]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PYTHIA6/AliPythia.cxx
pbar -> p
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
CommitLineData
6b435cde 1
8d2cd130 2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
7cdba479 17/* $Id$ */
8d2cd130 18
19#include "AliPythia.h"
7cdba479 20#include "AliPythiaRndm.h"
12cb0bc0 21#include "AliFastGlauber.h"
22#include "AliQuenchingWeights.h"
0f482ae4 23#include "TVector3.h"
12cb0bc0 24#include "PyquenCommon.h"
8d2cd130 25
26ClassImp(AliPythia)
27
28#ifndef WIN32
29# define pyclus pyclus_
30# define pycell pycell_
452af8c7 31# define pyshow pyshow_
32# define pyrobo pyrobo_
992f2843 33# define pyquen pyquen_
16a82508 34# define pyevnw pyevnw_
cd07c39b 35# define pyshowq pyshowq_
694b39f9 36# define pytune pytune_
9b61ba2a 37# define py2ent py2ent_
8d2cd130 38# define type_of_call
39#else
40# define pyclus PYCLUS
41# define pycell PYCELL
452af8c7 42# define pyrobo PYROBO
992f2843 43# define pyquen PYQUEN
16a82508 44# define pyevnw PYEVNW
cd07c39b 45# define pyshowq PYSHOWQ
9b61ba2a 46# define pytune PYTUNE
47# define py2ent PY2ENT
8d2cd130 48# define type_of_call _stdcall
49#endif
50
51extern "C" void type_of_call pyclus(Int_t & );
52extern "C" void type_of_call pycell(Int_t & );
452af8c7 53extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
54extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
992f2843 55extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
0a2cfc0a 56extern "C" void type_of_call pyevnw(){;}
cd07c39b 57extern "C" void type_of_call pyshowq(Int_t &, Int_t &, Double_t &);
694b39f9 58extern "C" void type_of_call pytune(Int_t &);
9b61ba2a 59extern "C" void type_of_call py2ent(Int_t &, Int_t&, Int_t&, Double_t&);
8d2cd130 60
61//_____________________________________________________________________________
62
63AliPythia* AliPythia::fgAliPythia=NULL;
64
e8a8adcd 65AliPythia::AliPythia():
66 fProcess(kPyMb),
67 fEcms(0.),
68 fStrucFunc(kCTEQ5L),
69 fXJet(0.),
70 fYJet(0.),
32c8e463 71 fNGmax(30),
72 fZmax(0.97),
e8a8adcd 73 fGlauber(0),
0bd3d7c5 74 fQuenchingWeights(0),
75 fItune(-1)
8d2cd130 76{
77// Default Constructor
78//
79// Set random number
7cdba479 80 if (!AliPythiaRndm::GetPythiaRandom())
81 AliPythiaRndm::SetPythiaRandom(GetRandom());
0f482ae4 82 fGlauber = 0;
83 fQuenchingWeights = 0;
8d2cd130 84}
85
e8a8adcd 86AliPythia::AliPythia(const AliPythia& pythia):
6b435cde 87 TPythia6(pythia),
88 AliRndm(pythia),
e8a8adcd 89 fProcess(kPyMb),
90 fEcms(0.),
91 fStrucFunc(kCTEQ5L),
92 fXJet(0.),
93 fYJet(0.),
32c8e463 94 fNGmax(30),
95 fZmax(0.97),
e8a8adcd 96 fGlauber(0),
0bd3d7c5 97 fQuenchingWeights(0),
98 fItune(-1)
e8a8adcd 99{
100 // Copy Constructor
101 pythia.Copy(*this);
102}
103
efe3b1cd 104void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc, Int_t itune)
8d2cd130 105{
106// Initialise the process to generate
7cdba479 107 if (!AliPythiaRndm::GetPythiaRandom())
108 AliPythiaRndm::SetPythiaRandom(GetRandom());
8d2cd130 109
0bd3d7c5 110 fItune = itune;
111
8d2cd130 112 fProcess = process;
113 fEcms = energy;
114 fStrucFunc = strucfunc;
1d5b1b20 115//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
e2de0ce1 116 SetMDCY(Pycomp(111) ,1,0); // pi0
117 SetMDCY(Pycomp(310) ,1,0); // K0S
118 SetMDCY(Pycomp(3122),1,0); // kLambda
119 SetMDCY(Pycomp(3112),1,0); // sigma -
120 SetMDCY(Pycomp(3212),1,0); // sigma 0
121 SetMDCY(Pycomp(3222),1,0); // sigma +
122 SetMDCY(Pycomp(3312),1,0); // xi -
123 SetMDCY(Pycomp(3322),1,0); // xi 0
124 SetMDCY(Pycomp(3334),1,0); // omega-
1c50ec12 125 // Select structure function
8d2cd130 126 SetMSTP(52,2);
e2de0ce1 127 SetMSTP(51, AliStructFuncType::PDFsetIndex(strucfunc));
1c50ec12 128 // Particles produced in string fragmentation point directly to either of the two endpoints
129 // of the string (depending in the side they were generated from).
130 SetMSTU(16,2);
131
8d2cd130 132//
133// Pythia initialisation for selected processes//
134//
135// Make MSEL clean
136//
137 for (Int_t i=1; i<= 200; i++) {
138 SetMSUB(i,0);
139 }
140// select charm production
141 switch (process)
142 {
65f2626c 143 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
144// Multiple interactions on.
145 SetMSTP(81,1);
146// Double Gaussian matter distribution.
147 SetMSTP(82,4);
148 SetPARP(83,0.5);
149 SetPARP(84,0.4);
150// pT0.
151 SetPARP(82,2.0);
152// Reference energy for pT0 and energy rescaling pace.
153 SetPARP(89,1800);
154 SetPARP(90,0.25);
155// String drawing almost completely minimizes string length.
156 SetPARP(85,0.9);
157 SetPARP(86,0.95);
158// ISR and FSR activity.
159 SetPARP(67,4);
160 SetPARP(71,4);
161// Lambda_FSR scale.
162 SetPARJ(81,0.29);
163 break;
164 case kPyOldUEQ2ordered2:
165// Old underlying events with Q2 ordered QCD processes
166// Multiple interactions on.
167 SetMSTP(81,1);
168// Double Gaussian matter distribution.
169 SetMSTP(82,4);
170 SetPARP(83,0.5);
171 SetPARP(84,0.4);
172// pT0.
173 SetPARP(82,2.0);
174// Reference energy for pT0 and energy rescaling pace.
175 SetPARP(89,1800);
176 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
177// String drawing almost completely minimizes string length.
