]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PYTHIA6/AliPythia.cxx
Major change in the setup of HLT simulation:
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
CommitLineData
6b435cde 1
8d2cd130 2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
7cdba479 17/* $Id$ */
8d2cd130 18
19#include "AliPythia.h"
7cdba479 20#include "AliPythiaRndm.h"
12cb0bc0 21#include "AliFastGlauber.h"
22#include "AliQuenchingWeights.h"
0f482ae4 23#include "TVector3.h"
12cb0bc0 24#include "PyquenCommon.h"
8d2cd130 25
26ClassImp(AliPythia)
27
28#ifndef WIN32
29# define pyclus pyclus_
30# define pycell pycell_
452af8c7 31# define pyshow pyshow_
32# define pyrobo pyrobo_
992f2843 33# define pyquen pyquen_
16a82508 34# define pyevnw pyevnw_
cd07c39b 35# define pyshowq pyshowq_
8d2cd130 36# define type_of_call
37#else
38# define pyclus PYCLUS
39# define pycell PYCELL
452af8c7 40# define pyrobo PYROBO
992f2843 41# define pyquen PYQUEN
16a82508 42# define pyevnw PYEVNW
cd07c39b 43# define pyshowq PYSHOWQ
8d2cd130 44# define type_of_call _stdcall
45#endif
46
47extern "C" void type_of_call pyclus(Int_t & );
48extern "C" void type_of_call pycell(Int_t & );
452af8c7 49extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
50extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
992f2843 51extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
0a2cfc0a 52extern "C" void type_of_call pyevnw(){;}
cd07c39b 53extern "C" void type_of_call pyshowq(Int_t &, Int_t &, Double_t &);
8d2cd130 54
55//_____________________________________________________________________________
56
57AliPythia* AliPythia::fgAliPythia=NULL;
58
e8a8adcd 59AliPythia::AliPythia():
60 fProcess(kPyMb),
61 fEcms(0.),
62 fStrucFunc(kCTEQ5L),
63 fXJet(0.),
64 fYJet(0.),
32c8e463 65 fNGmax(30),
66 fZmax(0.97),
e8a8adcd 67 fGlauber(0),
68 fQuenchingWeights(0)
8d2cd130 69{
70// Default Constructor
71//
72// Set random number
7cdba479 73 if (!AliPythiaRndm::GetPythiaRandom())
74 AliPythiaRndm::SetPythiaRandom(GetRandom());
0f482ae4 75 fGlauber = 0;
76 fQuenchingWeights = 0;
8d2cd130 77}
78
e8a8adcd 79AliPythia::AliPythia(const AliPythia& pythia):
6b435cde 80 TPythia6(pythia),
81 AliRndm(pythia),
e8a8adcd 82 fProcess(kPyMb),
83 fEcms(0.),
84 fStrucFunc(kCTEQ5L),
85 fXJet(0.),
86 fYJet(0.),
32c8e463 87 fNGmax(30),
88 fZmax(0.97),
e8a8adcd 89 fGlauber(0),
90 fQuenchingWeights(0)
91{
92 // Copy Constructor
93 pythia.Copy(*this);
94}
95
8d2cd130 96void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
97{
98// Initialise the process to generate
7cdba479 99 if (!AliPythiaRndm::GetPythiaRandom())
100 AliPythiaRndm::SetPythiaRandom(GetRandom());
8d2cd130 101
102 fProcess = process;
103 fEcms = energy;
104 fStrucFunc = strucfunc;
1d5b1b20 105//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
e2de0ce1 106 SetMDCY(Pycomp(111) ,1,0); // pi0
107 SetMDCY(Pycomp(310) ,1,0); // K0S
108 SetMDCY(Pycomp(3122),1,0); // kLambda
109 SetMDCY(Pycomp(3112),1,0); // sigma -
110 SetMDCY(Pycomp(3212),1,0); // sigma 0
111 SetMDCY(Pycomp(3222),1,0); // sigma +
112 SetMDCY(Pycomp(3312),1,0); // xi -
113 SetMDCY(Pycomp(3322),1,0); // xi 0
114 SetMDCY(Pycomp(3334),1,0); // omega-
1c50ec12 115 // Select structure function
8d2cd130 116 SetMSTP(52,2);
e2de0ce1 117 SetMSTP(51, AliStructFuncType::PDFsetIndex(strucfunc));
1c50ec12 118 // Particles produced in string fragmentation point directly to either of the two endpoints
119 // of the string (depending in the side they were generated from).
120 SetMSTU(16,2);
121
8d2cd130 122//
123// Pythia initialisation for selected processes//
124//
125// Make MSEL clean
126//
127 for (Int_t i=1; i<= 200; i++) {
128 SetMSUB(i,0);
129 }
130// select charm production
131 switch (process)
132 {
65f2626c 133 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
134// Multiple interactions on.
135 SetMSTP(81,1);
136// Double Gaussian matter distribution.
137 SetMSTP(82,4);
138 SetPARP(83,0.5);
139 SetPARP(84,0.4);
140// pT0.
141 SetPARP(82,2.0);
142// Reference energy for pT0 and energy rescaling pace.
143 SetPARP(89,1800);
144 SetPARP(90,0.25);
145// String drawing almost completely minimizes string length.
146 SetPARP(85,0.9);
147 SetPARP(86,0.95);
148// ISR and FSR activity.
149 SetPARP(67,4);
150 SetPARP(71,4);
151// Lambda_FSR scale.
152 SetPARJ(81,0.29);
153 break;
154 case kPyOldUEQ2ordered2:
155// Old underlying events with Q2 ordered QCD processes
156// Multiple interactions on.
157 SetMSTP(81,1);
158// Double Gaussian matter distribution.
159 SetMSTP(82,4);
160 SetPARP(83,0.5);
161 SetPARP(84,0.4);
162// pT0.
