]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PYTHIA6/AliPythia.cxx
Interface to pythia tunes added.
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
CommitLineData
6b435cde 1
8d2cd130 2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
7cdba479 17/* $Id$ */
8d2cd130 18
19#include "AliPythia.h"
7cdba479 20#include "AliPythiaRndm.h"
12cb0bc0 21#include "AliFastGlauber.h"
22#include "AliQuenchingWeights.h"
0f482ae4 23#include "TVector3.h"
12cb0bc0 24#include "PyquenCommon.h"
8d2cd130 25
26ClassImp(AliPythia)
27
28#ifndef WIN32
29# define pyclus pyclus_
30# define pycell pycell_
452af8c7 31# define pyshow pyshow_
32# define pyrobo pyrobo_
992f2843 33# define pyquen pyquen_
16a82508 34# define pyevnw pyevnw_
cd07c39b 35# define pyshowq pyshowq_
694b39f9 36# define pytune pytune_
8d2cd130 37# define type_of_call
38#else
39# define pyclus PYCLUS
40# define pycell PYCELL
452af8c7 41# define pyrobo PYROBO
992f2843 42# define pyquen PYQUEN
16a82508 43# define pyevnw PYEVNW
cd07c39b 44# define pyshowq PYSHOWQ
694b39f9 45# define PYTUNE PYTUNE
8d2cd130 46# define type_of_call _stdcall
47#endif
48
49extern "C" void type_of_call pyclus(Int_t & );
50extern "C" void type_of_call pycell(Int_t & );
452af8c7 51extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
52extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
992f2843 53extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
0a2cfc0a 54extern "C" void type_of_call pyevnw(){;}
cd07c39b 55extern "C" void type_of_call pyshowq(Int_t &, Int_t &, Double_t &);
694b39f9 56extern "C" void type_of_call pytune(Int_t &);
8d2cd130 57
58//_____________________________________________________________________________
59
60AliPythia* AliPythia::fgAliPythia=NULL;
61
e8a8adcd 62AliPythia::AliPythia():
63 fProcess(kPyMb),
64 fEcms(0.),
65 fStrucFunc(kCTEQ5L),
66 fXJet(0.),
67 fYJet(0.),
32c8e463 68 fNGmax(30),
69 fZmax(0.97),
e8a8adcd 70 fGlauber(0),
71 fQuenchingWeights(0)
8d2cd130 72{
73// Default Constructor
74//
75// Set random number
7cdba479 76 if (!AliPythiaRndm::GetPythiaRandom())
77 AliPythiaRndm::SetPythiaRandom(GetRandom());
0f482ae4 78 fGlauber = 0;
79 fQuenchingWeights = 0;
8d2cd130 80}
81
e8a8adcd 82AliPythia::AliPythia(const AliPythia& pythia):
6b435cde 83 TPythia6(pythia),
84 AliRndm(pythia),
e8a8adcd 85 fProcess(kPyMb),
86 fEcms(0.),
87 fStrucFunc(kCTEQ5L),
88 fXJet(0.),
89 fYJet(0.),
32c8e463 90 fNGmax(30),
91 fZmax(0.97),
e8a8adcd 92 fGlauber(0),
93 fQuenchingWeights(0)
94{
95 // Copy Constructor
96 pythia.Copy(*this);
97}
98
8d2cd130 99void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
100{
101// Initialise the process to generate
7cdba479 102 if (!AliPythiaRndm::GetPythiaRandom())
103 AliPythiaRndm::SetPythiaRandom(GetRandom());
8d2cd130 104
105 fProcess = process;
106 fEcms = energy;
107 fStrucFunc = strucfunc;
1d5b1b20 108//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
e2de0ce1 109 SetMDCY(Pycomp(111) ,1,0); // pi0
110 SetMDCY(Pycomp(310) ,1,0); // K0S
111 SetMDCY(Pycomp(3122),1,0); // kLambda
112 SetMDCY(Pycomp(3112),1,0); // sigma -
113 SetMDCY(Pycomp(3212),1,0); // sigma 0
114 SetMDCY(Pycomp(3222),1,0); // sigma +
115 SetMDCY(Pycomp(3312),1,0); // xi -
116 SetMDCY(Pycomp(3322),1,0); // xi 0
117 SetMDCY(Pycomp(3334),1,0); // omega-
1c50ec12 118 // Select structure function
8d2cd130 119 SetMSTP(52,2);
e2de0ce1 120 SetMSTP(51, AliStructFuncType::PDFsetIndex(strucfunc));
1c50ec12 121 // Particles produced in string fragmentation point directly to either of the two endpoints
122 // of the string (depending in the side they were generated from).
123 SetMSTU(16,2);
124
8d2cd130 125//
126// Pythia initialisation for selected processes//
127//
128// Make MSEL clean
129//
130 for (Int_t i=1; i<= 200; i++) {
131 SetMSUB(i,0);
132 }
133// select charm production
134 switch (process)
135 {
65f2626c 136 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
137// Multiple interactions on.
138 SetMSTP(81,1);
139// Double Gaussian matter distribution.
140 SetMSTP(82,4);
141 SetPARP(83,0.5);
142 SetPARP(84,0.4);
143// pT0.
144 SetPARP(82,2.0);
145// Reference energy for pT0 and energy rescaling pace.
146 SetPARP(89,1800);
147 SetPARP(90,0.25);
148// String drawing almost completely minimizes string length.
149 SetPARP(85,0.9);
150 SetPARP(86,0.95);
151// ISR and FSR activity.
152 SetPARP(67,4);
153 SetPARP(71,4);
154// Lambda_FSR scale.
155 SetPARJ(81,0.29);
156 break;
157 case kPyOldUEQ2ordered2:
158// Old underlying events with Q2 ordered QCD processes
159// Multiple interactions on.
160 SetMSTP(81,1);
161// Double Gaussian matter distribution.