178 SetPARP(85,0.9);
179 SetPARP(86,0.95);
180// ISR and FSR activity.
181 SetPARP(67,4);
182 SetPARP(71,4);
183// Lambda_FSR scale.
184 SetPARJ(81,0.29);
185 break;
186 case kPyOldPopcorn:
187// Old production mechanism: Old Popcorn
188 SetMSEL(1);
189 SetMSTJ(12,3);
190// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
191 SetMSTP(88,2);
192// (D=1)see can be used to form baryons (BARYON JUNCTION)
193 SetMSTJ(1,1);
e0e89f40 194 AtlasTuning();
65f2626c 195 break;
8d2cd130 196 case kPyCharm:
197 SetMSEL(4);
8d2cd130 198// heavy quark masses
199
200 SetPMAS(4,1,1.2);
8d2cd130 201//
202// primordial pT
203 SetMSTP(91,1);
204 SetPARP(91,1.);
205 SetPARP(93,5.);
206//
207 break;
208 case kPyBeauty:
209 SetMSEL(5);
210 SetPMAS(5,1,4.75);
8d2cd130 211 break;
212 case kPyJpsi:
213 SetMSEL(0);
214// gg->J/Psi g
215 SetMSUB(86,1);
216 break;
217 case kPyJpsiChi:
218 SetMSEL(0);
219// gg->J/Psi g
220 SetMSUB(86,1);
221// gg-> chi_0c g
222 SetMSUB(87,1);
223// gg-> chi_1c g
224 SetMSUB(88,1);
225// gg-> chi_2c g
226 SetMSUB(89,1);
227 break;
228 case kPyCharmUnforced:
229 SetMSEL(0);
230// gq->qg
231 SetMSUB(28,1);
232// gg->qq
233 SetMSUB(53,1);
234// gg->gg
235 SetMSUB(68,1);
236 break;
237 case kPyBeautyUnforced:
238 SetMSEL(0);
239// gq->qg
240 SetMSUB(28,1);
241// gg->qq
242 SetMSUB(53,1);
243// gg->gg
244 SetMSUB(68,1);
245 break;
246 case kPyMb:
247// Minimum Bias pp-Collisions
248//
249//
250// select Pythia min. bias model
251 SetMSEL(0);
511db649 252 SetMSUB(92,1); // single diffraction AB-->XB
253 SetMSUB(93,1); // single diffraction AB-->AX
254 SetMSUB(94,1); // double diffraction
255 SetMSUB(95,1); // low pt production
256
e0e89f40 257 AtlasTuning();
f529e69b 258 break;
0bd3d7c5 259
260 case kPyMbAtlasTuneMC09:
261// Minimum Bias pp-Collisions
262//
263//
264// select Pythia min. bias model
265 SetMSEL(0);
266 SetMSUB(92,1); // single diffraction AB-->XB
267 SetMSUB(93,1); // single diffraction AB-->AX
268 SetMSUB(94,1); // double diffraction
269 SetMSUB(95,1); // low pt production
270
271 AtlasTuning_MC09();
272 break;
04081a91 273
274 case kPyMbWithDirectPhoton:
275// Minimum Bias pp-Collisions with direct photon processes added
276//
277//
278// select Pythia min. bias model
279 SetMSEL(0);
280 SetMSUB(92,1); // single diffraction AB-->XB
281 SetMSUB(93,1); // single diffraction AB-->AX
282 SetMSUB(94,1); // double diffraction
283 SetMSUB(95,1); // low pt production
284
285 SetMSUB(14,1); //
286 SetMSUB(18,1); //
287 SetMSUB(29,1); //
288 SetMSUB(114,1); //
289 SetMSUB(115,1); //
290
291
292 AtlasTuning();
293 break;
294
f529e69b 295 case kPyMbDefault:
296// Minimum Bias pp-Collisions
297//
298//
299// select Pythia min. bias model
300 SetMSEL(0);
0bd3d7c5 301 SetMSUB(92,0); // single diffraction AB-->XB
302 SetMSUB(93,0); // single diffraction AB-->AX
f529e69b 303 SetMSUB(94,1); // double diffraction
304 SetMSUB(95,1); // low pt production
305
0bd3d7c5 306 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
307 SetMSTP(82,4); // Double Gaussian Model
308 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
309 SetPARP(84,0.4); // Core radius
310 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
311 SetPARP(86,0.95); // Regulates gluon prod. mechanism
312 SetPARP(89,1800.); // [GeV] Ref. energy
313 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
314
0a0cbcfd 315 break;
316 case kPyLhwgMb:
317// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
318// -> Pythia 6.3 or above is needed
319//
320 SetMSEL(0);
321 SetMSUB(92,1); // single diffraction AB-->XB
322 SetMSUB(93,1); // single diffraction AB-->AX
323 SetMSUB(94,1); // double diffraction
324 SetMSUB(95,1); // low pt production
325
e2de0ce1 326 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll)); // CTEQ6ll pdf
0a0cbcfd 327 SetMSTP(52,2);
328 SetMSTP(68,1);
329 SetMSTP(70,2);
330 SetMSTP(81,1); // Multiple Interactions ON
331 SetMSTP(82,4); // Double Gaussian Model
332 SetMSTP(88,1);
333
334 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
335 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
336 SetPARP(84,0.5); // Core radius
337 SetPARP(85,0.9); // Regulates gluon prod. mechanism
338 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
339
511db649 340 break;
8d2cd130 341 case kPyMbNonDiffr:
342// Minimum Bias pp-Collisions
343//
344//
345// select Pythia min. bias model
346 SetMSEL(0);
511db649 347 SetMSUB(95,1); // low pt production
0f482ae4 348
d7de4a67 349 AtlasTuning();
350 break;
351 case kPyMbMSEL1:
352 ConfigHeavyFlavor();
353// Intrinsic <kT^2>
354 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
355 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
356 SetPARP(93,5.); // Upper cut-off
357// Set Q-quark mass
358 SetPMAS(4,1,1.2); // Charm quark mass
359 SetPMAS(5,1,4.78); // Beauty quark mass
360 SetPARP(71,4.); // Defaut value
361// Atlas Tuning
e0e89f40 362 AtlasTuning();
8d2cd130 363 break;
364 case kPyJets:
365//
366// QCD Jets
367//
368 SetMSEL(1);
65f2626c 369 // Pythia Tune A (CDF)
370 //
4167b79f 371 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
65f2626c 372 SetMSTP(82,4); // Double Gaussian Model
373 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
374 SetPARP(84,0.4); // Core radius
375 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
376 SetPARP(86,0.95); // Regulates gluon prod. mechanism
377 SetPARP(89,1800.); // [GeV] Ref. energy
0bd3d7c5 378 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
65f2626c 379 break;
8d2cd130 380 case kPyDirectGamma:
381 SetMSEL(10);
382 break;
adf4d898 383 case kPyCharmPbPbMNR:
384 case kPyD0PbPbMNR:
90d7b703 385 case kPyDPlusPbPbMNR:
e0e89f40 386 case kPyDPlusStrangePbPbMNR:
90d7b703 387 // Tuning of Pythia parameters aimed to get a resonable agreement
388 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
389 // c-cbar single inclusive and double differential distributions.
