]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONv1.cxx
Coding conventions
[u/mrichter/AliRoot.git] / MUON / AliMUONv1.cxx
CommitLineData
a9e2aefa 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
d7c4fbc4 3 * SigmaEffect_thetadegrees *
a9e2aefa 4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
2c799aa2 12 * about the suitability of this software for any purpeateose. It is *
a9e2aefa 13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
88cb7938 16/* $Id$ */
a9e2aefa 17
18/////////////////////////////////////////////////////////
19// Manager and hits classes for set:MUON version 0 //
20/////////////////////////////////////////////////////////
abaf7c9d 21#include <TRandom.h>
22#include <TF1.h>
116cbefd 23#include <TClonesArray.h>
d7c4fbc4 24#include <TLorentzVector.h>
88cb7938 25#include <TVirtualMC.h>
1391e633 26#include <TParticle.h>
a9e2aefa 27
a9e2aefa 28#include "AliConst.h"
29#include "AliMUONChamber.h"
88cb7938 30#include "AliMUONConstants.h"
31#include "AliMUONFactory.h"
a9e2aefa 32#include "AliMUONHit.h"
8c449e83 33#include "AliMUONTriggerCircuit.h"
88cb7938 34#include "AliMUONv1.h"
35#include "AliMagF.h"
36#include "AliRun.h"
5d12ce38 37#include "AliMC.h"
a9e2aefa 38
39ClassImp(AliMUONv1)
40
41//___________________________________________
37c0cd40 42AliMUONv1::AliMUONv1() : AliMUON()
1391e633 43 ,fTrackMomentum(), fTrackPosition()
a9e2aefa 44{
45// Constructor
1391e633 46 fChambers = 0;
47 fStations = 0;
48 fStepManagerVersionOld = kFALSE;
49 fStepMaxInActiveGas = 0.6;
50 fStepSum = 0x0;
51 fDestepSum = 0x0;
52 fElossRatio = 0x0;
53 fAngleEffect10 = 0x0;
54 fAngleEffectNorma= 0x0;
55}
a9e2aefa 56//___________________________________________
57AliMUONv1::AliMUONv1(const char *name, const char *title)
1391e633 58 : AliMUON(name,title), fTrackMomentum(), fTrackPosition()
a9e2aefa 59{
60// Constructor
ba030c0e 61 // By default include all stations
62 fStations = new Int_t[5];
63 for (Int_t i=0; i<5; i++) fStations[i] = 1;
64
65 AliMUONFactory factory;
66 factory.Build(this, title);
c33d9661 67
68 fStepManagerVersionOld = kFALSE;
abaf7c9d 69
1391e633 70 fStepMaxInActiveGas = 0.6;
71
72 fStepSum = new Float_t [AliMUONConstants::NCh()];
73 fDestepSum = new Float_t [AliMUONConstants::NCh()];
74 for (Int_t i=0; i<AliMUONConstants::NCh(); i++) {
75 fStepSum[i] =0.0;
76 fDestepSum[i]=0.0;
77 }
78 // Ratio of particle mean eloss with respect MIP's Khalil Boudjemline, sep 2003, PhD.Thesis and Particle Data Book
79 fElossRatio = new TF1("ElossRatio","[0]+[1]*x+[2]*x*x+[3]*x*x*x+[4]*x*x*x*x",0.5,5.);
80 fElossRatio->SetParameter(0,1.02138);
81 fElossRatio->SetParameter(1,-9.54149e-02);
82 fElossRatio->SetParameter(2,+7.83433e-02);
83 fElossRatio->SetParameter(3,-9.98208e-03);
84 fElossRatio->SetParameter(4,+3.83279e-04);
85
86 // Angle effect in tracking chambers at theta =10 degres as a function of ElossRatio (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis) (in micrometers)
87 fAngleEffect10 = new TF1("AngleEffect10","[0]+[1]*x+[2]*x*x",0.5,3.0);
88 fAngleEffect10->SetParameter(0, 1.90691e+02);
89 fAngleEffect10->SetParameter(1,-6.62258e+01);
90 fAngleEffect10->SetParameter(2,+1.28247e+01);
91 // Angle effect: Normalisation form theta=10 degres to theta between 0 and 10 (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis)
92 // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
93 fAngleEffectNorma = new TF1("AngleEffectNorma","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.0,10.0);
94 fAngleEffectNorma->SetParameter(0,4.148);
95 fAngleEffectNorma->SetParameter(1,-6.809e-01);
96 fAngleEffectNorma->SetParameter(2,5.151e-02);
97 fAngleEffectNorma->SetParameter(3,-1.490e-03);
a9e2aefa 98}
99
100//___________________________________________
101void AliMUONv1::CreateGeometry()
102{
103//
104// Note: all chambers have the same structure, which could be
105// easily parameterised. This was intentionally not done in order
106// to give a starting point for the implementation of the actual
107// design of each station.
108 Int_t *idtmed = fIdtmed->GetArray()-1099;
109
110// Distance between Stations
111//
112 Float_t bpar[3];
113 Float_t tpar[3];
b64652f5 114// Float_t pgpar[10];
a9e2aefa 115 Float_t zpos1, zpos2, zfpos;
b64652f5 116 // Outer excess and inner recess for mother volume radius
117 // with respect to ROuter and RInner
a9e2aefa 118 Float_t dframep=.001; // Value for station 3 should be 6 ...
b64652f5 119 // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm)
120// Float_t dframep1=.001;
121 Float_t dframep1 = 11.0;
122// Bool_t frameCrosses=kFALSE;
123 Bool_t frameCrosses=kTRUE;
3f08857e 124 Float_t *dum=0;
a9e2aefa 125
b64652f5 126// Float_t dframez=0.9;
127 // Half of the total thickness of frame crosses (including DAlu)
128 // for each chamber in stations 1 and 2:
129 // 3% of X0 of composite material,
130 // but taken as Aluminium here, with same thickness in number of X0
131 Float_t dframez = 3. * 8.9 / 100;
132// Float_t dr;
a9e2aefa 133 Float_t dstation;
134
135//
136// Rotation matrices in the x-y plane
137 Int_t idrotm[1199];
138// phi= 0 deg
139 AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.);
140// phi= 90 deg
141 AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.);
142// phi= 180 deg
143 AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.);
144// phi= 270 deg
145 AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.);
146//
147 Float_t phi=2*TMath::Pi()/12/2;
148
149//
150// pointer to the current chamber
151// pointer to the current chamber
b64652f5 152 Int_t idAlu1=idtmed[1103]; // medium 4
153 Int_t idAlu2=idtmed[1104]; // medium 5
a9e2aefa 154// Int_t idAlu1=idtmed[1100];
155// Int_t idAlu2=idtmed[1100];
b64652f5 156 Int_t idAir=idtmed[1100]; // medium 1
157// Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas
158 Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%)
a9e2aefa 159
160
161 AliMUONChamber *iChamber, *iChamber1, *iChamber2;
ba030c0e 162
163 if (fStations[0]) {
b17c0c87 164
a9e2aefa 165//********************************************************************
166// Station 1 **
167//********************************************************************
168// CONCENTRIC
169 // indices 1 and 2 for first and second chambers in the station
170 // iChamber (first chamber) kept for other quanties than Z,
171 // assumed to be the same in both chambers
172 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0];
173 iChamber2 =(AliMUONChamber*) (*fChambers)[1];
174 zpos1=iChamber1->Z();
175 zpos2=iChamber2->Z();
b13a15bc 176 dstation = TMath::Abs(zpos2 - zpos1);
b64652f5 177 // DGas decreased from standard one (0.5)
178 iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4);
179 // DAlu increased from standard one (3% of X0),
180 // because more electronics with smaller pads
181 iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.);
a9e2aefa 182 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
183
184//
185// Mother volume
b64652f5 186 tpar[0] = iChamber->RInner()-dframep;
187 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2c799aa2 188 tpar[2] = dstation/5;
a9e2aefa 189
b74f1c6a 190 gMC->Gsvolu("S01M", "TUBE", idAir, tpar, 3);
191 gMC->Gsvolu("S02M", "TUBE", idAir, tpar, 3);
192 gMC->Gspos("S01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
193 gMC->Gspos("S02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
b64652f5 194// // Aluminium frames
195// // Outer frames
196// pgpar[0] = 360/12/2;
197// pgpar[1] = 360.;
198// pgpar[2] = 12.;
199// pgpar[3] = 2;
200// pgpar[4] = -dframez/2;
201// pgpar[5] = iChamber->ROuter();
202// pgpar[6] = pgpar[5]+dframep1;
203// pgpar[7] = +dframez/2;
204// pgpar[8] = pgpar[5];
205// pgpar[9] = pgpar[6];
b74f1c6a 206// gMC->Gsvolu("S01O", "PGON", idAlu1, pgpar, 10);
207// gMC->Gsvolu("S02O", "PGON", idAlu1, pgpar, 10);
208// gMC->Gspos("S01O",1,"S01M", 0.,0.,-zfpos, 0,"ONLY");
209// gMC->Gspos("S01O",2,"S01M", 0.,0.,+zfpos, 0,"ONLY");
210// gMC->Gspos("S02O",1,"S02M", 0.,0.,-zfpos, 0,"ONLY");
211// gMC->Gspos("S02O",2,"S02M", 0.,0.,+zfpos, 0,"ONLY");
b64652f5 212// //
213// // Inner frame
214// tpar[0]= iChamber->RInner()-dframep1;
215// tpar[1]= iChamber->RInner();
216// tpar[2]= dframez/2;
b74f1c6a 217// gMC->Gsvolu("S01I", "TUBE", idAlu1, tpar, 3);
218// gMC->Gsvolu("S02I", "TUBE", idAlu1, tpar, 3);
b64652f5 219
b74f1c6a 220// gMC->Gspos("S01I",1,"S01M", 0.,0.,-zfpos, 0,"ONLY");
221// gMC->Gspos("S01I",2,"S01M", 0.,0.,+zfpos, 0,"ONLY");
222// gMC->Gspos("S02I",1,"S02M", 0.,0.,-zfpos, 0,"ONLY");
223// gMC->Gspos("S02I",2,"S02M", 0.,0.,+zfpos, 0,"ONLY");
a9e2aefa 224//
225// Frame Crosses
b64652f5 226 if (frameCrosses) {
227 // outside gas
228 // security for inside mother volume
229 bpar[0] = (iChamber->ROuter() - iChamber->RInner())
230 * TMath::Cos(TMath::ASin(dframep1 /
231 (iChamber->ROuter() - iChamber->RInner())))
232 / 2.0;
a9e2aefa 233 bpar[1] = dframep1/2;
b64652f5 234 // total thickness will be (4 * bpar[2]) for each chamber,
235 // which has to be equal to (2 * dframez) - DAlu
236 bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
b74f1c6a 237 gMC->Gsvolu("S01B", "BOX", idAlu1, bpar, 3);
238 gMC->Gsvolu("S02B", "BOX", idAlu1, bpar, 3);
a9e2aefa 239
2d3423a6 240 gMC->Gspos("S01B",1,"S01M", -iChamber->RInner()-bpar[0] , 0, zfpos,
a9e2aefa 241 idrotm[1100],"ONLY");
2d3423a6 242 gMC->Gspos("S01B",2,"S01M", iChamber->RInner()+bpar[0] , 0, zfpos,
a9e2aefa 243 idrotm[1100],"ONLY");
2d3423a6 244 gMC->Gspos("S01B",3,"S01M", 0, -iChamber->RInner()-bpar[0] , zfpos,