162 SetMSTP(82,4);
163 SetPARP(83,0.5);
164 SetPARP(84,0.4);
165// pT0.
166 SetPARP(82,2.0);
167// Reference energy for pT0 and energy rescaling pace.
168 SetPARP(89,1800);
169 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
170// String drawing almost completely minimizes string length.
171 SetPARP(85,0.9);
172 SetPARP(86,0.95);
173// ISR and FSR activity.
174 SetPARP(67,4);
175 SetPARP(71,4);
176// Lambda_FSR scale.
177 SetPARJ(81,0.29);
178 break;
179 case kPyOldPopcorn:
180// Old production mechanism: Old Popcorn
181 SetMSEL(1);
182 SetMSTJ(12,3);
183// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
184 SetMSTP(88,2);
185// (D=1)see can be used to form baryons (BARYON JUNCTION)
186 SetMSTJ(1,1);
e0e89f40 187 AtlasTuning();
65f2626c 188 break;
8d2cd130 189 case kPyCharm:
190 SetMSEL(4);
8d2cd130 191// heavy quark masses
192
193 SetPMAS(4,1,1.2);
8d2cd130 194//
195// primordial pT
196 SetMSTP(91,1);
197 SetPARP(91,1.);
198 SetPARP(93,5.);
199//
200 break;
201 case kPyBeauty:
202 SetMSEL(5);
203 SetPMAS(5,1,4.75);
8d2cd130 204 break;
205 case kPyJpsi:
206 SetMSEL(0);
207// gg->J/Psi g
208 SetMSUB(86,1);
209 break;
210 case kPyJpsiChi:
211 SetMSEL(0);
212// gg->J/Psi g
213 SetMSUB(86,1);
214// gg-> chi_0c g
215 SetMSUB(87,1);
216// gg-> chi_1c g
217 SetMSUB(88,1);
218// gg-> chi_2c g
219 SetMSUB(89,1);
220 break;
221 case kPyCharmUnforced:
222 SetMSEL(0);
223// gq->qg
224 SetMSUB(28,1);
225// gg->qq
226 SetMSUB(53,1);
227// gg->gg
228 SetMSUB(68,1);
229 break;
230 case kPyBeautyUnforced:
231 SetMSEL(0);
232// gq->qg
233 SetMSUB(28,1);
234// gg->qq
235 SetMSUB(53,1);
236// gg->gg
237 SetMSUB(68,1);
238 break;
239 case kPyMb:
240// Minimum Bias pp-Collisions
241//
242//
243// select Pythia min. bias model
244 SetMSEL(0);
511db649 245 SetMSUB(92,1); // single diffraction AB-->XB
246 SetMSUB(93,1); // single diffraction AB-->AX
247 SetMSUB(94,1); // double diffraction
248 SetMSUB(95,1); // low pt production
249
e0e89f40 250 AtlasTuning();
f529e69b 251 break;
04081a91 252
253 case kPyMbWithDirectPhoton:
254// Minimum Bias pp-Collisions with direct photon processes added
255//
256//
257// select Pythia min. bias model
258 SetMSEL(0);
259 SetMSUB(92,1); // single diffraction AB-->XB
260 SetMSUB(93,1); // single diffraction AB-->AX
261 SetMSUB(94,1); // double diffraction
262 SetMSUB(95,1); // low pt production
263
264 SetMSUB(14,1); //
265 SetMSUB(18,1); //
266 SetMSUB(29,1); //
267 SetMSUB(114,1); //
268 SetMSUB(115,1); //
269
270
271 AtlasTuning();
272 break;
273
f529e69b 274 case kPyMbDefault:
275// Minimum Bias pp-Collisions
276//
277//
278// select Pythia min. bias model
279 SetMSEL(0);
280 SetMSUB(92,1); // single diffraction AB-->XB
281 SetMSUB(93,1); // single diffraction AB-->AX
282 SetMSUB(94,1); // double diffraction
283 SetMSUB(95,1); // low pt production
284
0a0cbcfd 285 break;
286 case kPyLhwgMb:
287// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
288// -> Pythia 6.3 or above is needed
289//
290 SetMSEL(0);
291 SetMSUB(92,1); // single diffraction AB-->XB
292 SetMSUB(93,1); // single diffraction AB-->AX
293 SetMSUB(94,1); // double diffraction
294 SetMSUB(95,1); // low pt production
295
e2de0ce1 296 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll)); // CTEQ6ll pdf
0a0cbcfd 297 SetMSTP(52,2);
298 SetMSTP(68,1);
299 SetMSTP(70,2);
300 SetMSTP(81,1); // Multiple Interactions ON
301 SetMSTP(82,4); // Double Gaussian Model
302 SetMSTP(88,1);
303
304 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
305 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
306 SetPARP(84,0.5); // Core radius
307 SetPARP(85,0.9); // Regulates gluon prod. mechanism
308 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
309
511db649 310 break;
8d2cd130 311 case kPyMbNonDiffr:
312// Minimum Bias pp-Collisions
313//
314//
315// select Pythia min. bias model
316 SetMSEL(0);
511db649 317 SetMSUB(95,1); // low pt production
0f482ae4 318
d7de4a67 319 AtlasTuning();
320 break;
321 case kPyMbMSEL1:
322 ConfigHeavyFlavor();
323// Intrinsic <kT^2>
324 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
325 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
326 SetPARP(93,5.); // Upper cut-off
327// Set Q-quark mass
328 SetPMAS(4,1,1.2); // Charm quark mass
329 SetPMAS(5,1,4.78); // Beauty quark mass
330 SetPARP(71,4.); // Defaut value
331// Atlas Tuning
e0e89f40 332 AtlasTuning();
8d2cd130 333 break;
334 case kPyJets:
335//
336// QCD Jets
337//
338 SetMSEL(1);
65f2626c 339 // Pythia Tune A (CDF)
340 //
4167b79f 341 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
65f2626c 342 SetMSTP(82,4); // Double Gaussian Model
343 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
344 SetPARP(84,0.4); // Core radius
345 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
346 SetPARP(86,0.95); // Regulates gluon prod. mechanism
347 SetPARP(89,1800.); // [GeV] Ref. energy
348 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
349 break;
8d2cd130 350 case kPyDirectGamma:
351 SetMSEL(10);
352 break;
adf4d898 353 case kPyCharmPbPbMNR:
354 case kPyD0PbPbMNR:
90d7b703 355 case kPyDPlusPbPbMNR:
e0e89f40 356 case kPyDPlusStrangePbPbMNR:
90d7b703 357 // Tuning of Pythia parameters aimed to get a resonable agreement
358 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
359 // c-cbar single inclusive and double differential distributions.