390 // This parameter settings are meant to work with Pb-Pb collisions
391 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
392 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
393 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 394 ConfigHeavyFlavor();
90d7b703 395 // Intrinsic <kT>
396 SetMSTP(91,1);
397 SetPARP(91,1.304);
398 SetPARP(93,6.52);
90d7b703 399 // Set c-quark mass
400 SetPMAS(4,1,1.2);
8d2cd130 401 break;
adf4d898 402 case kPyCharmpPbMNR:
403 case kPyD0pPbMNR:
90d7b703 404 case kPyDPluspPbMNR:
e0e89f40 405 case kPyDPlusStrangepPbMNR:
90d7b703 406 // Tuning of Pythia parameters aimed to get a resonable agreement
407 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
408 // c-cbar single inclusive and double differential distributions.
409 // This parameter settings are meant to work with p-Pb collisions
410 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
411 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
412 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 413 ConfigHeavyFlavor();
90d7b703 414 // Intrinsic <kT>
3dc3ec94 415 SetMSTP(91,1);
416 SetPARP(91,1.16);
417 SetPARP(93,5.8);
418
90d7b703 419 // Set c-quark mass
3dc3ec94 420 SetPMAS(4,1,1.2);
adf4d898 421 break;
422 case kPyCharmppMNR:
423 case kPyD0ppMNR:
90d7b703 424 case kPyDPlusppMNR:
e0e89f40 425 case kPyDPlusStrangeppMNR:
90d7b703 426 // Tuning of Pythia parameters aimed to get a resonable agreement
427 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
428 // c-cbar single inclusive and double differential distributions.
429 // This parameter settings are meant to work with pp collisions
430 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
431 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
432 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 433 ConfigHeavyFlavor();
90d7b703 434 // Intrinsic <kT^2>
3dc3ec94 435 SetMSTP(91,1);
436 SetPARP(91,1.);
437 SetPARP(93,5.);
438
90d7b703 439 // Set c-quark mass
3dc3ec94 440 SetPMAS(4,1,1.2);
adf4d898 441 break;
e0e89f40 442 case kPyCharmppMNRwmi:
443 // Tuning of Pythia parameters aimed to get a resonable agreement
444 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
445 // c-cbar single inclusive and double differential distributions.
446 // This parameter settings are meant to work with pp collisions
447 // and with kCTEQ5L PDFs.
448 // Added multiple interactions according to ATLAS tune settings.
449 // To get a "reasonable" agreement with MNR results, events have to be
450 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
451 // set to 2.76 GeV.
452 // To get a "perfect" agreement with MNR results, events have to be
453 // generated in four ptHard bins with the following relative
454 // normalizations:
455 // 2.76-3 GeV: 25%
456 // 3-4 GeV: 40%
457 // 4-8 GeV: 29%
458 // >8 GeV: 6%
459 ConfigHeavyFlavor();
460 // Intrinsic <kT^2>
461 SetMSTP(91,1);
462 SetPARP(91,1.);
463 SetPARP(93,5.);
464
465 // Set c-quark mass
466 SetPMAS(4,1,1.2);
467 AtlasTuning();
468 break;
adf4d898 469 case kPyBeautyPbPbMNR:
8d2cd130 470 // Tuning of Pythia parameters aimed to get a resonable agreement
471 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
472 // b-bbar single inclusive and double differential distributions.
473 // This parameter settings are meant to work with Pb-Pb collisions
474 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
475 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
476 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 477 ConfigHeavyFlavor();
8d2cd130 478 // QCD scales
3dc3ec94 479 SetPARP(67,1.0);
480 SetPARP(71,1.0);
adf4d898 481 // Intrinsic <kT>
3dc3ec94 482 SetMSTP(91,1);
483 SetPARP(91,2.035);
484 SetPARP(93,10.17);
8d2cd130 485 // Set b-quark mass
3dc3ec94 486 SetPMAS(5,1,4.75);
adf4d898 487 break;
488 case kPyBeautypPbMNR:
489 // Tuning of Pythia parameters aimed to get a resonable agreement
490 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
491 // b-bbar single inclusive and double differential distributions.
492 // This parameter settings are meant to work with p-Pb collisions
493 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
494 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
495 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 496 ConfigHeavyFlavor();
adf4d898 497 // QCD scales
3dc3ec94 498 SetPARP(67,1.0);
499 SetPARP(71,1.0);
adf4d898 500 // Intrinsic <kT>
3dc3ec94 501 SetMSTP(91,1);
502 SetPARP(91,1.60);
503 SetPARP(93,8.00);
adf4d898 504 // Set b-quark mass
3dc3ec94 505 SetPMAS(5,1,4.75);
adf4d898 506 break;
507 case kPyBeautyppMNR:
508 // Tuning of Pythia parameters aimed to get a resonable agreement
509 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
510 // b-bbar single inclusive and double differential distributions.
511 // This parameter settings are meant to work with pp collisions
512 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
513 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
514 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 515 ConfigHeavyFlavor();
adf4d898 516 // QCD scales
3dc3ec94 517 SetPARP(67,1.0);
518 SetPARP(71,1.0);
519
520 // Intrinsic <kT>
521 SetMSTP(91,1);
522 SetPARP(91,1.);
523 SetPARP(93,5.);
524
525 // Set b-quark mass
526 SetPMAS(5,1,4.75);
8d2cd130 527 break;
9dfe63b3 528 case kPyBeautyJets:
e0e89f40 529 case kPyBeautyppMNRwmi:
530 // Tuning of Pythia parameters aimed to get a resonable agreement
531 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
532 // b-bbar single inclusive and double differential distributions.
533 // This parameter settings are meant to work with pp collisions
534 // and with kCTEQ5L PDFs.
535 // Added multiple interactions according to ATLAS tune settings.
536 // To get a "reasonable" agreement with MNR results, events have to be
537 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
538 // set to 2.76 GeV.