a9e2aefa 245 idrotm[1101],"ONLY");
2d3423a6 246 gMC->Gspos("S01B",4,"S01M", 0, iChamber->RInner()+bpar[0] , zfpos,
a9e2aefa 247 idrotm[1101],"ONLY");
2d3423a6 248 gMC->Gspos("S01B",5,"S01M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
a9e2aefa 249 idrotm[1100],"ONLY");
2d3423a6 250 gMC->Gspos("S01B",6,"S01M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
a9e2aefa 251 idrotm[1100],"ONLY");
2d3423a6 252 gMC->Gspos("S01B",7,"S01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
a9e2aefa 253 idrotm[1101],"ONLY");
2d3423a6 254 gMC->Gspos("S01B",8,"S01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
a9e2aefa 255 idrotm[1101],"ONLY");
256
2d3423a6 257 gMC->Gspos("S02B",1,"S02M", -iChamber->RInner()-bpar[0] , 0, zfpos,
a9e2aefa 258 idrotm[1100],"ONLY");
2d3423a6 259 gMC->Gspos("S02B",2,"S02M", iChamber->RInner()+bpar[0] , 0, zfpos,
a9e2aefa 260 idrotm[1100],"ONLY");
2d3423a6 261 gMC->Gspos("S02B",3,"S02M", 0, -iChamber->RInner()-bpar[0] , zfpos,
a9e2aefa 262 idrotm[1101],"ONLY");
2d3423a6 263 gMC->Gspos("S02B",4,"S02M", 0, iChamber->RInner()+bpar[0] , zfpos,
a9e2aefa 264 idrotm[1101],"ONLY");
2d3423a6 265 gMC->Gspos("S02B",5,"S02M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
a9e2aefa 266 idrotm[1100],"ONLY");
2d3423a6 267 gMC->Gspos("S02B",6,"S02M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
a9e2aefa 268 idrotm[1100],"ONLY");
2d3423a6 269 gMC->Gspos("S02B",7,"S02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
a9e2aefa 270 idrotm[1101],"ONLY");
2d3423a6 271 gMC->Gspos("S02B",8,"S02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
a9e2aefa 272 idrotm[1101],"ONLY");
273 }
274//
275// Chamber Material represented by Alu sheet
276 tpar[0]= iChamber->RInner();
277 tpar[1]= iChamber->ROuter();
278 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
b74f1c6a 279 gMC->Gsvolu("S01A", "TUBE", idAlu2, tpar, 3);
280 gMC->Gsvolu("S02A", "TUBE",idAlu2, tpar, 3);
281 gMC->Gspos("S01A", 1, "S01M", 0., 0., 0., 0, "ONLY");
282 gMC->Gspos("S02A", 1, "S02M", 0., 0., 0., 0, "ONLY");
a9e2aefa 283//
284// Sensitive volumes
285 // tpar[2] = iChamber->DGas();
286 tpar[2] = iChamber->DGas()/2;
b74f1c6a 287 gMC->Gsvolu("S01G", "TUBE", idGas, tpar, 3);
288 gMC->Gsvolu("S02G", "TUBE", idGas, tpar, 3);
289 gMC->Gspos("S01G", 1, "S01A", 0., 0., 0., 0, "ONLY");
290 gMC->Gspos("S02G", 1, "S02A", 0., 0., 0., 0, "ONLY");
a9e2aefa 291//
b64652f5 292// Frame Crosses to be placed inside gas
293 // NONE: chambers are sensitive everywhere
294// if (frameCrosses) {
295
296// dr = (iChamber->ROuter() - iChamber->RInner());
297// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
298// bpar[1] = dframep1/2;
299// bpar[2] = iChamber->DGas()/2;
b74f1c6a 300// gMC->Gsvolu("S01F", "BOX", idAlu1, bpar, 3);
301// gMC->Gsvolu("S02F", "BOX", idAlu1, bpar, 3);
a9e2aefa 302
b74f1c6a 303// gMC->Gspos("S01F",1,"S01G", +iChamber->RInner()+bpar[0] , 0, 0,
b64652f5 304// idrotm[1100],"ONLY");
b74f1c6a 305// gMC->Gspos("S01F",2,"S01G", -iChamber->RInner()-bpar[0] , 0, 0,
b64652f5 306// idrotm[1100],"ONLY");
b74f1c6a 307// gMC->Gspos("S01F",3,"S01G", 0, +iChamber->RInner()+bpar[0] , 0,
b64652f5 308// idrotm[1101],"ONLY");
b74f1c6a 309// gMC->Gspos("S01F",4,"S01G", 0, -iChamber->RInner()-bpar[0] , 0,
b64652f5 310// idrotm[1101],"ONLY");
a9e2aefa 311
b74f1c6a 312// gMC->Gspos("S02F",1,"S02G", +iChamber->RInner()+bpar[0] , 0, 0,
b64652f5 313// idrotm[1100],"ONLY");
b74f1c6a 314// gMC->Gspos("S02F",2,"S02G", -iChamber->RInner()-bpar[0] , 0, 0,
b64652f5 315// idrotm[1100],"ONLY");
b74f1c6a 316// gMC->Gspos("S02F",3,"S02G", 0, +iChamber->RInner()+bpar[0] , 0,
b64652f5 317// idrotm[1101],"ONLY");
b74f1c6a 318// gMC->Gspos("S02F",4,"S02G", 0, -iChamber->RInner()-bpar[0] , 0,
b64652f5 319// idrotm[1101],"ONLY");
320// }
b17c0c87 321 }
ba030c0e 322 if (fStations[1]) {
b17c0c87 323
a9e2aefa 324//********************************************************************
325// Station 2 **
326//********************************************************************
327 // indices 1 and 2 for first and second chambers in the station
328 // iChamber (first chamber) kept for other quanties than Z,
329 // assumed to be the same in both chambers
330 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2];
331 iChamber2 =(AliMUONChamber*) (*fChambers)[3];
332 zpos1=iChamber1->Z();
333 zpos2=iChamber2->Z();
b13a15bc 334 dstation = TMath::Abs(zpos2 - zpos1);
b64652f5 335 // DGas and DAlu not changed from standard values
a9e2aefa 336 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
337
338//
339// Mother volume
340 tpar[0] = iChamber->RInner()-dframep;
341 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2c799aa2 342 tpar[2] = dstation/5;
a9e2aefa 343
b74f1c6a 344 gMC->Gsvolu("S03M", "TUBE", idAir, tpar, 3);
345 gMC->Gsvolu("S04M", "TUBE", idAir, tpar, 3);
346 gMC->Gspos("S03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
347 gMC->Gspos("S04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
03da3c56 348 gMC->Gsbool("S03M", "L3DO");
349 gMC->Gsbool("S03M", "L3O1");
350 gMC->Gsbool("S03M", "L3O2");
351 gMC->Gsbool("S04M", "L3DO");
352 gMC->Gsbool("S04M", "L3O1");
353 gMC->Gsbool("S04M", "L3O2");
1e8fff9c 354
b64652f5 355// // Aluminium frames
356// // Outer frames
357// pgpar[0] = 360/12/2;
358// pgpar[1] = 360.;
359// pgpar[2] = 12.;
360// pgpar[3] = 2;
361// pgpar[4] = -dframez/2;
362// pgpar[5] = iChamber->ROuter();
363// pgpar[6] = pgpar[5]+dframep;
364// pgpar[7] = +dframez/2;
365// pgpar[8] = pgpar[5];
366// pgpar[9] = pgpar[6];
b74f1c6a 367// gMC->Gsvolu("S03O", "PGON", idAlu1, pgpar, 10);
368// gMC->Gsvolu("S04O", "PGON", idAlu1, pgpar, 10);
369// gMC->Gspos("S03O",1,"S03M", 0.,0.,-zfpos, 0,"ONLY");
370// gMC->Gspos("S03O",2,"S03M", 0.,0.,+zfpos, 0,"ONLY");
371// gMC->Gspos("S04O",1,"S04M", 0.,0.,-zfpos, 0,"ONLY");
372// gMC->Gspos("S04O",2,"S04M", 0.,0.,+zfpos, 0,"ONLY");
b64652f5 373// //
374// // Inner frame
375// tpar[0]= iChamber->RInner()-dframep;
376// tpar[1]= iChamber->RInner();
377// tpar[2]= dframez/2;
b74f1c6a 378// gMC->Gsvolu("S03I", "TUBE", idAlu1, tpar, 3);
379// gMC->Gsvolu("S04I", "TUBE", idAlu1, tpar, 3);
b64652f5 380
b74f1c6a 381// gMC->Gspos("S03I",1,"S03M", 0.,0.,-zfpos, 0,"ONLY");
382// gMC->Gspos("S03I",2,"S03M", 0.,0.,+zfpos, 0,"ONLY");
383// gMC->Gspos("S04I",1,"S04M", 0.,0.,-zfpos, 0,"ONLY");
384// gMC->Gspos("S04I",2,"S04M", 0.,0.,+zfpos, 0,"ONLY");
a9e2aefa 385//
386// Frame Crosses
b64652f5 387 if (frameCrosses) {
388 // outside gas
389 // security for inside mother volume
390 bpar[0] = (iChamber->ROuter() - iChamber->RInner())
391 * TMath::Cos(TMath::ASin(dframep1 /
392 (iChamber->ROuter() - iChamber->RInner())))
393 / 2.0;
394 bpar[1] = dframep1/2;
395 // total thickness will be (4 * bpar[2]) for each chamber,
396 // which has to be equal to (2 * dframez) - DAlu
397 bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
b74f1c6a 398 gMC->Gsvolu("S03B", "BOX", idAlu1, bpar, 3);
399 gMC->Gsvolu("S04B", "BOX", idAlu1, bpar, 3);
a9e2aefa 400
2d3423a6 401 gMC->Gspos("S03B",1,"S03M", -iChamber->RInner()-bpar[0] , 0, zfpos,
a9e2aefa 402 idrotm[1100],"ONLY");
2d3423a6 403 gMC->Gspos("S03B",2,"S03M", +iChamber->RInner()+bpar[0] , 0, zfpos,
a9e2aefa 404 idrotm[1100],"ONLY");
2d3423a6 405 gMC->Gspos("S03B",3,"S03M", 0, -iChamber->RInner()-bpar[0] , zfpos,
a9e2aefa 406 idrotm[1101],"ONLY");
2d3423a6 407 gMC->Gspos("S03B",4,"S03M", 0, +iChamber->RInner()+bpar[0] , zfpos,
a9e2aefa 408 idrotm[1101],"ONLY");
2d3423a6 409 gMC->Gspos("S03B",5,"S03M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
a9e2aefa 410 idrotm[1100],"ONLY");
2d3423a6 411 gMC->Gspos("S03B",6,"S03M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
a9e2aefa 412 idrotm[1100],"ONLY");
2d3423a6 413 gMC->Gspos("S03B",7,"S03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
a9e2aefa 414 idrotm[1101],"ONLY");
2d3423a6 415 gMC->Gspos("S03B",8,"S03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
a9e2aefa 416 idrotm[1101],"ONLY");
417
2d3423a6 418 gMC->Gspos("S04B",1,"S04M", -iChamber->RInner()-bpar[0] , 0, zfpos,
a9e2aefa 419 idrotm[1100],"ONLY");
2d3423a6 420 gMC->Gspos("S04B",2,"S04M", +iChamber->RInner()+bpar[0] , 0, zfpos,
a9e2aefa 421 idrotm[1100],"ONLY");
2d3423a6 422 gMC->Gspos("S04B",3,"S04M", 0, -iChamber->RInner()-bpar[0] , zfpos,
a9e2aefa 423 idrotm[1101],"ONLY");
2d3423a6 424 gMC->Gspos("S04B",4,"S04M", 0, +iChamber->RInner()+bpar[0] , zfpos,
a9e2aefa 425 idrotm[1101],"ONLY");
2d3423a6 426 gMC->Gspos("S04B",5,"S04M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
a9e2aefa 427 idrotm[1100],"ONLY");
2d3423a6 428 gMC->Gspos("S04B",6,"S04M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
a9e2aefa 429 idrotm[1100],"ONLY");
2d3423a6 430 gMC->Gspos("S04B",7,"S04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
a9e2aefa 431 idrotm[1101],"ONLY");
2d3423a6 432 gMC->Gspos("S04B",8,"S04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
a9e2aefa 433 idrotm[1101],"ONLY");
434 }
435//
436// Chamber Material represented by Alu sheet
437 tpar[0]= iChamber->RInner();
438 tpar[1]= iChamber->ROuter();
439 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
b74f1c6a 440 gMC->Gsvolu("S03A", "TUBE", idAlu2, tpar, 3);
441 gMC->Gsvolu("S04A", "TUBE", idAlu2, tpar, 3);
442 gMC->Gspos("S03A", 1, "S03M", 0., 0., 0., 0, "ONLY");
443 gMC->Gspos("S04A", 1, "S04M", 0., 0., 0., 0, "ONLY");
a9e2aefa 444//
445// Sensitive volumes
446 // tpar[2] = iChamber->DGas();
447 tpar[2] = iChamber->DGas()/2;