360 // This parameter settings are meant to work with Pb-Pb collisions
361 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
362 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
363 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 364 ConfigHeavyFlavor();
90d7b703 365 // Intrinsic <kT>
366 SetMSTP(91,1);
367 SetPARP(91,1.304);
368 SetPARP(93,6.52);
90d7b703 369 // Set c-quark mass
370 SetPMAS(4,1,1.2);
8d2cd130 371 break;
adf4d898 372 case kPyCharmpPbMNR:
373 case kPyD0pPbMNR:
90d7b703 374 case kPyDPluspPbMNR:
e0e89f40 375 case kPyDPlusStrangepPbMNR:
90d7b703 376 // Tuning of Pythia parameters aimed to get a resonable agreement
377 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
378 // c-cbar single inclusive and double differential distributions.
379 // This parameter settings are meant to work with p-Pb collisions
380 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
381 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
382 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 383 ConfigHeavyFlavor();
90d7b703 384 // Intrinsic <kT>
3dc3ec94 385 SetMSTP(91,1);
386 SetPARP(91,1.16);
387 SetPARP(93,5.8);
388
90d7b703 389 // Set c-quark mass
3dc3ec94 390 SetPMAS(4,1,1.2);
adf4d898 391 break;
392 case kPyCharmppMNR:
393 case kPyD0ppMNR:
90d7b703 394 case kPyDPlusppMNR:
e0e89f40 395 case kPyDPlusStrangeppMNR:
90d7b703 396 // Tuning of Pythia parameters aimed to get a resonable agreement
397 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
398 // c-cbar single inclusive and double differential distributions.
399 // This parameter settings are meant to work with pp collisions
400 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
401 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
402 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 403 ConfigHeavyFlavor();
90d7b703 404 // Intrinsic <kT^2>
3dc3ec94 405 SetMSTP(91,1);
406 SetPARP(91,1.);
407 SetPARP(93,5.);
408
90d7b703 409 // Set c-quark mass
3dc3ec94 410 SetPMAS(4,1,1.2);
adf4d898 411 break;
e0e89f40 412 case kPyCharmppMNRwmi:
413 // Tuning of Pythia parameters aimed to get a resonable agreement
414 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
415 // c-cbar single inclusive and double differential distributions.
416 // This parameter settings are meant to work with pp collisions
417 // and with kCTEQ5L PDFs.
418 // Added multiple interactions according to ATLAS tune settings.
419 // To get a "reasonable" agreement with MNR results, events have to be
420 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
421 // set to 2.76 GeV.
422 // To get a "perfect" agreement with MNR results, events have to be
423 // generated in four ptHard bins with the following relative
424 // normalizations:
425 // 2.76-3 GeV: 25%
426 // 3-4 GeV: 40%
427 // 4-8 GeV: 29%
428 // >8 GeV: 6%
429 ConfigHeavyFlavor();
430 // Intrinsic <kT^2>
431 SetMSTP(91,1);
432 SetPARP(91,1.);
433 SetPARP(93,5.);
434
435 // Set c-quark mass
436 SetPMAS(4,1,1.2);
437 AtlasTuning();
438 break;
adf4d898 439 case kPyBeautyPbPbMNR:
8d2cd130 440 // Tuning of Pythia parameters aimed to get a resonable agreement
441 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
442 // b-bbar single inclusive and double differential distributions.
443 // This parameter settings are meant to work with Pb-Pb collisions
444 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
445 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
446 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 447 ConfigHeavyFlavor();
8d2cd130 448 // QCD scales
3dc3ec94 449 SetPARP(67,1.0);
450 SetPARP(71,1.0);
adf4d898 451 // Intrinsic <kT>
3dc3ec94 452 SetMSTP(91,1);
453 SetPARP(91,2.035);
454 SetPARP(93,10.17);
8d2cd130 455 // Set b-quark mass
3dc3ec94 456 SetPMAS(5,1,4.75);
adf4d898 457 break;
458 case kPyBeautypPbMNR:
459 // Tuning of Pythia parameters aimed to get a resonable agreement
460 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
461 // b-bbar single inclusive and double differential distributions.
462 // This parameter settings are meant to work with p-Pb collisions
463 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
464 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
465 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 466 ConfigHeavyFlavor();
adf4d898 467 // QCD scales
3dc3ec94 468 SetPARP(67,1.0);
469 SetPARP(71,1.0);
adf4d898 470 // Intrinsic <kT>
3dc3ec94 471 SetMSTP(91,1);
472 SetPARP(91,1.60);
473 SetPARP(93,8.00);
adf4d898 474 // Set b-quark mass
3dc3ec94 475 SetPMAS(5,1,4.75);
adf4d898 476 break;
477 case kPyBeautyppMNR:
478 // Tuning of Pythia parameters aimed to get a resonable agreement
479 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
480 // b-bbar single inclusive and double differential distributions.
