;
1268 gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY");
1269 gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY");
1270 gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY");
1271 gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY");
1272
1e8fff9c 1273 // create the NULOC volume and position it in the horizontal frame
3c084d9f 1274
6c5ddcfa 1275 gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3);
1276 gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3);
3c084d9f 1277 index = 0;
21a18f36 1278 for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) {
1e8fff9c 1279 index++;
6c5ddcfa 1280 gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1281 gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY");
1282 gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1283 gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY");
a9e2aefa 1284 }
a083207d 1285 // position the volumes approximating the circular section of the pipe
21a18f36 1286 Float_t yoffs = sensHeight/2. - yOverlap;
a083207d 1287 Float_t epsilon = 0.001;
1288 Int_t ndiv=6;
1289 Float_t divpar[3];
1290 Double_t dydiv= sensHeight/ndiv;
21a18f36 1291 Double_t ydiv = yoffs -dydiv;
a083207d 1292 Int_t imax=0;
1293 // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat];
1294 imax = 1;
1295 Float_t rmin = 40.;
1296 Float_t z1 = spar[2], z2=2*spar[2]*1.01;
1297 for (Int_t idiv=0;idiv<ndiv; idiv++){
1298 ydiv+= dydiv;
425ebd0a 1299 Float_t xdiv = 0.;
a083207d 1300 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1301 divpar[0] = (pcbLength-xdiv)/2.;
1302 divpar[1] = dydiv/2. - epsilon;
1303 divpar[2] = sensWidth/2.;
425ebd0a 1304 Float_t xvol=(pcbLength+xdiv)/2. + 1.999;
a083207d 1305 Float_t yvol=ydiv + dydiv/2.;
1306 gMC->Gsposp("S09G",imax+4*idiv+1,"C09M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1307 gMC->Gsposp("S10G",imax+4*idiv+1,"C10M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1308 gMC->Gsposp("S09G",imax+4*idiv+2,"C09M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1309 gMC->Gsposp("S10G",imax+4*idiv+2,"C10M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1310 gMC->Gsposp("S09G",imax+4*idiv+3,"C09M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1311 gMC->Gsposp("S10G",imax+4*idiv+3,"C10M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1312 gMC->Gsposp("S09G",imax+4*idiv+4,"C09M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1313 gMC->Gsposp("S10G",imax+4*idiv+4,"C10M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1314 }
1315
b17c0c87 1316 }
1317
1e8fff9c 1318
a9e2aefa 1319///////////////////////////////////////
1320// GEOMETRY FOR THE TRIGGER CHAMBERS //
1321///////////////////////////////////////
1322
1323// 03/00 P. Dupieux : introduce a slighly more realistic
1324// geom. of the trigger readout planes with
1325// 2 Zpos per trigger plane (alternate
1326// between left and right of the trigger)
1327
1328// Parameters of the Trigger Chambers
1329
236fe2c5 1330// DP03-01 introduce dead zone of +/- 2 cm arround x=0 (as in TDR, fig3.27)
1331 const Float_t kDXZERO=2.;
a9e2aefa 1332 const Float_t kXMC1MIN=34.;
1333 const Float_t kXMC1MED=51.;
1334 const Float_t kXMC1MAX=272.;
1335 const Float_t kYMC1MIN=34.;
1336 const Float_t kYMC1MAX=51.;
1337 const Float_t kRMIN1=50.;
236fe2c5 1338// DP03-01 const Float_t kRMAX1=62.;
1339 const Float_t kRMAX1=64.;
a9e2aefa 1340 const Float_t kRMIN2=50.;
236fe2c5 1341// DP03-01 const Float_t kRMAX2=66.;
1342 const Float_t kRMAX2=68.;
a9e2aefa 1343
1344// zposition of the middle of the gas gap in mother vol