b74f1c6a 448 gMC->Gsvolu("S03G", "TUBE", idGas, tpar, 3);
449 gMC->Gsvolu("S04G", "TUBE", idGas, tpar, 3);
450 gMC->Gspos("S03G", 1, "S03A", 0., 0., 0., 0, "ONLY");
451 gMC->Gspos("S04G", 1, "S04A", 0., 0., 0., 0, "ONLY");
a9e2aefa 452//
453// Frame Crosses to be placed inside gas
b64652f5 454 // NONE: chambers are sensitive everywhere
455// if (frameCrosses) {
456
457// dr = (iChamber->ROuter() - iChamber->RInner());
458// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
459// bpar[1] = dframep1/2;
460// bpar[2] = iChamber->DGas()/2;
b74f1c6a 461// gMC->Gsvolu("S03F", "BOX", idAlu1, bpar, 3);
462// gMC->Gsvolu("S04F", "BOX", idAlu1, bpar, 3);
a9e2aefa 463
b74f1c6a 464// gMC->Gspos("S03F",1,"S03G", +iChamber->RInner()+bpar[0] , 0, 0,
b64652f5 465// idrotm[1100],"ONLY");
b74f1c6a 466// gMC->Gspos("S03F",2,"S03G", -iChamber->RInner()-bpar[0] , 0, 0,
b64652f5 467// idrotm[1100],"ONLY");
b74f1c6a 468// gMC->Gspos("S03F",3,"S03G", 0, +iChamber->RInner()+bpar[0] , 0,
b64652f5 469// idrotm[1101],"ONLY");
b74f1c6a 470// gMC->Gspos("S03F",4,"S03G", 0, -iChamber->RInner()-bpar[0] , 0,
b64652f5 471// idrotm[1101],"ONLY");
a9e2aefa 472
b74f1c6a 473// gMC->Gspos("S04F",1,"S04G", +iChamber->RInner()+bpar[0] , 0, 0,
b64652f5 474// idrotm[1100],"ONLY");
b74f1c6a 475// gMC->Gspos("S04F",2,"S04G", -iChamber->RInner()-bpar[0] , 0, 0,
b64652f5 476// idrotm[1100],"ONLY");
b74f1c6a 477// gMC->Gspos("S04F",3,"S04G", 0, +iChamber->RInner()+bpar[0] , 0,
b64652f5 478// idrotm[1101],"ONLY");
b74f1c6a 479// gMC->Gspos("S04F",4,"S04G", 0, -iChamber->RInner()-bpar[0] , 0,
b64652f5 480// idrotm[1101],"ONLY");
481// }
b17c0c87 482 }
1e8fff9c 483 // define the id of tracking media:
484 Int_t idCopper = idtmed[1110];
485 Int_t idGlass = idtmed[1111];
486 Int_t idCarbon = idtmed[1112];
487 Int_t idRoha = idtmed[1113];
488
1e8fff9c 489 // sensitive area: 40*40 cm**2
d7c4fbc4 490 const Float_t ksensLength = 40.;
491 const Float_t ksensHeight = 40.;
492 const Float_t ksensWidth = 0.5; // according to TDR fig 2.120
493 const Int_t ksensMaterial = idGas;
494 const Float_t kyOverlap = 1.5;
1e8fff9c 495
496 // PCB dimensions in cm; width: 30 mum copper
d7c4fbc4 497 const Float_t kpcbLength = ksensLength;
498 const Float_t kpcbHeight = 60.;
499 const Float_t kpcbWidth = 0.003;
500 const Int_t kpcbMaterial= idCopper;
1e8fff9c 501
502 // Insulating material: 200 mum glass fiber glued to pcb
d7c4fbc4 503 const Float_t kinsuLength = kpcbLength;
504 const Float_t kinsuHeight = kpcbHeight;
505 const Float_t kinsuWidth = 0.020;
506 const Int_t kinsuMaterial = idGlass;
1e8fff9c 507
508 // Carbon fiber panels: 200mum carbon/epoxy skin
d7c4fbc4 509 const Float_t kpanelLength = ksensLength;
510 const Float_t kpanelHeight = ksensHeight;
511 const Float_t kpanelWidth = 0.020;
512 const Int_t kpanelMaterial = idCarbon;
1e8fff9c 513
514 // rohacell between the two carbon panels
d7c4fbc4 515 const Float_t krohaLength = ksensLength;
516 const Float_t krohaHeight = ksensHeight;
517 const Float_t krohaWidth = 0.5;
518 const Int_t krohaMaterial = idRoha;
1e8fff9c 519
520 // Frame around the slat: 2 sticks along length,2 along height
521 // H: the horizontal ones
d7c4fbc4 522 const Float_t khFrameLength = kpcbLength;
523 const Float_t khFrameHeight = 1.5;
524 const Float_t khFrameWidth = ksensWidth;
525 const Int_t khFrameMaterial = idGlass;
1e8fff9c 526
527 // V: the vertical ones
d7c4fbc4 528 const Float_t kvFrameLength = 4.0;
529 const Float_t kvFrameHeight = ksensHeight + khFrameHeight;
530 const Float_t kvFrameWidth = ksensWidth;
531 const Int_t kvFrameMaterial = idGlass;
1e8fff9c 532
533 // B: the horizontal border filled with rohacell
d7c4fbc4 534 const Float_t kbFrameLength = khFrameLength;
535 const Float_t kbFrameHeight = (kpcbHeight - ksensHeight)/2. - khFrameHeight;
536 const Float_t kbFrameWidth = khFrameWidth;
537 const Int_t kbFrameMaterial = idRoha;
1e8fff9c 538
539 // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper)
d7c4fbc4 540 const Float_t knulocLength = 2.5;
541 const Float_t knulocHeight = 7.5;
542 const Float_t knulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite;
543 const Int_t knulocMaterial = idCopper;
1e8fff9c 544
d7c4fbc4 545 const Float_t kslatHeight = kpcbHeight;
546 const Float_t kslatWidth = ksensWidth + 2.*(kpcbWidth + kinsuWidth +
547 2.* kpanelWidth + krohaWidth);
548 const Int_t kslatMaterial = idAir;
549 const Float_t kdSlatLength = kvFrameLength; // border on left and right
1e8fff9c 550
1e8fff9c 551 Float_t spar[3];
b17c0c87 552 Int_t i, j;
553
3c084d9f 554 // the panel volume contains the rohacell
555
d7c4fbc4 556 Float_t twidth = 2 * kpanelWidth + krohaWidth;
557 Float_t panelpar[3] = { kpanelLength/2., kpanelHeight/2., twidth/2. };
558 Float_t rohapar[3] = { krohaLength/2., krohaHeight/2., krohaWidth/2. };
3c084d9f 559
560 // insulating material contains PCB-> gas-> 2 borders filled with rohacell
561
d7c4fbc4 562 twidth = 2*(kinsuWidth + kpcbWidth) + ksensWidth;
563 Float_t insupar[3] = { kinsuLength/2., kinsuHeight/2., twidth/2. };
564 twidth -= 2 * kinsuWidth;
565 Float_t pcbpar[3] = { kpcbLength/2., kpcbHeight/2., twidth/2. };
566 Float_t senspar[3] = { ksensLength/2., ksensHeight/2., ksensWidth/2. };
567 Float_t theight = 2*khFrameHeight + ksensHeight;
568 Float_t hFramepar[3]={khFrameLength/2., theight/2., khFrameWidth/2.};
569 Float_t bFramepar[3]={kbFrameLength/2., kbFrameHeight/2., kbFrameWidth/2.};
570 Float_t vFramepar[3]={kvFrameLength/2., kvFrameHeight/2., kvFrameWidth/2.};
571 Float_t nulocpar[3]={knulocLength/2., knulocHeight/2., knulocWidth/2.};
b17c0c87 572 Float_t xx;
d7c4fbc4 573 Float_t xxmax = (kbFrameLength - knulocLength)/2.;
b17c0c87 574 Int_t index=0;
575
ba030c0e 576 if (fStations[2]) {
b17c0c87 577
578//********************************************************************
579// Station 3 **
580//********************************************************************
581 // indices 1 and 2 for first and second chambers in the station
582 // iChamber (first chamber) kept for other quanties than Z,
583 // assumed to be the same in both chambers
584 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4];
585 iChamber2 =(AliMUONChamber*) (*fChambers)[5];
586 zpos1=iChamber1->Z();
587 zpos2=iChamber2->Z();
b13a15bc 588 dstation = TMath::Abs(zpos2 - zpos1);
b17c0c87 589
b17c0c87 590//
591// Mother volume
592 tpar[0] = iChamber->RInner()-dframep;
593 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
21a18f36 594 tpar[2] = dstation/5;
2724ae40 595
b74f1c6a 596 char *slats5Mother = "S05M";
597 char *slats6Mother = "S06M";
2724ae40 598 Float_t zoffs5 = 0;
599 Float_t zoffs6 = 0;
600
fe713e43 601 if (gAlice->GetModule("DIPO")) {
2724ae40 602 slats5Mother="DDIP";
603 slats6Mother="DDIP";
604
b13a15bc 605 zoffs5 = TMath::Abs(zpos1);
606 zoffs6 = TMath::Abs(zpos2);
2724ae40 607 }
5f06bb90 608
2724ae40 609 else {
b74f1c6a 610 gMC->Gsvolu("S05M", "TUBE", idAir, tpar, 3);
611 gMC->Gsvolu("S06M", "TUBE", idAir, tpar, 3);
612 gMC->Gspos("S05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
613 gMC->Gspos("S06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
2724ae40 614 }
615
b17c0c87 616 // volumes for slat geometry (xx=5,..,10 chamber id):
617 // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes
618 // SxxG --> Sensitive volume (gas)
619 // SxxP --> PCB (copper)
620 // SxxI --> Insulator (vetronite)
621 // SxxC --> Carbon panel
622 // SxxR --> Rohacell
623 // SxxH, SxxV --> Horizontal and Vertical frames (vetronite)
21a18f36 624 // SB5x --> Volumes for the 35 cm long PCB
b17c0c87 625 // slat dimensions: slat is a MOTHER volume!!! made of air
626
21a18f36 627 // only for chamber 5: slat 1 has a PCB shorter by 5cm!
628
629 Float_t tlength = 35.;
630 Float_t panelpar2[3] = { tlength/2., panelpar[1], panelpar[2]};
631 Float_t rohapar2[3] = { tlength/2., rohapar[1], rohapar[2]};
632 Float_t insupar2[3] = { tlength/2., insupar[1], insupar[2]};
633 Float_t pcbpar2[3] = { tlength/2., pcbpar[1], pcbpar[2]};
634 Float_t senspar2[3] = { tlength/2., senspar[1], senspar[2]};
635 Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]};
636 Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]};
637
d7c4fbc4 638 const Int_t knSlats3 = 5; // number of slats per quadrant
639 const Int_t knPCB3[knSlats3] = {3,3,4,3,2}; // n PCB per slat
640 const Float_t kxpos3[knSlats3] = {31., 40., 0., 0., 0.};
641 Float_t slatLength3[knSlats3];
b17c0c87 642
643 // create and position the slat (mother) volumes
644
6c5ddcfa 645 char volNam5[5];
646 char volNam6[5];
f9f7c205 647 Float_t xSlat3;
b17c0c87 648
21a18f36 649 Float_t spar2[3];
d7c4fbc4 650 for (i = 0; i<knSlats3; i++){
651 slatLength3[i] = kpcbLength * knPCB3[i] + 2. * kdSlatLength;
652 xSlat3 = slatLength3[i]/2. - kvFrameLength/2. + kxpos3[i];
653 if (i==1 || i==0) slatLength3[i] -= 2. *kdSlatLength; // frame out in PCB with circular border
654 Float_t ySlat31 = ksensHeight * i - kyOverlap * i;
655 Float_t ySlat32 = -ksensHeight * i + kyOverlap * i;
3c084d9f 656 spar[0] = slatLength3[i]/2.;
d7c4fbc4 657 spar[1] = kslatHeight/2.;
658 spar[2] = kslatWidth/2. * 1.01;
21a18f36 659 // take away 5 cm from the first slat in chamber 5
660 Float_t xSlat32 = 0;
661 if (i==1 || i==2) { // 1 pcb is shortened by 5cm
662 spar2[0] = spar[0]-5./2.;
663 xSlat32 = xSlat3 - 5/2.;
664 }
665 else {
666 spar2[0] = spar[0];
667 xSlat32 = xSlat3;
668 }
669 spar2[1] = spar[1];
670 spar2[2] = spar[2];
3c084d9f 671 Float_t dzCh3=spar[2] * 1.01;
672 // zSlat to be checked (odd downstream or upstream?)