481 // This parameter settings are meant to work with pp collisions
482 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
483 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
484 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 485 ConfigHeavyFlavor();
adf4d898 486 // QCD scales
3dc3ec94 487 SetPARP(67,1.0);
488 SetPARP(71,1.0);
489
490 // Intrinsic <kT>
491 SetMSTP(91,1);
492 SetPARP(91,1.);
493 SetPARP(93,5.);
494
495 // Set b-quark mass
496 SetPMAS(5,1,4.75);
8d2cd130 497 break;
9dfe63b3 498 case kPyBeautyJets:
e0e89f40 499 case kPyBeautyppMNRwmi:
500 // Tuning of Pythia parameters aimed to get a resonable agreement
501 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
502 // b-bbar single inclusive and double differential distributions.
503 // This parameter settings are meant to work with pp collisions
504 // and with kCTEQ5L PDFs.
505 // Added multiple interactions according to ATLAS tune settings.
506 // To get a "reasonable" agreement with MNR results, events have to be
507 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
508 // set to 2.76 GeV.
509 // To get a "perfect" agreement with MNR results, events have to be
510 // generated in four ptHard bins with the following relative
511 // normalizations:
512 // 2.76-4 GeV: 5%
513 // 4-6 GeV: 31%
514 // 6-8 GeV: 28%
515 // >8 GeV: 36%
516 ConfigHeavyFlavor();
517 // QCD scales
518 SetPARP(67,1.0);
519 SetPARP(71,1.0);
520
521 // Intrinsic <kT>
522 SetMSTP(91,1);
523 SetPARP(91,1.);
524 SetPARP(93,5.);
525
526 // Set b-quark mass
527 SetPMAS(5,1,4.75);
528
529 AtlasTuning();
530 break;
589380c6 531 case kPyW:
532
533 //Inclusive production of W+/-
534 SetMSEL(0);
535 //f fbar -> W+
536 SetMSUB(2,1);
537 // //f fbar -> g W+
538 // SetMSUB(16,1);
539 // //f fbar -> gamma W+
540 // SetMSUB(20,1);
541 // //f g -> f W+
542 // SetMSUB(31,1);
543 // //f gamma -> f W+
544 // SetMSUB(36,1);
545
546 // Initial/final parton shower on (Pythia default)
547 // With parton showers on we are generating "W inclusive process"
548 SetMSTP(61,1); //Initial QCD & QED showers on
549 SetMSTP(71,1); //Final QCD & QED showers on
550
551 break;
0f6ee828 552
553 case kPyZ:
554
555 //Inclusive production of Z
556 SetMSEL(0);
557 //f fbar -> Z/gamma
558 SetMSUB(1,1);
559
560 // // f fbar -> g Z/gamma
561 // SetMSUB(15,1);
562 // // f fbar -> gamma Z/gamma
563 // SetMSUB(19,1);
564 // // f g -> f Z/gamma
565 // SetMSUB(30,1);
566 // // f gamma -> f Z/gamma
567 // SetMSUB(35,1);
568
569 //only Z included, not gamma
570 SetMSTP(43,2);
571
572 // Initial/final parton shower on (Pythia default)
573 // With parton showers on we are generating "Z inclusive process"
574 SetMSTP(61,1); //Initial QCD & QED showers on
575 SetMSTP(71,1); //Final QCD & QED showers on
576
577 break;
578
8d2cd130 579 }
580//
581// Initialize PYTHIA
582 SetMSTP(41,1); // all resonance decays switched on
8d2cd130 583 Initialize("CMS","p","p",fEcms);
4167b79f 584
8d2cd130 585}
586
587Int_t AliPythia::CheckedLuComp(Int_t kf)
588{
589// Check Lund particle code (for debugging)
590 Int_t kc=Pycomp(kf);
591 printf("\n Lucomp kf,kc %d %d",kf,kc);
592 return kc;
593}
594
20e47f08 595void AliPythia::SetNuclei(Int_t a1, Int_t a2, Int_t pdf)
8d2cd130 596{
597// Treat protons as inside nuclei with mass numbers a1 and a2
598// The MSTP array in the PYPARS common block is used to enable and
599// select the nuclear structure functions.
600// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
601// =1: internal PYTHIA acording to MSTP(51)
602// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
603// If the following mass number both not equal zero, nuclear corrections of the stf are used.