539 // To get a "perfect" agreement with MNR results, events have to be
540 // generated in four ptHard bins with the following relative
541 // normalizations:
542 // 2.76-4 GeV: 5%
543 // 4-6 GeV: 31%
544 // 6-8 GeV: 28%
545 // >8 GeV: 36%
546 ConfigHeavyFlavor();
547 // QCD scales
548 SetPARP(67,1.0);
549 SetPARP(71,1.0);
550
551 // Intrinsic <kT>
552 SetMSTP(91,1);
553 SetPARP(91,1.);
554 SetPARP(93,5.);
555
556 // Set b-quark mass
557 SetPMAS(5,1,4.75);
558
559 AtlasTuning();
560 break;
589380c6 561 case kPyW:
562
563 //Inclusive production of W+/-
564 SetMSEL(0);
565 //f fbar -> W+
566 SetMSUB(2,1);
567 // //f fbar -> g W+
568 // SetMSUB(16,1);
569 // //f fbar -> gamma W+
570 // SetMSUB(20,1);
571 // //f g -> f W+
572 // SetMSUB(31,1);
573 // //f gamma -> f W+
574 // SetMSUB(36,1);
575
576 // Initial/final parton shower on (Pythia default)
577 // With parton showers on we are generating "W inclusive process"
578 SetMSTP(61,1); //Initial QCD & QED showers on
579 SetMSTP(71,1); //Final QCD & QED showers on
580
581 break;
0f6ee828 582
583 case kPyZ:
584
585 //Inclusive production of Z
586 SetMSEL(0);
587 //f fbar -> Z/gamma
588 SetMSUB(1,1);
589
590 // // f fbar -> g Z/gamma
591 // SetMSUB(15,1);
592 // // f fbar -> gamma Z/gamma
593 // SetMSUB(19,1);
594 // // f g -> f Z/gamma
595 // SetMSUB(30,1);
596 // // f gamma -> f Z/gamma
597 // SetMSUB(35,1);
598
599 //only Z included, not gamma
600 SetMSTP(43,2);
601
602 // Initial/final parton shower on (Pythia default)
603 // With parton showers on we are generating "Z inclusive process"
604 SetMSTP(61,1); //Initial QCD & QED showers on
605 SetMSTP(71,1); //Final QCD & QED showers on
606
607 break;
608
8d2cd130 609 }
610//
611// Initialize PYTHIA
efe3b1cd 612//
613// Select the tune
614 if (itune > -1) Pytune(itune);
615
616//
8d2cd130 617 SetMSTP(41,1); // all resonance decays switched on
d95b55fa 618 Initialize("CMS","p","p",fEcms);
4167b79f 619
8d2cd130 620}
621
622Int_t AliPythia::CheckedLuComp(Int_t kf)
623{
624// Check Lund particle code (for debugging)
625 Int_t kc=Pycomp(kf);
626 printf("\n Lucomp kf,kc %d %d",kf,kc);
627 return kc;
628}
629
20e47f08 630void AliPythia::SetNuclei(Int_t a1, Int_t a2, Int_t pdf)
8d2cd130 631{
632// Treat protons as inside nuclei with mass numbers a1 and a2
633// The MSTP array in the PYPARS common block is used to enable and
634// select the nuclear structure functions.
635// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
636// =1: internal PYTHIA acording to MSTP(51)
637// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
638// If the following mass number both not equal zero, nuclear corrections of the stf are used.
639// MSTP(192) : Mass number of nucleus side 1
640// MSTP(193) : Mass number of nucleus side 2
20e47f08 641// MSTP(194) : Nuclear structure function: 0: EKS98 1:EPS08
8d2cd130 642 SetMSTP(52,2);
643 SetMSTP(192, a1);
20e47f08 644 SetMSTP(193, a2);
645 SetMSTP(194, pdf);
8d2cd130 646}
647
648
649AliPythia* AliPythia::Instance()
650{
651// Set random number generator
652 if (fgAliPythia) {
653 return fgAliPythia;
654 } else {
655 fgAliPythia = new AliPythia();
656 return fgAliPythia;
657 }
658}
659
660void AliPythia::PrintParticles()
661{
662// Print list of particl properties
663 Int_t np = 0;
c31f1d37 664 char* name = new char[16];
8d2cd130 665 for (Int_t kf=0; kf<1000000; kf++) {
666 for (Int_t c = 1; c > -2; c-=2) {
8d2cd130 667 Int_t kc = Pycomp(c*kf);
668 if (kc) {
669 Float_t mass = GetPMAS(kc,1);
670 Float_t width = GetPMAS(kc,2);
671 Float_t tau = GetPMAS(kc,4);
c31f1d37 672
8d2cd130 673 Pyname(kf,name);
674
675 np++;
676
677 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
678 c*kf, name, mass, width, tau);
679 }
680 }
681 }
682 printf("\n Number of particles %d \n \n", np);
683}
684
685void AliPythia::ResetDecayTable()
686{
687// Set default values for pythia decay switches
688 Int_t i;
689 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
690 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
691}
692
693void AliPythia::SetDecayTable()
694{
695// Set default values for pythia decay switches
696//
697 Int_t i;
698 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
699 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
700}
701
702void AliPythia::Pyclus(Int_t& njet)
703{
704// Call Pythia clustering algorithm
705//
706 pyclus(njet);
707}
708
709void AliPythia::Pycell(Int_t& njet)
710{
711// Call Pythia jet reconstruction algorithm
712//
713 pycell(njet);
714}
715
452af8c7 716void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
717{
718// Call Pythia jet reconstruction algorithm
719//
452af8c7 720 pyshow(ip1, ip2, qmax);
721}
722
723void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
724{
725 pyrobo(imi, ima, the, phi, bex, bey, bez);
726}
727
694b39f9 728void AliPythia::Pytune(Int_t itune)
729{
c5e2801a 730/*
731C
732C ITUNE NAME (detailed descriptions below)
733C 0 Default : No settings changed => linked Pythia version's defaults.