5f06bb90 673 Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2];
674
675 if (gAlice->GetModule("DIPO")) {zSlat*=-1.;}
676
3c084d9f 677 sprintf(volNam5,"S05%d",i);
d7c4fbc4 678 gMC->Gsvolu(volNam5,"BOX",kslatMaterial,spar2,3);
2d3423a6 679 gMC->Gspos(volNam5, i*4+1,slats5Mother, -xSlat32, ySlat31, zoffs5-zSlat-2.*dzCh3, 0, "ONLY");
680 gMC->Gspos(volNam5, i*4+2,slats5Mother, +xSlat32, ySlat31, zoffs5-zSlat+2.*dzCh3, 0, "ONLY");
21a18f36 681
5f06bb90 682 if (i>0) {
2d3423a6 683 gMC->Gspos(volNam5, i*4+3,slats5Mother,-xSlat32, ySlat32, zoffs5-zSlat-2.*dzCh3, 0, "ONLY");
684 gMC->Gspos(volNam5, i*4+4,slats5Mother,+xSlat32, ySlat32, zoffs5-zSlat+2.*dzCh3, 0, "ONLY");
a083207d 685 }
3c084d9f 686 sprintf(volNam6,"S06%d",i);
d7c4fbc4 687 gMC->Gsvolu(volNam6,"BOX",kslatMaterial,spar,3);
2d3423a6 688 gMC->Gspos(volNam6, i*4+1,slats6Mother,-xSlat3, ySlat31, zoffs6-zSlat-2.*dzCh3, 0, "ONLY");
689 gMC->Gspos(volNam6, i*4+2,slats6Mother,+xSlat3, ySlat31, zoffs6-zSlat+2.*dzCh3, 0, "ONLY");
a083207d 690 if (i>0) {
2d3423a6 691 gMC->Gspos(volNam6, i*4+3,slats6Mother,-xSlat3, ySlat32, zoffs6-zSlat-2.*dzCh3, 0, "ONLY");
692 gMC->Gspos(volNam6, i*4+4,slats6Mother,+xSlat3, ySlat32, zoffs6-zSlat+2.*dzCh3, 0, "ONLY");
a083207d 693 }
3c084d9f 694 }
1e8fff9c 695
696 // create the panel volume
b17c0c87 697
d7c4fbc4 698 gMC->Gsvolu("S05C","BOX",kpanelMaterial,panelpar,3);
699 gMC->Gsvolu("SB5C","BOX",kpanelMaterial,panelpar2,3);
700 gMC->Gsvolu("S06C","BOX",kpanelMaterial,panelpar,3);
1e8fff9c 701
702 // create the rohacell volume
b17c0c87 703
d7c4fbc4 704 gMC->Gsvolu("S05R","BOX",krohaMaterial,rohapar,3);
705 gMC->Gsvolu("SB5R","BOX",krohaMaterial,rohapar2,3);
706 gMC->Gsvolu("S06R","BOX",krohaMaterial,rohapar,3);
1e8fff9c 707
3c084d9f 708 // create the insulating material volume
709
d7c4fbc4 710 gMC->Gsvolu("S05I","BOX",kinsuMaterial,insupar,3);
711 gMC->Gsvolu("SB5I","BOX",kinsuMaterial,insupar2,3);
712 gMC->Gsvolu("S06I","BOX",kinsuMaterial,insupar,3);
3c084d9f 713
714 // create the PCB volume
715
d7c4fbc4 716 gMC->Gsvolu("S05P","BOX",kpcbMaterial,pcbpar,3);
717 gMC->Gsvolu("SB5P","BOX",kpcbMaterial,pcbpar2,3);
718 gMC->Gsvolu("S06P","BOX",kpcbMaterial,pcbpar,3);
3c084d9f 719
720 // create the sensitive volumes,
d7c4fbc4 721 gMC->Gsvolu("S05G","BOX",ksensMaterial,dum,0);
722 gMC->Gsvolu("S06G","BOX",ksensMaterial,dum,0);
3c084d9f 723
724
1e8fff9c 725 // create the vertical frame volume
b17c0c87 726
d7c4fbc4 727 gMC->Gsvolu("S05V","BOX",kvFrameMaterial,vFramepar,3);
728 gMC->Gsvolu("S06V","BOX",kvFrameMaterial,vFramepar,3);
1e8fff9c 729
730 // create the horizontal frame volume
b17c0c87 731
d7c4fbc4 732 gMC->Gsvolu("S05H","BOX",khFrameMaterial,hFramepar,3);
733 gMC->Gsvolu("SB5H","BOX",khFrameMaterial,hFramepar2,3);
734 gMC->Gsvolu("S06H","BOX",khFrameMaterial,hFramepar,3);
1e8fff9c 735
736 // create the horizontal border volume
b17c0c87 737
d7c4fbc4 738 gMC->Gsvolu("S05B","BOX",kbFrameMaterial,bFramepar,3);
739 gMC->Gsvolu("SB5B","BOX",kbFrameMaterial,bFramepar2,3);
740 gMC->Gsvolu("S06B","BOX",kbFrameMaterial,bFramepar,3);
1e8fff9c 741
b17c0c87 742 index=0;
d7c4fbc4 743 for (i = 0; i<knSlats3; i++){
6c5ddcfa 744 sprintf(volNam5,"S05%d",i);
745 sprintf(volNam6,"S06%d",i);
d7c4fbc4 746 Float_t xvFrame = (slatLength3[i] - kvFrameLength)/2.;
21a18f36 747 Float_t xvFrame2 = xvFrame;
748 if ( i==1 || i ==2 ) xvFrame2 -= 5./2.;
3c084d9f 749 // position the vertical frames
21a18f36 750 if (i!=1 && i!=0) {
751 gMC->Gspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY");
752 gMC->Gspos("S05V",2*i ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY");
3c084d9f 753 gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY");
754 gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY");
755 }
756 // position the panels and the insulating material
d7c4fbc4 757 for (j=0; j<knPCB3[i]; j++){
1e8fff9c 758 index++;
d7c4fbc4 759 Float_t xx = ksensLength * (-knPCB3[i]/2.+j+.5);
21a18f36 760 Float_t xx2 = xx + 5/2.;
3c084d9f 761
762 Float_t zPanel = spar[2] - panelpar[2];
d7c4fbc4 763 if ( (i==1 || i==2) && j == knPCB3[i]-1) { // 1 pcb is shortened by 5cm
21a18f36 764 gMC->Gspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
765 gMC->Gspos("SB5C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
766 gMC->Gspos("SB5I",index ,volNam5, xx, 0., 0 , 0, "ONLY");
767 }
d7c4fbc4 768 else if ( (i==1 || i==2) && j < knPCB3[i]-1) {
21a18f36 769 gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY");
770 gMC->Gspos("S05C",2*index ,volNam5, xx2, 0.,-zPanel , 0, "ONLY");
771 gMC->Gspos("S05I",index ,volNam5, xx2, 0., 0 , 0, "ONLY");
772 }
773 else {
774 gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
775 gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
776 gMC->Gspos("S05I",index ,volNam5, xx, 0., 0 , 0, "ONLY");
777 }
3c084d9f 778 gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY");
779 gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY");
3c084d9f 780 gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY");
1e8fff9c 781 }
a9e2aefa 782 }
21a18f36 783
3c084d9f 784 // position the rohacell volume inside the panel volume
785 gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY");
21a18f36 786 gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY");
3c084d9f 787 gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY");
788
789 // position the PCB volume inside the insulating material volume
790 gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY");
21a18f36 791 gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY");
3c084d9f 792 gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY");
793 // position the horizontal frame volume inside the PCB volume
794 gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY");
21a18f36 795 gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY");
3c084d9f 796 gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY");
797 // position the sensitive volume inside the horizontal frame volume
798 gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3);
21a18f36 799 gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3);
3c084d9f 800 gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3);
801 // position the border volumes inside the PCB volume
d7c4fbc4 802 Float_t yborder = ( kpcbHeight - kbFrameHeight ) / 2.;
3c084d9f 803 gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY");
804 gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY");
21a18f36 805 gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY");
806 gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY");
3c084d9f 807 gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY");
808 gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY");
809
1e8fff9c 810 // create the NULOC volume and position it in the horizontal frame
b17c0c87 811
d7c4fbc4 812 gMC->Gsvolu("S05N","BOX",knulocMaterial,nulocpar,3);
813 gMC->Gsvolu("S06N","BOX",knulocMaterial,nulocpar,3);
6c5ddcfa 814 index = 0;
21a18f36 815 Float_t xxmax2 = xxmax - 5./2.;
d7c4fbc4 816 for (xx = -xxmax; xx<=xxmax; xx+=2*knulocLength) {
1e8fff9c 817 index++;
d7c4fbc4 818 gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
819 gMC->Gspos("S05N",2*index ,"S05B", xx, 0., kbFrameWidth/4., 0, "ONLY");
21a18f36 820 if (xx > -xxmax2 && xx< xxmax2) {
d7c4fbc4 821 gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
822 gMC->Gspos("S05N",2*index ,"SB5B", xx, 0., kbFrameWidth/4., 0, "ONLY");
21a18f36 823 }
d7c4fbc4 824 gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
825 gMC->Gspos("S06N",2*index ,"S06B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1e8fff9c 826 }
3c084d9f 827
828 // position the volumes approximating the circular section of the pipe
d7c4fbc4 829 Float_t yoffs = ksensHeight/2. - kyOverlap;
3c084d9f 830 Float_t epsilon = 0.001;
831 Int_t ndiv=6;
832 Float_t divpar[3];
d7c4fbc4 833 Double_t dydiv= ksensHeight/ndiv;
21a18f36 834 Double_t ydiv = yoffs -dydiv;
3c084d9f 835 Int_t imax=0;
3c084d9f 836 imax = 1;
21a18f36 837 Float_t rmin = 33.;
a083207d 838 Float_t z1 = spar[2], z2=2*spar[2]*1.01;
3c084d9f 839 for (Int_t idiv=0;idiv<ndiv; idiv++){
840 ydiv+= dydiv;
425ebd0a 841 Float_t xdiv = 0.;
3c084d9f 842 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
d7c4fbc4 843 divpar[0] = (kpcbLength-xdiv)/2.;
3c084d9f 844 divpar[1] = dydiv/2. - epsilon;
d7c4fbc4 845 divpar[2] = ksensWidth/2.;
846 Float_t xvol=(kpcbLength+xdiv)/2.+1.999;
a083207d 847 Float_t yvol=ydiv + dydiv/2.;
21a18f36 848 //printf ("y ll = %f y ur = %f \n",yvol - divpar[1], yvol + divpar[1]);
2d3423a6 849 gMC->Gsposp("S05G",imax+4*idiv+1,slats5Mother,-xvol, yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3);
850 gMC->Gsposp("S06G",imax+4*idiv+1,slats6Mother,-xvol, yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3);
851 gMC->Gsposp("S05G",imax+4*idiv+2,slats5Mother,-xvol,-yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3);
852 gMC->Gsposp("S06G",imax+4*idiv+2,slats6Mother,-xvol,-yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3);
853 gMC->Gsposp("S05G",imax+4*idiv+3,slats5Mother,+xvol, yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3);
854 gMC->Gsposp("S06G",imax+4*idiv+3,slats6Mother,+xvol, yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3);
855 gMC->Gsposp("S05G",imax+4*idiv+4,slats5Mother,+xvol,-yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3);
856 gMC->Gsposp("S06G",imax+4*idiv+4,slats6Mother,+xvol,-yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3);
3c084d9f 857 }
b17c0c87 858 }
b17c0c87 859
ba030c0e 860 if (fStations[3]) {
3c084d9f 861
a9e2aefa 862//********************************************************************
863// Station 4 **
864//********************************************************************
865 // indices 1 and 2 for first and second chambers in the station
866 // iChamber (first chamber) kept for other quanties than Z,
867 // assumed to be the same in both chambers
868 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6];
869 iChamber2 =(AliMUONChamber*) (*fChambers)[7];
870 zpos1=iChamber1->Z();
871 zpos2=iChamber2->Z();
b13a15bc 872 dstation = TMath::Abs(zpos2 - zpos1);
b64652f5 873// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
a9e2aefa 874
875//
876// Mother volume
877 tpar[0] = iChamber->RInner()-dframep;
878 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2724ae40 879 tpar[2] = dstation/4;
a9e2aefa 880
b74f1c6a 881 gMC->Gsvolu("S07M", "TUBE", idAir, tpar, 3);
882 gMC->Gsvolu("S08M", "TUBE", idAir, tpar, 3);
883 gMC->Gspos("S07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
884 gMC->Gspos("S08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 885
a9e2aefa 886
d7c4fbc4 887 const Int_t knSlats4 = 6; // number of slats per quadrant
888 const Int_t knPCB4[knSlats4] = {4,4,5,5,4,3}; // n PCB per slat
889 const Float_t kxpos4[knSlats4] = {38.5, 40., 0., 0., 0., 0.};
890 Float_t slatLength4[knSlats4];
1e8fff9c 891
892 // create and position the slat (mother) volumes
893
6c5ddcfa 894 char volNam7[5];
895 char volNam8[5];
1e8fff9c 896 Float_t xSlat4;
f9f7c205 897 Float_t ySlat4;
1e8fff9c 898
d7c4fbc4 899 for (i = 0; i<knSlats4; i++){
900 slatLength4[i] = kpcbLength * knPCB4[i] + 2. * kdSlatLength;
901 xSlat4 = slatLength4[i]/2. - kvFrameLength/2. + kxpos4[i];
902 if (i==1) slatLength4[i] -= 2. *kdSlatLength; // frame out in PCB with circular border
903 ySlat4 = ksensHeight * i - kyOverlap *i;
a083207d 904
905 spar[0] = slatLength4[i]/2.;
d7c4fbc4 906 spar[1] = kslatHeight/2.;
907 spar[2] = kslatWidth/2.*1.01;
a083207d 908 Float_t dzCh4=spar[2]*1.01;
909 // zSlat to be checked (odd downstream or upstream?)