163 SetPARP(82,2.0);
164// Reference energy for pT0 and energy rescaling pace.
165 SetPARP(89,1800);
166 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
167// String drawing almost completely minimizes string length.
168 SetPARP(85,0.9);
169 SetPARP(86,0.95);
170// ISR and FSR activity.
171 SetPARP(67,4);
172 SetPARP(71,4);
173// Lambda_FSR scale.
174 SetPARJ(81,0.29);
175 break;
176 case kPyOldPopcorn:
177// Old production mechanism: Old Popcorn
178 SetMSEL(1);
179 SetMSTJ(12,3);
180// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
181 SetMSTP(88,2);
182// (D=1)see can be used to form baryons (BARYON JUNCTION)
183 SetMSTJ(1,1);
e0e89f40 184 AtlasTuning();
65f2626c 185 break;
8d2cd130 186 case kPyCharm:
187 SetMSEL(4);
8d2cd130 188// heavy quark masses
189
190 SetPMAS(4,1,1.2);
8d2cd130 191//
192// primordial pT
193 SetMSTP(91,1);
194 SetPARP(91,1.);
195 SetPARP(93,5.);
196//
197 break;
198 case kPyBeauty:
199 SetMSEL(5);
200 SetPMAS(5,1,4.75);
8d2cd130 201 break;
202 case kPyJpsi:
203 SetMSEL(0);
204// gg->J/Psi g
205 SetMSUB(86,1);
206 break;
207 case kPyJpsiChi:
208 SetMSEL(0);
209// gg->J/Psi g
210 SetMSUB(86,1);
211// gg-> chi_0c g
212 SetMSUB(87,1);
213// gg-> chi_1c g
214 SetMSUB(88,1);
215// gg-> chi_2c g
216 SetMSUB(89,1);
217 break;
218 case kPyCharmUnforced:
219 SetMSEL(0);
220// gq->qg
221 SetMSUB(28,1);
222// gg->qq
223 SetMSUB(53,1);
224// gg->gg
225 SetMSUB(68,1);
226 break;
227 case kPyBeautyUnforced:
228 SetMSEL(0);
229// gq->qg
230 SetMSUB(28,1);
231// gg->qq
232 SetMSUB(53,1);
233// gg->gg
234 SetMSUB(68,1);
235 break;
236 case kPyMb:
237// Minimum Bias pp-Collisions
238//
239//
240// select Pythia min. bias model
241 SetMSEL(0);
511db649 242 SetMSUB(92,1); // single diffraction AB-->XB
243 SetMSUB(93,1); // single diffraction AB-->AX
244 SetMSUB(94,1); // double diffraction
245 SetMSUB(95,1); // low pt production
246
e0e89f40 247 AtlasTuning();
f529e69b 248 break;
04081a91 249
250 case kPyMbWithDirectPhoton:
251// Minimum Bias pp-Collisions with direct photon processes added
252//
253//
254// select Pythia min. bias model
255 SetMSEL(0);
256 SetMSUB(92,1); // single diffraction AB-->XB
257 SetMSUB(93,1); // single diffraction AB-->AX
258 SetMSUB(94,1); // double diffraction
259 SetMSUB(95,1); // low pt production
260
261 SetMSUB(14,1); //
262 SetMSUB(18,1); //
263 SetMSUB(29,1); //
264 SetMSUB(114,1); //
265 SetMSUB(115,1); //
266
267
268 AtlasTuning();
269 break;
270
f529e69b 271 case kPyMbDefault:
272// Minimum Bias pp-Collisions
273//
274//
275// select Pythia min. bias model
276 SetMSEL(0);
277 SetMSUB(92,1); // single diffraction AB-->XB
278 SetMSUB(93,1); // single diffraction AB-->AX
279 SetMSUB(94,1); // double diffraction
280 SetMSUB(95,1); // low pt production
281
0a0cbcfd 282 break;
283 case kPyLhwgMb:
284// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
285// -> Pythia 6.3 or above is needed
286//
287 SetMSEL(0);
288 SetMSUB(92,1); // single diffraction AB-->XB
289 SetMSUB(93,1); // single diffraction AB-->AX
290 SetMSUB(94,1); // double diffraction
291 SetMSUB(95,1); // low pt production
292
e2de0ce1 293 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll)); // CTEQ6ll pdf
0a0cbcfd 294 SetMSTP(52,2);
295 SetMSTP(68,1);
296 SetMSTP(70,2);
297 SetMSTP(81,1); // Multiple Interactions ON
298 SetMSTP(82,4); // Double Gaussian Model
299 SetMSTP(88,1);
300
301 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
302 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
303 SetPARP(84,0.5); // Core radius
304 SetPARP(85,0.9); // Regulates gluon prod. mechanism
305 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
306
511db649 307 break;
8d2cd130 308 case kPyMbNonDiffr:
309// Minimum Bias pp-Collisions
310//
311//
312// select Pythia min. bias model
313 SetMSEL(0);
511db649 314 SetMSUB(95,1); // low pt production
0f482ae4 315
d7de4a67 316 AtlasTuning();
317 break;
318 case kPyMbMSEL1:
319 ConfigHeavyFlavor();
320// Intrinsic <kT^2>
321 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
322 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
323 SetPARP(93,5.); // Upper cut-off
324// Set Q-quark mass
325 SetPMAS(4,1,1.2); // Charm quark mass
326 SetPMAS(5,1,4.78); // Beauty quark mass
327 SetPARP(71,4.); // Defaut value
328// Atlas Tuning
e0e89f40 329 AtlasTuning();
8d2cd130 330 break;
331 case kPyJets:
332//
333// QCD Jets
334//
335 SetMSEL(1);
65f2626c 336 // Pythia Tune A (CDF)
337 //
4167b79f 338 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
65f2626c 339 SetMSTP(82,4); // Double Gaussian Model
340 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
341 SetPARP(84,0.4); // Core radius
342 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
343 SetPARP(86,0.95); // Regulates gluon prod. mechanism
344 SetPARP(89,1800.); // [GeV] Ref. energy
345 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
346 break;
8d2cd130 347 case kPyDirectGamma:
348 SetMSEL(10);
349 break;
adf4d898 350 case kPyCharmPbPbMNR:
351 case kPyD0PbPbMNR:
90d7b703 352 case kPyDPlusPbPbMNR:
e0e89f40 353 case kPyDPlusStrangePbPbMNR:
90d7b703 354 // Tuning of Pythia parameters aimed to get a resonable agreement
355 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
356 // c-cbar single inclusive and double differential distributions.