1345 const Float_t kZMCm=-3.6;
1346 const Float_t kZMCp=+3.6;
1347
1348
1349// TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1
1350
1351 // iChamber 1 and 2 for first and second chambers in the station
1352 // iChamber (first chamber) kept for other quanties than Z,
1353 // assumed to be the same in both chambers
1354 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10];
1355 iChamber2 =(AliMUONChamber*) (*fChambers)[11];
1356
1357 // 03/00
1358 // zpos1 and zpos2 are now the middle of the first and second
1359 // plane of station 1 :
1360 // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm
1361 // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm
1362 //
1363 // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps)
1364 // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps)
1365 // rem : the total thickness accounts for 1 mm of al on both
1366 // side of the RPCs (see zpos1 and zpos2), as previously
1367
1368 zpos1=iChamber1->Z();
1369 zpos2=iChamber2->Z();
1370
1371
1372// Mother volume definition
1373 tpar[0] = iChamber->RInner();
1374 tpar[1] = iChamber->ROuter();
1375 tpar[2] = 4.0;
1376 gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3);
1377 gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3);
1378
1379// Definition of the flange between the beam shielding and the RPC
1380 tpar[0]= kRMIN1;
1381 tpar[1]= kRMAX1;
1382 tpar[2]= 4.0;
1383
1384 gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al
1385 gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY");
1386 gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY");
1387
1388
1389// FIRST PLANE OF STATION 1
1390
1391// ratios of zpos1m/zpos1p and inverse for first plane
1392 Float_t zmp=(zpos1-3.6)/(zpos1+3.6);
1393 Float_t zpm=1./zmp;
1394
1395
1396// Definition of prototype for chambers in the first plane
1397
1398 tpar[0]= 0.;
1399 tpar[1]= 0.;
1400 tpar[2]= 0.;
1401
1402 gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al
1403 gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1404 gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1405
1406// chamber type A
1407 tpar[0] = -1.;
1408 tpar[1] = -1.;
1409
236fe2c5 1410// DP03-01 const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.;
1411 const Float_t kXMC1A=kDXZERO+kXMC1MED+(kXMC1MAX-kXMC1MED)/2.;
a9e2aefa 1412 const Float_t kYMC1Am=0.;
1413 const Float_t kYMC1Ap=0.;
1414
1415 tpar[2] = 0.1;
1416 gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3);
1417 tpar[2] = 0.3;
1418 gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3);
1419
1420 tpar[2] = 0.4;
1421 tpar[0] = (kXMC1MAX-kXMC1MED)/2.;
1422 tpar[1] = kYMC1MIN;
1423
1424 gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3);
1425 gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3);
1426
1427// chamber type B
1428 Float_t tpar1save=tpar[1];
1429 Float_t y1msave=kYMC1Am;
1430 Float_t y1psave=kYMC1Ap;
1431
1432 tpar[0] = (kXMC1MAX-kXMC1MIN)/2.;
1433 tpar[1] = (kYMC1MAX-kYMC1MIN)/2.;
1434
236fe2c5 1435// DP03-01 const Float_t kXMC1B=kXMC1MIN+tpar[0];
1436 const Float_t kXMC1B=kDXZERO+kXMC1MIN+tpar[0];
a9e2aefa 1437 const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1];
1438 const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1];
1439
1440 gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3);
1441 gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3);
1442 gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3);
1443 gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3);
1444
1445// chamber type C (end of type B !!)