910 Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2];
911 sprintf(volNam7,"S07%d",i);
d7c4fbc4 912 gMC->Gsvolu(volNam7,"BOX",kslatMaterial,spar,3);
2d3423a6 913 gMC->Gspos(volNam7, i*4+1,"S07M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
914 gMC->Gspos(volNam7, i*4+2,"S07M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
a083207d 915 if (i>0) {
2d3423a6 916 gMC->Gspos(volNam7, i*4+3,"S07M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
917 gMC->Gspos(volNam7, i*4+4,"S07M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
a083207d 918 }
919 sprintf(volNam8,"S08%d",i);
d7c4fbc4 920 gMC->Gsvolu(volNam8,"BOX",kslatMaterial,spar,3);
2d3423a6 921 gMC->Gspos(volNam8, i*4+1,"S08M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
922 gMC->Gspos(volNam8, i*4+2,"S08M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
a083207d 923 if (i>0) {
2d3423a6 924 gMC->Gspos(volNam8, i*4+3,"S08M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
925 gMC->Gspos(volNam8, i*4+4,"S08M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
a083207d 926 }
a9e2aefa 927 }
a083207d 928
3c084d9f 929
930 // create the panel volume
1e8fff9c 931
d7c4fbc4 932 gMC->Gsvolu("S07C","BOX",kpanelMaterial,panelpar,3);
933 gMC->Gsvolu("S08C","BOX",kpanelMaterial,panelpar,3);
a9e2aefa 934
3c084d9f 935 // create the rohacell volume
936
d7c4fbc4 937 gMC->Gsvolu("S07R","BOX",krohaMaterial,rohapar,3);
938 gMC->Gsvolu("S08R","BOX",krohaMaterial,rohapar,3);
1e8fff9c 939
1e8fff9c 940 // create the insulating material volume
941
d7c4fbc4 942 gMC->Gsvolu("S07I","BOX",kinsuMaterial,insupar,3);
943 gMC->Gsvolu("S08I","BOX",kinsuMaterial,insupar,3);
1e8fff9c 944
3c084d9f 945 // create the PCB volume
1e8fff9c 946
d7c4fbc4 947 gMC->Gsvolu("S07P","BOX",kpcbMaterial,pcbpar,3);
948 gMC->Gsvolu("S08P","BOX",kpcbMaterial,pcbpar,3);
1e8fff9c 949
3c084d9f 950 // create the sensitive volumes,
951
d7c4fbc4 952 gMC->Gsvolu("S07G","BOX",ksensMaterial,dum,0);
953 gMC->Gsvolu("S08G","BOX",ksensMaterial,dum,0);
1e8fff9c 954
955 // create the vertical frame volume
956
d7c4fbc4 957 gMC->Gsvolu("S07V","BOX",kvFrameMaterial,vFramepar,3);
958 gMC->Gsvolu("S08V","BOX",kvFrameMaterial,vFramepar,3);
1e8fff9c 959
960 // create the horizontal frame volume
961
d7c4fbc4 962 gMC->Gsvolu("S07H","BOX",khFrameMaterial,hFramepar,3);
963 gMC->Gsvolu("S08H","BOX",khFrameMaterial,hFramepar,3);
1e8fff9c 964
965 // create the horizontal border volume
966
d7c4fbc4 967 gMC->Gsvolu("S07B","BOX",kbFrameMaterial,bFramepar,3);
968 gMC->Gsvolu("S08B","BOX",kbFrameMaterial,bFramepar,3);
3c084d9f 969
970 index=0;
d7c4fbc4 971 for (i = 0; i<knSlats4; i++){
6c5ddcfa 972 sprintf(volNam7,"S07%d",i);
973 sprintf(volNam8,"S08%d",i);
d7c4fbc4 974 Float_t xvFrame = (slatLength4[i] - kvFrameLength)/2.;
3c084d9f 975 // position the vertical frames
21a18f36 976 if (i!=1 && i!=0) {
a083207d 977 gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY");
978 gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY");
979 gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY");
980 gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY");
981 }
3c084d9f 982 // position the panels and the insulating material
d7c4fbc4 983 for (j=0; j<knPCB4[i]; j++){
1e8fff9c 984 index++;
d7c4fbc4 985 Float_t xx = ksensLength * (-knPCB4[i]/2.+j+.5);
3c084d9f 986
987 Float_t zPanel = spar[2] - panelpar[2];
988 gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY");
989 gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY");
990 gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY");
991 gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY");
992
993 gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY");
994 gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY");
1e8fff9c 995 }
a9e2aefa 996 }
1e8fff9c 997
3c084d9f 998 // position the rohacell volume inside the panel volume
999 gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY");
1000 gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY");
1001
1002 // position the PCB volume inside the insulating material volume
1003 gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY");
1004 gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY");
1005 // position the horizontal frame volume inside the PCB volume
1006 gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY");
1007 gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY");
1008 // position the sensitive volume inside the horizontal frame volume
1009 gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3);
1010 gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3);
3c084d9f 1011 // position the border volumes inside the PCB volume
d7c4fbc4 1012 Float_t yborder = ( kpcbHeight - kbFrameHeight ) / 2.;
3c084d9f 1013 gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY");
1014 gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY");
1015 gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY");
1016 gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY");
1017
1e8fff9c 1018 // create the NULOC volume and position it in the horizontal frame
3c084d9f 1019
d7c4fbc4 1020 gMC->Gsvolu("S07N","BOX",knulocMaterial,nulocpar,3);
1021 gMC->Gsvolu("S08N","BOX",knulocMaterial,nulocpar,3);
3c084d9f 1022 index = 0;
d7c4fbc4 1023 for (xx = -xxmax; xx<=xxmax; xx+=2*knulocLength) {
1e8fff9c 1024 index++;
d7c4fbc4 1025 gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1026 gMC->Gspos("S07N",2*index ,"S07B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1027 gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1028 gMC->Gspos("S08N",2*index ,"S08B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1e8fff9c 1029 }
a083207d 1030
1031 // position the volumes approximating the circular section of the pipe
d7c4fbc4 1032 Float_t yoffs = ksensHeight/2. - kyOverlap;
a083207d 1033 Float_t epsilon = 0.001;
1034 Int_t ndiv=6;
1035 Float_t divpar[3];
d7c4fbc4 1036 Double_t dydiv= ksensHeight/ndiv;
21a18f36 1037 Double_t ydiv = yoffs -dydiv;
a083207d 1038 Int_t imax=0;
a083207d 1039 imax = 1;
1040 Float_t rmin = 40.;
1041 Float_t z1 = -spar[2], z2=2*spar[2]*1.01;
1042 for (Int_t idiv=0;idiv<ndiv; idiv++){
1043 ydiv+= dydiv;
425ebd0a 1044 Float_t xdiv = 0.;
a083207d 1045 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
d7c4fbc4 1046 divpar[0] = (kpcbLength-xdiv)/2.;
a083207d 1047 divpar[1] = dydiv/2. - epsilon;
d7c4fbc4 1048 divpar[2] = ksensWidth/2.;
1049 Float_t xvol=(kpcbLength+xdiv)/2.+1.999;
a083207d 1050 Float_t yvol=ydiv + dydiv/2.;
2d3423a6 1051 gMC->Gsposp("S07G",imax+4*idiv+1,"S07M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1052 gMC->Gsposp("S08G",imax+4*idiv+1,"S08M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1053 gMC->Gsposp("S07G",imax+4*idiv+2,"S07M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1054 gMC->Gsposp("S08G",imax+4*idiv+2,"S08M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1055 gMC->Gsposp("S07G",imax+4*idiv+3,"S07M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1056 gMC->Gsposp("S08G",imax+4*idiv+3,"S08M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1057 gMC->Gsposp("S07G",imax+4*idiv+4,"S07M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1058 gMC->Gsposp("S08G",imax+4*idiv+4,"S08M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
a083207d 1059 }
1060
1061
1062
1063
1064
b17c0c87 1065 }
3c084d9f 1066
ba030c0e 1067 if (fStations[4]) {
b17c0c87 1068
1e8fff9c 1069
a9e2aefa 1070//********************************************************************
1071// Station 5 **
1072//********************************************************************
1073 // indices 1 and 2 for first and second chambers in the station
1074 // iChamber (first chamber) kept for other quanties than Z,
1075 // assumed to be the same in both chambers
1076 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8];
1077 iChamber2 =(AliMUONChamber*) (*fChambers)[9];
1078 zpos1=iChamber1->Z();
1079 zpos2=iChamber2->Z();
b13a15bc 1080 dstation = TMath::Abs(zpos2 - zpos1);
b64652f5 1081// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
3c084d9f 1082
a9e2aefa 1083//
1084// Mother volume
1085 tpar[0] = iChamber->RInner()-dframep;
1086 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
3c084d9f 1087 tpar[2] = dstation/5.;
a9e2aefa 1088
b74f1c6a 1089 gMC->Gsvolu("S09M", "TUBE", idAir, tpar, 3);
1090 gMC->Gsvolu("S10M", "TUBE", idAir, tpar, 3);
1091 gMC->Gspos("S09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1092 gMC->Gspos("S10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
a9e2aefa 1093
a9e2aefa 1094
d7c4fbc4 1095 const Int_t knSlats5 = 7; // number of slats per quadrant
1096 const Int_t knPCB5[knSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat
1097 const Float_t kxpos5[knSlats5] = {38.5, 40., 0., 0., 0., 0., 0.};
1098 Float_t slatLength5[knSlats5];
6c5ddcfa 1099 char volNam9[5];
1100 char volNam10[5];
f9f7c205 1101 Float_t xSlat5;
1102 Float_t ySlat5;
1e8fff9c 1103
d7c4fbc4 1104 for (i = 0; i<knSlats5; i++){
1105 slatLength5[i] = kpcbLength * knPCB5[i] + 2. * kdSlatLength;
1106 xSlat5 = slatLength5[i]/2. - kvFrameLength/2. +kxpos5[i];
1107 if (i==1 || i==0) slatLength5[i] -= 2. *kdSlatLength; // frame out in PCB with circular border
1108 ySlat5 = ksensHeight * i - kyOverlap * i;
6c5ddcfa 1109 spar[0] = slatLength5[i]/2.;
d7c4fbc4 1110 spar[1] = kslatHeight/2.;
1111 spar[2] = kslatWidth/2. * 1.01;
3c084d9f 1112 Float_t dzCh5=spar[2]*1.01;
1e8fff9c 1113 // zSlat to be checked (odd downstream or upstream?)