734C ====== Old UE, Q2-ordered showers ==========================================
735C 100 A : Rick Field's CDF Tune A
736C 101 AW : Rick Field's CDF Tune AW
737C 102 BW : Rick Field's CDF Tune BW
738C 103 DW : Rick Field's CDF Tune DW
739C 104 DWT : Rick Field's CDF Tune DW with slower UE energy scaling
740C 105 QW : Rick Field's CDF Tune QW (NB: needs CTEQ6.1M pdfs externally)
741C 106 ATLAS-DC2: Arthur Moraes' (old) ATLAS tune (ATLAS DC2 / Rome)
742C 107 ACR : Tune A modified with annealing CR
743C 108 D6 : Rick Field's CDF Tune D6 (NB: needs CTEQ6L pdfs externally)
744C 109 D6T : Rick Field's CDF Tune D6T (NB: needs CTEQ6L pdfs externally)
745C ====== Intermediate Models =================================================
746C 200 IM 1 : Intermediate model: new UE, Q2-ordered showers, annealing CR
747C 201 APT : Tune A modified to use pT-ordered final-state showers
748C ====== New UE, interleaved pT-ordered showers, annealing CR ================
749C 300 S0 : Sandhoff-Skands Tune 0
750C 301 S1 : Sandhoff-Skands Tune 1
751C 302 S2 : Sandhoff-Skands Tune 2
752C 303 S0A : S0 with "Tune A" UE energy scaling
753C 304 NOCR : New UE "best try" without colour reconnections
754C 305 Old : New UE, original (primitive) colour reconnections
755C 306 ATLAS-CSC: Arthur Moraes' (new) ATLAS tune (needs CTEQ6L externally)
756C ======= The Uppsala models =================================================
757C ( NB! must be run with special modified Pythia 6.215 version )
758C ( available from http://www.isv.uu.se/thep/MC/scigal/ )
759C 400 GAL 0 : Generalized area-law model. Old parameters
760C 401 SCI 0 : Soft-Colour-Interaction model. Old parameters
761C 402 GAL 1 : Generalized area-law model. Tevatron MB retuned (Skands)
762*/
694b39f9 763 pytune(itune);
764}
765
9b61ba2a 766void AliPythia::Py2ent(Int_t idx, Int_t pdg1, Int_t pdg2, Double_t p){
767 // Inset 2-parton system at line idx
768 py2ent(idx, pdg1, pdg2, p);
769}
452af8c7 770
771
32c8e463 772void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
0f482ae4 773{
774// Initializes
775// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
776// (2) The nuclear geometry using the Glauber Model
777//
6b435cde 778
18b7a4a1 779 fGlauber = AliFastGlauber::Instance();
0f482ae4 780 fGlauber->Init(2);
781 fGlauber->SetCentralityClass(cMin, cMax);
782
783 fQuenchingWeights = new AliQuenchingWeights();
784 fQuenchingWeights->InitMult();
86b6ad68 785 fQuenchingWeights->SetK(k);
0f482ae4 786 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
32c8e463 787 fNGmax = ngmax;
788 fZmax = zmax;
789
0f482ae4 790}
791
792
452af8c7 793void AliPythia::Quench()
794{
795//
796//
797// Simple Jet Quenching routine:
798// =============================
799// The jet formed by all final state partons radiated by the parton created
0f482ae4 800// in the hard collisions is quenched by a factor (1-z) using light cone variables in
801// the initial parton reference frame:
452af8c7 802// (E + p_z)new = (1-z) (E + p_z)old
803//
0f482ae4 804//
805//
806//
452af8c7 807// The lost momentum is first balanced by one gluon with virtuality > 0.
808// Subsequently the gluon splits to yield two gluons with E = p.
809//
0f482ae4 810//
811//
4e383037 812 static Float_t eMean = 0.;
813 static Int_t icall = 0;
0f482ae4 814
c2c598a3 815 Double_t p0[4][5];
816 Double_t p1[4][5];
817 Double_t p2[4][5];
818 Int_t klast[4] = {-1, -1, -1, -1};
452af8c7 819
820 Int_t numpart = fPyjets->N;
86b6ad68 821 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
c2c598a3 822 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
823 Bool_t quenched[4];
b280c4cc 824 Double_t wjtKick[4];
c2c598a3 825 Int_t nGluon[4];
86b6ad68 826 Int_t qPdg[4];
0f482ae4 827 Int_t imo, kst, pdg;
b280c4cc 828
511db649 829//
c2c598a3 830// Sore information about Primary partons
831//
832// j =
833// 0, 1 partons from hard scattering
834// 2, 3 partons from initial state radiation
835//
836 for (Int_t i = 2; i <= 7; i++) {
837 Int_t j = 0;
838 // Skip gluons that participate in hard scattering
839 if (i == 4 || i == 5) continue;
840 // Gluons from hard Scattering
841 if (i == 6 || i == 7) {
842 j = i - 6;
843 pxq[j] = fPyjets->P[0][i];
844 pyq[j] = fPyjets->P[1][i];
845 pzq[j] = fPyjets->P[2][i];
846 eq[j] = fPyjets->P[3][i];
847 mq[j] = fPyjets->P[4][i];
848 } else {
849 // Gluons from initial state radiation
850 //
851 // Obtain 4-momentum vector from difference between original parton and parton after gluon
852 // radiation. Energy is calculated independently because initial state radition does not
853 // conserve strictly momentum and energy for each partonic system independently.
854 //
855 // Not very clean. Should be improved !
856 //
857 //
858 j = i;
859 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
860 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
861 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
862 mq[j] = fPyjets->P[4][i];
863 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
864 }
865//
866// Calculate some kinematic variables
511db649 867//
4e383037 868 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
0f482ae4 869 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
870 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
871 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
872 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
86b6ad68 873 qPdg[j] = fPyjets->K[1][i];
874 }
875
876 Double_t int0[4];
877 Double_t int1[4];
86b6ad68 878
b280c4cc 879 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
880
86b6ad68 881 for (Int_t j = 0; j < 4; j++) {
c2c598a3 882 //
883 // Quench only central jets and with E > 10.
884 //
86b6ad68 885
886
887 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
888 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
889
c2c598a3 890 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
b280c4cc 891 fZQuench[j] = 0.;
0f482ae4 892 } else {
c2c598a3 893 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
4e383037 894 icall ++;
895 eMean += eloss;
896 }
0f482ae4 897 //
898 // Extra pt
86b6ad68 899 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
900 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
0f482ae4 901 //
902 // Fractional energy loss
b280c4cc 903 fZQuench[j] = eloss / eq[j];
0f482ae4 904 //
905 // Avoid complete loss
906 //
1044c4d8 907 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
0f482ae4 908 //
909 // Some debug printing
86b6ad68 910
911
bf9bb016 912// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
913// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
4e383037 914
b280c4cc 915// fZQuench[j] = 0.8;
916// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
0f482ae4 917 }
4e383037 918
b280c4cc 919 quenched[j] = (fZQuench[j] > 0.01);
4e383037 920 } // primary partons
c2c598a3 921
b280c4cc 922
923
6e90ad26 924 Double_t pNew[1000][4];
925 Int_t kNew[1000];
926 Int_t icount = 0;
b280c4cc 927 Double_t zquench[4];
928
6e90ad26 929//
4e383037 930// System Loop
c2c598a3 931 for (Int_t isys = 0; isys < 4; isys++) {
6e90ad26 932// Skip to next system if not quenched.