1446 tpar1save=tpar[1];
1447 y1msave=kYMC1Bm;
1448 y1psave=kYMC1Bp;
1449
1450 tpar[0] = kXMC1MAX/2;
1451 tpar[1] = kYMC1MAX/2;
1452
236fe2c5 1453
1454// DP03-01 const Float_t kXMC1C=tpar[0];
1455 const Float_t kXMC1C=kDXZERO+tpar[0];
a9e2aefa 1456// warning : same Z than type B
1457 const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1];
1458 const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1];
1459
1460 gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3);
1461 gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3);
1462 gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3);
1463 gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3);
1464
1465// chamber type D, E and F (same size)
1466 tpar1save=tpar[1];
1467 y1msave=kYMC1Cm;
1468 y1psave=kYMC1Cp;
1469
1470 tpar[0] = kXMC1MAX/2.;
1471 tpar[1] = kYMC1MIN;
1472
236fe2c5 1473// DP03-01 const Float_t kXMC1D=tpar[0];
1474 const Float_t kXMC1D=kDXZERO+tpar[0];
a9e2aefa 1475 const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1];
1476 const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1];
1477
1478 gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3);
1479 gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3);
1480 gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3);
1481 gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3);
1482
1483
1484 tpar1save=tpar[1];
1485 y1msave=kYMC1Dm;
1486 y1psave=kYMC1Dp;
1487 const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1];
1488 const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1];
1489
1490 gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3);
1491 gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3);
1492 gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3);
1493 gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3);
1494
1495 tpar1save=tpar[1];
1496 y1msave=kYMC1Em;
1497 y1psave=kYMC1Ep;
1498 const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1];
1499 const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1];
1500
1501 gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3);
1502 gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3);
1503 gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3);
1504 gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3);
1505
1506// Positioning first plane in ALICE
1507 gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY");
1508
1509// End of geometry definition for the first plane of station 1
1510
1511
1512
1513// SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1
1514
1515 const Float_t kZ12=zpos2/zpos1;
1516
1517// Definition of prototype for chambers in the second plane of station 1
1518
1519 tpar[0]= 0.;
1520 tpar[1]= 0.;
1521 tpar[2]= 0.;
1522
1523 gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al
1524 gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1525 gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1526
1527// chamber type A
1528 tpar[0] = -1.;
1529 tpar[1] = -1.;
1530
1531 const Float_t kXMC2A=kXMC1A*kZ12;
1532 const Float_t kYMC2Am=0.;
1533 const Float_t kYMC2Ap=0.;
1534
1535 tpar[2] = 0.1;
1536 gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3);
1537 tpar[2] = 0.3;
1538 gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3);
1539
1540 tpar[2] = 0.4;
1541 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12;
1542 tpar[1] = kYMC1MIN*kZ12;
1543
1544 gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3);
1545 gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3);
1546
1547
1548// chamber type B
1549
1550 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12;
1551 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12;
1552
1553 const Float_t kXMC2B=kXMC1B*kZ12;
1554 const Float_t kYMC2Bp=kYMC1Bp*kZ12;
1555 const Float_t kYMC2Bm=kYMC1Bm*kZ12;
1556 gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3);
1557 gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3);
1558 gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3);
1559 gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3);
1560
1561
1562// chamber type C (end of type B !!)
1563
1564 tpar[0] = (kXMC1MAX/2)*kZ12;
1565 tpar[1] = (kYMC1MAX/2)*kZ12;
1566
1567 const Float_t kXMC2C=kXMC1C*kZ12;
1568 const Float_t kYMC2Cp=kYMC1Cp*kZ12;
1569 const Float_t kYMC2Cm=kYMC1Cm*kZ12;
1570 gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3);
1571 gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3);
1572 gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3);
1573 gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3);
1574
1575// chamber type D, E and F (same size)
1576