604// MSTP(192) : Mass number of nucleus side 1
605// MSTP(193) : Mass number of nucleus side 2
20e47f08 606// MSTP(194) : Nuclear structure function: 0: EKS98 1:EPS08
8d2cd130 607 SetMSTP(52,2);
608 SetMSTP(192, a1);
20e47f08 609 SetMSTP(193, a2);
610 SetMSTP(194, pdf);
8d2cd130 611}
612
613
614AliPythia* AliPythia::Instance()
615{
616// Set random number generator
617 if (fgAliPythia) {
618 return fgAliPythia;
619 } else {
620 fgAliPythia = new AliPythia();
621 return fgAliPythia;
622 }
623}
624
625void AliPythia::PrintParticles()
626{
627// Print list of particl properties
628 Int_t np = 0;
c31f1d37 629 char* name = new char[16];
8d2cd130 630 for (Int_t kf=0; kf<1000000; kf++) {
631 for (Int_t c = 1; c > -2; c-=2) {
8d2cd130 632 Int_t kc = Pycomp(c*kf);
633 if (kc) {
634 Float_t mass = GetPMAS(kc,1);
635 Float_t width = GetPMAS(kc,2);
636 Float_t tau = GetPMAS(kc,4);
c31f1d37 637
8d2cd130 638 Pyname(kf,name);
639
640 np++;
641
642 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
643 c*kf, name, mass, width, tau);
644 }
645 }
646 }
647 printf("\n Number of particles %d \n \n", np);
648}
649
650void AliPythia::ResetDecayTable()
651{
652// Set default values for pythia decay switches
653 Int_t i;
654 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
655 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
656}
657
658void AliPythia::SetDecayTable()
659{
660// Set default values for pythia decay switches
661//
662 Int_t i;
663 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
664 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
665}
666
667void AliPythia::Pyclus(Int_t& njet)
668{
669// Call Pythia clustering algorithm
670//
671 pyclus(njet);
672}
673
674void AliPythia::Pycell(Int_t& njet)
675{
676// Call Pythia jet reconstruction algorithm
677//
678 pycell(njet);
679}
680
452af8c7 681void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
682{
683// Call Pythia jet reconstruction algorithm
684//
452af8c7 685 pyshow(ip1, ip2, qmax);
686}
687
688void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
689{
690 pyrobo(imi, ima, the, phi, bex, bey, bez);
691}
692
694b39f9 693void AliPythia::Pytune(Int_t itune)
694{
695 pytune(itune);
696}
697
452af8c7 698
699
32c8e463 700void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
0f482ae4 701{
702// Initializes
703// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
704// (2) The nuclear geometry using the Glauber Model
705//
6b435cde 706
18b7a4a1 707 fGlauber = AliFastGlauber::Instance();
0f482ae4 708 fGlauber->Init(2);
709 fGlauber->SetCentralityClass(cMin, cMax);
710
711 fQuenchingWeights = new AliQuenchingWeights();
712 fQuenchingWeights->InitMult();
86b6ad68 713 fQuenchingWeights->SetK(k);
0f482ae4 714 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
32c8e463 715 fNGmax = ngmax;
716 fZmax = zmax;
717
0f482ae4 718}
719
720
452af8c7 721void AliPythia::Quench()
722{
723//
724//
725// Simple Jet Quenching routine:
726// =============================
727// The jet formed by all final state partons radiated by the parton created
0f482ae4 728// in the hard collisions is quenched by a factor (1-z) using light cone variables in
729// the initial parton reference frame:
452af8c7 730// (E + p_z)new = (1-z) (E + p_z)old
731//
0f482ae4 732//
733//
734//
452af8c7 735// The lost momentum is first balanced by one gluon with virtuality > 0.
736// Subsequently the gluon splits to yield two gluons with E = p.
737//
0f482ae4 738//
739//
4e383037 740 static Float_t eMean = 0.;
741 static Int_t icall = 0;
0f482ae4 742
c2c598a3 743 Double_t p0[4][5];
744 Double_t p1[4][5];
745 Double_t p2[4][5];
746 Int_t klast[4] = {-1, -1, -1, -1};
452af8c7 747
748 Int_t numpart = fPyjets->N;
86b6ad68 749 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
c2c598a3 750 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
751 Bool_t quenched[4];
b280c4cc 752 Double_t wjtKick[4];
c2c598a3 753 Int_t nGluon[4];
86b6ad68 754 Int_t qPdg[4];
0f482ae4 755 Int_t imo, kst, pdg;
b280c4cc 756
511db649 757//
c2c598a3 758// Sore information about Primary partons
759//
760// j =
761// 0, 1 partons from hard scattering
762// 2, 3 partons from initial state radiation
763//
764 for (Int_t i = 2; i <= 7; i++) {
765 Int_t j = 0;
766 // Skip gluons that participate in hard scattering
767 if (i == 4 || i == 5) continue;
768 // Gluons from hard Scattering
769 if (i == 6 || i == 7) {
770 j = i - 6;
771 pxq[j] = fPyjets->P[0][i];
772 pyq[j] = fPyjets->P[1][i];
773 pzq[j] = fPyjets->P[2][i];
774 eq[j] = fPyjets->P[3][i];
775 mq[j] = fPyjets->P[4][i];
776 } else {
777 // Gluons from initial state radiation
778 //
779 // Obtain 4-momentum vector from difference between original parton and parton after gluon
780 // radiation. Energy is calculated independently because initial state radition does not
781 // conserve strictly momentum and energy for each partonic system independently.
782 //
783 // Not very clean. Should be improved !
784 //
785 //
786 j = i;
787 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
788 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
789 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
790 mq[j] = fPyjets->P[4][i];
791 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
792 }
793//
794// Calculate some kinematic variables
511db649 795//
4e383037 796 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
0f482ae4 797 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
798 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
799 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
800 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
86b6ad68 801 qPdg[j] = fPyjets->K[1][i];
802 }
803
804 Double_t int0[4];
805 Double_t int1[4];
86b6ad68 806
b280c4cc 807 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
808
86b6ad68 809 for (Int_t j = 0; j < 4; j++) {
c2c598a3 810 //
811 // Quench only central jets and with E > 10.
812 //
86b6ad68 813
814
815 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
816 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
817
c2c598a3 818 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
b280c4cc 819 fZQuench[j] = 0.;
0f482ae4 820 } else {
c2c598a3 821 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
4e383037 822 icall ++;
823 eMean += eloss;
824 }
0f482ae4 825 //
826 // Extra pt
86b6ad68 827 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
828 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
0f482ae4 829 //
830 // Fractional energy loss
b280c4cc 831 fZQuench[j] = eloss / eq[j];
0f482ae4 832 //
833 // Avoid complete loss
834 //
1044c4d8 835 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
0f482ae4 836 //
837 // Some debug printing
86b6ad68 838
839
bf9bb016 840// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
841// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
4e383037 842
b280c4cc 843// fZQuench[j] = 0.8;
844// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
0f482ae4 845 }
4e383037 846
b280c4cc 847 quenched[j] = (fZQuench[j] > 0.01);
4e383037 848 } // primary partons
c2c598a3 849
b280c4cc 850
851
6e90ad26 852 Double_t pNew[1000][4];
853 Int_t kNew[1000];
854 Int_t icount = 0;
b280c4cc 855 Double_t zquench[4];
856
6e90ad26 857//
4e383037 858// System Loop
c2c598a3 859 for (Int_t isys = 0; isys < 4; isys++) {
6e90ad26 860// Skip to next system if not quenched.