4e383037 933 if (!quenched[isys]) continue;
934
b280c4cc 935 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
32c8e463 936 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
b280c4cc 937 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
4e383037 938 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
0f482ae4 939
4e383037 940
941
942 Int_t igMin = -1;
943 Int_t igMax = -1;
944 Double_t pg[4] = {0., 0., 0., 0.};
945
946//
947// Loop on radiation events
948
949 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
6e90ad26 950 while (1) {
951 icount = 0;
952 for (Int_t k = 0; k < 4; k++)
953 {
954 p0[isys][k] = 0.;
955 p1[isys][k] = 0.;
956 p2[isys][k] = 0.;
957 }
958// Loop over partons
959 for (Int_t i = 0; i < numpart; i++)
960 {
961 imo = fPyjets->K[2][i];
962 kst = fPyjets->K[0][i];
963 pdg = fPyjets->K[1][i];
964
965
966
0f482ae4 967// Quarks and gluons only
6e90ad26 968 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
0f482ae4 969// Particles from hard scattering only
c2c598a3 970
6e90ad26 971 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
c2c598a3 972 Int_t imom = imo % 1000;
973 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
974 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
975
6e90ad26 976
0f482ae4 977// Skip comment lines
6e90ad26 978 if (kst != 1 && kst != 2) continue;
0f482ae4 979//
980// Parton kinematic
6e90ad26 981 px = fPyjets->P[0][i];
982 py = fPyjets->P[1][i];
983 pz = fPyjets->P[2][i];
984 e = fPyjets->P[3][i];
985 m = fPyjets->P[4][i];
986 pt = TMath::Sqrt(px * px + py * py);
987 p = TMath::Sqrt(px * px + py * py + pz * pz);
988 phi = TMath::Pi() + TMath::ATan2(-py, -px);
989 theta = TMath::ATan2(pt, pz);
990
0f482ae4 991//
c2c598a3 992// Save 4-momentum sum for balancing
993 Int_t index = isys;
6e90ad26 994
995 p0[index][0] += px;
996 p0[index][1] += py;
997 p0[index][2] += pz;
998 p0[index][3] += e;
6e90ad26 999
1000 klast[index] = i;
1001
0f482ae4 1002//
1003// Fractional energy loss
b280c4cc 1004 Double_t z = zquench[index];
4e383037 1005
c2c598a3 1006
4e383037 1007// Don't fully quench radiated gluons
1008//
1009 if (imo > 1000) {
1010// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
1011//
1012
c2c598a3 1013 z = 0.02;
4e383037 1014 }
c2c598a3 1015// printf("z: %d %f\n", imo, z);
1016
4e383037 1017
1018//
6e90ad26 1019
1020 //
1021 //
1022 // Transform into frame in which initial parton is along z-axis
1023 //
1024 TVector3 v(px, py, pz);
1025 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
1026 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
1027
1028 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
1029 Double_t mt2 = jt * jt + m * m;
1030 Double_t zmax = 1.;
1031 //
1032 // Kinematic limit on z
1033 //
4e383037 1034 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
6e90ad26 1035 //
1036 // Change light-cone kinematics rel. to initial parton
1037 //
1038 Double_t eppzOld = e + pl;
1039 Double_t empzOld = e - pl;
1040
1041 Double_t eppzNew = (1. - z) * eppzOld;
1042 Double_t empzNew = empzOld - mt2 * z / eppzOld;
1043 Double_t eNew = 0.5 * (eppzNew + empzNew);
1044 Double_t plNew = 0.5 * (eppzNew - empzNew);
1045
1046 Double_t jtNew;
1047 //
1048 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
1049 Double_t mt2New = eppzNew * empzNew;
1050 if (mt2New < 1.e-8) mt2New = 0.;
4e383037 1051 if (z < zmax) {
1052 if (m * m > mt2New) {
1053 //
1054 // This should not happen
1055 //
1056 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
1057 jtNew = 0;
1058 } else {
1059 jtNew = TMath::Sqrt(mt2New - m * m);
1060 }
6e90ad26 1061 } else {
4e383037 1062 // If pT is to small (probably a leading massive particle) we scale only the energy
1063 // This can cause negative masses of the radiated gluon
1064 // Let's hope for the best ...
1065 jtNew = jt;
1066 eNew = TMath::Sqrt(plNew * plNew + mt2);
1067
6e90ad26 1068 }
6e90ad26 1069 //
1070 // Calculate new px, py
1071 //
b07be423 1072 Double_t pxNew = 0;
1073 Double_t pyNew = 0;
6e90ad26 1074
b07be423 1075 if (jt>0) {
6b118b3c 1076 pxNew = jtNew / jt * pxs;
1077 pyNew = jtNew / jt * pys;
b07be423 1078 }
6e90ad26 1079// Double_t dpx = pxs - pxNew;
1080// Double_t dpy = pys - pyNew;
1081// Double_t dpz = pl - plNew;
1082// Double_t de = e - eNew;
1083// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1084// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1085// printf("New mass (2) %e %e \n", pxNew, pyNew);
1086 //
1087 // Rotate back
1088 //
1089 TVector3 w(pxNew, pyNew, plNew);
1090 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1091 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1092
1093 p1[index][0] += pxNew;
1094 p1[index][1] += pyNew;
1095 p1[index][2] += plNew;
1096 p1[index][3] += eNew;
1097 //
1098 // Updated 4-momentum vectors
1099 //
1100 pNew[icount][0] = pxNew;
1101 pNew[icount][1] = pyNew;
1102 pNew[icount][2] = plNew;
1103 pNew[icount][3] = eNew;
1104 kNew[icount] = i;
1105 icount++;
1106 } // parton loop
0f482ae4 1107 //
6e90ad26 1108 // Check if there was phase-space for quenching
0f482ae4 1109 //
0f482ae4 1110
6e90ad26 1111 if (icount == 0) quenched[isys] = kFALSE;
1112 if (!quenched[isys]) break;
1113
1114 for (Int_t j = 0; j < 4; j++)
1115 {
1116 p2[isys][j] = p0[isys][j] - p1[isys][j];
1117 }
1118 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
6e90ad26 1119 if (p2[isys][4] > 0.) {
1120 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1121 break;
1122 } else {
b280c4cc 1123 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
4e383037 1124 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
6e90ad26 1125 if (p2[isys][4] < -0.01) {
4e383037 1126 printf("Negative mass squared !\n");
1127 // Here we have to put the gluon back to mass shell
1128 // This will lead to a small energy imbalance
1129 p2[isys][4] = 0.;
1130 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1131 break;
6e90ad26 1132 } else {
1133 p2[isys][4] = 0.;
1134 break;
1135 }
1136 }
6e90ad26 1137 /*
6e90ad26 1138 zHeavy *= 0.98;
1139 printf("zHeavy lowered to %f\n", zHeavy);
1140 if (zHeavy < 0.01) {