1577 tpar[0] = (kXMC1MAX/2.)*kZ12;
1578 tpar[1] = kYMC1MIN*kZ12;
1579
1580 const Float_t kXMC2D=kXMC1D*kZ12;
1581 const Float_t kYMC2Dp=kYMC1Dp*kZ12;
1582 const Float_t kYMC2Dm=kYMC1Dm*kZ12;
1583 gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3);
1584 gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3);
1585 gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3);
1586 gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3);
1587
1588 const Float_t kYMC2Ep=kYMC1Ep*kZ12;
1589 const Float_t kYMC2Em=kYMC1Em*kZ12;
1590 gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3);
1591 gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3);
1592 gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3);
1593 gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3);
1594
1595
1596 const Float_t kYMC2Fp=kYMC1Fp*kZ12;
1597 const Float_t kYMC2Fm=kYMC1Fm*kZ12;
1598 gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3);
1599 gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3);
1600 gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3);
1601 gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3);
1602
1603// Positioning second plane of station 1 in ALICE
1604
1605 gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY");
1606
1607// End of geometry definition for the second plane of station 1
1608
1609
1610
1611// TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2
1612
1613 // 03/00
1614 // zpos3 and zpos4 are now the middle of the first and second
1615 // plane of station 2 :
1616 // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm
1617 // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm
1618 //
1619 // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps)
1620 // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps)
1621 // rem : the total thickness accounts for 1 mm of al on both
1622 // side of the RPCs (see zpos3 and zpos4), as previously
1623 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12];
1624 iChamber2 =(AliMUONChamber*) (*fChambers)[13];
1625 Float_t zpos3=iChamber1->Z();
1626 Float_t zpos4=iChamber2->Z();
1627
1628
1629// Mother volume definition
1630 tpar[0] = iChamber->RInner();
1631 tpar[1] = iChamber->ROuter();
1632 tpar[2] = 4.0;
1633
1634 gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3);
1635 gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3);
1636
1637// Definition of the flange between the beam shielding and the RPC
1638// ???? interface shielding
1639
1640 tpar[0]= kRMIN2;
1641 tpar[1]= kRMAX2;
1642 tpar[2]= 4.0;
1643
1644 gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al
1645 gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY");
1646 gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY");
1647
1648
1649
1650// FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1
1651
1652 const Float_t kZ13=zpos3/zpos1;
1653
1654// Definition of prototype for chambers in the first plane of station 2
1655 tpar[0]= 0.;
1656 tpar[1]= 0.;
1657 tpar[2]= 0.;
1658
1659 gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al
1660 gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1661 gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1662
1663
1664// chamber type A
1665 tpar[0] = -1.;
1666 tpar[1] = -1.;
1667
1668 const Float_t kXMC3A=kXMC1A*kZ13;
1669 const Float_t kYMC3Am=0.;
1670 const Float_t kYMC3Ap=0.;
1671
1672 tpar[2] = 0.1;
1673 gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3);
1674 tpar[2] = 0.3;
1675 gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3);
1676
1677 tpar[2] = 0.4;
1678 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13;
1679 tpar[1] = kYMC1MIN*kZ13;
1680 gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3);
1681 gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3);
1682
1683
1684// chamber type B
1685 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13;
1686 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13;
1687
1688 const Float_t kXMC3B=kXMC1B*kZ13;
1689 const Float_t kYMC3Bp=kYMC1Bp*kZ13;
1690 const Float_t kYMC3Bm=kYMC1Bm*kZ13;
1691 gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3);
1692 gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3);
1693 gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3);
1694 gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3);
1695
1696
1697// chamber type C (end of type B !!)
1698 tpar[0] = (kXMC1MAX/2)*kZ13;
1699 tpar[1] = (kYMC1MAX/2)*kZ13;
1700
1701 const Float_t kXMC3C=kXMC1C*kZ13;
1702 const Float_t kYMC3Cp=kYMC1Cp*kZ13;
1703 const Float_t kYMC3Cm=kYMC1Cm*kZ13;
1704 gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3);