357 // This parameter settings are meant to work with Pb-Pb collisions
358 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
359 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
360 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 361 ConfigHeavyFlavor();
90d7b703 362 // Intrinsic <kT>
363 SetMSTP(91,1);
364 SetPARP(91,1.304);
365 SetPARP(93,6.52);
90d7b703 366 // Set c-quark mass
367 SetPMAS(4,1,1.2);
8d2cd130 368 break;
adf4d898 369 case kPyCharmpPbMNR:
370 case kPyD0pPbMNR:
90d7b703 371 case kPyDPluspPbMNR:
e0e89f40 372 case kPyDPlusStrangepPbMNR:
90d7b703 373 // Tuning of Pythia parameters aimed to get a resonable agreement
374 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
375 // c-cbar single inclusive and double differential distributions.
376 // This parameter settings are meant to work with p-Pb collisions
377 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
378 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
379 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 380 ConfigHeavyFlavor();
90d7b703 381 // Intrinsic <kT>
3dc3ec94 382 SetMSTP(91,1);
383 SetPARP(91,1.16);
384 SetPARP(93,5.8);
385
90d7b703 386 // Set c-quark mass
3dc3ec94 387 SetPMAS(4,1,1.2);
adf4d898 388 break;
389 case kPyCharmppMNR:
390 case kPyD0ppMNR:
90d7b703 391 case kPyDPlusppMNR:
e0e89f40 392 case kPyDPlusStrangeppMNR:
90d7b703 393 // Tuning of Pythia parameters aimed to get a resonable agreement
394 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
395 // c-cbar single inclusive and double differential distributions.
396 // This parameter settings are meant to work with pp collisions
397 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
398 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
399 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 400 ConfigHeavyFlavor();
90d7b703 401 // Intrinsic <kT^2>
3dc3ec94 402 SetMSTP(91,1);
403 SetPARP(91,1.);
404 SetPARP(93,5.);
405
90d7b703 406 // Set c-quark mass
3dc3ec94 407 SetPMAS(4,1,1.2);
adf4d898 408 break;
e0e89f40 409 case kPyCharmppMNRwmi:
410 // Tuning of Pythia parameters aimed to get a resonable agreement
411 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
412 // c-cbar single inclusive and double differential distributions.
413 // This parameter settings are meant to work with pp collisions
414 // and with kCTEQ5L PDFs.
415 // Added multiple interactions according to ATLAS tune settings.
416 // To get a "reasonable" agreement with MNR results, events have to be
417 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
418 // set to 2.76 GeV.
419 // To get a "perfect" agreement with MNR results, events have to be
420 // generated in four ptHard bins with the following relative
421 // normalizations:
422 // 2.76-3 GeV: 25%
423 // 3-4 GeV: 40%
424 // 4-8 GeV: 29%
425 // >8 GeV: 6%
426 ConfigHeavyFlavor();
427 // Intrinsic <kT^2>
428 SetMSTP(91,1);
429 SetPARP(91,1.);
430 SetPARP(93,5.);
431
432 // Set c-quark mass
433 SetPMAS(4,1,1.2);
434 AtlasTuning();
435 break;
adf4d898 436 case kPyBeautyPbPbMNR:
8d2cd130 437 // Tuning of Pythia parameters aimed to get a resonable agreement
438 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
439 // b-bbar single inclusive and double differential distributions.
440 // This parameter settings are meant to work with Pb-Pb collisions
441 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
442 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
443 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 444 ConfigHeavyFlavor();
8d2cd130 445 // QCD scales
3dc3ec94 446 SetPARP(67,1.0);
447 SetPARP(71,1.0);
adf4d898 448 // Intrinsic <kT>
3dc3ec94 449 SetMSTP(91,1);
450 SetPARP(91,2.035);
451 SetPARP(93,10.17);
8d2cd130 452 // Set b-quark mass
3dc3ec94 453 SetPMAS(5,1,4.75);
adf4d898 454 break;
455 case kPyBeautypPbMNR:
456 // Tuning of Pythia parameters aimed to get a resonable agreement
457 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
458 // b-bbar single inclusive and double differential distributions.
459 // This parameter settings are meant to work with p-Pb collisions
460 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
461 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
462 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 463 ConfigHeavyFlavor();
adf4d898 464 // QCD scales
3dc3ec94 465 SetPARP(67,1.0);
466 SetPARP(71,1.0);
adf4d898 467 // Intrinsic <kT>
3dc3ec94 468 SetMSTP(91,1);
469 SetPARP(91,1.60);
470 SetPARP(93,8.00);
adf4d898 471 // Set b-quark mass
3dc3ec94 472 SetPMAS(5,1,4.75);
adf4d898 473 break;
474 case kPyBeautyppMNR:
475 // Tuning of Pythia parameters aimed to get a resonable agreement
476 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
477 // b-bbar single inclusive and double differential distributions.