1141 printf("No success ! \n");
1142 icount = 0;
1143 quenched[isys] = kFALSE;
1144 break;
1145 }
4e383037 1146 */
1147 } // iteration on z (while)
1148
6e90ad26 1149// Update event record
1150 for (Int_t k = 0; k < icount; k++) {
1151// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1152 fPyjets->P[0][kNew[k]] = pNew[k][0];
1153 fPyjets->P[1][kNew[k]] = pNew[k][1];
1154 fPyjets->P[2][kNew[k]] = pNew[k][2];
1155 fPyjets->P[3][kNew[k]] = pNew[k][3];
0f482ae4 1156 }
4e383037 1157 //
1158 // Add the gluons
1159 //
1160 Int_t ish = 0;
1837e95c 1161 Int_t iGlu;
4e383037 1162 if (!quenched[isys]) continue;
0f482ae4 1163//
1164// Last parton from shower i
4e383037 1165 Int_t in = klast[isys];
0f482ae4 1166//
1167// Continue if no parton in shower i selected
1168 if (in == -1) continue;
1169//
1170// If this is the second initial parton and it is behind the first move pointer by previous ish
4e383037 1171 if (isys == 1 && klast[1] > klast[0]) in += ish;
0f482ae4 1172//
1173// Starting index
452af8c7 1174
4e383037 1175// jmin = in - 1;
0f482ae4 1176// How many additional gluons will be generated
1177 ish = 1;
4e383037 1178 if (p2[isys][4] > 0.05) ish = 2;
0f482ae4 1179//
1180// Position of gluons
4e383037 1181 iGlu = numpart;
1182 if (iglu == 0) igMin = iGlu;
1183 igMax = iGlu;
0f482ae4 1184 numpart += ish;
1185 (fPyjets->N) += ish;
4e383037 1186
0f482ae4 1187 if (ish == 1) {
4e383037 1188 fPyjets->P[0][iGlu] = p2[isys][0];
1189 fPyjets->P[1][iGlu] = p2[isys][1];
1190 fPyjets->P[2][iGlu] = p2[isys][2];
1191 fPyjets->P[3][iGlu] = p2[isys][3];
1192 fPyjets->P[4][iGlu] = p2[isys][4];
0f482ae4 1193
4e383037 1194 fPyjets->K[0][iGlu] = 1;
1195 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
0f482ae4 1196 fPyjets->K[1][iGlu] = 21;
4e383037 1197 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1198 fPyjets->K[3][iGlu] = -1;
1199 fPyjets->K[4][iGlu] = -1;
4e383037 1200
1201 pg[0] += p2[isys][0];
1202 pg[1] += p2[isys][1];
1203 pg[2] += p2[isys][2];
1204 pg[3] += p2[isys][3];
0f482ae4 1205 } else {
1206 //
1207 // Split gluon in rest frame.
1208 //
4e383037 1209 Double_t bx = p2[isys][0] / p2[isys][3];
1210 Double_t by = p2[isys][1] / p2[isys][3];
1211 Double_t bz = p2[isys][2] / p2[isys][3];
1212 Double_t pst = p2[isys][4] / 2.;
0f482ae4 1213 //
1214 // Isotropic decay ????
1215 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1216 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1217 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
0f482ae4 1218
1219 Double_t pz1 = pst * cost;
1220 Double_t pz2 = -pst * cost;
1221 Double_t pt1 = pst * sint;
1222 Double_t pt2 = -pst * sint;
2ab330c9 1223 Double_t px1 = pt1 * TMath::Cos(phis);
1224 Double_t py1 = pt1 * TMath::Sin(phis);
1225 Double_t px2 = pt2 * TMath::Cos(phis);
1226 Double_t py2 = pt2 * TMath::Sin(phis);
0f482ae4 1227
1228 fPyjets->P[0][iGlu] = px1;
1229 fPyjets->P[1][iGlu] = py1;
1230 fPyjets->P[2][iGlu] = pz1;
1231 fPyjets->P[3][iGlu] = pst;
1232 fPyjets->P[4][iGlu] = 0.;
1233
4e383037 1234 fPyjets->K[0][iGlu] = 1 ;
0f482ae4 1235 fPyjets->K[1][iGlu] = 21;
4e383037 1236 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1237 fPyjets->K[3][iGlu] = -1;
1238 fPyjets->K[4][iGlu] = -1;
1239
1240 fPyjets->P[0][iGlu+1] = px2;
1241 fPyjets->P[1][iGlu+1] = py2;
1242 fPyjets->P[2][iGlu+1] = pz2;
1243 fPyjets->P[3][iGlu+1] = pst;
1244 fPyjets->P[4][iGlu+1] = 0.;
1245
4e383037 1246 fPyjets->K[0][iGlu+1] = 1;
1247 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
0f482ae4 1248 fPyjets->K[1][iGlu+1] = 21;
4e383037 1249 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
0f482ae4 1250 fPyjets->K[3][iGlu+1] = -1;
1251 fPyjets->K[4][iGlu+1] = -1;
1252 SetMSTU(1,0);
1253 SetMSTU(2,0);
1254 //
1255 // Boost back
1256 //
1257 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1258 }
4e383037 1259/*
1260 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1261 Double_t px, py, pz;
1262 px = fPyjets->P[0][ig];
1263 py = fPyjets->P[1][ig];
1264 pz = fPyjets->P[2][ig];
1265 TVector3 v(px, py, pz);
1266 v.RotateZ(-phiq[isys]);
1267 v.RotateY(-thetaq[isys]);
1268 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1269 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1270 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1271 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1272 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1273 pxs += jtKick * TMath::Cos(phiKick);
1274 pys += jtKick * TMath::Sin(phiKick);
1275 TVector3 w(pxs, pys, pzs);
1276 w.RotateY(thetaq[isys]);
1277 w.RotateZ(phiq[isys]);
1278 fPyjets->P[0][ig] = w.X();
1279 fPyjets->P[1][ig] = w.Y();
1280 fPyjets->P[2][ig] = w.Z();
1281 fPyjets->P[2][ig] = w.Mag();
1282 }
1283*/
1284 } // kGluon
1285
6e90ad26 1286
4e383037 1287 // Check energy conservation
0f482ae4 1288 Double_t pxs = 0.;
1289 Double_t pys = 0.;
1290 Double_t pzs = 0.;
1291 Double_t es = 14000.;
1292
1293 for (Int_t i = 0; i < numpart; i++)
1294 {
1295 kst = fPyjets->K[0][i];
1296 if (kst != 1 && kst != 2) continue;
1297 pxs += fPyjets->P[0][i];
1298 pys += fPyjets->P[1][i];
1299 pzs += fPyjets->P[2][i];
1300 es -= fPyjets->P[3][i];
1301 }
1302 if (TMath::Abs(pxs) > 1.e-2 ||
1303 TMath::Abs(pys) > 1.e-2 ||
1304 TMath::Abs(pzs) > 1.e-1) {
1305 printf("%e %e %e %e\n", pxs, pys, pzs, es);
4e383037 1306// Fatal("Quench()", "4-Momentum non-conservation");
452af8c7 1307 }
4e383037 1308
1309 } // end quenching loop (systems)
6e90ad26 1310// Clean-up
0f482ae4 1311 for (Int_t i = 0; i < numpart; i++)
1312 {
4e383037 1313 imo = fPyjets->K[2][i];
1314 if (imo > 1000) {
1315 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1316 }
0f482ae4 1317 }
4e383037 1318// this->Pylist(1);
0f482ae4 1319} // end quench
90d7b703 1320
992f2843 1321
1322void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b)
1323{
1324 // Igor Lokthine's quenching routine
12cb0bc0 1325 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1326
992f2843 1327 pyquen(a, ibf, b);
1328}
b280c4cc 1329
12cb0bc0 1330void AliPythia::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1331{
1332 // Set the parameters for the PYQUEN package.