3c084d9f 1114 Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2];
6c5ddcfa 1115 sprintf(volNam9,"S09%d",i);
d7c4fbc4 1116 gMC->Gsvolu(volNam9,"BOX",kslatMaterial,spar,3);
2d3423a6 1117 gMC->Gspos(volNam9, i*4+1,"S09M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1118 gMC->Gspos(volNam9, i*4+2,"S09M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
f9f7c205 1119 if (i>0) {
2d3423a6 1120 gMC->Gspos(volNam9, i*4+3,"S09M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1121 gMC->Gspos(volNam9, i*4+4,"S09M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
f9f7c205 1122 }
6c5ddcfa 1123 sprintf(volNam10,"S10%d",i);
d7c4fbc4 1124 gMC->Gsvolu(volNam10,"BOX",kslatMaterial,spar,3);
2d3423a6 1125 gMC->Gspos(volNam10, i*4+1,"S10M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1126 gMC->Gspos(volNam10, i*4+2,"S10M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
f9f7c205 1127 if (i>0) {
2d3423a6 1128 gMC->Gspos(volNam10, i*4+3,"S10M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1129 gMC->Gspos(volNam10, i*4+4,"S10M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
f9f7c205 1130 }
a9e2aefa 1131 }
1132
1e8fff9c 1133 // create the panel volume
3c084d9f 1134
d7c4fbc4 1135 gMC->Gsvolu("S09C","BOX",kpanelMaterial,panelpar,3);
1136 gMC->Gsvolu("S10C","BOX",kpanelMaterial,panelpar,3);
3c084d9f 1137
1e8fff9c 1138 // create the rohacell volume
3c084d9f 1139
d7c4fbc4 1140 gMC->Gsvolu("S09R","BOX",krohaMaterial,rohapar,3);
1141 gMC->Gsvolu("S10R","BOX",krohaMaterial,rohapar,3);
3c084d9f 1142
1143 // create the insulating material volume
1144
d7c4fbc4 1145 gMC->Gsvolu("S09I","BOX",kinsuMaterial,insupar,3);
1146 gMC->Gsvolu("S10I","BOX",kinsuMaterial,insupar,3);
3c084d9f 1147
1148 // create the PCB volume
1149
d7c4fbc4 1150 gMC->Gsvolu("S09P","BOX",kpcbMaterial,pcbpar,3);
1151 gMC->Gsvolu("S10P","BOX",kpcbMaterial,pcbpar,3);
3c084d9f 1152
1153 // create the sensitive volumes,
1154
d7c4fbc4 1155 gMC->Gsvolu("S09G","BOX",ksensMaterial,dum,0);
1156 gMC->Gsvolu("S10G","BOX",ksensMaterial,dum,0);
3c084d9f 1157
1e8fff9c 1158 // create the vertical frame volume
3c084d9f 1159
d7c4fbc4 1160 gMC->Gsvolu("S09V","BOX",kvFrameMaterial,vFramepar,3);
1161 gMC->Gsvolu("S10V","BOX",kvFrameMaterial,vFramepar,3);
1e8fff9c 1162
1163 // create the horizontal frame volume
3c084d9f 1164
d7c4fbc4 1165 gMC->Gsvolu("S09H","BOX",khFrameMaterial,hFramepar,3);
1166 gMC->Gsvolu("S10H","BOX",khFrameMaterial,hFramepar,3);
1e8fff9c 1167
1168 // create the horizontal border volume
1169
d7c4fbc4 1170 gMC->Gsvolu("S09B","BOX",kbFrameMaterial,bFramepar,3);
1171 gMC->Gsvolu("S10B","BOX",kbFrameMaterial,bFramepar,3);
1e8fff9c 1172
3c084d9f 1173 index=0;
d7c4fbc4 1174 for (i = 0; i<knSlats5; i++){
6c5ddcfa 1175 sprintf(volNam9,"S09%d",i);
1176 sprintf(volNam10,"S10%d",i);
d7c4fbc4 1177 Float_t xvFrame = (slatLength5[i] - kvFrameLength)/2.;
3c084d9f 1178 // position the vertical frames
21a18f36 1179 if (i!=1 && i!=0) {
a083207d 1180 gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY");
1181 gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY");
1182 gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY");
1183 gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY");
1184 }
3c084d9f 1185
1186 // position the panels and the insulating material
d7c4fbc4 1187 for (j=0; j<knPCB5[i]; j++){
1e8fff9c 1188 index++;
d7c4fbc4 1189 Float_t xx = ksensLength * (-knPCB5[i]/2.+j+.5);
3c084d9f 1190
1191 Float_t zPanel = spar[2] - panelpar[2];
1192 gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY");
1193 gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY");
1194 gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY");
1195 gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY");
1196
1197 gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY");
1198 gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY");
1e8fff9c 1199 }
1200 }
1201
3c084d9f 1202 // position the rohacell volume inside the panel volume
1203 gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY");
1204 gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY");
1205
1206 // position the PCB volume inside the insulating material volume
1207 gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY");
1208 gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY");
1209 // position the horizontal frame volume inside the PCB volume
1210 gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY");
1211 gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY");
1212 // position the sensitive volume inside the horizontal frame volume
1213 gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3);
1214 gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3);
3c084d9f 1215 // position the border volumes inside the PCB volume
d7c4fbc4 1216 Float_t yborder = ( kpcbHeight - kbFrameHeight ) / 2.;
3c084d9f 1217 gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY");
1218 gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY");
1219 gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY");
1220 gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY");
1221
1e8fff9c 1222 // create the NULOC volume and position it in the horizontal frame
3c084d9f 1223
d7c4fbc4 1224 gMC->Gsvolu("S09N","BOX",knulocMaterial,nulocpar,3);
1225 gMC->Gsvolu("S10N","BOX",knulocMaterial,nulocpar,3);
3c084d9f 1226 index = 0;
d7c4fbc4 1227 for (xx = -xxmax; xx<=xxmax; xx+=2*knulocLength) {
1e8fff9c 1228 index++;
d7c4fbc4 1229 gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1230 gMC->Gspos("S09N",2*index ,"S09B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1231 gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1232 gMC->Gspos("S10N",2*index ,"S10B", xx, 0., kbFrameWidth/4., 0, "ONLY");
a9e2aefa 1233 }
a083207d 1234 // position the volumes approximating the circular section of the pipe
d7c4fbc4 1235 Float_t yoffs = ksensHeight/2. - kyOverlap;
a083207d 1236 Float_t epsilon = 0.001;
1237 Int_t ndiv=6;
1238 Float_t divpar[3];
d7c4fbc4 1239 Double_t dydiv= ksensHeight/ndiv;
21a18f36 1240 Double_t ydiv = yoffs -dydiv;
a083207d 1241 Int_t imax=0;
d7c4fbc4 1242 // for (Int_t islat=0; islat<knSlats3; islat++) imax += knPCB3[islat];
a083207d 1243 imax = 1;
1244 Float_t rmin = 40.;
1245 Float_t z1 = spar[2], z2=2*spar[2]*1.01;
1246 for (Int_t idiv=0;idiv<ndiv; idiv++){
1247 ydiv+= dydiv;
425ebd0a 1248 Float_t xdiv = 0.;
a083207d 1249 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
d7c4fbc4 1250 divpar[0] = (kpcbLength-xdiv)/2.;
a083207d 1251 divpar[1] = dydiv/2. - epsilon;
d7c4fbc4 1252 divpar[2] = ksensWidth/2.;
1253 Float_t xvol=(kpcbLength+xdiv)/2. + 1.999;
a083207d 1254 Float_t yvol=ydiv + dydiv/2.;
2d3423a6 1255 gMC->Gsposp("S09G",imax+4*idiv+1,"S09M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1256 gMC->Gsposp("S10G",imax+4*idiv+1,"S10M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1257 gMC->Gsposp("S09G",imax+4*idiv+2,"S09M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1258 gMC->Gsposp("S10G",imax+4*idiv+2,"S10M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1259 gMC->Gsposp("S09G",imax+4*idiv+3,"S09M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1260 gMC->Gsposp("S10G",imax+4*idiv+3,"S10M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1261 gMC->Gsposp("S09G",imax+4*idiv+4,"S09M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1262 gMC->Gsposp("S10G",imax+4*idiv+4,"S10M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
a083207d 1263 }
1264
b17c0c87 1265 }
1266
7e33ffcb 1267//********************************************************************
1268// Trigger **
1269//********************************************************************
7e33ffcb 1270 /*
1271 zpos1 and zpos2 are the middle of the first and second
1272 planes of station 1 (+1m for second station):
1273 zpos1=(zpos1m+zpos1p)/2=(15999+16071)/2=16035 mm, thick/2=40 mm
1274 zpos2=(zpos2m+zpos2p)/2=(16169+16241)/2=16205 mm, thick/2=40 mm
1275 zposxm and zposxp= middles of gaz gaps within a detection plane
1276 rem: the total thickness accounts for 1 mm of al on both
1277 side of the RPCs (see zpos1 and zpos2)
1278 */
1279
1280// vertical gap between right and left chambers (kDXZERO*2=4cm)
1281 const Float_t kDXZERO=2.;
1282// main distances for chamber definition in first plane/first station
1283 const Float_t kXMIN=34.;
1284 const Float_t kXMED=51.;
1285 const Float_t kXMAX=272.;
1286// kXMAX will become 255. in real life. segmentation to be updated accordingly
1287// (see fig.2-4 & 2-5 of Local Trigger Board PRR)
1288 const Float_t kYMIN=34.;
1289 const Float_t kYMAX=51.;
1290// inner/outer radius of flange between beam shield. and chambers (1/station)
1291 const Float_t kRMIN[2]={50.,50.};
1292 const Float_t kRMAX[2]={64.,68.};
1293// z position of the middle of the gas gap in mother vol
1294 const Float_t kZm=-3.6;
1295 const Float_t kZp=+3.6;
a9e2aefa 1296
7e33ffcb 1297 iChamber1 = (AliMUONChamber*) (*fChambers)[10];
1298 zpos1 = iChamber1->Z();
a9e2aefa 1299
7e33ffcb 1300// ratio of zpos1m/zpos1p and inverse for first plane
2d3423a6 1301 Float_t zmp=(zpos1+3.6)/(zpos1-3.6);
7e33ffcb 1302 Float_t zpm=1./zmp;
a9e2aefa 1303
7e33ffcb 1304 Int_t icount=0; // chamber counter (0 1 2 3)
1305
1306 for (Int_t istation=0; istation<2; istation++) { // loop on stations
1307 for (Int_t iplane=0; iplane<2; iplane++) { // loop on detection planes
1308
1309 Int_t iVolNum=1; // counter Volume Number
1310 icount = Int_t(iplane*TMath::Power(2,0))+
1311 Int_t(istation*TMath::Power(2,1));
1312
1313 char volPlane[5];
1314 sprintf(volPlane,"SM%d%d",istation+1,iplane+1);
1315
1316 iChamber = (AliMUONChamber*) (*fChambers)[10+icount];
1317 Float_t zpos = iChamber->Z();
1318
1319// mother volume
1320 tpar[0] = iChamber->RInner();
1321 tpar[1] = iChamber->ROuter();
1322 tpar[2] = 4.0;
1323 gMC->Gsvolu(volPlane,"TUBE",idAir,tpar,3);
1324
1325// Flange between beam shielding and RPC
1326 tpar[0]= kRMIN[istation];
1327 tpar[1]= kRMAX[istation];
1328 tpar[2]= 4.0;
1329
1330 char volFlange[5];
1331 sprintf(volFlange,"SF%dA",icount+1);
1332 gMC->Gsvolu(volFlange,"TUBE",idAlu1,tpar,3); //Al
1333 gMC->Gspos(volFlange,1,volPlane,0.,0.,0.,0,"MANY");
1334
1335// scaling factor
1336 Float_t zRatio = zpos / zpos1;
1337
1338// chamber prototype
1339 tpar[0]= 0.;
1340 tpar[1]= 0.;
1341 tpar[2]= 0.;
1342
1343 char volAlu[5]; // Alu
1344 char volBak[5]; // Bakelite
1345 char volGaz[5]; // Gas streamer
1346
1347 sprintf(volAlu,"SC%dA",icount+1);
1348 sprintf(volBak,"SB%dA",icount+1);
1349 sprintf(volGaz,"SG%dA",icount+1);
1350
1351 gMC->Gsvolu(volAlu,"BOX",idAlu1,tpar,0); // Al
1352 gMC->Gsvolu(volBak,"BOX",idtmed[1107],tpar,0); // Bakelite
1353 gMC->Gsvolu(volGaz,"BOX",idtmed[1106],tpar,0); // Gas streamer
1354
a9e2aefa 1355// chamber type A
7e33ffcb 1356 tpar[0] = -1.;
1357 tpar[1] = -1.;
1358
1359 Float_t xA=(kDXZERO+kXMED+(kXMAX-kXMED)/2.)*zRatio;