478 // This parameter settings are meant to work with pp collisions
479 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
480 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
481 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 482 ConfigHeavyFlavor();
adf4d898 483 // QCD scales
3dc3ec94 484 SetPARP(67,1.0);
485 SetPARP(71,1.0);
486
487 // Intrinsic <kT>
488 SetMSTP(91,1);
489 SetPARP(91,1.);
490 SetPARP(93,5.);
491
492 // Set b-quark mass
493 SetPMAS(5,1,4.75);
8d2cd130 494 break;
9dfe63b3 495 case kPyBeautyJets:
e0e89f40 496 case kPyBeautyppMNRwmi:
497 // Tuning of Pythia parameters aimed to get a resonable agreement
498 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
499 // b-bbar single inclusive and double differential distributions.
500 // This parameter settings are meant to work with pp collisions
501 // and with kCTEQ5L PDFs.
502 // Added multiple interactions according to ATLAS tune settings.
503 // To get a "reasonable" agreement with MNR results, events have to be
504 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
505 // set to 2.76 GeV.
506 // To get a "perfect" agreement with MNR results, events have to be
507 // generated in four ptHard bins with the following relative
508 // normalizations:
509 // 2.76-4 GeV: 5%
510 // 4-6 GeV: 31%
511 // 6-8 GeV: 28%
512 // >8 GeV: 36%
513 ConfigHeavyFlavor();
514 // QCD scales
515 SetPARP(67,1.0);
516 SetPARP(71,1.0);
517
518 // Intrinsic <kT>
519 SetMSTP(91,1);
520 SetPARP(91,1.);
521 SetPARP(93,5.);
522
523 // Set b-quark mass
524 SetPMAS(5,1,4.75);
525
526 AtlasTuning();
527 break;
589380c6 528 case kPyW:
529
530 //Inclusive production of W+/-
531 SetMSEL(0);
532 //f fbar -> W+
533 SetMSUB(2,1);
534 // //f fbar -> g W+
535 // SetMSUB(16,1);
536 // //f fbar -> gamma W+
537 // SetMSUB(20,1);
538 // //f g -> f W+
539 // SetMSUB(31,1);
540 // //f gamma -> f W+
541 // SetMSUB(36,1);
542
543 // Initial/final parton shower on (Pythia default)
544 // With parton showers on we are generating "W inclusive process"
545 SetMSTP(61,1); //Initial QCD & QED showers on
546 SetMSTP(71,1); //Final QCD & QED showers on
547
548 break;
0f6ee828 549
550 case kPyZ:
551
552 //Inclusive production of Z
553 SetMSEL(0);
554 //f fbar -> Z/gamma
555 SetMSUB(1,1);
556
557 // // f fbar -> g Z/gamma
558 // SetMSUB(15,1);
559 // // f fbar -> gamma Z/gamma
560 // SetMSUB(19,1);
561 // // f g -> f Z/gamma
562 // SetMSUB(30,1);
563 // // f gamma -> f Z/gamma
564 // SetMSUB(35,1);
565
566 //only Z included, not gamma
567 SetMSTP(43,2);
568
569 // Initial/final parton shower on (Pythia default)
570 // With parton showers on we are generating "Z inclusive process"
571 SetMSTP(61,1); //Initial QCD & QED showers on
572 SetMSTP(71,1); //Final QCD & QED showers on
573
574 break;
575
8d2cd130 576 }
577//
578// Initialize PYTHIA
579 SetMSTP(41,1); // all resonance decays switched on
8d2cd130 580 Initialize("CMS","p","p",fEcms);
4167b79f 581
8d2cd130 582}
583
584Int_t AliPythia::CheckedLuComp(Int_t kf)
585{
586// Check Lund particle code (for debugging)
587 Int_t kc=Pycomp(kf);
588 printf("\n Lucomp kf,kc %d %d",kf,kc);
589 return kc;
590}
591
20e47f08 592void AliPythia::SetNuclei(Int_t a1, Int_t a2, Int_t pdf)
8d2cd130 593{
594// Treat protons as inside nuclei with mass numbers a1 and a2
595// The MSTP array in the PYPARS common block is used to enable and
596// select the nuclear structure functions.
597// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
598// =1: internal PYTHIA acording to MSTP(51)
599// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
600// If the following mass number both not equal zero, nuclear corrections of the stf are used.