1705 gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3);
1706 gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3);
1707 gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3);
1708
1709
1710// chamber type D, E and F (same size)
1711
1712 tpar[0] = (kXMC1MAX/2.)*kZ13;
1713 tpar[1] = kYMC1MIN*kZ13;
1714
1715 const Float_t kXMC3D=kXMC1D*kZ13;
1716 const Float_t kYMC3Dp=kYMC1Dp*kZ13;
1717 const Float_t kYMC3Dm=kYMC1Dm*kZ13;
1718 gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3);
1719 gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3);
1720 gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3);
1721 gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3);
1722
1723 const Float_t kYMC3Ep=kYMC1Ep*kZ13;
1724 const Float_t kYMC3Em=kYMC1Em*kZ13;
1725 gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3);
1726 gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3);
1727 gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3);
1728 gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3);
1729
1730 const Float_t kYMC3Fp=kYMC1Fp*kZ13;
1731 const Float_t kYMC3Fm=kYMC1Fm*kZ13;
1732 gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3);
1733 gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3);
1734 gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3);
1735 gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3);
1736
1737
1738// Positioning first plane of station 2 in ALICE
1739
1740 gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY");
1741
1742// End of geometry definition for the first plane of station 2
1743
1744
1745
1746
1747// SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1
1748
1749 const Float_t kZ14=zpos4/zpos1;
1750
1751// Definition of prototype for chambers in the second plane of station 2
1752
1753 tpar[0]= 0.;
1754 tpar[1]= 0.;
1755 tpar[2]= 0.;
1756
1757 gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al
1758 gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1759 gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1760
1761// chamber type A
1762 tpar[0] = -1.;
1763 tpar[1] = -1.;
1764
1765 const Float_t kXMC4A=kXMC1A*kZ14;
1766 const Float_t kYMC4Am=0.;
1767 const Float_t kYMC4Ap=0.;
1768
1769 tpar[2] = 0.1;
1770 gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3);
1771 tpar[2] = 0.3;
1772 gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3);
1773
1774 tpar[2] = 0.4;
1775 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14;
1776 tpar[1] = kYMC1MIN*kZ14;
1777 gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3);
1778 gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3);
1779
1780
1781// chamber type B
1782 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14;
1783 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14;
1784
1785 const Float_t kXMC4B=kXMC1B*kZ14;
1786 const Float_t kYMC4Bp=kYMC1Bp*kZ14;
1787 const Float_t kYMC4Bm=kYMC1Bm*kZ14;
1788 gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3);
1789 gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3);
1790 gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3);
1791 gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3);
1792
1793
1794// chamber type C (end of type B !!)
1795 tpar[0] =(kXMC1MAX/2)*kZ14;
1796 tpar[1] = (kYMC1MAX/2)*kZ14;
1797
1798 const Float_t kXMC4C=kXMC1C*kZ14;
1799 const Float_t kYMC4Cp=kYMC1Cp*kZ14;
1800 const Float_t kYMC4Cm=kYMC1Cm*kZ14;
1801 gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3);
1802 gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3);
1803 gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3);
1804 gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3);
1805
1806
1807// chamber type D, E and F (same size)
1808 tpar[0] = (kXMC1MAX/2.)*kZ14;
1809 tpar[1] = kYMC1MIN*kZ14;
1810
1811 const Float_t kXMC4D=kXMC1D*kZ14;
1812 const Float_t kYMC4Dp=kYMC1Dp*kZ14;
1813 const Float_t kYMC4Dm=kYMC1Dm*kZ14;
1814 gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3);
1815 gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3);
1816 gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3);
1817 gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3);
1818
1819 const Float_t kYMC4Ep=kYMC1Ep*kZ14;
1820 const Float_t kYMC4Em=kYMC1Em*kZ14;
1821 gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3);
1822 gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3);
1823 gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3);
1824 gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3);
1825
1826 const Float_t kYMC4Fp=kYMC1Fp*kZ14;
1827 const Float_t kYMC4Fm=kYMC1Fm*kZ14;
1828 gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3);