4e383037 861 if (!quenched[isys]) continue;
862
b280c4cc 863 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
32c8e463 864 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
b280c4cc 865 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
4e383037 866 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
0f482ae4 867
4e383037 868
869
870 Int_t igMin = -1;
871 Int_t igMax = -1;
872 Double_t pg[4] = {0., 0., 0., 0.};
873
874//
875// Loop on radiation events
876
877 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
6e90ad26 878 while (1) {
879 icount = 0;
880 for (Int_t k = 0; k < 4; k++)
881 {
882 p0[isys][k] = 0.;
883 p1[isys][k] = 0.;
884 p2[isys][k] = 0.;
885 }
886// Loop over partons
887 for (Int_t i = 0; i < numpart; i++)
888 {
889 imo = fPyjets->K[2][i];
890 kst = fPyjets->K[0][i];
891 pdg = fPyjets->K[1][i];
892
893
894
0f482ae4 895// Quarks and gluons only
6e90ad26 896 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
0f482ae4 897// Particles from hard scattering only
c2c598a3 898
6e90ad26 899 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
c2c598a3 900 Int_t imom = imo % 1000;
901 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
902 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
903
6e90ad26 904
0f482ae4 905// Skip comment lines
6e90ad26 906 if (kst != 1 && kst != 2) continue;
0f482ae4 907//
908// Parton kinematic
6e90ad26 909 px = fPyjets->P[0][i];
910 py = fPyjets->P[1][i];
911 pz = fPyjets->P[2][i];
912 e = fPyjets->P[3][i];
913 m = fPyjets->P[4][i];
914 pt = TMath::Sqrt(px * px + py * py);
915 p = TMath::Sqrt(px * px + py * py + pz * pz);
916 phi = TMath::Pi() + TMath::ATan2(-py, -px);
917 theta = TMath::ATan2(pt, pz);
918
0f482ae4 919//
c2c598a3 920// Save 4-momentum sum for balancing
921 Int_t index = isys;
6e90ad26 922
923 p0[index][0] += px;
924 p0[index][1] += py;
925 p0[index][2] += pz;
926 p0[index][3] += e;
6e90ad26 927
928 klast[index] = i;
929
0f482ae4 930//
931// Fractional energy loss
b280c4cc 932 Double_t z = zquench[index];
4e383037 933
c2c598a3 934
4e383037 935// Don't fully quench radiated gluons
936//
937 if (imo > 1000) {
938// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
939//
940
c2c598a3 941 z = 0.02;
4e383037 942 }
c2c598a3 943// printf("z: %d %f\n", imo, z);
944
4e383037 945
946//
6e90ad26 947
948 //
949 //
950 // Transform into frame in which initial parton is along z-axis
951 //
952 TVector3 v(px, py, pz);
953 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
954 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
955
956 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
957 Double_t mt2 = jt * jt + m * m;
958 Double_t zmax = 1.;
959 //
960 // Kinematic limit on z
961 //
4e383037 962 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
6e90ad26 963 //
964 // Change light-cone kinematics rel. to initial parton
965 //
966 Double_t eppzOld = e + pl;
967 Double_t empzOld = e - pl;
968
969 Double_t eppzNew = (1. - z) * eppzOld;
970 Double_t empzNew = empzOld - mt2 * z / eppzOld;
971 Double_t eNew = 0.5 * (eppzNew + empzNew);
972 Double_t plNew = 0.5 * (eppzNew - empzNew);
973
974 Double_t jtNew;
975 //
976 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
977 Double_t mt2New = eppzNew * empzNew;
978 if (mt2New < 1.e-8) mt2New = 0.;
4e383037 979 if (z < zmax) {
980 if (m * m > mt2New) {
981 //
982 // This should not happen
983 //
984 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
985 jtNew = 0;
986 } else {
987 jtNew = TMath::Sqrt(mt2New - m * m);
988 }
6e90ad26 989 } else {
4e383037 990 // If pT is to small (probably a leading massive particle) we scale only the energy
991 // This can cause negative masses of the radiated gluon
992 // Let's hope for the best ...