601// MSTP(192) : Mass number of nucleus side 1
602// MSTP(193) : Mass number of nucleus side 2
20e47f08 603// MSTP(194) : Nuclear structure function: 0: EKS98 1:EPS08
8d2cd130 604 SetMSTP(52,2);
605 SetMSTP(192, a1);
20e47f08 606 SetMSTP(193, a2);
607 SetMSTP(194, pdf);
8d2cd130 608}
609
610
611AliPythia* AliPythia::Instance()
612{
613// Set random number generator
614 if (fgAliPythia) {
615 return fgAliPythia;
616 } else {
617 fgAliPythia = new AliPythia();
618 return fgAliPythia;
619 }
620}
621
622void AliPythia::PrintParticles()
623{
624// Print list of particl properties
625 Int_t np = 0;
c31f1d37 626 char* name = new char[16];
8d2cd130 627 for (Int_t kf=0; kf<1000000; kf++) {
628 for (Int_t c = 1; c > -2; c-=2) {
8d2cd130 629 Int_t kc = Pycomp(c*kf);
630 if (kc) {
631 Float_t mass = GetPMAS(kc,1);
632 Float_t width = GetPMAS(kc,2);
633 Float_t tau = GetPMAS(kc,4);
c31f1d37 634
8d2cd130 635 Pyname(kf,name);
636
637 np++;
638
639 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
640 c*kf, name, mass, width, tau);
641 }
642 }
643 }
644 printf("\n Number of particles %d \n \n", np);
645}
646
647void AliPythia::ResetDecayTable()
648{
649// Set default values for pythia decay switches
650 Int_t i;
651 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
652 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
653}
654
655void AliPythia::SetDecayTable()
656{
657// Set default values for pythia decay switches
658//
659 Int_t i;
660 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
661 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
662}
663
664void AliPythia::Pyclus(Int_t& njet)
665{
666// Call Pythia clustering algorithm
667//
668 pyclus(njet);
669}
670
671void AliPythia::Pycell(Int_t& njet)
672{
673// Call Pythia jet reconstruction algorithm
674//
675 pycell(njet);
676}
677
452af8c7 678void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
679{
680// Call Pythia jet reconstruction algorithm
681//
452af8c7 682 pyshow(ip1, ip2, qmax);
683}
684
685void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
686{
687 pyrobo(imi, ima, the, phi, bex, bey, bez);
688}
689
690
691
32c8e463 692void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
0f482ae4 693{
694// Initializes
695// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
696// (2) The nuclear geometry using the Glauber Model
697//
6b435cde 698
18b7a4a1 699 fGlauber = AliFastGlauber::Instance();
0f482ae4 700 fGlauber->Init(2);
701 fGlauber->SetCentralityClass(cMin, cMax);
702
703 fQuenchingWeights = new AliQuenchingWeights();
704 fQuenchingWeights->InitMult();
86b6ad68 705 fQuenchingWeights->SetK(k);
0f482ae4 706 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
32c8e463 707 fNGmax = ngmax;
708 fZmax = zmax;
709
0f482ae4 710}
711
712
452af8c7 713void AliPythia::Quench()
714{
715//
716//
717// Simple Jet Quenching routine:
718// =============================
719// The jet formed by all final state partons radiated by the parton created
0f482ae4 720// in the hard collisions is quenched by a factor (1-z) using light cone variables in
721// the initial parton reference frame:
452af8c7 722// (E + p_z)new = (1-z) (E + p_z)old
723//
0f482ae4 724//
725//
726//
452af8c7 727// The lost momentum is first balanced by one gluon with virtuality > 0.
728// Subsequently the gluon splits to yield two gluons with E = p.
729//
0f482ae4 730//
731//
4e383037 732 static Float_t eMean = 0.;
733 static Int_t icall = 0;
0f482ae4 734
c2c598a3 735 Double_t p0[4][5];
736 Double_t p1[4][5];
737 Double_t p2[4][5];
738 Int_t klast[4] = {-1, -1, -1, -1};
452af8c7 739
740 Int_t numpart = fPyjets->N;
86b6ad68 741 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
c2c598a3 742 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
743 Bool_t quenched[4];
b280c4cc 744 Double_t wjtKick[4];
c2c598a3 745 Int_t nGluon[4];
86b6ad68 746 Int_t qPdg[4];
0f482ae4 747 Int_t imo, kst, pdg;
b280c4cc 748
511db649 749//
c2c598a3 750// Sore information about Primary partons
751//
752// j =
753// 0, 1 partons from hard scattering
754// 2, 3 partons from initial state radiation
755//
756 for (Int_t i = 2; i <= 7; i++) {
757 Int_t j = 0;
758 // Skip gluons that participate in hard scattering
759 if (i == 4 || i == 5) continue;
760 // Gluons from hard Scattering
761 if (i == 6 || i == 7) {
762 j = i - 6;
763 pxq[j] = fPyjets->P[0][i];
764 pyq[j] = fPyjets->P[1][i];
765 pzq[j] = fPyjets->P[2][i];
766 eq[j] = fPyjets->P[3][i];
767 mq[j] = fPyjets->P[4][i];
768 } else {
769 // Gluons from initial state radiation
770 //
771 // Obtain 4-momentum vector from difference between original parton and parton after gluon
772 // radiation. Energy is calculated independently because initial state radition does not
773 // conserve strictly momentum and energy for each partonic system independently.
774 //
775 // Not very clean. Should be improved !
776 //
777 //
778 j = i;
779 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
780 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
781 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
782 mq[j] = fPyjets->P[4][i];
783 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
784 }
785//
786// Calculate some kinematic variables
511db649 787//
4e383037 788 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
0f482ae4 789 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
790 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
791 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
792 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
86b6ad68 793 qPdg[j] = fPyjets->K[1][i];
794 }
795
796 Double_t int0[4];
797 Double_t int1[4];
86b6ad68 798
b280c4cc 799 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
800
86b6ad68 801 for (Int_t j = 0; j < 4; j++) {
c2c598a3 802 //
803 // Quench only central jets and with E > 10.
804 //
86b6ad68 805
806
807 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
808 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
809
c2c598a3 810 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
b280c4cc 811 fZQuench[j] = 0.;
0f482ae4 812 } else {
c2c598a3 813 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
4e383037 814 icall ++;
815 eMean += eloss;
816 }
0f482ae4 817 //
818 // Extra pt
86b6ad68 819 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
820 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
0f482ae4 821 //
822 // Fractional energy loss
b280c4cc 823 fZQuench[j] = eloss / eq[j];
0f482ae4 824 //
825 // Avoid complete loss
826 //
1044c4d8 827 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
0f482ae4 828 //
829 // Some debug printing
86b6ad68 830
831
bf9bb016 832// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
833// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
4e383037 834
b280c4cc 835// fZQuench[j] = 0.8;
836// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
0f482ae4 837 }
4e383037 838
b280c4cc 839 quenched[j] = (fZQuench[j] > 0.01);
4e383037 840 } // primary partons
c2c598a3 841
b280c4cc 842
843
6e90ad26 844 Double_t pNew[1000][4];
845 Int_t kNew[1000];
846 Int_t icount = 0;
b280c4cc 847 Double_t zquench[4];
848
6e90ad26 849//
4e383037 850// System Loop
c2c598a3 851 for (Int_t isys = 0; isys < 4; isys++) {
6e90ad26 852// Skip to next system if not quenched.