1829 gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3);
1830 gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3);
1831 gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3);
1832
1833
1834// Positioning second plane of station 2 in ALICE
1835
1836 gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY");
1837
1838// End of geometry definition for the second plane of station 2
1839
1840// End of trigger geometry definition
1841
1842}
1843
1844
1845
1846//___________________________________________
1847void AliMUONv1::CreateMaterials()
1848{
1849 // *** DEFINITION OF AVAILABLE MUON MATERIALS ***
1850 //
b64652f5 1851 // Ar-CO2 gas (80%+20%)
a9e2aefa 1852 Float_t ag1[3] = { 39.95,12.01,16. };
1853 Float_t zg1[3] = { 18.,6.,8. };
1854 Float_t wg1[3] = { .8,.0667,.13333 };
1855 Float_t dg1 = .001821;
1856 //
1857 // Ar-buthane-freon gas -- trigger chambers
1858 Float_t atr1[4] = { 39.95,12.01,1.01,19. };
1859 Float_t ztr1[4] = { 18.,6.,1.,9. };
1860 Float_t wtr1[4] = { .56,.1262857,.2857143,.028 };
1861 Float_t dtr1 = .002599;
1862 //
1863 // Ar-CO2 gas
1864 Float_t agas[3] = { 39.95,12.01,16. };
1865 Float_t zgas[3] = { 18.,6.,8. };
1866 Float_t wgas[3] = { .74,.086684,.173316 };
1867 Float_t dgas = .0018327;
1868 //
1869 // Ar-Isobutane gas (80%+20%) -- tracking
1870 Float_t ag[3] = { 39.95,12.01,1.01 };
1871 Float_t zg[3] = { 18.,6.,1. };
1872 Float_t wg[3] = { .8,.057,.143 };
1873 Float_t dg = .0019596;
1874 //
1875 // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger
1876 Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
1877 Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
1878 Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
1879 Float_t dtrig = .0031463;
1880 //
1881 // bakelite
1882
1883 Float_t abak[3] = {12.01 , 1.01 , 16.};
1884 Float_t zbak[3] = {6. , 1. , 8.};
1885 Float_t wbak[3] = {6. , 6. , 1.};
1886 Float_t dbak = 1.4;
1887
1888 Float_t epsil, stmin, deemax, tmaxfd, stemax;
1889
1890 Int_t iSXFLD = gAlice->Field()->Integ();
1891 Float_t sXMGMX = gAlice->Field()->Max();
1892 //
1893 // --- Define the various materials for GEANT ---
1894 AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1895 AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1896 AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500);
1897 AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
1898 AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
1899 AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
1900 AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
1901 AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
1902 AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
1e8fff9c 1903 // materials for slat:
1904 // Sensitive area: gas (already defined)
1905 // PCB: copper
1906 // insulating material and frame: vetronite
1907 // walls: carbon, rohacell, carbon
1908 Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.};
1909 Float_t zglass[5]={ 6., 14., 8., 5., 11.};
1910 Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01};
1911 Float_t dglass=1.74;
1912
1913 // rohacell: C9 H13 N1 O2
1914 Float_t arohac[4] = {12.01, 1.01, 14.010, 16.};
1915 Float_t zrohac[4] = { 6., 1., 7., 8.};
1916 Float_t wrohac[4] = { 9., 13., 1., 2.};
1917 Float_t drohac = 0.03;
1918
1919 AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.);
1920 AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass);
1921 AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9);
1922 AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac);
1923
a9e2aefa 1924
1925 epsil = .001; // Tracking precision,
1926 stemax = -1.; // Maximum displacement for multiple scat
1927 tmaxfd = -20.; // Maximum angle due to field deflection
1928 deemax = -.3; // Maximum fractional energy loss, DLS
1929 stmin = -.8;
1930 //
1931 // Air
1932 AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1933 //
1934 // Aluminum
1935
1936 AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1937 fMaxDestepAlu, epsil, stmin);
1938 AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1939 fMaxDestepAlu, epsil, stmin);
1940 //
1941 // Ar-isoC4H10 gas
1942
1943 AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1944 fMaxDestepGas, epsil, stmin);
1945//
1946 // Ar-Isobuthane-Forane-SF6 gas
1947
1948 AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1949
1950 AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1951 fMaxDestepAlu, epsil, stmin);
1952
1953 AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1954 fMaxDestepAlu, epsil, stmin);
1e8fff9c 1955 // tracking media for slats: check the parameters!!