1360 Float_t yAm=0.;
1361 Float_t yAp=0.;
1362
1363 tpar[2] = 0.1;
1364 gMC->Gsposp(volGaz,1,volBak,0.,0.,0.,0,"ONLY",tpar,3);
1365 tpar[2] = 0.3;
1366 gMC->Gsposp(volBak,1,volAlu,0.,0.,0.,0,"ONLY",tpar,3);
1367
1368 tpar[2] = 0.4;
1369 tpar[0] = ((kXMAX-kXMED)/2.)*zRatio;
1370 tpar[1] = kYMIN*zRatio;
1371
2d3423a6 1372 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xA,yAm,-kZm,0,"ONLY",tpar,3);
1373 gMC->Gsposp(volAlu,iVolNum++,volPlane, xA,yAp,-kZp,0,"ONLY",tpar,3);
7e33ffcb 1374 gMC->Gsbool(volAlu,volFlange);
1375
1376// chamber type B
1377 Float_t tpar1save=tpar[1];
1378 Float_t y1msave=yAm;
1379 Float_t y1psave=yAp;
1380
1381 tpar[0] = ((kXMAX-kXMIN)/2.) * zRatio;
1382 tpar[1] = ((kYMAX-kYMIN)/2.) * zRatio;
1383
1384 Float_t xB=(kDXZERO+kXMIN)*zRatio+tpar[0];
1385 Float_t yBp=(y1msave+tpar1save)*zpm+tpar[1];
1386 Float_t yBm=(y1psave+tpar1save)*zmp+tpar[1];
1387
2d3423a6 1388 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB, yBp,-kZp,0,"ONLY",tpar,3);
1389 gMC->Gsposp(volAlu,iVolNum++,volPlane, xB, yBm,-kZm,0,"ONLY",tpar,3);
1390 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB,-yBp,-kZp,0,"ONLY",tpar,3);
1391 gMC->Gsposp(volAlu,iVolNum++,volPlane, xB,-yBm,-kZm,0,"ONLY",tpar,3);
7e33ffcb 1392
1393// chamber type C (note : same Z than type B)
1394 tpar1save=tpar[1];
1395 y1msave=yBm;
1396 y1psave=yBp;
1397
1398 tpar[0] = (kXMAX/2)*zRatio;
1399 tpar[1] = (kYMAX/2)*zRatio;
1400
1401 Float_t xC=kDXZERO*zRatio+tpar[0];
1402 Float_t yCp=(y1psave+tpar1save)*1.+tpar[1];
1403 Float_t yCm=(y1msave+tpar1save)*1.+tpar[1];
1404
2d3423a6 1405 gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC, yCp,-kZp,0,"ONLY",tpar,3);
1406 gMC->Gsposp(volAlu,iVolNum++,volPlane, xC, yCm,-kZm,0,"ONLY",tpar,3);
1407 gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC,-yCp,-kZp,0,"ONLY",tpar,3);
1408 gMC->Gsposp(volAlu,iVolNum++,volPlane, xC,-yCm,-kZm,0,"ONLY",tpar,3);
7e33ffcb 1409
1410// chamber type D, E and F (same size)
1411 tpar1save=tpar[1];
1412 y1msave=yCm;
1413 y1psave=yCp;
1414
1415 tpar[0] = (kXMAX/2.)*zRatio;
1416 tpar[1] = kYMIN*zRatio;
1417
1418 Float_t xD=kDXZERO*zRatio+tpar[0];
1419 Float_t yDp=(y1msave+tpar1save)*zpm+tpar[1];
1420 Float_t yDm=(y1psave+tpar1save)*zmp+tpar[1];
1421
2d3423a6 1422 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yDm,-kZm,0,"ONLY",tpar,3);
1423 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yDp,-kZp,0,"ONLY",tpar,3);
1424 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yDm,-kZm,0,"ONLY",tpar,3);
1425 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yDp,-kZp,0,"ONLY",tpar,3);
7e33ffcb 1426
1427 tpar1save=tpar[1];
1428 y1msave=yDm;
1429 y1psave=yDp;
1430 Float_t yEp=(y1msave+tpar1save)*zpm+tpar[1];
1431 Float_t yEm=(y1psave+tpar1save)*zmp+tpar[1];
1432
2d3423a6 1433 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yEp,-kZp,0,"ONLY",tpar,3);
1434 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yEm,-kZm,0,"ONLY",tpar,3);
1435 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yEp,-kZp,0,"ONLY",tpar,3);
1436 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yEm,-kZm,0,"ONLY",tpar,3);
7e33ffcb 1437
1438 tpar1save=tpar[1];
1439 y1msave=yEm;
1440 y1psave=yEp;
1441 Float_t yFp=(y1msave+tpar1save)*zpm+tpar[1];
1442 Float_t yFm=(y1psave+tpar1save)*zmp+tpar[1];
1443
2d3423a6 1444 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yFm,-kZm,0,"ONLY",tpar,3);
1445 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yFp,-kZp,0,"ONLY",tpar,3);
1446 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yFm,-kZm,0,"ONLY",tpar,3);
1447 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yFp,-kZp,0,"ONLY",tpar,3);
a9e2aefa 1448
7e33ffcb 1449// Positioning plane in ALICE
1450 gMC->Gspos(volPlane,1,"ALIC",0.,0.,zpos,0,"ONLY");
1451
1452 } // end loop on detection planes
1453 } // end loop on stations
a9e2aefa 1454
1455}
1456
a9e2aefa 1457
1458//___________________________________________
1459void AliMUONv1::CreateMaterials()
1460{
1461 // *** DEFINITION OF AVAILABLE MUON MATERIALS ***
1462 //
b64652f5 1463 // Ar-CO2 gas (80%+20%)
a9e2aefa 1464 Float_t ag1[3] = { 39.95,12.01,16. };
1465 Float_t zg1[3] = { 18.,6.,8. };
1466 Float_t wg1[3] = { .8,.0667,.13333 };
1467 Float_t dg1 = .001821;
1468 //
1469 // Ar-buthane-freon gas -- trigger chambers
1470 Float_t atr1[4] = { 39.95,12.01,1.01,19. };
1471 Float_t ztr1[4] = { 18.,6.,1.,9. };
1472 Float_t wtr1[4] = { .56,.1262857,.2857143,.028 };
1473 Float_t dtr1 = .002599;
1474 //
1475 // Ar-CO2 gas
1476 Float_t agas[3] = { 39.95,12.01,16. };
1477 Float_t zgas[3] = { 18.,6.,8. };
1478 Float_t wgas[3] = { .74,.086684,.173316 };
1479 Float_t dgas = .0018327;
1480 //
1481 // Ar-Isobutane gas (80%+20%) -- tracking
1482 Float_t ag[3] = { 39.95,12.01,1.01 };
1483 Float_t zg[3] = { 18.,6.,1. };
1484 Float_t wg[3] = { .8,.057,.143 };
1485 Float_t dg = .0019596;
1486 //
1487 // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger
1488 Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
1489 Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
1490 Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
1491 Float_t dtrig = .0031463;
1492 //
1493 // bakelite
1494
1495 Float_t abak[3] = {12.01 , 1.01 , 16.};
1496 Float_t zbak[3] = {6. , 1. , 8.};
1497 Float_t wbak[3] = {6. , 6. , 1.};
1498 Float_t dbak = 1.4;
1499
1500 Float_t epsil, stmin, deemax, tmaxfd, stemax;
1501
1502 Int_t iSXFLD = gAlice->Field()->Integ();
1503 Float_t sXMGMX = gAlice->Field()->Max();
1504 //
1505 // --- Define the various materials for GEANT ---
1506 AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1507 AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1508 AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500);
1509 AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
1510 AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
1511 AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
1512 AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
1513 AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
1514 AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
1e8fff9c 1515 // materials for slat:
1516 // Sensitive area: gas (already defined)
1517 // PCB: copper
1518 // insulating material and frame: vetronite
1519 // walls: carbon, rohacell, carbon
1520 Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.};
1521 Float_t zglass[5]={ 6., 14., 8., 5., 11.};
1522 Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01};
1523 Float_t dglass=1.74;
1524
1525 // rohacell: C9 H13 N1 O2
1526 Float_t arohac[4] = {12.01, 1.01, 14.010, 16.};
1527 Float_t zrohac[4] = { 6., 1., 7., 8.};
1528 Float_t wrohac[4] = { 9., 13., 1., 2.};
1529 Float_t drohac = 0.03;
1530
1531 AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.);
1532 AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass);
1533 AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9);
1534 AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac);
1535
a9e2aefa 1536
1537 epsil = .001; // Tracking precision,
1538 stemax = -1.; // Maximum displacement for multiple scat
1539 tmaxfd = -20.; // Maximum angle due to field deflection
1540 deemax = -.3; // Maximum fractional energy loss, DLS
1541 stmin = -.8;
1542 //
1543 // Air
1544 AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1545 //
1546 // Aluminum
1547
1548 AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1549 fMaxDestepAlu, epsil, stmin);
1550 AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1551 fMaxDestepAlu, epsil, stmin);
1552 //
1553 // Ar-isoC4H10 gas
1554
1555 AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1556 fMaxDestepGas, epsil, stmin);
1557//
1558 // Ar-Isobuthane-Forane-SF6 gas
1559
1560 AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1561
1562 AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1563 fMaxDestepAlu, epsil, stmin);
1564
1565 AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1566 fMaxDestepAlu, epsil, stmin);
1e8fff9c 1567 // tracking media for slats: check the parameters!!
1568 AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd,
1569 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1570 AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd,
1571 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1572 AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd,
1573 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1574 AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd,
1575 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
a9e2aefa 1576}
1577
1578//___________________________________________
1579
1580void AliMUONv1::Init()
1581{
1582 //
1583 // Initialize Tracking Chambers
1584 //
1585
9e1a0ddb 1586 if(fDebug) printf("\n%s: Start Init for version 1 - CPC chamber type\n\n",ClassName());
e17592e9 1587 Int_t i;
f665c1ea 1588 for (i=0; i<AliMUONConstants::NCh(); i++) {
a9e2aefa 1589 ( (AliMUONChamber*) (*fChambers)[i])->Init();
1590 }
1591
1592 //
1593 // Set the chamber (sensitive region) GEANT identifier
b74f1c6a 1594 ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("S01G"));
1595 ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("S02G"));
b17c0c87 1596
b74f1c6a 1597 ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("S03G"));
1598 ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("S04G"));
b17c0c87 1599
1e8fff9c 1600 ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G"));
1601 ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G"));
b17c0c87 1602
1e8fff9c 1603 ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G"));
1604 ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G"));
b17c0c87 1605
1e8fff9c 1606 ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G"));
1607 ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G"));
b17c0c87 1608
b74f1c6a 1609 ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("SG1A"));
1610 ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("SG2A"));
1611 ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("SG3A"));
1612 ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("SG4A"));
a9e2aefa 1613
9e1a0ddb 1614 if(fDebug) printf("\n%s: Finished Init for version 1 - CPC chamber type\n",ClassName());
a9e2aefa 1615
1616 //cp
9e1a0ddb 1617 if(fDebug) printf("\n%s: Start Init for Trigger Circuits\n",ClassName());
f665c1ea 1618 for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) {
a9e2aefa 1619 ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i);
1620 }
9e1a0ddb 1621 if(fDebug) printf("%s: Finished Init for Trigger Circuits\n",ClassName());
a9e2aefa 1622 //cp
1623
1624}
1391e633 1625
1626//_______________________________________________________________________________
1627Int_t AliMUONv1::GetChamberId(Int_t volId) const
1628{
1629// Check if the volume with specified volId is a sensitive volume (gas)
1630// of some chamber and returns the chamber number;
1631// if not sensitive volume - return 0.