4e383037 853 if (!quenched[isys]) continue;
854
b280c4cc 855 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
32c8e463 856 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
b280c4cc 857 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
4e383037 858 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
0f482ae4 859
4e383037 860
861
862 Int_t igMin = -1;
863 Int_t igMax = -1;
864 Double_t pg[4] = {0., 0., 0., 0.};
865
866//
867// Loop on radiation events
868
869 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
6e90ad26 870 while (1) {
871 icount = 0;
872 for (Int_t k = 0; k < 4; k++)
873 {
874 p0[isys][k] = 0.;
875 p1[isys][k] = 0.;
876 p2[isys][k] = 0.;
877 }
878// Loop over partons
879 for (Int_t i = 0; i < numpart; i++)
880 {
881 imo = fPyjets->K[2][i];
882 kst = fPyjets->K[0][i];
883 pdg = fPyjets->K[1][i];
884
885
886
0f482ae4 887// Quarks and gluons only
6e90ad26 888 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
0f482ae4 889// Particles from hard scattering only
c2c598a3 890
6e90ad26 891 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
c2c598a3 892 Int_t imom = imo % 1000;
893 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
894 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
895
6e90ad26 896
0f482ae4 897// Skip comment lines
6e90ad26 898 if (kst != 1 && kst != 2) continue;
0f482ae4 899//
900// Parton kinematic
6e90ad26 901 px = fPyjets->P[0][i];
902 py = fPyjets->P[1][i];
903 pz = fPyjets->P[2][i];
904 e = fPyjets->P[3][i];
905 m = fPyjets->P[4][i];
906 pt = TMath::Sqrt(px * px + py * py);
907 p = TMath::Sqrt(px * px + py * py + pz * pz);
908 phi = TMath::Pi() + TMath::ATan2(-py, -px);
909 theta = TMath::ATan2(pt, pz);
910
0f482ae4 911//
c2c598a3 912// Save 4-momentum sum for balancing
913 Int_t index = isys;
6e90ad26 914
915 p0[index][0] += px;
916 p0[index][1] += py;
917 p0[index][2] += pz;
918 p0[index][3] += e;
6e90ad26 919
920 klast[index] = i;
921
0f482ae4 922//
923// Fractional energy loss
b280c4cc 924 Double_t z = zquench[index];
4e383037 925
c2c598a3 926
4e383037 927// Don't fully quench radiated gluons
928//
929 if (imo > 1000) {
930// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
931//
932
c2c598a3 933 z = 0.02;
4e383037 934 }
c2c598a3 935// printf("z: %d %f\n", imo, z);
936
4e383037 937
938//
6e90ad26 939
940 //
941 //
942 // Transform into frame in which initial parton is along z-axis
943 //
944 TVector3 v(px, py, pz);
945 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
946 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
947
948 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
949 Double_t mt2 = jt * jt + m * m;
950 Double_t zmax = 1.;
951 //
952 // Kinematic limit on z
953 //
4e383037 954 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
6e90ad26 955 //
956 // Change light-cone kinematics rel. to initial parton
957 //
958 Double_t eppzOld = e + pl;
959 Double_t empzOld = e - pl;
960
961 Double_t eppzNew = (1. - z) * eppzOld;
962 Double_t empzNew = empzOld - mt2 * z / eppzOld;
963 Double_t eNew = 0.5 * (eppzNew + empzNew);
964 Double_t plNew = 0.5 * (eppzNew - empzNew);
965
966 Double_t jtNew;
967 //
968 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
969 Double_t mt2New = eppzNew * empzNew;
970 if (mt2New < 1.e-8) mt2New = 0.;
4e383037 971 if (z < zmax) {
972 if (m * m > mt2New) {
973 //
974 // This should not happen
975 //
976 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
977 jtNew = 0;
978 } else {
979 jtNew = TMath::Sqrt(mt2New - m * m);
980 }
6e90ad26 981 } else {
4e383037 982 // If pT is to small (probably a leading massive particle) we scale only the energy
983 // This can cause negative masses of the radiated gluon
984 // Let's hope for the best ...
985 jtNew = jt;
986 eNew = TMath::Sqrt(plNew * plNew + mt2);
987
6e90ad26 988 }
6e90ad26 989 //
990 // Calculate new px, py
991 //
b07be423 992 Double_t pxNew = 0;
993 Double_t pyNew = 0;
6e90ad26 994
b07be423 995 if (jt>0) {
6b118b3c 996 pxNew = jtNew / jt * pxs;
997 pyNew = jtNew / jt * pys;
b07be423 998 }
6e90ad26 999// Double_t dpx = pxs - pxNew;
1000// Double_t dpy = pys - pyNew;
1001// Double_t dpz = pl - plNew;
1002// Double_t de = e - eNew;
1003// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1004// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1005// printf("New mass (2) %e %e \n", pxNew, pyNew);
1006 //
1007 // Rotate back
1008 //
1009 TVector3 w(pxNew, pyNew, plNew);
1010 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1011 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1012
1013 p1[index][0] += pxNew;
1014 p1[index][1] += pyNew;
1015 p1[index][2] += plNew;
1016 p1[index][3] += eNew;
1017 //
1018 // Updated 4-momentum vectors
1019 //
1020 pNew[icount][0] = pxNew;
1021 pNew[icount][1] = pyNew;
1022 pNew[icount][2] = plNew;