1956 AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd,
1957 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1958 AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd,
1959 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1960 AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd,
1961 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1962 AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd,
1963 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
a9e2aefa 1964}
1965
1966//___________________________________________
1967
1968void AliMUONv1::Init()
1969{
1970 //
1971 // Initialize Tracking Chambers
1972 //
1973
1974 printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n");
e17592e9 1975 Int_t i;
f665c1ea 1976 for (i=0; i<AliMUONConstants::NCh(); i++) {
a9e2aefa 1977 ( (AliMUONChamber*) (*fChambers)[i])->Init();
1978 }
1979
1980 //
1981 // Set the chamber (sensitive region) GEANT identifier
1982 AliMC* gMC = AliMC::GetMC();
1983 ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G"));
1984 ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G"));
b17c0c87 1985
a9e2aefa 1986 ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G"));
1987 ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G"));
b17c0c87 1988
1e8fff9c 1989 ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G"));
1990 ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G"));
b17c0c87 1991
1e8fff9c 1992 ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G"));
1993 ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G"));
b17c0c87 1994
1e8fff9c 1995 ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G"));
1996 ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G"));
b17c0c87 1997
a9e2aefa 1998 ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A"));
1999 ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A"));
2000 ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A"));
2001 ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A"));
2002
2003 printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n");
2004
2005 //cp
2006 printf("\n\n\n Start Init for Trigger Circuits\n\n\n");
f665c1ea 2007 for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) {
a9e2aefa 2008 ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i);
2009 }
2010 printf(" Finished Init for Trigger Circuits\n\n\n");
2011 //cp
2012
2013}
2014
2015//___________________________________________
2016void AliMUONv1::StepManager()
2017{
2018 Int_t copy, id;
2019 static Int_t idvol;
2020 static Int_t vol[2];
2021 Int_t ipart;
2022 TLorentzVector pos;
2023 TLorentzVector mom;
2024 Float_t theta,phi;
2025 Float_t destep, step;
681d067b 2026
1e8fff9c 2027 static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength;
2eb55fab 2028 const Float_t kBig = 1.e10;
a9e2aefa 2029 static Float_t hits[15];
2030
2031 TClonesArray &lhits = *fHits;
2032
2033 //
a9e2aefa 2034 //
2035 // Only charged tracks
2036 if( !(gMC->TrackCharge()) ) return;
2037 //
2038 // Only gas gap inside chamber
2039 // Tag chambers and record hits when track enters
2040 idvol=-1;
2041 id=gMC->CurrentVolID(copy);
2042
2eb55fab 2043 for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) {
a9e2aefa 2044 if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){
2eb55fab 2045 vol[0] = i;
2046 idvol = i-1;
a9e2aefa 2047 }
2048 }
2049 if (idvol == -1) return;
2050 //
2051 // Get current particle id (ipart), track position (pos) and momentum (mom)
2052 gMC->TrackPosition(pos);
2053 gMC->TrackMomentum(mom);
2054
2055 ipart = gMC->TrackPid();
a9e2aefa 2056
2057 //
2058 // momentum loss and steplength in last step
2059 destep = gMC->Edep();
2060 step = gMC->TrackStep();
2061
2062 //
2063 // record hits when track enters ...
2064 if( gMC->IsTrackEntering()) {
2065 gMC->SetMaxStep(fMaxStepGas);
2066 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
2067 Double_t rt = TMath::Sqrt(tc);