1333 // See comments in PyquenCommon.h
1334
1335
1336 PYQPAR.t0 = t0;
1337 PYQPAR.tau0 = tau0;
1338 PYQPAR.nf = nf;
1339 PYQPAR.iengl = iengl;
1340 PYQPAR.iangl = iangl;
1341}
1342
1343
16a82508 1344void AliPythia::Pyevnw()
1345{
1346 // New multiple interaction scenario
1347 pyevnw();
1348}
1349
cd07c39b 1350void AliPythia::Pyshowq(Int_t ip1, Int_t ip2, Double_t qmax)
1351{
1352 // Call medium-modified Pythia jet reconstruction algorithm
1353 //
1354 pyshowq(ip1, ip2, qmax);
1355}
1356
b280c4cc 1357void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1358{
1359 // Return event specific quenching parameters
1360 xp = fXJet;
1361 yp = fYJet;
1362 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1363
1364}
1365
3dc3ec94 1366void AliPythia::ConfigHeavyFlavor()
1367{
1368 //
1369 // Default configuration for Heavy Flavor production
1370 //
1371 // All QCD processes
1372 //
1373 SetMSEL(1);
1374
1375 // No multiple interactions
1376 SetMSTP(81,0);
39c2e610 1377 SetPARP(81, 0.);
1378 SetPARP(82, 0.);
3dc3ec94 1379 // Initial/final parton shower on (Pythia default)
1380 SetMSTP(61,1);
1381 SetMSTP(71,1);
1382
1383 // 2nd order alpha_s
1384 SetMSTP(2,2);
1385
1386 // QCD scales
1387 SetMSTP(32,2);
1388 SetPARP(34,1.0);
1389}
e0e89f40 1390
1391void AliPythia::AtlasTuning()
1392{
1393 //
1394 // Configuration for the ATLAS tuning
0bd3d7c5 1395 if (fItune > -1) return;
1396 printf("ATLAS TUNE \n");
1397
1398 SetMSTP(51, AliStructFuncType::PDFsetIndex(kCTEQ5L)); // CTEQ5L pdf
1399 SetMSTP(81,1); // Multiple Interactions ON
1400 SetMSTP(82,4); // Double Gaussian Model
1401 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
1402 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1403 SetPARP(89,1000.); // [GeV] Ref. energy
1404 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1405 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1406 SetPARP(84,0.5); // Core radius
1407 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1408 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1409 SetPARP(67,1); // Regulates Initial State Radiation
1410}
1411
1412void AliPythia::AtlasTuning_MC09()
1413{
1414 //
1415 // Configuration for the ATLAS tuning
1416 if (fItune > -1) return;
1417 printf("ATLAS New TUNE MC09\n");
1418 SetMSTP(81,21); // treatment for MI, ISR, FSR and beam remnants: MI on, new model
1419 SetMSTP(82, 4); // Double Gaussian Model
1420 SetMSTP(52, 2); // External PDF
1421 SetMSTP(51, 20650); // MRST LO*
1422
1423
1424 SetMSTP(70, 0); // (was 2: def manual 1, def code 0) virtuality scale for ISR
1425 SetMSTP(72, 1); // (was 0: def 1) maximum scale for FSR
1426 SetMSTP(88, 1); // (was 0: def 1) strategy for qq junction to di-quark or baryon in beam remnant
1427 SetMSTP(90, 0); // (was 1: def 0) strategy of compensate the primordial kT
1428
1429 SetPARP(78, 0.3); // the amount of color reconnection in the final state
1430 SetPARP(80, 0.1); // probability of color partons kicked out from beam remnant
1431 SetPARP(82, 2.3); // [GeV] PT_min at Ref. energy
1432 SetPARP(83, 0.8); // Core density in proton matter distribution (def.value)
1433 SetPARP(84, 0.7); // Core radius
1434 SetPARP(90, 0.25); // 2*epsilon (exponent in power law)
1435 SetPARJ(81, 0.29); // (was 0.14: def 0.29) Labmda value in running alpha_s for parton showers
1436
1437 SetMSTP(95, 6);
1438 SetPARJ(41, 0.3); // a and b parameters of the symmm. Lund FF
1439 SetPARJ(42, 0.58);
1440 SetPARJ(46, 0.75); // mod. of the Lund FF for heavy end-point quarks
1441 SetPARP(89,1800.); // [GeV] Ref. energy
e0e89f40 1442}
e8a8adcd 1443
1444AliPythia& AliPythia::operator=(const AliPythia& rhs)
1445{
1446// Assignment operator
1447 rhs.Copy(*this);
1448 return *this;
1449}
1450
1451 void AliPythia::Copy(TObject&) const
1452{
1453 //
1454 // Copy
1455 //
1456 Fatal("Copy","Not implemented!\n");
1457}
cd07c39b 1458