1023 pNew[icount][3] = eNew;
1024 kNew[icount] = i;
1025 icount++;
1026 } // parton loop
0f482ae4 1027 //
6e90ad26 1028 // Check if there was phase-space for quenching
0f482ae4 1029 //
0f482ae4 1030
6e90ad26 1031 if (icount == 0) quenched[isys] = kFALSE;
1032 if (!quenched[isys]) break;
1033
1034 for (Int_t j = 0; j < 4; j++)
1035 {
1036 p2[isys][j] = p0[isys][j] - p1[isys][j];
1037 }
1038 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
6e90ad26 1039 if (p2[isys][4] > 0.) {
1040 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1041 break;
1042 } else {
b280c4cc 1043 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
4e383037 1044 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
6e90ad26 1045 if (p2[isys][4] < -0.01) {
4e383037 1046 printf("Negative mass squared !\n");
1047 // Here we have to put the gluon back to mass shell
1048 // This will lead to a small energy imbalance
1049 p2[isys][4] = 0.;
1050 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1051 break;
6e90ad26 1052 } else {
1053 p2[isys][4] = 0.;
1054 break;
1055 }
1056 }
6e90ad26 1057 /*
6e90ad26 1058 zHeavy *= 0.98;
1059 printf("zHeavy lowered to %f\n", zHeavy);
1060 if (zHeavy < 0.01) {
1061 printf("No success ! \n");
1062 icount = 0;
1063 quenched[isys] = kFALSE;
1064 break;
1065 }
4e383037 1066 */
1067 } // iteration on z (while)
1068
6e90ad26 1069// Update event record
1070 for (Int_t k = 0; k < icount; k++) {
1071// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1072 fPyjets->P[0][kNew[k]] = pNew[k][0];
1073 fPyjets->P[1][kNew[k]] = pNew[k][1];
1074 fPyjets->P[2][kNew[k]] = pNew[k][2];
1075 fPyjets->P[3][kNew[k]] = pNew[k][3];
0f482ae4 1076 }
4e383037 1077 //
1078 // Add the gluons
1079 //
1080 Int_t ish = 0;
1837e95c 1081 Int_t iGlu;
4e383037 1082 if (!quenched[isys]) continue;
0f482ae4 1083//
1084// Last parton from shower i
4e383037 1085 Int_t in = klast[isys];
0f482ae4 1086//
1087// Continue if no parton in shower i selected
1088 if (in == -1) continue;
1089//
1090// If this is the second initial parton and it is behind the first move pointer by previous ish
4e383037 1091 if (isys == 1 && klast[1] > klast[0]) in += ish;
0f482ae4 1092//
1093// Starting index
452af8c7 1094
4e383037 1095// jmin = in - 1;
0f482ae4 1096// How many additional gluons will be generated
1097 ish = 1;
4e383037 1098 if (p2[isys][4] > 0.05) ish = 2;
0f482ae4 1099//
1100// Position of gluons
4e383037 1101 iGlu = numpart;
1102 if (iglu == 0) igMin = iGlu;
1103 igMax = iGlu;
0f482ae4 1104 numpart += ish;
1105 (fPyjets->N) += ish;
4e383037 1106
0f482ae4 1107 if (ish == 1) {
4e383037 1108 fPyjets->P[0][iGlu] = p2[isys][0];
1109 fPyjets->P[1][iGlu] = p2[isys][1];
1110 fPyjets->P[2][iGlu] = p2[isys][2];
1111 fPyjets->P[3][iGlu] = p2[isys][3];
1112 fPyjets->P[4][iGlu] = p2[isys][4];
0f482ae4 1113
4e383037 1114 fPyjets->K[0][iGlu] = 1;
1115 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
0f482ae4 1116 fPyjets->K[1][iGlu] = 21;
4e383037 1117 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1118 fPyjets->K[3][iGlu] = -1;
1119 fPyjets->K[4][iGlu] = -1;
4e383037 1120
1121 pg[0] += p2[isys][0];
1122 pg[1] += p2[isys][1];
1123 pg[2] += p2[isys][2];
1124 pg[3] += p2[isys][3];
0f482ae4 1125 } else {
1126 //
1127 // Split gluon in rest frame.
1128 //
4e383037 1129 Double_t bx = p2[isys][0] / p2[isys][3];
1130 Double_t by = p2[isys][1] / p2[isys][3];
1131 Double_t bz = p2[isys][2] / p2[isys][3];
1132 Double_t pst = p2[isys][4] / 2.;
0f482ae4 1133 //
1134 // Isotropic decay ????
1135 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1136 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1137 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
0f482ae4 1138
1139 Double_t pz1 = pst * cost;
1140 Double_t pz2 = -pst * cost;
1141 Double_t pt1 = pst * sint;
1142 Double_t pt2 = -pst * sint;
2ab330c9 1143 Double_t px1 = pt1 * TMath::Cos(phis);
1144 Double_t py1 = pt1 * TMath::Sin(phis);
1145 Double_t px2 = pt2 * TMath::Cos(phis);
1146 Double_t py2 = pt2 * TMath::Sin(phis);
0f482ae4 1147
1148 fPyjets->P[0][iGlu] = px1;
1149 fPyjets->P[1][iGlu] = py1;
1150 fPyjets->P[2][iGlu] = pz1;
1151 fPyjets->P[3][iGlu] = pst;
1152 fPyjets->P[4][iGlu] = 0.;
1153
4e383037 1154 fPyjets->K[0][iGlu] = 1 ;
0f482ae4 1155 fPyjets->K[1][iGlu] = 21;
4e383037 1156 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1157 fPyjets->K[3][iGlu] = -1;
1158 fPyjets->K[4][iGlu] = -1;
1159
1160 fPyjets->P[0][iGlu+1] = px2;
1161 fPyjets->P[1][iGlu+1] = py2;
1162 fPyjets->P[2][iGlu+1] = pz2;
1163 fPyjets->P[3][iGlu+1] = pst;
1164 fPyjets->P[4][iGlu+1] = 0.;
1165
4e383037 1166 fPyjets->K[0][iGlu+1] = 1;
1167 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
0f482ae4 1168 fPyjets->K[1][iGlu+1] = 21;
4e383037 1169 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
0f482ae4 1170 fPyjets->K[3][iGlu+1] = -1;