2068 Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]);
2eb55fab 2069 Double_t tx = mom[0]/pmom;
2070 Double_t ty = mom[1]/pmom;
2071 Double_t tz = mom[2]/pmom;
2072 Double_t s = ((AliMUONChamber*)(*fChambers)[idvol])
a9e2aefa 2073 ->ResponseModel()
2074 ->Pitch()/tz;
2075 theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
2076 phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
2077 hits[0] = Float_t(ipart); // Geant3 particle type
2eb55fab 2078 hits[1] = pos[0]+s*tx; // X-position for hit
2079 hits[2] = pos[1]+s*ty; // Y-position for hit
2080 hits[3] = pos[2]+s*tz; // Z-position for hit
a9e2aefa 2081 hits[4] = theta; // theta angle of incidence
2082 hits[5] = phi; // phi angle of incidence
2eb55fab 2083 hits[8] = (Float_t) fNPadHits; // first padhit
a9e2aefa 2084 hits[9] = -1; // last pad hit
2eb55fab 2085 hits[10] = mom[3]; // hit momentum P
2086 hits[11] = mom[0]; // Px
2087 hits[12] = mom[1]; // Py
2088 hits[13] = mom[2]; // Pz
a9e2aefa 2089 tof=gMC->TrackTime();
2eb55fab 2090 hits[14] = tof; // Time of flight
2091 tlength = 0;
2092 eloss = 0;
2093 eloss2 = 0;
2094 xhit = pos[0];
2095 yhit = pos[1];
2096 zhit = pos[2];
681d067b 2097 Chamber(idvol).ChargeCorrelationInit();
a9e2aefa 2098 // Only if not trigger chamber
1e8fff9c 2099
2100
2101
2102
2eb55fab 2103 if(idvol < AliMUONConstants::NTrackingCh()) {
a9e2aefa 2104 //
2105 // Initialize hit position (cursor) in the segmentation model
2106 ((AliMUONChamber*) (*fChambers)[idvol])
2107 ->SigGenInit(pos[0], pos[1], pos[2]);
2108 } else {
2109 //geant3->Gpcxyz();
2110 //printf("In the Trigger Chamber #%d\n",idvol-9);
2111 }
2112 }
2113 eloss2+=destep;
2114
2115 //
2116 // Calculate the charge induced on a pad (disintegration) in case
2117 //
2118 // Mip left chamber ...
2119 if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
2120 gMC->SetMaxStep(kBig);
2121 eloss += destep;
2122 tlength += step;
2123
802a864d 2124 Float_t x0,y0,z0;
2125 Float_t localPos[3];
2126 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
802a864d 2127 gMC->Gmtod(globalPos,localPos,1);
2128
2eb55fab 2129 if(idvol < AliMUONConstants::NTrackingCh()) {
a9e2aefa 2130// tracking chambers
2131 x0 = 0.5*(xhit+pos[0]);
2132 y0 = 0.5*(yhit+pos[1]);
1e8fff9c 2133 z0 = 0.5*(zhit+pos[2]);
a9e2aefa 2134 } else {
2135// trigger chambers
2eb55fab 2136 x0 = xhit;
2137 y0 = yhit;
2138 z0 = 0.;
a9e2aefa 2139 }
2140
1e8fff9c 2141
802a864d 2142 if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol);
a9e2aefa 2143
2144
2eb55fab 2145 hits[6] = tlength; // track length
2146 hits[7] = eloss2; // de/dx energy loss
2147
a9e2aefa 2148 if (fNPadHits > (Int_t)hits[8]) {
2eb55fab 2149 hits[8] = hits[8]+1;
2150 hits[9] = (Float_t) fNPadHits;
a9e2aefa 2151 }
2eb55fab 2152//
2153// new hit
2154
a9e2aefa 2155 new(lhits[fNhits++])
2eb55fab 2156 AliMUONHit(fIshunt, gAlice->CurrentTrack(), vol,hits);
a9e2aefa 2157 eloss = 0;
2158 //
2159 // Check additional signal generation conditions
2160 // defined by the segmentation
a75f073c 2161 // model (boundary crossing conditions)
2162 // only for tracking chambers
a9e2aefa 2163 } else if
a75f073c 2164 ((idvol < AliMUONConstants::NTrackingCh()) &&
2165 ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2]))
a9e2aefa 2166 {
2167 ((AliMUONChamber*) (*fChambers)[idvol])
2168 ->SigGenInit(pos[0], pos[1], pos[2]);
802a864d 2169
2170 Float_t localPos[3];
2171 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
2172 gMC->Gmtod(globalPos,localPos,1);
2173
e0f71fb7 2174 eloss += destep;
802a864d 2175
a75f073c 2176 if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh())
1e8fff9c 2177 MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol);
a9e2aefa 2178 xhit = pos[0];
2179 yhit = pos[1];
e0f71fb7 2180 zhit = pos[2];
2181 eloss = 0;
a9e2aefa 2182 tlength += step ;
2183 //
2184 // nothing special happened, add up energy loss
2185 } else {
2186 eloss += destep;
2187 tlength += step ;
2188 }
2189}
2190
2191