993 jtNew = jt;
994 eNew = TMath::Sqrt(plNew * plNew + mt2);
995
6e90ad26 996 }
6e90ad26 997 //
998 // Calculate new px, py
999 //
b07be423 1000 Double_t pxNew = 0;
1001 Double_t pyNew = 0;
6e90ad26 1002
b07be423 1003 if (jt>0) {
6b118b3c 1004 pxNew = jtNew / jt * pxs;
1005 pyNew = jtNew / jt * pys;
b07be423 1006 }
6e90ad26 1007// Double_t dpx = pxs - pxNew;
1008// Double_t dpy = pys - pyNew;
1009// Double_t dpz = pl - plNew;
1010// Double_t de = e - eNew;
1011// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1012// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1013// printf("New mass (2) %e %e \n", pxNew, pyNew);
1014 //
1015 // Rotate back
1016 //
1017 TVector3 w(pxNew, pyNew, plNew);
1018 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1019 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1020
1021 p1[index][0] += pxNew;
1022 p1[index][1] += pyNew;
1023 p1[index][2] += plNew;
1024 p1[index][3] += eNew;
1025 //
1026 // Updated 4-momentum vectors
1027 //
1028 pNew[icount][0] = pxNew;
1029 pNew[icount][1] = pyNew;
1030 pNew[icount][2] = plNew;
1031 pNew[icount][3] = eNew;
1032 kNew[icount] = i;
1033 icount++;
1034 } // parton loop
0f482ae4 1035 //
6e90ad26 1036 // Check if there was phase-space for quenching
0f482ae4 1037 //
0f482ae4 1038
6e90ad26 1039 if (icount == 0) quenched[isys] = kFALSE;
1040 if (!quenched[isys]) break;
1041
1042 for (Int_t j = 0; j < 4; j++)
1043 {
1044 p2[isys][j] = p0[isys][j] - p1[isys][j];
1045 }
1046 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
6e90ad26 1047 if (p2[isys][4] > 0.) {
1048 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1049 break;
1050 } else {
b280c4cc 1051 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
4e383037 1052 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
6e90ad26 1053 if (p2[isys][4] < -0.01) {
4e383037 1054 printf("Negative mass squared !\n");
1055 // Here we have to put the gluon back to mass shell
1056 // This will lead to a small energy imbalance
1057 p2[isys][4] = 0.;
1058 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1059 break;
6e90ad26 1060 } else {
1061 p2[isys][4] = 0.;
1062 break;
1063 }
1064 }
6e90ad26 1065 /*
6e90ad26 1066 zHeavy *= 0.98;
1067 printf("zHeavy lowered to %f\n", zHeavy);
1068 if (zHeavy < 0.01) {
1069 printf("No success ! \n");
1070 icount = 0;
1071 quenched[isys] = kFALSE;
1072 break;
1073 }
4e383037 1074 */
1075 } // iteration on z (while)
1076
6e90ad26 1077// Update event record
1078 for (Int_t k = 0; k < icount; k++) {
1079// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1080 fPyjets->P[0][kNew[k]] = pNew[k][0];
1081 fPyjets->P[1][kNew[k]] = pNew[k][1];
1082 fPyjets->P[2][kNew[k]] = pNew[k][2];
1083 fPyjets->P[3][kNew[k]] = pNew[k][3];
0f482ae4 1084 }
4e383037 1085 //
1086 // Add the gluons
1087 //
1088 Int_t ish = 0;
1837e95c 1089 Int_t iGlu;
4e383037 1090 if (!quenched[isys]) continue;
0f482ae4 1091//
1092// Last parton from shower i
4e383037 1093 Int_t in = klast[isys];
0f482ae4 1094//
1095// Continue if no parton in shower i selected
1096 if (in == -1) continue;
1097//
1098// If this is the second initial parton and it is behind the first move pointer by previous ish
4e383037 1099 if (isys == 1 && klast[1] > klast[0]) in += ish;
0f482ae4 1100//
1101// Starting index
452af8c7 1102
4e383037 1103// jmin = in - 1;
0f482ae4 1104// How many additional gluons will be generated
1105 ish = 1;
4e383037 1106 if (p2[isys][4] > 0.05) ish = 2;
0f482ae4 1107//
1108// Position of gluons
4e383037 1109 iGlu = numpart;
1110 if (iglu == 0) igMin = iGlu;
1111 igMax = iGlu;
0f482ae4 1112 numpart += ish;
1113 (fPyjets->N) += ish;
4e383037 1114
0f482ae4 1115 if (ish == 1) {
4e383037 1116 fPyjets->P[0][iGlu] = p2[isys][0];
1117 fPyjets->P[1][iGlu] = p2[isys][1];
1118 fPyjets->P[2][iGlu] = p2[isys][2];
1119 fPyjets->P[3][iGlu] = p2[isys][3];
1120 fPyjets->P[4][iGlu] = p2[isys][4];
0f482ae4 1121
4e383037 1122 fPyjets->K[0][iGlu] = 1;
1123 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
0f482ae4 1124 fPyjets->K[1][iGlu] = 21;
4e383037 1125 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1126 fPyjets->K[3][iGlu] = -1;
1127 fPyjets->K[4][iGlu] = -1;
4e383037 1128
1129 pg[0] += p2[isys][0];
1130 pg[1] += p2[isys][1];
1131 pg[2] += p2[isys][2];
1132 pg[3] += p2[isys][3];
0f482ae4 1133 } else {
1134 //
1135 // Split gluon in rest frame.
1136 //
4e383037 1137 Double_t bx = p2[isys][0] / p2[isys][3];
1138 Double_t by = p2[isys][1] / p2[isys][3];
1139 Double_t bz = p2[isys][2] / p2[isys][3];
1140 Double_t pst = p2[isys][4] / 2.;
0f482ae4 1141 //
1142 // Isotropic decay ????