1171 fPyjets->K[4][iGlu+1] = -1;
1172 SetMSTU(1,0);
1173 SetMSTU(2,0);
1174 //
1175 // Boost back
1176 //
1177 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1178 }
4e383037 1179/*
1180 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1181 Double_t px, py, pz;
1182 px = fPyjets->P[0][ig];
1183 py = fPyjets->P[1][ig];
1184 pz = fPyjets->P[2][ig];
1185 TVector3 v(px, py, pz);
1186 v.RotateZ(-phiq[isys]);
1187 v.RotateY(-thetaq[isys]);
1188 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1189 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1190 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1191 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1192 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1193 pxs += jtKick * TMath::Cos(phiKick);
1194 pys += jtKick * TMath::Sin(phiKick);
1195 TVector3 w(pxs, pys, pzs);
1196 w.RotateY(thetaq[isys]);
1197 w.RotateZ(phiq[isys]);
1198 fPyjets->P[0][ig] = w.X();
1199 fPyjets->P[1][ig] = w.Y();
1200 fPyjets->P[2][ig] = w.Z();
1201 fPyjets->P[2][ig] = w.Mag();
1202 }
1203*/
1204 } // kGluon
1205
6e90ad26 1206
4e383037 1207 // Check energy conservation
0f482ae4 1208 Double_t pxs = 0.;
1209 Double_t pys = 0.;
1210 Double_t pzs = 0.;
1211 Double_t es = 14000.;
1212
1213 for (Int_t i = 0; i < numpart; i++)
1214 {
1215 kst = fPyjets->K[0][i];
1216 if (kst != 1 && kst != 2) continue;
1217 pxs += fPyjets->P[0][i];
1218 pys += fPyjets->P[1][i];
1219 pzs += fPyjets->P[2][i];
1220 es -= fPyjets->P[3][i];
1221 }
1222 if (TMath::Abs(pxs) > 1.e-2 ||
1223 TMath::Abs(pys) > 1.e-2 ||
1224 TMath::Abs(pzs) > 1.e-1) {
1225 printf("%e %e %e %e\n", pxs, pys, pzs, es);
4e383037 1226// Fatal("Quench()", "4-Momentum non-conservation");
452af8c7 1227 }
4e383037 1228
1229 } // end quenching loop (systems)
6e90ad26 1230// Clean-up
0f482ae4 1231 for (Int_t i = 0; i < numpart; i++)
1232 {
4e383037 1233 imo = fPyjets->K[2][i];
1234 if (imo > 1000) {
1235 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1236 }
0f482ae4 1237 }
4e383037 1238// this->Pylist(1);
0f482ae4 1239} // end quench
90d7b703 1240
992f2843 1241
1242void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b)
1243{
1244 // Igor Lokthine's quenching routine
12cb0bc0 1245 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1246
992f2843 1247 pyquen(a, ibf, b);
1248}
b280c4cc 1249
12cb0bc0 1250void AliPythia::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1251{
1252 // Set the parameters for the PYQUEN package.
1253 // See comments in PyquenCommon.h
1254
1255
1256 PYQPAR.t0 = t0;
1257 PYQPAR.tau0 = tau0;
1258 PYQPAR.nf = nf;
1259 PYQPAR.iengl = iengl;
1260 PYQPAR.iangl = iangl;
1261}
1262
1263
16a82508 1264void AliPythia::Pyevnw()
1265{
1266 // New multiple interaction scenario
1267 pyevnw();
1268}
1269
cd07c39b 1270void AliPythia::Pyshowq(Int_t ip1, Int_t ip2, Double_t qmax)
1271{
1272 // Call medium-modified Pythia jet reconstruction algorithm
1273 //
1274 pyshowq(ip1, ip2, qmax);
1275}
1276
b280c4cc 1277void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1278{
1279 // Return event specific quenching parameters
1280 xp = fXJet;
1281 yp = fYJet;
1282 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1283
1284}
1285
3dc3ec94 1286void AliPythia::ConfigHeavyFlavor()
1287{
1288 //
1289 // Default configuration for Heavy Flavor production
1290 //
1291 // All QCD processes
1292 //
1293 SetMSEL(1);
1294
1295 // No multiple interactions
1296 SetMSTP(81,0);
39c2e610 1297 SetPARP(81, 0.);
1298 SetPARP(82, 0.);
3dc3ec94 1299 // Initial/final parton shower on (Pythia default)
1300 SetMSTP(61,1);
1301 SetMSTP(71,1);
1302
1303 // 2nd order alpha_s
1304 SetMSTP(2,2);
1305
1306 // QCD scales
1307 SetMSTP(32,2);
1308 SetPARP(34,1.0);
1309}
e0e89f40 1310
1311void AliPythia::AtlasTuning()
1312{
1313 //
1314 // Configuration for the ATLAS tuning
e2de0ce1 1315 SetMSTP(51, AliStructFuncType::PDFsetIndex(kCTEQ5L)); // CTEQ5L pdf
e0e89f40 1316 SetMSTP(81,1); // Multiple Interactions ON
1317 SetMSTP(82,4); // Double Gaussian Model
39c2e610 1318 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
e0e89f40 1319 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1320 SetPARP(89,1000.); // [GeV] Ref. energy
1321 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1322 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1323 SetPARP(84,0.5); // Core radius
1324 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1325 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1326 SetPARP(67,1); // Regulates Initial State Radiation
1327}
e8a8adcd 1328
1329AliPythia& AliPythia::operator=(const AliPythia& rhs)
1330{
1331// Assignment operator
1332 rhs.Copy(*this);
1333 return *this;
1334}
1335
1336 void AliPythia::Copy(TObject&) const
1337{
1338 //
1339 // Copy
1340 //
1341 Fatal("Copy","Not implemented!\n");
1342}
cd07c39b 1343