1632// ---
1633
1634 for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++)
1635 if (volId==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) return i;
1636
1637 return 0;
1638}
1639//_______________________________________________________________________________
c33d9661 1640void AliMUONv1::StepManager()
1641{
d7c4fbc4 1642 // Stepmanager for the chambers
1643
1391e633 1644 if (fStepManagerVersionOld) {
c33d9661 1645 StepManagerOld();
1646 return;
1647 }
c33d9661 1648
1649 // Only charged tracks
1650 if( !(gMC->TrackCharge()) ) return;
1391e633 1651 // Only charged tracks
1652
c33d9661 1653 // Only gas gap inside chamber
1654 // Tag chambers and record hits when track enters
1391e633 1655 Int_t idvol=-1;
1656 Int_t iChamber=0;
1657 Int_t id=0;
1658 Int_t copy;
1659 const Float_t kBig = 1.e10;
1660
c33d9661 1661 id=gMC->CurrentVolID(copy);
1391e633 1662 // printf("id == %d \n",id);
c33d9661 1663 for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) {
1664 if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) {
1665 iChamber = i;
1666 idvol = i-1;
1667 }
1668 }
1391e633 1669 if (idvol == -1) {
1670 return;
c33d9661 1671 }
abaf7c9d 1672
1391e633 1673 if( gMC->IsTrackEntering() ) {
1674 Float_t theta = fTrackMomentum.Theta();
4ac9d21e 1675 if ((TMath::Pi()-theta)*kRaddeg>=15.) gMC->SetMaxStep(fStepMaxInActiveGas); // We use Pi-theta because z is negative
1676 }
abaf7c9d 1677
1391e633 1678// if (GetDebug()) {
1679// Float_t z = ( (AliMUONChamber*)(*fChambers)[idvol])->Z() ;
1680// Info("StepManager Step","Active volume found %d chamber %d Z chamber is %f ",idvol,iChamber, z);
1681// }
1682 // Particule id and mass,
1683 Int_t ipart = gMC->TrackPid();
1684 Float_t mass = gMC->TrackMass();
1685
1686 fDestepSum[idvol]+=gMC->Edep();
1687 // Get current particle id (ipart), track position (pos) and momentum (mom)
1688 if ( fStepSum[idvol]==0.0 ) gMC->TrackMomentum(fTrackMomentum);
1689 fStepSum[idvol]+=gMC->TrackStep();
abaf7c9d 1690
1391e633 1691// if (GetDebug()) {
1692// Info("StepManager Step","iChamber %d, Particle %d, theta %f phi %f mass %f StepSum %f eloss %g",
1693// iChamber,ipart, fTrackMomentum.Theta()*kRaddeg, fTrackMomentum.Phi()*kRaddeg, mass, fStepSum[idvol], gMC->Edep());
1694// Info("StepManager Step","Track Momentum %f %f %f", fTrackMomentum.X(), fTrackMomentum.Y(), fTrackMomentum.Z()) ;
1695// gMC->TrackPosition(fTrackPosition);
1696// Info("StepManager Step","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
d08aff2d 1697// }
1391e633 1698
1699 // Track left chamber or StepSum larger than fStepMaxInActiveGas
1700 if ( gMC->IsTrackExiting() ||
1701 gMC->IsTrackStop() ||
1702 gMC->IsTrackDisappeared()||
1703 (fStepSum[idvol]>fStepMaxInActiveGas) ) {
1704
1705 if ( gMC->IsTrackExiting() ||
1706 gMC->IsTrackStop() ||
1707 gMC->IsTrackDisappeared() ) gMC->SetMaxStep(kBig);
1708
1709 gMC->TrackPosition(fTrackPosition);
1710 Float_t theta = fTrackMomentum.Theta();
1711 Float_t phi = fTrackMomentum.Phi();
1712
d7c4fbc4 1713 TLorentzVector backToWire( fStepSum[idvol]/2.*sin(theta)*cos(phi),
1391e633 1714 fStepSum[idvol]/2.*sin(theta)*sin(phi),
1715 fStepSum[idvol]/2.*cos(theta),0.0 );
1716 // if (GetDebug())
1717 // Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1718 // if (GetDebug())
d7c4fbc4 1719 // Info("StepManager Exit ","Track backToWire %f %f %f",backToWire.X(),backToWire.Y(),backToWire.Z()) ;
1720 fTrackPosition-=backToWire;
1391e633 1721
1722 //-------------- Angle effect
1723 // Ratio between energy loss of particle and Mip as a function of BetaGamma of particle (Energy/Mass)
1724
d7c4fbc4 1725 Float_t BetaxGamma = fTrackMomentum.P()/mass;// pc/mc2
1726 Float_t sigmaEffect10degrees;
1727 Float_t sigmaEffectThetadegrees;
1728 Float_t eLossParticleELossMip;
1729 Float_t yAngleEffect=0.;
1730 Float_t thetawires = TMath::Abs( TMath::ASin( TMath::Sin(TMath::Pi()-theta) * TMath::Sin(phi) ) );// We use Pi-theta because z is negative
1731
1732 if ( (BetaxGamma >3.2) && (thetawires*kRaddeg<=15.) ) {
1733 BetaxGamma=TMath::Log(BetaxGamma);
1734 eLossParticleELossMip = fElossRatio->Eval(BetaxGamma);
1391e633 1735 // 10 degrees is a reference for a model (arbitrary)
d7c4fbc4 1736 sigmaEffect10degrees=fAngleEffect10->Eval(eLossParticleELossMip);// in micrometers
1391e633 1737 // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
d7c4fbc4 1738 sigmaEffectThetadegrees = sigmaEffect10degrees/fAngleEffectNorma->Eval(thetawires*kRaddeg); // For 5mm gap
1391e633 1739 if ( (iChamber==1) || (iChamber==2) )
d7c4fbc4 1740 sigmaEffectThetadegrees/=(1.09833e+00+1.70000e-02*(thetawires*kRaddeg)); // The gap is different (4mm)
1741 yAngleEffect=1.e-04*gRandom->Gaus(0,sigmaEffectThetadegrees); // Error due to the angle effect in cm
1391e633 1742 }
1743
1744
1745 // One hit per chamber
5d12ce38 1746 GetMUONData()->AddHit(fIshunt, gAlice->GetMCApp()->GetCurrentTrackNumber(), iChamber, ipart,
d7c4fbc4 1747 fTrackPosition.X(), fTrackPosition.Y()+yAngleEffect, fTrackPosition.Z(), 0.0,
1391e633 1748 fTrackMomentum.P(),theta, phi, fStepSum[idvol], fDestepSum[idvol],
1749 fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z());
1750// if (GetDebug()){
1751// Info("StepManager Exit","Particle exiting from chamber %d",iChamber);
1752// Info("StepManager Exit","StepSum %f eloss geant %g ",fStepSum[idvol],fDestepSum[idvol]);
1753// Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1754// }
1755 fStepSum[idvol] =0; // Reset for the next event
1756 fDestepSum[idvol]=0; // Reset for the next event
1757 }
abaf7c9d 1758}
5f91c9e8 1759
4ac9d21e 1760//__________________________________________
c33d9661 1761void AliMUONv1::StepManagerOld()
a9e2aefa 1762{
d7c4fbc4 1763 // Old Stepmanager for the chambers
a9e2aefa 1764 Int_t copy, id;
1765 static Int_t idvol;
1766 static Int_t vol[2];
1767 Int_t ipart;
1768 TLorentzVector pos;
1769 TLorentzVector mom;
1770 Float_t theta,phi;
1771 Float_t destep, step;
abaf7c9d 1772
d7c4fbc4 1773 static Float_t sstep;
1e8fff9c 1774 static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength;
2eb55fab 1775 const Float_t kBig = 1.e10;
a9e2aefa 1776 static Float_t hits[15];
1777
1778 TClonesArray &lhits = *fHits;
1779
1780 //
a9e2aefa 1781 //
1782 // Only charged tracks
1783 if( !(gMC->TrackCharge()) ) return;
1784 //
1785 // Only gas gap inside chamber
1786 // Tag chambers and record hits when track enters
a9e2aefa 1787 id=gMC->CurrentVolID(copy);
5f91c9e8 1788 vol[0] = GetChamberId(id);
1789 idvol = vol[0] -1;
1790
1791 if (idvol == -1) return;
1792
a9e2aefa 1793 //
1794 // Get current particle id (ipart), track position (pos) and momentum (mom)
1795 gMC->TrackPosition(pos);
1796 gMC->TrackMomentum(mom);
1797
1798 ipart = gMC->TrackPid();
a9e2aefa 1799
1800 //
1801 // momentum loss and steplength in last step
1802 destep = gMC->Edep();
1803 step = gMC->TrackStep();
abaf7c9d 1804 // cout<<"------------"<<step<<endl;
a9e2aefa 1805 //
1806 // record hits when track enters ...
1807 if( gMC->IsTrackEntering()) {
abaf7c9d 1808
a9e2aefa 1809 gMC->SetMaxStep(fMaxStepGas);
1810 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
1811 Double_t rt = TMath::Sqrt(tc);
1812 Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]);
2eb55fab 1813 Double_t tx = mom[0]/pmom;
1814 Double_t ty = mom[1]/pmom;
1815 Double_t tz = mom[2]/pmom;
1816 Double_t s = ((AliMUONChamber*)(*fChambers)[idvol])
a9e2aefa 1817 ->ResponseModel()
1818 ->Pitch()/tz;
1819 theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
1820 phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
1821 hits[0] = Float_t(ipart); // Geant3 particle type
2eb55fab 1822 hits[1] = pos[0]+s*tx; // X-position for hit
1823 hits[2] = pos[1]+s*ty; // Y-position for hit
1824 hits[3] = pos[2]+s*tz; // Z-position for hit
a9e2aefa 1825 hits[4] = theta; // theta angle of incidence
1826 hits[5] = phi; // phi angle of incidence
ce3f5e87 1827 hits[8] = 0;//PadHits does not exist anymore (Float_t) fNPadHits; // first padhit
a9e2aefa 1828 hits[9] = -1; // last pad hit
2eb55fab 1829 hits[10] = mom[3]; // hit momentum P
1830 hits[11] = mom[0]; // Px
1831 hits[12] = mom[1]; // Py
1832 hits[13] = mom[2]; // Pz
a9e2aefa 1833 tof=gMC->TrackTime();
2eb55fab 1834 hits[14] = tof; // Time of flight
1835 tlength = 0;
1836 eloss = 0;
1837 eloss2 = 0;
d7c4fbc4 1838 sstep=0;
2eb55fab 1839 xhit = pos[0];
1840 yhit = pos[1];
1841 zhit = pos[2];
681d067b 1842 Chamber(idvol).ChargeCorrelationInit();
a9e2aefa 1843 // Only if not trigger chamber
1e8fff9c 1844
abaf7c9d 1845// printf("---------------------------\n");
1846// printf(">>>> Y = %f \n",hits[2]);
1847// printf("---------------------------\n");
1848
1e8fff9c 1849
1850
abaf7c9d 1851 // if(idvol < AliMUONConstants::NTrackingCh()) {
1852// //
1853// // Initialize hit position (cursor) in the segmentation model
1854// ((AliMUONChamber*) (*fChambers)[idvol])
1855// ->SigGenInit(pos[0], pos[1], pos[2]);
1856// } else {
1857// //geant3->Gpcxyz();
1858// //printf("In the Trigger Chamber #%d\n",idvol-9);
1859// }
a9e2aefa 1860 }
1861 eloss2+=destep;
d7c4fbc4 1862 sstep+=step;
abaf7c9d 1863
d7c4fbc4 1864 // cout<<sstep<<endl;
abaf7c9d 1865
a9e2aefa 1866 //
1867 // Calculate the charge induced on a pad (disintegration) in case
1868 //
1869 // Mip left chamber ...
1870 if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1871 gMC->SetMaxStep(kBig);
1872 eloss += destep;
1873 tlength += step;
1874
802a864d 1875 Float_t x0,y0,z0;
1876 Float_t localPos[3];
1877 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
802a864d 1878 gMC->Gmtod(globalPos,localPos,1);
1879
2eb55fab 1880 if(idvol < AliMUONConstants::NTrackingCh()) {
a9e2aefa 1881// tracking chambers
1882 x0 = 0.5*(xhit+pos[0]);
1883 y0 = 0.5*(yhit+pos[1]);
1e8fff9c 1884 z0 = 0.5*(zhit+pos[2]);
a9e2aefa 1885 } else {
1886// trigger chambers
2eb55fab 1887 x0 = xhit;
1888 y0 = yhit;
1889 z0 = 0.;
a9e2aefa 1890 }
1891
1e8fff9c 1892
ce3f5e87 1893 // if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol);
a9e2aefa 1894
1895
2eb55fab 1896 hits[6] = tlength; // track length
1897 hits[7] = eloss2; // de/dx energy loss
1898
abaf7c9d 1899
ce3f5e87 1900 // if (fNPadHits > (Int_t)hits[8]) {
1901 // hits[8] = hits[8]+1;
1902 // hits[9] = 0: // PadHits does not exist anymore (Float_t) fNPadHits;
1903 //}
2eb55fab 1904//
1905// new hit
1906
a9e2aefa 1907 new(lhits[fNhits++])
5d12ce38 1908 AliMUONHit(fIshunt, gAlice->GetMCApp()->GetCurrentTrackNumber(), vol,hits);
a9e2aefa 1909 eloss = 0;
1910 //
1911 // Check additional signal generation conditions
1912 // defined by the segmentation
a75f073c 1913 // model (boundary crossing conditions)
1914 // only for tracking chambers
a9e2aefa 1915 } else if
a75f073c 1916 ((idvol < AliMUONConstants::NTrackingCh()) &&
1917 ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2]))
a9e2aefa 1918 {
1919 ((AliMUONChamber*) (*fChambers)[idvol])
1920 ->SigGenInit(pos[0], pos[1], pos[2]);
802a864d 1921
1922 Float_t localPos[3];
1923 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1924 gMC->Gmtod(globalPos,localPos,1);
1925
e0f71fb7 1926 eloss += destep;
802a864d 1927
ce3f5e87 1928 // if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh())
1929 // MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol);
a9e2aefa 1930 xhit = pos[0];
1931 yhit = pos[1];
e0f71fb7 1932 zhit = pos[2];
1933 eloss = 0;
a9e2aefa 1934 tlength += step ;
1935 //
1936 // nothing special happened, add up energy loss
1937 } else {
1938 eloss += destep;
1939 tlength += step ;
1940 }
1941}
1942
1943