1143 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1144 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1145 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
0f482ae4 1146
1147 Double_t pz1 = pst * cost;
1148 Double_t pz2 = -pst * cost;
1149 Double_t pt1 = pst * sint;
1150 Double_t pt2 = -pst * sint;
2ab330c9 1151 Double_t px1 = pt1 * TMath::Cos(phis);
1152 Double_t py1 = pt1 * TMath::Sin(phis);
1153 Double_t px2 = pt2 * TMath::Cos(phis);
1154 Double_t py2 = pt2 * TMath::Sin(phis);
0f482ae4 1155
1156 fPyjets->P[0][iGlu] = px1;
1157 fPyjets->P[1][iGlu] = py1;
1158 fPyjets->P[2][iGlu] = pz1;
1159 fPyjets->P[3][iGlu] = pst;
1160 fPyjets->P[4][iGlu] = 0.;
1161
4e383037 1162 fPyjets->K[0][iGlu] = 1 ;
0f482ae4 1163 fPyjets->K[1][iGlu] = 21;
4e383037 1164 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1165 fPyjets->K[3][iGlu] = -1;
1166 fPyjets->K[4][iGlu] = -1;
1167
1168 fPyjets->P[0][iGlu+1] = px2;
1169 fPyjets->P[1][iGlu+1] = py2;
1170 fPyjets->P[2][iGlu+1] = pz2;
1171 fPyjets->P[3][iGlu+1] = pst;
1172 fPyjets->P[4][iGlu+1] = 0.;
1173
4e383037 1174 fPyjets->K[0][iGlu+1] = 1;
1175 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
0f482ae4 1176 fPyjets->K[1][iGlu+1] = 21;
4e383037 1177 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
0f482ae4 1178 fPyjets->K[3][iGlu+1] = -1;
1179 fPyjets->K[4][iGlu+1] = -1;
1180 SetMSTU(1,0);
1181 SetMSTU(2,0);
1182 //
1183 // Boost back
1184 //
1185 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1186 }
4e383037 1187/*
1188 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1189 Double_t px, py, pz;
1190 px = fPyjets->P[0][ig];
1191 py = fPyjets->P[1][ig];
1192 pz = fPyjets->P[2][ig];
1193 TVector3 v(px, py, pz);
1194 v.RotateZ(-phiq[isys]);
1195 v.RotateY(-thetaq[isys]);
1196 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1197 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1198 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1199 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1200 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1201 pxs += jtKick * TMath::Cos(phiKick);
1202 pys += jtKick * TMath::Sin(phiKick);
1203 TVector3 w(pxs, pys, pzs);
1204 w.RotateY(thetaq[isys]);
1205 w.RotateZ(phiq[isys]);
1206 fPyjets->P[0][ig] = w.X();
1207 fPyjets->P[1][ig] = w.Y();
1208 fPyjets->P[2][ig] = w.Z();
1209 fPyjets->P[2][ig] = w.Mag();
1210 }
1211*/
1212 } // kGluon
1213
6e90ad26 1214
4e383037 1215 // Check energy conservation
0f482ae4 1216 Double_t pxs = 0.;
1217 Double_t pys = 0.;
1218 Double_t pzs = 0.;
1219 Double_t es = 14000.;
1220
1221 for (Int_t i = 0; i < numpart; i++)
1222 {
1223 kst = fPyjets->K[0][i];
1224 if (kst != 1 && kst != 2) continue;
1225 pxs += fPyjets->P[0][i];
1226 pys += fPyjets->P[1][i];
1227 pzs += fPyjets->P[2][i];
1228 es -= fPyjets->P[3][i];
1229 }
1230 if (TMath::Abs(pxs) > 1.e-2 ||
1231 TMath::Abs(pys) > 1.e-2 ||
1232 TMath::Abs(pzs) > 1.e-1) {
1233 printf("%e %e %e %e\n", pxs, pys, pzs, es);
4e383037 1234// Fatal("Quench()", "4-Momentum non-conservation");
452af8c7 1235 }
4e383037 1236
1237 } // end quenching loop (systems)
6e90ad26 1238// Clean-up
0f482ae4 1239 for (Int_t i = 0; i < numpart; i++)
1240 {
4e383037 1241 imo = fPyjets->K[2][i];
1242 if (imo > 1000) {
1243 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1244 }
0f482ae4 1245 }
4e383037 1246// this->Pylist(1);
0f482ae4 1247} // end quench
90d7b703 1248
992f2843 1249
1250void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b)
1251{
1252 // Igor Lokthine's quenching routine
12cb0bc0 1253 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1254
992f2843 1255 pyquen(a, ibf, b);
1256}
b280c4cc 1257
12cb0bc0 1258void AliPythia::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1259{
1260 // Set the parameters for the PYQUEN package.
1261 // See comments in PyquenCommon.h
1262
1263
1264 PYQPAR.t0 = t0;
1265 PYQPAR.tau0 = tau0;
1266 PYQPAR.nf = nf;
1267 PYQPAR.iengl = iengl;
1268 PYQPAR.iangl = iangl;
1269}
1270
1271
16a82508 1272void AliPythia::Pyevnw()
1273{
1274 // New multiple interaction scenario
1275 pyevnw();
1276}
1277
cd07c39b 1278void AliPythia::Pyshowq(Int_t ip1, Int_t ip2, Double_t qmax)
1279{
1280 // Call medium-modified Pythia jet reconstruction algorithm
1281 //
1282 pyshowq(ip1, ip2, qmax);
1283}
1284
b280c4cc 1285void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1286{
1287 // Return event specific quenching parameters
1288 xp = fXJet;
1289 yp = fYJet;
1290 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1291
1292}
1293
3dc3ec94 1294void AliPythia::ConfigHeavyFlavor()
1295{
1296 //
1297 // Default configuration for Heavy Flavor production
1298 //
1299 // All QCD processes
1300 //
1301 SetMSEL(1);
1302
1303 // No multiple interactions
1304 SetMSTP(81,0);
39c2e610 1305 SetPARP(81, 0.);
1306 SetPARP(82, 0.);
3dc3ec94 1307 // Initial/final parton shower on (Pythia default)
1308 SetMSTP(61,1);
1309 SetMSTP(71,1);
1310
1311 // 2nd order alpha_s
1312 SetMSTP(2,2);
1313
1314 // QCD scales
1315 SetMSTP(32,2);
1316 SetPARP(34,1.0);
1317}
e0e89f40 1318
1319void AliPythia::AtlasTuning()
1320{
1321 //
1322 // Configuration for the ATLAS tuning
e2de0ce1 1323 SetMSTP(51, AliStructFuncType::PDFsetIndex(kCTEQ5L)); // CTEQ5L pdf
e0e89f40 1324 SetMSTP(81,1); // Multiple Interactions ON
1325 SetMSTP(82,4); // Double Gaussian Model
39c2e610 1326 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
e0e89f40 1327 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1328 SetPARP(89,1000.); // [GeV] Ref. energy
1329 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1330 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1331 SetPARP(84,0.5); // Core radius
1332 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1333 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1334 SetPARP(67,1); // Regulates Initial State Radiation
1335}
e8a8adcd 1336
1337AliPythia& AliPythia::operator=(const AliPythia& rhs)
1338{
1339// Assignment operator
1340 rhs.Copy(*this);
1341 return *this;
1342}
1343
1344 void AliPythia::Copy(TObject&) const
1345{
1346 //
1347 // Copy
1348 //
1349 Fatal("Copy","Not implemented!\n");
1350}
cd07c39b 1351